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• We are interested in the optimization of a black-box function :

𝑦 ∶ 𝒙 ∈ 𝒳 ⊂ ℝ𝑑 → 𝑦 𝒙 ∈ ℝ.

→ We want to find the best design :

𝒙∗ = argmin
𝒙∈𝒳

𝑦(𝒙) .

DESIGN OPTIMIZATION
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Initial model Optimised model Thickness difference

Example : optimization of the Peugeot 3008 to minimize the vehicle weight while satisfying the norms for chock resistance.



• We are in the context where the black-box function 𝑦 is expensive to evaluate :

→ Evaluating the function for a single design can take hours. 

We can only afford of few observations.

We cannot use the usual optimization methods

which require a large number of these evaluations.

• We dispose of 𝑛 observations 𝒀 = 𝑦 𝒙𝟏 , … , 𝑦 𝒙𝒏
𝑇

at the sample locations 𝑿 = 𝒙𝟏, … , 𝒙𝒏
𝑇 .

→ The ordinary Kriging method approximates 𝑦 as the realization of a Gaussian Process :

𝑌 . ~ 𝐺𝑃 𝜇, 𝑘𝜎,𝜽 . , . .

• 𝑘𝜎,𝜽 . , . is the covariance function (kernel) with 𝜎2 the variance of the GP and 𝜽 ∈ ℝ𝑑 the covariance length-scales.

• We obtain the Kriging predictors for the mean and predictive variance by conditioning the GP 𝑌 over 𝒟 = (𝑿, 𝒀) :

ො𝑦 𝒙 = 𝐸 𝑌 𝒙 𝒟 = 𝜇 + 𝑘 𝒙, 𝑿 𝑲 𝑿,𝑿 −1 𝒀 − 𝟏𝜇 ,

Ƹ𝑠2 𝒙 = 𝑉𝑎𝑟 𝑌 𝒙 𝒟 = 𝑘 𝒙, 𝒙 − 𝑘 𝒙, 𝑿 𝑲 𝑿,𝑿 −1𝑘 𝑿, 𝒙 .

KRIGING SURROGATE MODELS
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𝑦 𝑥 ≈ ො𝑦(𝑥)
Build a surrogate model

Expensive true objective 
function

Cheap analytical 
approximation



COVARIANCE FUNCTION
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Popular choices of 1D stationary covariance are :

• Exponential : 𝑘𝜎,𝜃 𝑥, 𝑥′ = 𝜎2 exp −
𝑥−𝑥′

𝜃
,

• Gaussian : 𝑘𝜎,𝜃 𝑥, 𝑥′ = 𝜎2 exp −
𝑥−𝑥′

2

2𝜃2
,

• Matérn 5/2 : 𝑘𝜎,𝜃 𝑥, 𝑥′ = 𝜎2 1 + 5
𝑥−𝑥′

𝜃
+

5 𝑥−𝑥′
2

3𝜃2
exp − 5

𝑥−𝑥′

𝜃
,

Typically, the hyperparameters are optimized to maximize the log-likelihood of the model :

ℒ 𝜎, 𝜽 = −
1

2
𝒀𝑇𝑲𝜎,𝜽

−1𝒀 −
1

2
log 𝑲𝜎,𝜽 −

𝑛

2
log 2𝜋 .

Denoting 𝑹 the correlation matrix such that 𝑲𝜎,𝜽 = 𝜎2𝑹𝜽, the MLE estimator for 𝜎2 is :

ො𝜎𝑀𝐿𝐸
2 =

1

𝑛
𝒀𝑇𝑹𝜽

−1𝒀.

And we obtain the length-scales by solving the minimization problem :

𝜃𝑀𝐿𝐸 = argmin
𝜽

−
1

2
log( ො𝜎𝑀𝐿𝐸

2 ) −
1

2
log 𝑹𝜽 .

The choice of the covariance function is very important to obtain a good prediction.
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EFFICIENT GLOBAL OPTIMIZATION
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For Kriging-based optimization, we build the sampling plan sequentially by adding new training points to refine the model
based on an acquisition criterion. This is called efficient global optimization (EGO) (see Jones et al., 1998).

