

1,2-Palladasilacyclobutene: The Missing Link in the Pd-Catalyzed Annulation of Alkynes for the Silirene-to-Silole Transformation

Marc Devillard, Chiara Dinoi, Iker Del rosal, Clément Orione, Marie Cordier,

Gilles Alcaraz

To cite this version:

Marc Devillard, Chiara Dinoi, Iker Del rosal, Clément Orione, Marie Cordier, et al.. 1,2- Palladasilacyclobutene: The Missing Link in the Pd-Catalyzed Annulation of Alkynes for the Silirene-to-Silole Transformation. Inorganic Chemistry, 2023, 62 (19), pp.7250-7263. $10.1021/acs.inorgechem.3c00045$. hal-04115375

HAL Id: hal-04115375 <https://hal.science/hal-04115375v1>

Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Inorganic Chemistry

[pubs.acs.org/IC](pubs.acs.org/IC?ref=pdf) Article **Article** Article **Article** Article **Article** Article **Article** Article

¹ **1,2-Palladasilacyclobutene: The Missing Link in the Pd-Catalyzed** ² **Annulation of Alkynes for the Silirene-to-Silole Transformation**

³ Marc [Devillard,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marc+Devillard"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)* [Chiara](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chiara+Dinoi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Dinoi, Iker Del [Rosal,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Iker+Del+Rosal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Clément [Orione,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Cle%CC%81ment+Orione"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Marie [Cordier,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marie+Cordier"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) and Gilles [Alcaraz](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gilles+Alcaraz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)*

Cite This: [https://doi.org/10.1021/acs.inorgchem.3c00045](https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.inorgchem.3c00045&ref=pdf) **Read [Online](https://pubs.acs.org/page/pdf_proof?ref=pdf) ACCESS [Metrics](https://pubs.acs.org/page/pdf_proof?ref=pdf) & More ARTICLE Article [Recommendations](https://pubs.acs.org/page/pdf_proof?ref=pdf) Supporting [Information](https://pubs.acs.org/page/pdf_proof?ref=pdf)** ⁴ ABSTRACT: The palladium-catalyzed annulation reaction of alkynes enables an

 attractive approach to siloles. Their access from silirenes and terminal alkynes proved rather general, involving reactive intermediates that have remained elusive to date. Starting from 1,2-bis(3-thienyl)silirene as a source of photochromic siloles, the mechanism of the annulation reaction has been revisited, and palladasilacyclobutenes resulting from the activation of the silirene could be isolated and thoroughly characterized (NMR, X-ray, and DFT). Their role as reactive intermediates and their fate in the course of the reaction were also studied in situ. In combination with in- depth DFT calculations, a clearer picture of the mechanism and the reactive key species is disclosed.

\blacksquare **INTRODUCTION**

 The chemical behavior of three-membered ring heterocycles is 16 mostly dictated by the release of the ring strain¹ as the main driving force, with a strong influence both of the nature of the embedded heteroelement and of the degree of unsaturation of 19 the cycle.² They have proven to be molecules of choice in organic synthesis, offering a wide range of reactivity and a 21 versatile chemistry, especially when combined with catalysis.³ In particular, they enable the synthesis of higher heterocyclic structures either via intramolecular ring expansion or through insertion reactions in the presence of an unsaturated partner. This approach provides an attractive methodology for the installation of the heteroelement, particularly in the course of new *π*-conjugated molecules incorporating heavier p-block 28 elements.⁴ In this context, the chemistry of silacycles (silicon 29 rings with $3⁵$, $4⁶$, $5^{6d,7}$ or more⁸ members) is probably the more mature research field driven by that of silacyclopenta-31 dienes (siloles) and their peculiar electronic properties.⁹ Over the years, this interest has turned siloles into important synthetic targets and has motivated significant efforts toward 34 methodological development.¹⁰ While preparation of siloles relied generally on uncatalyzed transformations involving stoichiometric amounts of organometallic reagents, most recent achievements are based on catalytic routes, mainly 38 using rhodium or palladium complexes.¹¹ They proceed either (i) intramolecularly from acyclic silanes through arylations of 40 Si–X (X = CH₃, H) bonds¹² and C–C bond formation 41 between peripheral substituents¹³ or (ii) intermolecularly by reaction of an alkyne with a suitable silicon-based reagent.¹ Within this second category, the use of silacyclopropene (silirene) as a direct precursor of siloles is a very attractive strategy, as it takes advantage of both the inherent reactivity of the silicon-containing precursor and the possibilities offered by

the large pool of alkynes. This Pd-catalyzed annulation of an ⁴⁷ alkyne in the presence of a silirene was reported $\frac{\ln \theta}{48}$ substance as early as 1977 by Seyferth in his seminal studies.¹⁵ 49 Despite more recent efforts to improve the methodology, 16 this so promising reaction has remained globally underutilized with ⁵¹ respect to its potential in organic synthesis. In this setting, we 52 have recently described an efficient methodological approach 53 to photochromic siloles¹⁷ with a dithienylethene (DTE) $_{54}$ skeleton. The strategy relies on the Pd-catalyzed $[3 + 2]$ - 55 annulation reaction of alkynes with a $1,2$ -bis(3-thienyl)silirene 56 **1** (Scheme 1). $57 s1$

This divergent methodology proved rather general, tolerant 58 to a variety of functional groups, and could even be extended ⁵⁹ to the post-polymerization functionalization of PPMA-type ⁶⁰

Scheme 1. Palladium-Catalyzed Synthesis of Photochromic Siloles by Annulation Reaction of Alkynes with a Silacyclopropene

Received: January 5, 2023

 (polypropar-gylmethacrylamide) polymers displaying terminal 62 alkyne functionalities.¹⁷ While this transformation can be formally seen as the regiospecific insertion of the C \equiv C triple bond of a terminal alkyne into one of the two endocyclic Si−C single bonds of silirene, some aspects of this chemical transformation remain unclear when compared with the mapping of the general reactivity of silirenes with alkynes under palladium catalysis and the different scenarios related to the interplay of the silirene/alkyne pair with the metal s2 ⁷⁰ (Scheme 2).

> Scheme 2. Different Scenarios of the Palladium-Catalyzed Reaction of Silirenes with Alkynes (for Route (1) See Refs 15d 21a 21b,; for Route (2) See Refs 15a 15b 15d 16a 16b,; for Route (3) See Ref $16b$; for Route (4) See Ref $21b$; and for Route (5) See Ref 18)

⁷¹ Initially, the mechanism of the formation of siloles (Scheme 72 2—route (2) and (3)) was envisaged to proceed through the ⁷³ intermediacy of a putative 1,2-palladasilacyclobutene I, 74 resulting from the oxidative addition (OA) of $Pd(0)$ to the 75 silirene (Scheme 3).¹⁸

 Later, this catalytic reaction was extended successfully by the group of Woerpel to 1,1-di-*tert*-butyl-silirenes, affording 78 selective 3-phenylsiloles.^{16a,c} On this basis, they proposed a more complete picture of the catalytic cycle involving the

insertion of the alkyne partner into the Pd−Si bond of the ⁸⁰ metallacycle I to form a 1,4-palladasilacyclohexadiene II, ⁸¹ followed by a classical reductive elimination step with the ⁸² release of the silole product (Scheme 3). This commonly ⁸³ accepted mechanism remains, however, partly hypothetical due ⁸⁴ to the lack of compelling evidence, particularly in the form of ⁸⁵ isolated organometallic intermediates and their subsequent ⁸⁶ reactivity. On this basis, and in order to gain information on ⁸⁷ the mechanism, we performed a series of experiments with ⁸⁸ silirene 1 at the catalytic and stoichiometric levels by ⁸⁹ combining catalysis and coordination chemistry. We were ⁹⁰ indeed able to isolate and fully characterize the first ⁹¹ intermediate I derived from the activation of the silirene and ⁹² study its fate upon reaction with an alkyne by multinuclear ⁹³ NMR spectroscopy. In addition, extensive DFT calculations ⁹⁴ enabled us to explain and corroborate our results, providing a ⁹⁵ better description of the elementary steps, the nature of the ⁹⁶ higher-energy intermediates, and ultimately the whole process. ⁹⁷

