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Nanoscale photothermoacoustics generation in liquids, by reason of its implications in nanoimaging and 
therapeutic, is a booming topic at the forefront of nanoscale heat transfer, optics and biosciences [1]. Within 
this frame, liquid-immersed nanotransducers play a major role as efficient photoacoustic generators 
because of their biocompatibility together with tunable optical absorption properties. Research efforts 
focused on enhancing photoacoustic conversion acting on the nano transducers’ materials, geometry and 
size. Despite these efforts and the applicative interest, the effects of the Kapitza resistance and the laser 
pulse duration on the acoustic wave generation mechanism [2-4] are yet to be fully uncovered and lack of a 
thorough understanding. 
  

Within this context, we review recent developments on the photothermoacoustic of water-immersed 
gold nanocylinders and nanofilms. The focus is on the acoustic waves launching mechanisms and their 
competition. We demonstrate that the acoustic waves are not only launched by the expansion of water- 
“thermophone effect”-, but also by the expansion of the nano-object itself- “mechanophone effect”. Both the 
thermal dynamics and the mechanical response are systematically addressed. The physical parameters 
controlling the thermophone vs mechanophone competition are identified together with their interplay [5].  
  

We then extend the investigation to the photoacoustic effect of water-immersed carbon nanotubes, 
combining microscopic atomistic simulations, analytical models and finite element methods [6]. In this case, 
in addition to the thermophone vs mechanophone competition, we show how the activation of the 
mechanophone effect can trigger few nanometers wavelengths sound waves in water.  
  

Our findings suggest the possibility to exploit liquid-immersed nano-transducers, characterized by a high 
Kapitza resistance, to launch acoustic waves in the liquid while minimizing their temperature increase. This 
strategy is at variance with what usually suggested in the literature, i.e. minimizing the Kapitza resistance, 
and is foreseen to play a role in bio-imaging applications at the nano- scale where high frequency acoustic 
wave generation in water is required while avoiding heating effects These findings find generalization also 
in all-solid state systems [7,8]. 
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