A popular method to decide where to add new samples is to use a criterion called Expected Improvement (EI).

6

• The expected improvement is computed with both the Kriging
estimate value and the model error value:

𝐸 𝐼 𝒙 = 𝐸 𝑦𝑚𝑖𝑛 − 𝑌 𝒙
+

.

- EI balances local search around the optimum and global search
where the Kriging model is not very accurate.

Probability of 
Improvement

Sample point
Computed with 

numerical simulation



WHAT IS HIGH DIMENSION ?
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77 sur périmètre base53 sur périmètre superstructure

A total of 130 parameters for this example !

The dimension of the problem is the dimension of the design space.

→ That is, the number of design variables in the problem.

Typically, for a number of design variables superior to ≈ 20, the 
ordinary Kriging method begins to show its limits.
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ISSUES OF KRIGING IN HIGH DIMENSION
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• One issue is the optimization of the hyperparameters.

There is one length-scale hyperparameter per dimension, and all these hyperparameters need to be optimized.
→ The optimization of the hyperparameters is difficult :

➢ 𝑑-dimensional problem (with 𝑑 > 20 up to ≈ 100 − 150).

➢ The optimization can be costly due to the cost of the cost for the evaluation of the objective (log-likelihood) and
its gradient is in 𝑂 𝑛3 .

➢ The shape of the objective is flat is some areas.

➢ When the training data is sparse (which is often the case for high dimensional problems since we cannot afford to
compute too many observations), the likelihood criterion over-fit the data which lead to a bad estimation of the
hyperparameters.
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ISSUES OF KRIGING IN HIGH DIMENSION
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• An illustration of this difficulty: approximating the 50D sphere function:

𝑓𝑠𝑝ℎè𝑟𝑒 𝑥1, … , 𝑥𝑑 =

𝑖=1

𝑑

𝑥𝑖 − 0,5 2 , 0 ≤ 𝑥𝑖 ≤ 1.

We build a Kriging model using a varying number of training points and compare to a Kriging model with reference
hyperparameters :

9

- 100 iterations for the hyperparameter optimization
using the DiceKriging package in R.

- The reference hyperparameters are obtained by
doing the optimization with 5000 points.

- The boxplots give the results for 10 different runs.



ISSUES OF KRIGING IN HIGH DIMENSION
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• Several methods have been proposed to solve this issue :

- Reduction of the problem’s dimension by embedding the design space into a lower-dimension space (see for example
Constantine et al., 2015, Bouhlel et al., 2016).

- Additive Kriging where the function is assumed to be a sum of one-dimensional components (see for example
Durrande et al., 2012).

- Penalized version of the likelihood to improve the robustness of the hyperparameter optimization (see for example
RobustGaSP in Gu et al., 2018).

→ In the following, we present a method to bypass the hyperparameter optimization by combining Kriging sub-models
with fixed length-scales.

This method is both:
- Fast since it avoids the expensive hyperparameter optimization,
- Easily generalized since it does not assume a particular form of the underlying function.
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The motivation of the method is to avoid the costly and difficult optimization of the Kriging hyperparameters for high-

dimensional problems.

→ We propose a model which is a combination of Kriging models with fixed length-scale (see preprint Appriou et al., 2022) :

𝑀𝑡𝑜𝑡 𝒙 =

𝑖=1

𝑝

𝑤𝑖 𝒙 𝑀𝑖(𝒙) , with 𝑀𝑖 𝑥 = 𝑘𝜽𝑖 𝒙, 𝑿𝑖 𝐾𝜽𝑖
−1(𝒀𝑖 − 𝜇𝑖) Kriging model with fixed length−scale vector 𝜽𝑖 .

• The weights of the combination can be obtained in closed-form and does not require a numerical optimization.

• This method does not rely on reducing the dimension in order to preserve the correlations between each design

variables and to ensure that there is no loss of information due to a design space of reduced dimension.

• This method is flexible since each sub-model can be constructed with different subsets of points, different design

variables, different covariance functions …

• The complexity of the combination is 𝑂(𝑝𝑛3) (one inversion of the 𝑛 × 𝑛 covariance matrix for each of the 𝑝 sub-models).