■ **RESULTS AND DISCUSSION** 98
Palladium-Catalyzed Reaction with Silirene 1 and 99 Acetylene. The reactivity of silirenes with alkynes under 100 palladium-catalyzed conditions is intimately associated with ¹⁰¹ steric factors, and their behavior strongly depends on the ¹⁰² substitution pattern both at the silicon and at the carbon atoms ¹⁰³ of the three-membered ring heterocycle but also on the alkyne ¹⁰⁴ involved in the reaction.¹⁹ In that respect, silirene 1 does not 105 evolve in solution in the presence of $[{\rm Pd}({\rm PPh}_3)_4]$, even upon 106 prolonged heating at 100 °C. *Si,Si-Di-tert-butyl* silirenes^{16,20} 107 display enhanced kinetic stability, and no disilacyclohexadiene ¹⁰⁸ compounds of type A resulting from the silirene $\begin{bmatrix} 3 + 3 \end{bmatrix}$ - 109 cyclodimerization²¹ [Scheme 2—route (1)] could be observed 110 in our case. This trend was confirmed by the reaction of 1 with ¹¹¹ acetylene (1 bar) under catalytic conditions. In that case, ¹¹² neither disilacyclohexadiene compounds B [Scheme 2-route 113 (4)] nor bicyclic compounds of type C [Scheme 2—route (5)] $_{114}$ as in the case of 1,1-dimethyl-2,3-bis(trimethylsilyl)silirene ¹¹⁵ were detected.¹⁸ The corresponding silole 2 was obtained as 116 the sole product (Figure 1) and isolated in 80% isolated yield 117 f1 after purification by flash chromatography on silica gel. Single ¹¹⁸ crystals of 2 could be obtained from a saturated pentane ¹¹⁹ solution at room temperature, and their structure was ¹²⁰ determined by X-ray diffraction analysis. 121

Steric and Electronic Effects of the Alkyne on the ¹²² **Annulation Reaction.** The influence of both the steric and ¹²³ the electronic nature of the terminal alkyne substrate was also ¹²⁴ investigated in order to get insight into the mechanism and to ¹²⁵ explain the exclusive chemo and regioselectivity observed with ¹²⁶ 1. First, this study suggests that steric factors play a more ¹²⁷ prominent role than we initially thought in our case. This ¹²⁸ could be confirmed by the reaction of *tert*-butylacetylene and ¹²⁹ trimethylsilylacetylene that bear quaternary substituents ¹³⁰ directly linked to the triple bond. While the two substrates ¹³¹ revealed total unreactivity under the standard catalytic 132 conditions, the *tert*-butyl substituted silole 3 could be finally ¹³³ formed selectively under forcing conditions (100 $^{\circ}$ C, 72 h., cat. 134 loading 10 mol %) and isolated in 82% yield after column ¹³⁵ chromatography on silica gel (Figure 2). 3 could be fully $136 f2$ characterized by NMR, HRMS, as well as X-ray diffraction ¹³⁷ analyses. The same state of the state of

In a second stage, the electronic effects of the alkyne ¹³⁹ substituents on the catalytic process were assessed by using ¹⁴⁰ different para-substituted ethynylbenzenes R-pC₆H₄−C≡C− 141 f3

Figure 1. Reactivity of 1 with acetylene under Pd-catalyzed conditions, giving silole 2, and X-ray structure of 2 with a displacement ellipsoid plot at a 50% probability level; non-vinylic hydrogens are omitted for clarity. Selected bond lengths [Å] and angles [°]: Si1−C12 1.872(2), Si1−C9 1.9005(19), C11−C12 1.343(3), C10−C11 1.491(3), C9−C10 1.369(3), C9−C17 1.474(3), C10−C23 1.477(3); C1−Si1−C9 115.53(9), C1−Si1−C5 116.62(9), C1−Si1−C12 108.51(9), C5−Si1−C9 109.74(8), C5− Si1−C12 111.91(9), C9−Si1−C12 91.86(9).

Figure 2. Synthesis of silole 3 by Pd-catalyzed annulation of 1 and *tert*-butylacetylene under forcing conditions (left). X-ray structure of 3 (right) with a displacement ellipsoid plot at a 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Si1−C9 1.8871(18), Si1−C12 1.8537(19), C9−C10 1.359(2), C10−C11 1.528(2), C11−C12 1.349(3), C9−C17 1.485(2), C10−C23 1.491(2); C1−Si1−C9 113.17(8), C1−Si1−C5 116.98(8), C1−Si1−C12 106.41(8), C5−Si1−C9 111.67(8), C5− Si1−C12 114.81(9), C9−Si1−C12 90.84(8).

- f3 ¹⁴² H (Figure 3, top). As previously reported, the catalytic ¹⁴³ transformation is tolerant to various functional groups, and we ¹⁴⁴ were pleased to observe the full conversion to aryl-substituted ¹⁴⁵ siloles 4a−f that were isolated in quantitative yield, except 4d ¹⁴⁶ (22% isolated yield) due to its degradation over silica gel ¹⁴⁷ during the purification step. They were all characterized by ¹⁴⁸ multinuclear NMR spectroscopy and HRMS analysis (see [S6](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf)− ¹⁴⁹ [S9](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf)). The NMR monitoring of the reaction shows that electron-¹⁵⁰ rich substrates react faster, with the following tendency: 151 −OMe > −H > −C(O)CH3 > −C(O)H ~ −CF₃ (Figure 3, 152 bottom).²²
	- ¹⁵³ To gain further information on the mechanism of the ¹⁵⁴ reaction and more particularly on the coordination of the ¹⁵⁵ alkyne to the palladium in the catalytic process, the kinetic ¹⁵⁶ isotope effect (KIE) associated with a possible C−H bond ¹⁵⁷ cleavage of the alkyne moiety was evaluated. The study was ¹⁵⁸ conducted independently with protio and deutero phenyl-¹⁵⁹ acetylene, Ph−C�C−H, and Ph−C�C−D, respectively,

Figure 3. Synthesis of siloles 4a−f by Pd-catalyzed annulation of parasubstituted phenylacetylenes with 1 (top) and the plot of the catalytic transformations over time (down) for $R = OCH_3$, H, C(O)CH₃, CF₃, and $C(O)H$ monitored by ¹H NMR spectroscopy (C_6D_6) internal standard DCE).

affording the previously described silole 5 and its isotopomer ¹⁶⁰ 5-D (Scheme 4). No KIE could be observed from the rate of 161 s4

Scheme 4. Control Experiments of 1 with Protio-, Deuterophenylacetylene, and 1-Phenyl-1-propyne

formation, suggesting that acetylenic C−H bond cleavage ¹⁶² either does not occur at all or is not involved in the rate- ¹⁶³ determining step of the reaction. Additionally, and as observed ¹⁶⁴ by the group of Palmer and Woerpel, the reaction is clearly ¹⁶⁵ limited to terminal alkynes.^{16a} 166

Our attempts to react 1 with 1-phenyl-1-propyne left the ¹⁶⁷ starting materials unchanged even under forcing conditions ¹⁶⁸ $(Scheme 4, bottom).$

OA of Palladium to Silirene 1. At that stage, we turned to ¹⁷⁰ coordination chemistry studies in order to address the question ¹⁷¹ of palladasilacycles of type I (Scheme 3) in the palladium- 172 catalyzed annulation reaction. 1,2-metallasilacyclobutenes are ¹⁷³ organometallic complexes with an unsaturated four-membered ¹⁷⁴ cyclic structure where a transition metal center is stabilized by ¹⁷⁵ two sigma bonds of different nature, *σ*-C−M and *σ*-Si−M, ¹⁷⁶ respectively. Although often invoked, $6c,16b,23$ these complexes 177 are rare and limited in number. A first description was reported ¹⁷⁸ by Ishikawa²⁴ in the case of nickelasilacyclobutene C generated 179 from a silirene and $[(PEt₃)₄Ni(0)]$ (Figure 4). 180 f4

It revealed *instability* and was only characterized in situ by 181 NMR spectroscopy. Since then, other examples have appeared ¹⁸² $(D, E^R, and F^R)$,²⁵ but only four of them have been structurally 183 characterized so far in the case of Pt (D) , Ti (E^H) , and Ni (F^H) 184 and F^{CH2OMe}) (Figure 4). They are either obtained by the [2 + 185

Figure 4. Previously described 1,2-metallasilacyclobutenes C−F and corresponding 29Si NMR of the Si−M silicon nucleus.

186 2]-cycloaddition of the Si $=$ M bond of a terminal silylene (M $187 = Ni$, Ti) with the C \equiv C triple bond of an alkyne or, in the ¹⁸⁸ case of Pt, by ring closure involving a *γ*-Si−H bond activation ¹⁸⁹ from a 3-sila-1-propenyl(silyl)platinum precursor and silane ¹⁹⁰ elimination. After perusal of the literature, we first assumed ¹⁹¹ that 1,2-palladasilacyclobutenes should be accessed by OA of ¹⁹² an adapted palladium precursor to silirene 1. We first started to ¹⁹³ study the reactivity of silirene 1 with low-coordinated 194 palladium (0) complexes $[(PR_3)_2Pd]$ $(R = tBu, oTol)$ that 195 are known to easily undergo OA reactions (Scheme 5).

Scheme 5. Preparation of $6-P(tBu)$ ₃ and $6-P(\sigma Tol)$ ₃ by Reaction of 1 and $\lceil \text{Pd}(\text{PR}_3)_2 \rceil$

196 The reaction monitoring at 50 $^{\circ}$ C by ³¹P{¹H} NMR of 1 with both complexes independently revealed the appearance of 198 a new species displaying a resonance signal at δ 80.9 ($R = tBu$) 199 and δ 25.3 (R = σ Tol) in addition to the remaining starting materials. The conversion to the product was estimated to be 201 40% and 82% for R = *t*Bu and R = σ Tol, respectively.²⁶ In the 29Si{1 H} NMR spectrum, new singlet resonance signals at *δ* −33.7 (R = *t*Bu) and *δ* −31.6 (R = *o*Tol), low field shifted 204 regarding the starting material $(\delta -69.9)$, were observed. 205 Except for the special case of titanasilacyclobutenes E^R that exhibit a peculiar deshielded signal for the Ti-bound Si atom, the observed values are downfield shifted compared to the values from the other group 10 metallacyclobutenes C, D, and F^R (Figure 4).²⁷ This feature could be attributed to the nature of the exocyclic silicon SiRR' substituents. Despite this discrepancy, the spectroscopic data from the full NMR characterization are consistent with a 1,2-palladacyclobutene 213 structure for $6-PtBu_3$ and $6-P(oTol)_3$ with a monophosphine- coordinated palladium center. Unfortunately, attempts to isolate any of the two compounds by crystallization gave

solid $Pd(PR_3)$ _n ($n = 2, 3$) complexes. NMR analysis of the 216 mother liquors revealed only the presence of 1 in solution with ²¹⁷ minor decomposition products. This result is in agreement ²¹⁸ with previous NMR spectroscopic analyses (vide supra) and ²¹⁹ again suggests that the OA process leading to 6-PtBu₃ and 6- 220 $P(\sigma Tol)$ ₃ is an equilibrated process. In view of these results, we 221 reasoned that the excess phosphine ligand in solution could be ²²² the cause of the difficulties encountered in isolating complex 6. ²²³ We hypothesized that this point could be circumvented by the ²²⁴ use of a "phosphine-free" palladium(0) precursor in the ²²⁵ presence of a stoichiometric amount of a chosen phosphine. ²²⁶ We then turned to the use of the thermally unstable ²²⁷ $[(COD)Pd(CH_2TMS)_2]$ dialkyl complex²⁸ as the convenient 228 precursor of the active 14 electron [(COD)Pd] transient ²²⁹ complex by simple reductive elimination of $(TMS-CH₂)₂$ 230 (Figure 5, top).²⁹ A clean reaction occurs between 1 and 231 f5

Figure 5. Decomposition of $[(\text{COD})\text{PdR}_2]$ to $[(\text{COD})\text{Pd}]$ and its reactivity with (i) 1 affording 6-COD (right) and (ii) 1 and PR_3 (R = Ph, OPh) affording 6-PPh₃ and $6-P(OPh)$ ₃ (bottom). X-ray structure of 6-COD (top right) with a displacement ellipsoid plot at a 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd1−C24 2.309(3), Pd1−C25 2.351(2), Pd1−C28 2.454(3), Pd1−C29 2.510(3), Pd1−Si1 2.3237(9), Pd1−C16 2.064(3), Si1−C9 1.859(3), C9−C16 1.352(4); Si1−C9−C16 91.54(18), C9−C16−Pd1 116.37(18), C16−Pd1−Si1 63.75(8).

 $[({\rm COD}){\rm Pd}({\rm CH}_2{\rm TMS})_2]$ in THF at room temperature (Figure 232 5, right), as shown by the 1H NMR monitoring and the 233 appearance of a singlet resonance signal at δ −34.8 in the 234 $^{29}Si(^{1}H)$ NMR in agreement with the values obtained in the 235 case of 6 -PtBu₃ and 6 -P(σ Tol)₃. After work-up, 6 -COD could 236 be isolated as colorless crystals in 41% yield, and its structure ²³⁷ was determined by X-ray diffraction analysis. In the solid state, ²³⁸ the palladium is in a distorted square-planar environment with ²³⁹ an acute C16Pd1Si1 angle of 63.75(8)^o $[\Sigma_a(LPdL) = 360^\circ]$. 240 The Si1Pd1 distance of $2.3237(9)$ Å is in the range of 241 previously characterized silyl palladium(II) complexes (2.25− ²⁴² 2.43 Å). Within the four-membered metallacycle, the C9Si1 ²⁴³ bond of 1.859(3) Å is slightly elongated relative to the ²⁴⁴ endocyclic Si−C bonds in 1 (1.82 Å in average), whereas the ²⁴⁵ Si1C16 distance of 2.327(3) Å largely exceeds the sum of 246 247 covalent radii of the two atoms $(1.84 \text{ Å}, R = 1.26)$, confirming 248 the cleavage of this bond. The C=C double bond length of 249 1.352(4) Å is identical to that in 1 $[1.352(2)$ Å] with the ²⁵⁰ exocyclic thienyl groups in an antiparallel conformation as in 251 DTE derivatives.³⁰ The geometry around the C9 olefinic 252 carbon atom deviates strongly from the ideal $sp²$ arrangement 253 with an acute C16C9Si1 angle of $88.09(9)$ °. This particular ²⁵⁴ feature is more pronounced than in the case of the heavier 255 platinum derivative D (97.8(5) $^{\circ}$) but comparable to the case ²⁵⁶ of the lighter nickel complexes F (average of 89.3°).

²⁵⁷ Following a similar synthetic strategy, 1 can be treated with 258 $[(\text{COD})\text{Pd}(\text{CH}_2 \text{TMS})_2]$ in the presence of a stoichiometric ²⁵⁹ amount of phosphine ligands, leading to the exchange of the ²⁶⁰ cyclooctadiene ligand (Figure 5, bottom). With one equivalent 261 of Ph₃P or $(PhO)_3P$, the monophosphine complexes 6-PPh₃ 262 and $6\text{-}P(\text{OPh})_3$ could be obtained in 65 and 46% yield, ²⁶³ respectively, and fully characterized by NMR spectroscopy. 264 The NMR spectra of 6-PPh₃ and 6-P(OPh)₃ are contaminated 265 with a small amount of palladium (0) phosphine complexes 266 Pd(PR₃)_n (R = Ph, OPh), as well as silirene 1 (∼5%). This can ²⁶⁷ be explained by the existence of an equilibrium between 6- 268 PPh₃ and 6 -P(OPh)₃ and their reductive elimination products 269 1 and $[Pd(PR_3)]$ that lead to the slow decomposition of 6-270 PPh₃ and 6-P(OPh)₃ and the release of Pd^o (Figure 5).³¹ For 271 the two complexes 6-PPh₃ and 6-P(OPh)₃, the ²⁹Si NMR 272 display a resonance signal at a similar chemical shift (6-PPh₃ δ ²⁷³ −27.2, 6-P(OPh)3 *δ* −26.9) and as a doublet due to scalar 274 coupling to the ³¹P nucleus (${}^{2}J_{\text{SiP}} = 2.1$ Hz, **6-PPh**₃; ${}^{2}J_{\text{SiP}} = 4.7$ 275 Hz, $6-P(OPh)_3$), indicative of the expected P−Pd−Si 276 connectivity. Single crystals of $6\text{-}P(\text{OPh})_3$ suitable for X-ray ²⁷⁷ diffraction analysis were grown at −30 °C from a saturated ²⁷⁸ pentane/THF solution and their X-ray structure determined at 279 150 K (Figure 6).

Figure 6. X-ray structure of $6-P(OPh)$ ₃ with a displacement ellipsoid plot at a 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Pd1−C21 2.085(2), Pd1− Si1 2.3380(7), Pd1−S1 2.6384(7), Pd1−P1 2.2548(7), Si1−C22 1.857(2), C22−C21 1.362(3); P1−Pd1−S1 104.38(2), C21−Pd1− S1 100.47(7), C21−Pd1−Si1 64.42(7), P1−Pd1−Si1 104.38(2), C21−C22−Si1 93.41(16).