For a reasonable number of sub-models, this is less than the cost of ordinary Kriging in 𝑂(𝛼𝑖𝑡𝑒𝑟𝑛
3) where 𝛼𝑖𝑡𝑒𝑟 is the

number of matrix inversion for the hyperparameter optimization.

COMBINATION OF SUB-MODELS WITH FIXED LENGTH-SCALE
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An appropriate method to select the length-scales of each sub-model is essential for this method to work.

• We want to have variety in the sub-models, so that the combined model can select well-suited behaviors through the

weights in the combination.

CHOICE OF THE SUB-MODEL LENGTH-SCALES
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→ To have variety among the sub-models, we need variety among the length-scales
as they are the main source of difference between the sub-models.

• We want to avoid too small or too large values of the length-scales:

- For too small values:

𝑘𝜃 𝑥𝑖 , 𝑥𝑗 ⟶ 0 for all 𝑖 ≠ 𝑗, and 𝑲𝜃 ⟶ 𝜎2𝑰𝑛.

In this case, the Kriging model will return to its mean outside the observations.

- For too large values:

𝑘𝜃 𝑥𝑖 , 𝑥𝑗 ⟶ 1, and 𝑲𝜃 ⟶ 𝜎2𝟏𝑛×𝑛.

In this case, the covariance matrix is ill-defined and its inversion will pose numerical
issues.



CHOICE OF THE SUB-MODEL LENGTH-SCALES
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First, we will study an example for which analytical expressions can be obtained.

• Assume that design points are distributed as a random vector 𝑿 = 𝑋 1 , … , 𝑋 𝑑 with i.i.d components with common

variance 𝜎𝑋
2 and kurtosis 𝜅𝑋.

• We note 𝐷2 the random square distance between two independent points 𝑿 and 𝑿’ of the design. For a large enough

dimension:

𝐷2 = 

𝑘=1

𝑑

𝑋𝑘 − 𝑋𝑘
′ 2~𝒩 2𝑑𝜎𝑋

2, 2𝑑𝜎𝑋
4 𝜅𝑋 + 1 .

• For a Gaussian correlation:

𝑅𝜃 = 𝑒
−
1
2
𝐷2

𝜃2 ~ Lognormal
−𝜎𝑋

2

𝜃2
𝑑,

𝜎𝑋
4

2𝜃4
𝜅𝑋 + 1 𝑑 .

• We can finally obtain the entropy of the correlation:

𝐻 𝑅𝜃 = 𝔼 − log 𝑓𝑅𝜃 𝑅𝜃 = −
𝜎𝑋
2

𝜃2
𝑑 +

1

2
ln

𝜎𝑋
4

2𝜃4
𝑑 𝜅𝑋 + 1 2𝜋 +

1

2
.



CHOICE OF THE SUB-MODEL LENGTH-SCALES
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𝐻 𝑅𝜃 = 𝔼 − log 𝑓𝑅𝜃 𝑅𝜃 = −
𝜎𝑋
2

𝜃2
𝑑 +

1

2
ln

𝜎𝑋
4

2𝜃4
𝑑 𝜅𝑋 + 1 2𝜋 +

1

2
.

How to use the knowledge about this entropy ?

• When sampling the length-scales, we want to favor 𝜃 corresponding to high entropy

values, which result in a high variability in the correlation.

• In the two degenerated cases of small and large length-scales: 𝑅𝜃𝑠𝑚𝑎𝑙𝑙
⟶ 𝛿0 and

𝑅𝜃𝑙𝑎𝑟𝑔𝑒 ⟶ 𝛿1, which gives:

𝐻 𝑅𝜃𝑠𝑚𝑎𝑙𝑙
⟶−∞ and  𝐻 𝑅𝜃𝑙𝑎𝑟𝑔𝑒 ⟶−∞.

• We can also obtain the maximal entropy length-scale:

argm𝑎𝑥
𝜃

𝐻 𝑅𝜃 = 𝜎𝑋 𝑑

Entropy of a Gaussian correlation in
50D for a uniform design (𝜎𝑋

2 = 1/12
and 𝜅𝑋 = 9/5).