 In the solid state, it displays a dimeric structure revealing an 281 intermolecular thienyl-to-palladium $S \rightarrow Pd$ coordination [Pd1S1 2.6384(7) Å; Pd2S3 2.6438(7) Å] with the thienyl ligand in *trans*-position to the silyl ligand. The 1,2- 284 palladasilacyclobutene four-membered ring of 6 -P(OPh)₃ exhibits similar geometric features as those of 6-COD. To further explore the catalytic cycle, we continued by assessing

the reactivity of the palladacycles with terminal alkynes in $_{287}$ stoichiometric experiments (Scheme 6). 288 s6

Scheme 6. Reactivity of Metallasilacyclobutene 6-L $(L =$ PPh_3 , $P(OPh_3)$, and COD) with Phenyl Acetylene

Both complexes 6-PPh₃ and 6-P(OPh)₃ react readily with 289 phenylacetylene at room temperature ($t \approx 5$ and 30 min, 290 respectively) to form selectively the model silole 5 as observed ²⁹¹ in the implemented catalytic conditions. Interestingly, the ²⁹² same reaction with 6-COD is much slower and gives a mixture ²⁹³ of 5 and an acyclic structural isomer 5**′** in 50 and 28% isolated ²⁹⁴ yield, respectively (see [S20](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) for details). The structure of 5**′** was ²⁹⁵ determined thanks to HRMS and multinuclear NMR analyses. ²⁹⁶ In particular, the $\frac{3}{5}$ _{SiH} coupling constant of 6.9 Hz indicates 297 that the central olefin has retained its stereochemistry with the ²⁹⁸ thienyl groups in the cis position.³² 299

These results strongly support the involvement of a ³⁰⁰ monophosphine-ligated 1,2-palladasilacyclobutene key inter- ³⁰¹ mediate in the palladium-catalyzed annulation reaction. With ³⁰² the objective of detecting intermediates derived from the ³⁰³ palladacycle, the reaction between $6-PPh₃$ and phenyl 304 acetylene was monitored by NMR, at low temperature, in ³⁰⁵ CD_2Cl_2 . At 203 K, the ¹H NMR revealed the presence of 306 resonance signals attributed to the model silole \bar{S}^{33} together 307 with the remaining $6-PPh_3$ in a 1.33:1 ratio. Besides remaining 308 6-PPh₃, the ³¹P NMR spectra exhibit an AB spin system with a 309 coupling constant $(^{2}J_{PP} = 18.4 \text{ Hz})$ that is indicative of the 310 presence of a Pd complex with two phosphines in the cis ³¹¹ position. Based on multinuclear NMR 2D experiments ³¹² $(HMQC⁻¹H⁻³¹P, HSQC, and HMBC⁻¹H⁻¹³C)$ and after 313 comparison to experimental data available in the literature, 34 314 the Pd(0)-alkyne π -complex $[(Ph_3P)_2Pd(\eta2-PhC\equiv CH)]$ 315 could be identified unambiguously (see S21−[S25\)](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf). It most ³¹⁶ likely results from ligand redistribution after the release of the ³¹⁷ silole ring between residual $[\text{Pd}(PPh_3)_n]$ and the excess of 318 phenylacetylene present in the medium. This experiment ³¹⁹ clearly shows that the elementary steps occurring in the ³²⁰ catalytic cycle after the formation of the 1,2-palladasilacyclo- ³²¹ butene intermediate by OA require only little kinetic energy in ³²² the case of phenylacetylene. In that respect, the instability of ³²³ 1,4-palladasilacyclohexadiene (type II species, Scheme 3) ³²⁴ toward reductive elimination and silole formation is reminis- ³²⁵ cent of the behavior of nickel analogues, $25d$ contrary to the 326 platinum ones that proved stable at room temperature.^{25b}

Theoretical Insight into the Reaction Mechanism. In ³²⁸ order to get more insights into the reaction mechanism, DFT ³²⁹ calculations at the B3PW91 level of theory have been ³³⁰ performed, and the corresponding enthalpy profile computed ³³¹ with silirene 1 and phenylacetylene is shown in Figure 7 (for 332 f7 the Gibbs free energy profile, see [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S127 in the ³³³ Supporting Information). 334

Figure 7. DFT-computed enthalpy profile (kcal mol[−]¹) of the Pd-catalyzed annulation reaction of phenylacetylene with silirene 1; optimized structure of C and bond lengths within the Si−C−C−Pd metallacycle.

335 **Phosphine Dissociation.** Since the $[\text{Pd}(\text{PPh}_3)_4]$ com-336 pound is electronically saturated, the first step consists in the 337 release of phosphine ligands to generate a reactive species. In order to evaluate the lability of the phosphine ligands bound to 339 the Pd center, we computed the PPh₃ dissociation energy f_8 340 starting from $Pd(PPh_3)_4$. As shown in Figure 8, the

Figure 8. DFT-computed enthalpy and Gibbs free energy values for the PPh₃ dissociation reaction starting from the Pd(PPh₃)₄ compound. The ΔH and ΔG values refer to the starting Pd(PPh₃)₄ compound.

dissociation of one, two, and three PPh_3 ligands displays a 341 Δ*H* of -4.1, +3.0, and +37.7 kcal mol⁻¹ (Δ*G* of -22.1, -32.8, 342 and -9.1 kcal mol⁻¹), respectively, indicating that the starting 343 $Pd(PPh₃)₄$ compound spontaneously loses two PPh₃ ligands in 344 solution to afford the $Pd(PPh₃)₂$ species (A1 in Figure 7), 345 which is in line with literature data.³⁵ The replacement of the 346 third phosphine by silirene 1 to form B is an energetically ³⁴⁷ costly step $(21.8 \text{ kcal mol}^{-1})$, which prepares the following OA 348 reaction. 349

OA and 1,2-Palladasilacyclobutene Formation. In ³⁵⁰ accordance with the experimental results reported above for ³⁵¹ the synthesis of 6-PtBu₃ and 6-P(σ Tol)₃, the 1,2-palladasila- 352 cyclobutenes species $C(6-PPh_3)$ is in equilibrium with the in 353 situ-formed $Pd(PPh_3)_2$ species A1, with the displacement of 354 the equilibrium toward the OA product C requiring thermal 355 conditions (50 $^{\circ}$ C), given the presence of a large amount of 356 free phosphine in solution. This OA reaction involves an early ³⁵⁷ transition state where the C−Si bond is only slightly elongated ³⁵⁸ with a low associated barrier of 3.6 kcal mol⁻¹ (TS-BC) $_{359}$ compared to B. For comparison purposes, the possibility of a $_{360}$ first step involving the reaction between $Pd(0)$ and the 361 terminal alkyne was also considered (see [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S128 in the ³⁶² Supporting Information). Starting from a diphosphine ³⁶³ palladium (0) π -complex $[(Ph_3P)_2Pd(\eta^2-PhC\equiv CH)]$ H, the 364 OA of the C−H bond to form the palladium (II) hydride ³⁶⁵ $[(Ph_3P)_2Pd(C\equiv CPh)$ (H)] was, however, revealed to be 366 highly endothermic $(18.0 \text{ kcal mol}^{-1})$ with an associated 367 kinetic barrier of 19.9 kcal mol⁻¹ (TS-HI). This unfavorable 368 step and the failure to localize the subsequent intermediates ³⁶⁹

Figure 9. Geometry, NPA charge analysis, and representative MOs of the 1,2-metallasilacyclobutene C (isodensity value = 0.05 au).

 made us rule out this alternative option. Due to its peculiar structure, the OA product C has been analyzed in more detail. **1,2-Palladasilacyclobutene Scaffold.** As shown in Figure 7, the 1,2-palladasilacyclobutene C compound (6- PPh₃) displays a distorted T-shape environment around palladium with an acute C2PdSi angle of 60.69°. The SiPd distance (2.386 Å) is slightly longer than that measured 377 experimentally for 6-COD (2.3237(9) Å) and $6-P(OPh)$ ₃ (2.3380(7) Å) but still within the range of previously characterized silyl palladium(II) complexes (2.25−2.43 Å). Within the four-membered metallacycle, the C1−Si bond length of 1.873 Å is slightly elongated with respect to the endocyclic Si−C bonds of the computed silirene compound 1_calc (1.844 Å), whereas the C2Si distance of 2.255 Å largely exceeds the sum of covalent radii of the two atoms (1.84 Å, R $385 = 1.26$ Å). The C=C double bond length $(1.357$ Å) is identical to the one obtained for the computed silirene molecule (1.359 Å) . The geometry around the C1 olefinic carbon atom is highly constrained, displaying an acute C2C1Si angle of 87.0°. To explore in depth the nature of the bonds involved in the Si−C−C−Pd cycle, we performed a NPA charge and MO analysis of C (Figure 9).

 The computed natural charges indicate a positive charge of 1.65 for the electropositive Si center, together with a slight polarization of the C1−C2 bond, with the C1 carbon carrying a more negative charge (−0.54) than the C2 carbon (−0.23). The computed molecular orbitals responsible for the bonding within the Si−C1−C2−Pd cycle are shown in Figure 8. The HOMO, HOMO-4, HOMO-7, HOMO-10, and HOMO-18 orbitals describe the sigma bonding system of the four-400 membered 1,2-palladasilacyclobutene skeleton $36,37$ (Figure 8), whereas the HOMO-1 and the HOMO-17 orbitals account for the *π* interaction between C1 and C2 (see [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S129 in the Supporting Information). No orbital overlapping is detected 404 between the Si and C2 atoms, despite the large SiC2 distance observed experimentally in the X-ray structures of 6 (vide 406 supra), ruling out any possibility of bonding between these two ⁴⁰⁷ centers.

408 **Alkyne Insertion Process.** From C (6-PPh₃), the alkyne ⁴⁰⁹ may then insert into the Pd−Si bond of the metallacycle to ⁴¹⁰ form the 1,4-palladasilacyclohexadiene species. The process

occurs in three steps, involving (i) the coordination of the ⁴¹¹ alkyne to C ; (ii) the insertion of the alkyne into the Pd–Si 412 bond with the retention of the Pd−Si bond (TS-DE), and (iii) ⁴¹³ the breaking of the Pd−Si bond (TS-EF) to afford the 1,4- ⁴¹⁴ palladasilacyclohexadiene species F. As shown in Figure 7, after ⁴¹⁵ the formation of D^{38} via the endothermic coordination of the 416 alkyne to C in a η^2 side-on fashion (7.1 kcal mol⁻¹ with respect 417 to the entrance channel A), the two-step insertion of the ⁴¹⁸ alkyne into the Pd−Si bond takes place through two kinetically ⁴¹⁹ accessible barriers of 9.8 and 18.8 kcal mol⁻¹. The alternative 420 scenario involving the alkyne insertion into the Pd−C bond ⁴²¹ has been excluded due to its unreasonably high kinetic barrier ⁴²² of 39.6 kcal mol⁻¹ (see [Figures](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S132 and S133 in the 423 Supporting Information). The resulting 1,4-palladasilacyclo- 424 hexadiene species F is exothermic by -18.2 kcal mol⁻¹ and 425 represents the driving force of the reaction. Two regioisomers ⁴²⁶ are possible depending on whether the terminal alkyne carbon ⁴²⁷ binds the Si atom (Figure 7) or the Pd atom (see [Figures](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S134 ⁴²⁸ and [S135](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) in Supporting Information). As shown in Figures 7 ⁴²⁹ and [S134](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) in the Supporting Information, the formation of the ⁴³⁰ regio-isomer displaying the terminal alkyne carbon bonded to ⁴³¹ the Si atom is more favorable, both kinetically and ⁴³² thermodynamically (TS-DE = 9.8 kcal mol⁻¹; TS-EF = 18.8 433 kcal mol⁻¹; F = -18.2 kcal mol⁻¹ vs TS-D1E1 = 28.6 kcal 434 mol⁻¹; **TS-E1F1** = 32.3 kcal mol⁻¹; **F1** = -12.4 kcal mol⁻¹); 435 the steric repulsion between the *t*Bu groups at the Si center ⁴³⁶ and the phenyl substituent of the alkyne plays an important ⁴³⁷ role. 438

Reductive Elimination Step. From species F in Figure 7, ⁴³⁹ an easy reductive elimination process may then occur with a ⁴⁴⁰ kinetic barrier of 10.4 kcal mol⁻¹, leading to the exothermic 441 formation of the experimentally observed silole product ($G = 442$) -47.6 kcal mol⁻¹). The relative orientation of the two thienyl 443 substituents is likely to play an important role when tetra- ⁴⁴⁴ coordinate Pd species are involved. This is related to the well- ⁴⁴⁵ known conformational preference of the DTE skeleton for two ⁴⁴⁶ possible antiparallel orientations of the thienyl groups, 30 447 resulting in two possible diastereomeric structures when ⁴⁴⁸ tetracoordinated Pd species are involved. As shown by the ⁴⁴⁹ comparison between the enthalpy profiles in Figure 10 (see $450 f10$ [Figures](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S136 and S137 in the Supporting Information for the ⁴⁵¹

Figure 10. DFT-computed enthalpy profiles for the formation of 1,4 palladasilacyclohexadiene F from *π*-complex D with the two possible antiparallel orientation of the thienyl groups.

⁴⁵² corresponding Gibbs free energy profiles), the different ⁴⁵³ orientation of the thienyl groups particularly affects the alkyne ⁴⁵⁴ insertion step.

 Starting from the alkyne *π*-complex D2, indeed, the phenylacetylene insertion becomes a one-step process with an associated kinetic barrier of 38.2 kcal mol[−]¹ (TS-D2F2), which cannot compete with the pathway starting from D, displaying a kinetic barrier of 18.8 kcal mol[−]¹ (TS-EF).

 Electronic and Steric Effects in the Insertion Step of the Alkyne. In line with the experimental observations, we computed the annulation reaction of different para-substituted 463 ethynylbenzenes R− pC_6H_4 −C≡C−H (R = CF₃ and OMe). As shown in [Figures](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S138−S141 in the Supporting Information, compared to the phenylacetylene analogues, the 466 energies of intermediates D CF3 and D OMe differ by less than 2 kcal mol[−]¹ (5.9 and 7.5 kcal mol[−]¹ , respectively, 468 compared to 7.1 kcal mol⁻¹ for D) and the energies of alkyne 469 insertion transition states, TS-DE_CF₃, TS-EF_CF₃ and TS- DE_OMe, TS-EF_OMe by less than 4 kcal mol[−]¹ (8.8 and 471 10.1 kcal mol⁻¹ compared to 9.8 kcal mol⁻¹ for TS-DE and 16.5 and 19.7 compared to 18.8 kcal mol[−]¹ for TS-EF). 473 According to the literature,³⁹ these values are of the same order of magnitude as the accuracy of the DFT method used here, indicating that the electronic effects of the alkyne substituents observed experimentally are too small to be rationalized by DFT methods. The same conclusion applies to the effect of 478 PPh₃ and $P(OPh)$ ₃ phosphines. As shown in the comparison of the enthalpy profiles of the Pd-catalyzed annulation reaction of 480 Ph–C≡C−H with silirene 1 in the presence of PPh₃ and $P(OPh)$ ₃ [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S142), the effect of phosphine on the reaction and, more particularly, on the stabilization of the

intermediates is too small to allow a clear differentiation by ⁴⁸³ means of DFT calculations. To further confirm the presence of ⁴⁸⁴ one phosphine coordinated to the Pd center during the alkyne ⁴⁸⁵ insertion process, we computed the phosphine dissociation ⁴⁸⁶ from adduct D (D4) and the following PhCCH insertion ⁴⁸⁷ reaction without the PPh_3 coordination. As shown in the 488 enthalpy profile in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S143, while the phosphine ⁴⁸⁹ dissociation from D to D4 is athermic, the following ⁴⁹⁰ PhCCH insertion becomes kinetically unfavorable, with the ⁴⁹¹ corresponding transition state enthalpy passing from 9.8 kcal ⁴⁹² mol⁻¹ (TS-DE) to 36.4 kcal mol⁻¹ (TS-D4E4). To get more 493 insight into the steric factors, we also computed the annulation ⁴⁹⁴ reaction of *tert*-butylacetylene (see [Figures](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S144 and S145 in ⁴⁹⁵ the Supporting Information). This time the energy of ⁴⁹⁶ intermediate D_*t*Bu is significantly higher than that of ⁴⁹⁷ intermediate \overline{D} (11.3 vs 7.1 kcal mol⁻¹), and the formation 498 of the 1,4-palladasilacyclohexadiene compound involves higher ⁴⁹⁹ kinetic barriers (14.2 and 23.6 kcal mol⁻¹ for **TS-DE** t Bu and 500 TS-EF_*t*Bu vs 9.8 and 18.8 kcal mol⁻¹ for TS-DE and TS-EF). 501 Compared to phenylacetylene, therefore, the more forcing 502 conditions needed with *tert*-butylacetylene, (100 °C, 72 h., cat. ⁵⁰³ loading 10 mol %) may be accounted for by both its more 504 endothermic coordination and its less kinetically favorable ⁵⁰⁵ insertion barriers. 506

■ **CONCLUSIONS** 507
In summary, this work contributes to a better understanding of 508 the Pd-catalyzed silole synthesis from alkynes and silacyclo- ⁵⁰⁹ propenes in terms of scope, limitations, and mechanism. The ⁵¹⁰ influence of the alkyne substrate was first evaluated, revealing ⁵¹¹ that the reaction is nicely functional group tolerant. When ⁵¹² conducted under an acetylene atmosphere, no scrambling of ⁵¹³ the reagents is observed, with the corresponding silole being ⁵¹⁴ the sole product of the reaction. The steric and electronic ⁵¹⁵ environment at the alkyne group has a significant impact on ⁵¹⁶ the reaction kinetics: while electron-rich alkynes react faster, ⁵¹⁷ sterically hindered alkynes display considerably lower reaction ⁵¹⁸ rates. In particular, a slow reaction is observed with the bulky ⁵¹⁹ *t*Bu−C�C−H whereas no reaction is detected in the case of ⁵²⁰ Me₃Si–C≡C−H. From a mechanistic point of view, the 521 question of the involvement in the process of the hitherto ⁵²² unknown 1,2-palladasilacyclobutene intermediate was duly ⁵²³ addressed. Four monophosphine-coordinated 6-PR₃ (R = 524 *o*Tol, *t*Bu, Ph, and OPh) and one cyclooctadiene-ligated 6- ⁵²⁵ COD 1,2-palladasilacyclobutene could be prepared and ⁵²⁶ characterized by multinuclear NMR spectroscopy. The OA ⁵²⁷ of $Pd(0)$ precursors to silacyclopropene 1 was found to be 528 equilibrated in all cases. The nature of the 1,2-palladasilacy- ⁵²⁹ clobutenes could be ultimately ascertained by the X-ray ⁵³⁰ diffraction analysis of $6-P(OPh)$ ₃ and $6-COD$. Under 531 stoichiometric conditions, $6-PPh_3$ reacts cleanly with phenyl- 532 acetylene to afford the expected silole, thus strongly supporting ⁵³³ the involvement of 1,2-palladasilacyclobutene as a key ⁵³⁴ intermediate of the catalytic cycle. The putative 1,4- ⁵³⁵ palladasilacyclohexadiene intermediate resulting from the ⁵³⁶ alkyne insertion could not be observed, most likely due to ⁵³⁷ fast reductive elimination and silole formation even at low ⁵³⁸ temperatures. For greater rationalization, we carried out a DFT ⁵³⁹ study on the involved reaction mechanism by computing ⁵⁴⁰ different possible mechanistic pathways and comparing the ⁵⁴¹ theoretical data with the experimental ones. The computa- ⁵⁴² tional results indicate that the Pd-catalyzed annulation reaction ⁵⁴³ of alkynes with silirene 1 occurs in three main steps, involving ⁵⁴⁴