• Finally, we will sample the length-scales using a positive transformation of the entropy:

𝑓 𝜃 ∝ exp 𝐻 𝑅𝜃 .



Now, we present the method used to obtain the weights in the combination:

• One method (see for example Viana et al., 2009) relies on minimizing the LOOCV error of the combination:

𝑒𝐿𝑂𝑂𝐶𝑉 𝑀𝑡𝑜𝑡 =
1

𝑛


𝑘=1

𝑛


𝑖=1

𝑝

𝑤𝑖𝑀𝑖−𝑘 𝑥𝑘 − 𝑦 𝑥𝑘

2

= 𝒘𝑇𝑪𝒘.

→ The components of the matrix 𝑪 are : 𝑐𝑖𝑗 =
1

𝑁
𝑒𝐶𝑉𝑖

𝑇𝑒𝐶𝑉𝑗 , with 𝑒𝑖
𝑘
= 𝐾𝑖

−1𝑌
𝑘
/ 𝐾𝑖

−1
𝑘,𝑘

, 𝑘 = 1,… , 𝑛.

The weights are then obtained by :

𝒘𝐿𝑂𝑂𝐶𝑉 = argmin
𝑤

𝒘𝑇𝑪𝒘 , subject to 𝟏𝑇𝒘 = 1 ⟹ 𝒘𝐿𝑂𝑂𝐶𝑉 =
𝟏𝑇𝑪−1

𝟏𝑇𝑪−1𝟏
.

WEIGHTS OF THE COMBINATION
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𝑀𝑡𝑜𝑡 𝒙 =

𝑖=1

𝑝

𝑤𝑖𝑀𝑖(𝒙) .



• One of the main advantage of the Kriging method is that it naturally provides a measure of the model error. For a Kriging

model 𝑌 . ~ 𝐺𝑃 𝜇, 𝑘𝜎,𝜽 . , . :

𝔼 𝑀 𝑥 − 𝑌 𝑥
2

= 𝑉𝑎𝑟 𝑌 𝒙 𝑌(𝑋) = 𝑘 𝒙, 𝒙 − 𝑘 𝒙, 𝑿 𝑲 𝑿,𝑿 −1𝑘 𝑿, 𝒙

→ This prediction error is essential to assess the model uncertainty when performing Bayesian optimization for example.

• For our combination of Kriging sub-models:

We can obtain the error prediction for every individual sub-model, but the covariance structure between the sub-models is

unknown.

→ We cannot directly access the prediction error of the combination.

VARIANCE OF THE COMBINATION
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𝑀𝑡𝑜𝑡 𝒙 =

𝑖=1

𝑝

𝑤𝑖𝑀𝑖(𝒙) .



• To obtain the variance of the combination, we add the hypothesis that the underlying Gaussian Process 𝑌 is a combination

(with different weights) of independent Gaussian Processes:

𝑌 = 𝜎𝑡𝑜𝑡
2 

𝑖=1

𝑝

𝛼𝑝𝑌𝑝 , with 𝑌𝑝 ~ 𝐺𝑃 𝜇𝑝, 𝑟𝜃𝑝 . , . , 

𝑖=1

𝑝

𝛼𝑝 = 1,

Thus, the covariance of this GP is:

𝑘𝑡𝑜𝑡 . , . = 𝜎𝑡𝑜𝑡
2 

𝑖=1

𝑝

𝛼𝑖
2𝑟𝜃𝑖(. , . ) .

VARIANCE OF THE COMBINATION
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and 𝜎𝑡𝑜𝑡
2 the variance of the GP.