 (i) the OA of Pd (0) to the silirene; (ii) the insertion of the alkyne into the Pd−Si bond; and (iii) the reductive elimination on the 1,4-palladasilacyclohexadiene compound with the exothermic release of the silole product. The starting $Pd(PPh_3)_4$ compound spontaneously evolves in solution to 550 the $Pd(PPh_3)$ ₂ species as the prelude of the OA of silirene via the endothermic loss of an additional phosphine. The resulting 552 1,2-palladasilacyclobutene species C is in equilibrium with the 553 in situ-formed $Pd(PPh_3)_2$ compound, with the displacement of the equilibrium toward the OA product requiring high thermal 555 conditions (50 $^{\circ}$ C), given the presence of a large amount of free phosphine in solution. The subsequent alkyne insertion reaction occurs selectively into the Pd−Si bond of C, with the resulting 1,4-palladasilacyclohexadiene species displaying the terminal alkyne carbon bonded to the silicon atom. In accordance with the experimental results, therefore, the computational data confirm that the alkyne insertion is a chemo- and regio-selective reaction, with the formation of the experimentally observed silole strongly favored.

⁵⁶⁴ ■ **EXPERIMENTAL SECTION**

565 **General Considerations.** Unless otherwise stated, all reactions 566 and manipulations were carried out under an atmosphere of dry argon 567 using standard Schlenk techniques or in a glovebox. CD_2Cl_2 , C_6D_6 , 568 and THF d⁸ were dried over calcium dihydride, distilled, and stored 569 over 3 Å molecular sieves prior to use. Tetrahydrofuran was dried 570 over calcium dihydride and distilled prior to use. All other solvents 571 were purged with argon and dried using an MBRAUN solvent 572 purification system. ${}^{1}\mathrm{H}, {}^{13}\mathrm{C}, {}^{31}\mathrm{P},$ and ${}^{29}\mathrm{Si}$ NMR spectra were recorded 573 on a Bruker Avance III 400 NMR spectrometer or a Bruker Avance III 574 HD 500 NMR spectrometer. All ²⁹Si NMR spectra have been 575 recorded with proton decoupling. Chemical shifts were expressed in 576 positive signs, in parts per million, calibrated to residual $^1\rm H$ (5.32 ppm 577 for CD_2CI_2 , 7.16 ppm for C_6D_6 , and 1.72 and 3.58 for THF d^8) and 578 ¹³C (53.84 ppm for CD₂Cl₂, 128.06 ppm for C₆D₆, and 25.31 and 579 67.21 for THF d^8), 85% H_3PO_4 , and external tetramethylsilane 580 solvent signals, respectively. Mass spectra were recorded on a MAXIS 581 4G or an Ultraflex III mass spectrometer. Elemental analyses were 582 performed at the ScanMat-CRMPO on a Thermo Fisher Flash 1112 583 Series. Silirene 1^{17} and $[(\text{COD})\text{Pd}(\text{CH}_2\text{TMS})_2]^{29\text{b}}$ were prepared 584 according to literature procedures.

 Compound 2. A Schlenk tube loaded with a solution of silirene 1 (60.0 mg, 0.154 mmol) and palladium tetrakis(triphenylphosphine) (8.9 mg, 7.7 × 10[−]³ mmol, 5.0 mol %) in toluene (2 mL) was pressurized with acetylene (1 bar), and the resulting mixture was stirred for 19 h at 50 °C, giving a dark solution. The volatiles were then removed under reduced pressure, and the residue was then 591 purified by column chromatography on silica gel $(SiO₂ 15 g, gradient:$ 592 pentane 100% \rightarrow pentane/DCM (95/5), R_f (pentane) = 0.52), giving the expected compound as a crystalline white solid in 80% yield. Single crystals suitable for X-ray diffraction studies were obtained from a saturated pentane solution at room temperature.

596 ¹H NMR (CD₂Cl₂, 400 MHz): δ (ppm) 1.08 (s, 18H, C<u>H</u>₃ *t*Bu), ⁵⁹⁷ 1.66 (s, 3H, C*H*3−Th), 1.95 (s, 3H, C*H*3−Th), 2.32 (s, 3H, C*H*3− 598 Th), 2.38 (s, 3H, C<u>H</u>₃−Th), 6.18 (d, 1H, ³J_{HH} = 10.5 Hz, Si–C<u>H</u>), 599 6.36 (s, 1H, <u>H</u> Th), 6.63 (s, 1H, <u>H</u> Th), 7.09 (d, 1H, ³J_{HH} = 10.5 Hz, 600 Si−C(H)=C<u>H</u>); ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz): *δ* (ppm) 14.3 ⁶⁰¹ (s, *C*H3−Th), 14.7 (s, *C*H3−Th), 15.2 (s, *C*H3−Th), 15.4 (s, *C*H3− 602 Th), 19.7 (s, *C t*Bu), 29.1 (s, *C*H3 *t*Bu), 126.6 (s, *C*H Ph), 126.9 (s, 603 *C*H Th), 129.7 (s, Si−*C*H), 130.0, 133.4, 135.4, 135.5, 135.7, 137.8, ⁶⁰⁴ 138.0 and 148.9 (s, *C*quat.), 152.0 (s, Si−C(H)=*C*H); 29Si NMR 605 (CD₂Cl₂, 79 MHz): *δ* (ppm) 21.8 (s). HRMS (ESI, CH₂Cl₂) calcd 606 for $[C_{24}H_{34}SiS_2]^+$, 414.18657; found, 414.1866 (0 ppm).

 Compound 3. To a solution of silirene 1 (50.0 mg, 0.129 mmol) and 3,3-dimethyl-but-1-yne (79.2 *μ*L, 0.643 mmol, 5.00 equiv) in C_6D_6 (0.65 mL) was added tetrakis(triphenylphosphine) palladium 610 (0) (14.9 mg, 1.29 \times 10⁻² mmol, 10.0 mol %) under stirring, and the

resulting mixture was stirred for 3 days at 100 °C, giving a bright 611 yellow mixture. The solution was concentrated to dryness, and the 612 residue was purified by column chromatography on silica gel \lceil SiO₂ 15 613 g, eluent petroleum ether (100%), $R_f = 0.60$], giving the expected 614 compound as a white solid in 82% yield. Single crystals suitable for X- 615 ray diffraction were obtained from a saturated solution of pentane at 616 – 30 °C. -30 °C. 617

¹H NMR (CD₂Cl₂, 400 MHz): *δ* (ppm) 0.99 (s, 9H, C<u>H</u>₃ SitBu), 618 1.05 (s, 9H, C<u>H</u>₃ tBu), 1.18 (s, 9H, C<u>H</u>₃ SitBu), 2.01 (s, 3H, C<u>H</u>₃− 619 Th), 2.05 (s, 3H, C_{H₃}-Th), 2.30 (s, 3H, C_{H₃}-Th), 2.33 (s, 3H, 620 C_{H_3} –Th), 5.94 (s with ²⁹Si sat., 1H, ²/_{HSi} = 10.5 Hz, <u>H</u> vinyl), 6.41 (s, 621 1H, <u>*H*</u> Th), 6.51 (s, 1H, <u>*H*</u> Th); ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz): 622 *δ* (ppm) 14.7 (s, <u>CH</u>₃−Th), 15.1 (s, <u>C</u>H₃−Th), 15.3 (s, <u>C</u>H₃−Th), 623 15.7 (s, CH₃-Th), 19.6 (s, C SitBu), 19.9 (s, C SitBu), 28.9 (s, CH₃ 624 SitBu), 29.5 (s, CH₃ SitBu), 30.6 (s, CH₃ tBu), 37.2 (s, C tBu), 121.4 625 (s, *C*H vinyl), 126.6 (s, *C*H Th), 128.6 (s, *C*quat.), 129.0 (s, *C*H Th), 626 132.5, 133.2, 134.7, 138.6 and 138.7 (s, *C*quat.), 143.5 (s, C−Si), 627 154.6 (s, *C*quat.), 171.4 (s, *C*quat.). ²⁹Si NMR (C_6D_6 , 79 MHz): δ 628 (ppm) 13.3 (s). HRMS (ESI, CH_3OH/CH_2Cl_2 (90/10)) calcd for 629 $[C_{28}H_{42}SiS_2+Na]^+$, 493.23894; found, 493.2394 (1 ppm); calcd for 630 $[C_{28}H_{42}SiS_2+K]^+$, 509.21288; found, 509.2130 (0 ppm). Anal. Calcd 631 for [C₂₈H₄₂SiS₂]; C, 71.42; H, 8.99; S, 13.62. Found: C, 71.60; H, 632 9.00; S, 13.16.