𝑀1

• To simplify the upcoming expressions, we will also assume that the sub-models (and the associated GPs) are combined
following a binary tree structure:

𝑀𝑡𝑜𝑡

𝑀2

𝑀12

𝑀3 𝑀4

𝑀34

𝑤1 𝑤2

𝑤12 𝑤34

𝑤3 𝑤4

𝑌1

𝑌𝑡𝑜𝑡

𝑌2

𝑌12

𝑌3 𝑌4

𝑌34

𝛼1 𝛼2

𝛼12 𝛼34

𝛼3 𝛼4



• The weights 𝛼 in the combination of GPs are chosen to minimize the expected mean-square error of the combined model

under the corresponding hypothesis:

𝛼∗ = argmin
𝛼

𝔼 න
𝒳

𝑤𝑀1 𝒙 + 1 − 𝑤 𝑀2 𝒙 − 𝛼𝑌1(𝒙) + 1 − 𝛼 𝑌2(𝒙)
2𝑑𝒙 .

By approximation the global MSE using the LOOCV error, we obtain:

𝛼∗ = argmin
𝛼

𝔼𝑌=𝛼𝑌1+ 1−𝛼 𝑌2 𝑒𝐿𝑂𝑂𝐶𝑉 𝑀𝑡𝑜𝑡 =
𝑎1(𝑤)

𝑎1(𝑤) + 𝑎2(𝑤)
, with:

𝑎1(𝑤) = 𝑤2𝔼𝑌=𝑌2 𝑒𝐿𝑂𝑂𝐶𝑉 𝑀1 + 1 − 𝑤2 𝔼𝑌=𝑌2 𝑒𝐿𝑂𝑂𝐶𝑉 𝑀2 ,

𝑎2 𝑤 = 1 − 𝑤 2𝔼𝑌=𝑌1 𝑒𝐿𝑂𝑂𝐶𝑉 𝑀2 + 1 − 1 − 𝑤 2 𝔼𝑌=𝑌1 𝑒𝐿𝑂𝑂𝐶𝑉 𝑀1 .

VARIANCE OF THE COMBINATION
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• Once we obtain the weights 𝛼, the model uncertainty can be obtained as:

𝔼 𝑀𝑐𝑜𝑚𝑏 𝒙 − 𝑌 𝒙
2

= 𝔼 𝑀𝑐𝑜𝑚𝑏 𝒙 2 + 𝑌 𝒙 2 − 2𝑀𝑐𝑜𝑚𝑏 𝒙 𝑌 𝒙

= 𝑉𝑎𝑟 𝑌 𝒙 + 𝑉𝑎𝑟 𝑀𝑐𝑜𝑚𝑏 𝒙 − 2𝑐𝑜𝑣 𝑀𝑐𝑜𝑚𝑏 𝒙 , 𝑌 𝒙

= 𝑉𝑎𝑟 𝑌 𝒙 + 𝒘𝑇𝑲𝑴 𝒙 𝒘 − 2𝒘𝑇𝒌𝑴 𝒙 ,

With:

𝐾𝑀 𝒙
𝑖,𝑗
= 𝐶𝑜𝑣 𝑀𝑖 𝒙 ,𝑀𝑗 𝒙 = 𝑘𝑖 𝒙,𝑿 𝑲𝑖 𝑿,𝑿

−1 𝐶𝑜𝑣 𝑌 𝑿 , 𝑌 𝑿 𝑲𝑗 𝑿,𝑿 −1𝑘𝑗 𝑿, 𝒙 ,

𝑘𝑀 𝑥
𝑖
= 𝐶𝑜𝑣 𝑀𝑖 𝒙 , 𝑌 𝒙 = 𝑘𝑖 𝒙, 𝑿 𝑲𝑖 𝑿,𝑿

−1𝐶𝑜𝑣 𝑌 𝑿 , 𝑌 𝒙 .

And:

𝐶𝑜𝑣 𝑌 . , 𝑌 . = 𝑘𝑡𝑜𝑡 . , . = 𝜎𝑡𝑜𝑡
2 

𝑖=1

𝑝

𝛼𝑖
2𝑟𝜃𝑖(. , . ) .

VARIANCE OF THE COMBINATION
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• Finally, the last step is to calibrate the amplitude of the variance using the amplitude hyperparameter 𝜎𝑡𝑜𝑡
2 .

Generally, this can be done by observing that the normalized LOO errors should be normally distributed:

𝑒𝐿𝑂𝑂

𝑉𝑎𝑟𝐿𝑂𝑂
~𝒩 0, 𝜎𝑡𝑜𝑡

2 .

→ Thus, one way to obtain the amplitude is:

𝜎𝑡𝑜𝑡
2 = 𝑉𝑎𝑟

𝑒𝐿𝑂𝑂

𝑉𝑎𝑟𝐿𝑂𝑂
=
1

𝑛


𝑖=1

𝑛
𝑒𝐿𝑂𝑂𝑖

2

𝑉𝑎𝑟𝐿𝑂𝑂𝑖
.

However, this definition tends to give too large amplitudes due to the presence of many outliers in the LOO error.

To have an expression for the amplitude more robust to outliers and which overall give prediction interval that are better

calibrated, we fit the empirical inter-quartile distance of the LOO error to that of a Gaussian distribution:

𝐼𝑄
𝑒𝐿𝑂𝑂

𝜎𝑡𝑜𝑡 𝑉𝑎𝑟𝐿𝑂𝑂
= 𝐼𝑄𝑛𝑜𝑟𝑚 ⟺ 𝜎𝑡𝑜𝑡 =

𝐼𝑄
𝑒𝐿𝑂𝑂
𝑉𝑎𝑟𝐿𝑂𝑂

𝐼𝑄𝑛𝑜𝑟𝑚
=

𝑞0,75
𝑒𝐿𝑂𝑂
𝑉𝑎𝑟𝐿𝑂𝑂

− 𝑞0,25
𝑒𝐿𝑂𝑂
𝑉𝑎𝑟𝐿𝑂𝑂

𝐼𝑄𝑛𝑜𝑟𝑚
.

VARIANCE OF THE COMBINATION
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NUMERICAL RESULTS – ANALYTICAL TEST FUNCTION
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We tested the method for the approximation of a GP trajectory in 50D (with isotropic length-scale 𝜃𝑡𝑟𝑢𝑒 = 2 or 𝜃𝑡𝑟𝑢𝑒 = 3) :

1. Sample a GP trajectory (known length-scale) in dimension 50.

2. Select 500 training points on the trajectory and 5000 test points to evaluate the precision.

3. Build 32 non-isotropic sub-models with different random length-scales each (6 levels in the tree structure).

4. Build an ordinary Kriging model with hyperparameters estimated by MLE to compare the performances (300 maximum

iterations).

5. Build an ordinary Kriging model with the true length-scales (same as the trajectory). This model is the ideal model whose

precision we want to approach.

6. Repeat the experiment 10 times.

To measure the precisions for the 3 models, we compute the 𝑄2:

We also access the quality of the error prediction by computing the coverage probabilities for different levels.

𝑄2 = 1 −
σ𝑖=1
𝑛𝑡𝑒𝑠𝑡 𝑦𝑡𝑒𝑠𝑡 𝑥𝑖 − ො𝑦 𝑥𝑖

2

σ
𝑖=1
𝑛𝑡𝑒𝑠𝑡 𝑦𝑡𝑒𝑠𝑡 𝑥𝑖 −

1
𝑛𝑡𝑒𝑠𝑡

σ
𝑘=1
𝑛𝑡𝑒𝑠𝑡 𝑦𝑡𝑒𝑠𝑡 𝑥𝑘

2



𝜃𝑡𝑟𝑢𝑒 = 3

NUMERICAL RESULTS – ANALYTICAL TEST FUNCTION
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Average computational 
time:

• Krg MLE: 2,9 mins

• Combination : 0,33 mins

𝜃𝑡𝑟𝑢𝑒 = 2

Average computational 
time:

• Krg MLE: 3,4 mins

• Combination : 0,33 mins



• Study of an electrical machine:

- 37 design variables,

- 500 training points,

- 4500 test points,

- 2 objectives and 10 constraints to surrogate,

- Average results over 10 runs.