Compound 4a−*f: General Procedure.* To a solution of silirene 1 634 (50.0 mg, 0.129 mmol) and alkyne (0.129 mmol, 1.00 equiv) in 635 toluene (1.6 mL) was added palladium tetrakis(triphenylphosphine) 636 (7.4 mg, 6.4 \times 10⁻³ mmol, 5.0 mol %) under stirring, and the 637 resulting mixture was stirred for 24 h at 50 °C, giving a bright yellow 638 solution. The volatiles were then removed under reduced pressure 639 giving an oily residue that was purified by column chromatography on 640 silica gel (see underneath for chromatography conditions for each 641 compound). These compounds were obtained in quantitative yield, 642 but the aldehyde 4d that partially decomposes on silica gel was 643 isolated in only 22% yield. 644

Compound 4a (R = OMe). After flash chromatography on silica gel 645 $\{\text{SiO}_2, 15 \text{ g}; \text{gradient DCM/pentane } (10/90) \rightarrow \text{DCM/pentane } (20/646) \}$ 80); R_f [DCM/pentane (20/80)] = 0.60}, the product was obtained 647 as a white solid. Single crystals suitable for X-ray diffraction were 648 obtained from a saturated diethylether solution at −20 °C. 649

¹H NMR (CD₂Cl₂, 400 MHz): *δ* (ppm) 1.09 (s, 9H, C<u>H</u>₃ *t*Bu), 650 1.14 (s, 9H, C_H₃ tBu), 1.74 (s, 3H, C_{H₃−Th), 1.79 (s, 3H, C_{H₃− 651}} Th), 2.20 (s, 3H, C_{H₃}−Th), 2.39 (s, 3H, C_{H₃−Th), 2.89 (s, 3H, 652} OC<u>H₃</u>), 5.96 (s, 1H, <u>H</u>_ITh), 5.99 (s with ²⁹Si sat., 1H, ²J_{HSi} = 11.2 Hz, 653 *H* vinyl), 6.50 (d, 2H, ³*J_{HH}* = 8.9 Hz, *H* Ph), 6.64 (s, 1H, *H* Th), 6.89 654 $(d, 2H, {}^{3}J_{HH} = 8.9 \text{ Hz}, \underline{H} \text{ Ph}; {}^{13}C({}^{1}H) \text{ NMR (CD}_{2}Cl_{2}, 100 \text{ MHz}); \delta \text{ 655}$ (ppm) 14.5 (s, <u>CH</u>₃−Th), 14.6 (s, <u>CH</u>₃−Th), 15.2 (s, <u>CH</u>₃−Th), 15.4 656 (s, CH₃-Th), 19.9 (s, C *t*Bu), 20.1 (s, C *t*Bu), 29.1 (s, CH₃ *t*Bu), 29.3 657 (s, CH₃ tBu), 40.7 (s, OCH₃), 111.6 (s, CH Ph), 126.0 (s, CH vinyl), 658 127.2 (s, *C*H Th), 128.1 (s, *C*H Th), 128.7 (s, *C*H Ph), 130.0 (s, *C* 659 Th), 130.5 (s, *C* Ph), 133.1, 134.1, 135.1, 137.4 and 138.1 (s, *C*−Th), 660 140.2 (s, *C*−Si), 150.0 (s, *C* Ph), 151.4 (s, Si−CH = *C*−Ph), 163.1 (s, 661 Si–C=<u>C</u>–Th); ²⁹Si NMR (CD₂Cl₂, 79 MHz): *δ* (ppm) 16.7 (s). 662 HRMS (ESI, CH_3OH/CH_2Cl_2 (95/5)): calcd for 663 $[C_{31}H_{40}SiOS_2+H]^+$, 521.23626; found, 521.2361 (0 ppm). Anal. 664 Calcd for $[C_{31}H_{40}SiOS_2]$; C, 71.48; H, 7.74. Found: C, 71.36; H, 665
7.82. 7.82. 666

Compound 4b (R = COMe). After flash chromatography on silica 667 gel [SiO₂, 15 g; gradient DCM/pentane (50/50) \rightarrow DCM/pentane 668 $(70/30)$; R_f $(DCM/pentane$ $(50/50)) = 0.60$], the product was 669 obtained a clear yellow oil. 670

¹H NMR (CD₂Cl₂, 400 MHz): *δ* (ppm) 1.10 (s, 9H, C<u>H</u>₃ *t*Bu), 671 1.16 (s, 9H, C<u>H</u>₃, tBu), 1.73 (s, 3H, C<u>H</u>₃−Th), 1.79 (s, 3H, C<u>H</u>₃− 672 Th), 2.16 (s, 3H, C<u>H</u>₃−Th), 2.39 (s, 3H, C<u>H</u>₃−Th), 2.53 (s, 3H, 673 $C(O)CH_3$, 5.91 (s, 1H, <u>H</u> Th), 6.24 (s with ²⁹Si sat., 1H, ²J_{HSi} = 10.7 674 Hz, <u>H</u> vinyl), 6.65 (s, 1H, <u>H</u> Th), 7.11 (d, 2H, ³*J*_{HH} = 8.5 Hz, <u>H</u> Ph), 675 7.73 (d, 2H, ${}^{3}J_{\text{HH}}$ = 8.5 Hz, <u>H</u> Ph); ¹³C{¹H} NMR (CD₂Cl₂, 100 676 MHz): *δ* (ppm) 14.5 (s, <u>C</u>H₃−Th), 14.6 (s, <u>C</u>H₃−Th), 15.1 (s, <u>C</u>H₃− 677 Th), 15.4 (s, \underline{CH}_3 -Th), 20.0 (s, \underline{C} *t*Bu), 20.1 (s, \underline{C} *tBu)*, 26.8 (s, 678 C(O)_{CH₃}), 29.0 (s, _{CH₃} *t*Bu), 29.3 (s, _{CH₃} *t*Bu), 127.0 (s, _{CH}Th), 679 127.6 (s, *C*H Th), 127.7 (s, *C*H Ph), 128.0 (s, *C*H Ph), 130.3 (s, *C* 680

 Th), 131.5 (s, *C*H vinyl), 133.5 (s, *C* Th), 134.9 (s, *C* Th), 135.5 (s, *C* Th), 135.8 (s, *C*−C(O)CH3), 136.6 (s, *C* Th), 137.6 (s, *C* Th), 140.8 (s, *C*−Si), 146.9 (s, *C* Ph), 150.1 (s, Si−CH = *C*−Ph), 162.4 (s, Si− C=*C*−Th), 197.9 (s, C=O); 29Si NMR (CD2Cl2, 79 MHz): *δ* (ppm) 685 17.7 (s). HRMS (ESI, CH_2Cl_2): calcd for $[C_{32}H_{40}SiO\bar{S}_2]^+$, 686 532.22844; found, 532.2283 (0 ppm). Anal. Calcd for $[C_{28}H_{42}SiS_2]$; C, 72.13; H, 7.57. Found: C, 72.41; H, 7.56.

688 *Compound 4c* $(R = CF_3)$. After flash chromatography on silica gel 689 [SiO₂, 15 g; eluent, DCM/pentane (5/95); $R_f = 0.8$], the product was 690 obtained as a white solid.