NUMERICAL RESULTS – REAL-WORLD APPLICATIONS
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Average computational 
time:

• Krg MLE: 17,1 mins

• Combination : 3,0 mins



• Study of the Peugeot 3008 (vibratory comfort and rear crash safety) :

NUMERICAL RESULTS – REAL-WORLD APPLICATIONS
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Computational time:

• Krg MLE: 220 mins

• Combination : 15,8 mins

- 48 design variables,
- 300 training points,
- 327 test points,
- 2 objectives and 413 constraints (a surrogate model

is built only for 190 constraints).
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PERSPECTIVES
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• We developed a model with better accuracy than the ordinary Kriging in high dimension, especially when the length-

scales are poorly estimated using MLE, and which is both easier and faster to construct.

• We also gave a method to obtain the prediction error for the combined model which gives prediction interval that are

overall well-calibrated and suitable for Bayesian optimization.

Future work :

• Apply the combined model for Bayesian optimization and see the potential gains in both construction time and number

of iterations required to find the optimum.

• There are still challenges in the acquisition criterion for Bayesian optimization:

- The acquisition function is very flat with only a few peaks which can be hard to find, especially so in high dimension.

- In high dimension, the volume near the borders of the design space becomes dominant. This can result in adding most of

the new points near the borders.

• We can also diversify the sub-models using subsets of points or subsets of design variables for example.

• …



Thank you for your attention !

Contact :

Tanguy APPRIOU
tanguy.appriou@stellantis.com
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ANNEX - ISSUES OF KRIGING IN HIGH DIMENSION
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• One issue in high dimension is the increased size of the correlation matrix. The higher the dimension, the more
sample points are needed to obtain a Kriging model with a good accuracy. But Kriging models scale poorly for large
numbers of observations.

→ 𝐾 𝑿,𝑿 −1 is necessary for the Kriging prediction (inverse of the covariance matrix of size 𝑛 × 𝑛 with 𝑛 the number of
sample points).

→ Complexity in 𝑶(𝒏𝟑) prohibitive for large number of sample points.

This issue was tackled in the literature using different techniques of :

- Sparse approximation of the covariance matrix (see for example Hensman et al., 2013, Quinonero-Candela et al.,
2005).

- Combination of models with subsets of points (see for example Deisenroth et al., 2015, Cao et al., 2014, Rullière et al.,
2018).

32



ANNEX – PREVIOUS METHOD FOR THE CHOICE OF THE LENGTH-SCALES
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In previous presentations:

• Bounds for the length-scales were chosen based on the covariance

function variations with respect to variations of the length-scales.

• The length-scale variation influence index was defined as :

𝐼 ℓ
𝒓

𝜽
, 𝜃 ℓ =

𝜕

𝜕𝜃 ℓ
𝑘

𝒓
𝜽

max
𝜃 ℓ ,𝜽∈𝒞

𝜕
𝜕𝜃 ℓ 𝑘

𝒓
𝜽

• The length-scales were chosen uniformly in the bounded interval:

𝜃(ℓ) ~𝒰 𝜃𝑚𝑖𝑛
ℓ
, 𝜃𝑚𝑎𝑥

ℓ
, ℓ = 1,… , 𝑑.

An issue with this method is that it produces too many large or small samples of the length-scale.

→ In the following, we introduce an entropy-based sampling scheme to improve over this method.



ANNEX – EMPIRICAL ENTROPY
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In practice, for any correlation function 𝑅𝜃 and any design plan 𝑿.

1. For a given length-scale 𝜃. We sample 𝑁 values of the correlation for the design 

plan 𝑿: 𝑟𝜃
1
, … 𝑟𝜃

𝑁
.

2. We make a kernel estimation መ𝑓𝑅𝜃 of the density of 𝑅𝜃 based on these samples.

3. We compute the empirical entropy:

𝐻 𝑅𝜃 = −
1

𝑛


𝑖=1

𝑛

ln መ𝑓𝑅𝜃 𝑟𝜃
𝑖

.

4. We define a grid of possible values for the length-scales 𝜃𝑔𝑟𝑖𝑑
ℓ
, ℓ = 1,… , 𝑞, and 

we sample with probability:

𝑃 𝜃𝑔𝑟𝑖𝑑
ℓ

∝ exp 𝐻 𝑅𝜃 .

→ We sample 𝑑 length-scale values (one for each dimension) for each of the sub-models.