691 ¹H NMR (CD₂Cl₂, 400 MHz): *δ* (ppm) 1.10 (s, 9H, C<u>H</u>₃ *t*Bu), 1.17 (s, 9H, C*H*³ *t*Bu), 1.74 (s, 3H, C*H*3−Th), 1.79 (s, 3H, C*H*3− Th), 2.16 (s, 3H, C*H*3−Th), 2.39 (s, 3H, C*H*3−Th), 5.89 (s, 1H, *H* 694 Th), 6.24 (s with ²⁹Si sat., 1H, ²J_{HSi} = 10.6 Hz, <u>H</u> vinyl), 6.66 (s, 1H, *H* Th), 7.14 (d, 2H, ³*J*_{HH} = 8.0 Hz, *H* Ph), 7.41 (d, 2H, ³*J*_{HH} = 8.0 Hz, *H* Ph); 13C{1 H} NMR (CD2Cl2, 100 MHz): *δ* (ppm) 14.5 (s, *C*H3− Th), 14.6 (s, *C*H3−Th), 15.1 (s, *C*H3−Th), 15.4 (s, *C*H3−Th), 20.0 (s, *C t*Bu), 20.1 (s, *C t*Bu), 29.0 (s, *C*H3 *t*Bu), 29.3 (s, *C*H3 *t*Bu), 124.5 (q, ⁴ *J*CF = 3.8 Hz, *C*H Ph), 124.9 (q, ¹ *J*CF = 271.7 Hz, *C*F3), 126.9 (s, *C*H Th), 127.6 (s, *C*H Th), 128.2 (s, *C*H Ph), 128.7 (q, ² *J*CF = 32.0 Hz, *C*-CF3), 130.3 (s, *C* Th), 131.5 (s, *C*H vinyl), 133.5, 135.0, 135.5, 136.5 and 137.6 (s, *C* Th), 140.8 (s, *C*−Si), 145.9 (s, *C* Ph), 150.0 (s, Si−CH=*C*−Ph), 162.0 (s, Si−C=*C*−Th); 29Si NMR 704 (CD₂Cl₂, 79 MHz): *δ* (ppm) 17.7 (s); ¹⁹F{¹H} NMR (CD₂Cl₂, 705 376 MHz): δ (ppm) -62.7 (s). HRMS (ESI, CH₂Cl₂): calcd for $[C_{31}H_{37}F_3SiS_2]^+$, 558.20526; found, 558.2053 (0 ppm). Anal. Calcd 707 for $[C_{28}H_{42}SiS_2]$; C, 66.63; H, 6.67. Found: C, 66.97; H, 6.83.

708 *Compound 4d (R = CHO).* After flash chromatography on silica gel 709 [SiO₂, 15 g; eluent, pentane/ethyl acetate $(97/3)$; $R_f = 0.47$], the 710 product was obtained as a fluffy pale-yellow solid.

711 ¹H NMR (CD₂Cl₂, 400 MHz): *δ* (ppm) 1.10 (s, 9H, C<u>H</u>₃ *t*Bu), 712 1.17 (s, 9H, C_H₃ *t*Bu), 1.73 (s, 3H, C_{H₃}–Th), 1.80 (s, 3H, C_{H₃}– ⁷¹³ Th), 2.15 (s, 3H, C*H*3−Th), 2.40 (s, 3H, C*H*3−Th), 5.90 (s, 1H, *H* 714 Th), 6.28 (s with ²⁹Si sat., 1H, ²J_{HSi} = 10.6 Hz, <u>H</u> vinyl), 6.66 (s, 1H, 715 *H* Th), 7.19 (d, 2H, ³J_{HH} = 8.2 Hz, *H* Ph), 7.66 (d, 2H, ³J_{HH} = 8.2 Hz, 716 <u>H</u> Ph); ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz): *δ* (ppm) 14.1 (s, <u>C</u>H₃− 717 Th), 14.2 (s, <u>CH</u>₃−Th), 14.7 (s, <u>CH</u>₃−Th), 15.0 (s, <u>CH</u>₃−Th), 19.6 718 (s, *C t*Bu), 19.7 (s, *C t*Bu), 28.5 (s, *C*H3 *t*Bu), 28.9 (s, *C*H3 *t*Bu), 719 126.5 (s, *C*H Th), 127.1 (s, *C*H Th), 128.1 (s, *C*H Ph), 128.7 (s, *C*H 720 Ph), 129.9 (s, *C* Th), 131.6 (s, *C*H vinyl), 133.1, 134.5, 134.7, 135.1, 721 136.1 and 137.1 (s, *C* Th), 140.4 (s, *C*−Si), 147.9 (s, *C* Ph), 149.5 (s, ⁷²² Si−CH = *C*−Ph), 161.9 (s, Si−C=*C*−Th), 191.8 (s, *C*=O); 29Si NMR 723 (CD₂Cl₂, 79 MHz): δ (ppm) 17.8 (s). HRMS (ESI, CH₂Cl₂): calcd 724 for $[C_{31}H_{38}OSiS_2]^+$, 518.21279; found, 518.2126 (0 ppm). Anal. 725 Calcd for $[C_{28}H_{42}SiS_2]$; C, 71.76; H, 7.38. Found: C, 72.22; H, 7.26. 726 *Compound 4e* $(R = NH₂)$. After flash chromatography on silica gel
727 [SiO₂, 15 g; eluent, DCM/pentane/methanol (20/79/1); $R_f = 0.1$]. [SiO₂, 15 g; eluent, DCM/pentane/methanol (20/79/1); $R_f = 0.1$], 728 the product was obtained as an oil.

729 ¹H NMR (CD₂Cl₂, 400 MHz): *δ* (ppm) 1.09 (s, 9H, C<u>H</u>₃ *t*Bu), ⁷³⁰ 1.14 (s, 9H, C*H*³ *t*Bu), 1.73 (s, 3H, C*H*3−Th), 1.79 (s, 3H, C*H*3− ⁷³¹ Th), 2.19 (s, 3H, C*H*3−Th), 2.38 (s, 3H, C*H*3−Th), 3.64 (s br., 2H, 732 N<u>H₂</u>), 5.94 (s, 1H, <u>H</u> Th), 6.00 (s with ²⁹Si sat., 1H, ²J_{HSi} = 11.0 Hz, 733 *H* vinyl), 6.45 (d, 2H, ³J_{HH} = 8.5 Hz, *H* Ph), 6.63 (s, 1H, *H* Th), 6.80 734 (d, 2H, ³J_{HH} = 8.5 Hz, <u>H</u> Ph); ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz): *δ* 735 (ppm) 14.5 (s, <u>CH</u>₃−Th), 14.6 (s, CH₃−Th), 15.2 (s, CH₃−Th), 15.4 ⁷³⁶ (s, *C*H3−Th), 19.9 (s, *C t*Bu), 20.1 (s, *C t*Bu), 29.1 (s, *C*H3 *t*Bu), 29.3 737 (s, *C*H3 *t*Bu), 114.0 (s, *C*H Ph), 126.5 (s, *C*H vinyl), 127.2 (s, *C*H 738 Th), 128.0 (s, *C*H Th), 129.0 (s, *C*H Ph), 130.0 (s br., *C* Th), 132.6 739 (s, *C* Ph), 133.1 (s, *C* Th), 134.1 (s br., *C* Th), 135.1 (s, *C* Th), 137.3 740 (s, *C* Th), 138.1 (s, *C* Th), 140.2 (s, *C*−Si), 146.0 (s, *C* Ph), 151.3 (s, 741 Si–CH=<u>C</u>−Ph), 163.1 (s, Si–C=<u>C</u>−Th); ²⁹Si NMR (CD₂Cl₂, 79 742 MHz): δ (ppm) 16.8 (s). HRMS (ESI, CH₃OH/CH₂Cl₂ (95/5)): 743 calcd for $[C_{30}H_{39}NSiS_2+H]^+$, 506.2366; found, 506.2365 (0 ppm). 744 Anal. Calcd for $[C_{30}H_{39}SiNS_2]$; C, 71.23; H, 7.77, N, 2.77. Found: C, 745 70.91; H, 7.62, N, 2.27.

746 Compound 4f $(R = N(CH_3)_2)$. After flash chromatography on silica 747 gel $\left[\text{SiO}_2, 15 \text{ g} \right]$; eluent, DCM/pentane $\left(\frac{50}{50} \right)$; $R_f = 0.9$], the product 748 was obtained as a yellowish oil.

749 ¹H NMR (CD₂Cl₂, 400 MHz): δ (ppm) 1.09 (s, 9H, C_{H2} *t*Bu), ⁷⁵⁰ 1.15 (s, 9H, C*H*³ *t*Bu), 1.73 (s, 3H, C*H*3−Th), 1.78 (s, 3H, C*H*3− Th), 2.18 (s, 3H, C<u>H</u>₃−Th), 2.39 (s, 3H, C<u>H</u>₃−Th), 3.75 (s, 6H, 751 N(C<u>H₃</u>)₂), 5.92 (s, 1H, <u>H</u> Th), 6.06 (s with ²⁹Si sat., 1H, ²J_{HSi} = 11.0 752 Hz, <u>H</u> vinyl), 6.64 (s, 1H, <u>H</u> Th), 6.67 (d, 2H, ³*J*_{HH} = 8.8 Hz, <u>H</u> Ph), 753 6.94 (d, 2H, ${}^{3}J_{\text{HH}}$ = 8.8 Hz, <u>H</u> Ph); ¹³C{¹H} NMR (CD₂Cl₂, 100 754 MHz): *δ* (ppm) 14.5 (s, <u>C</u>H₃−Th), 14.6 (s, <u>C</u>H₃−Th), 15.1 (s, <u>C</u>H₃− 755 Th), 15.4 (s, <u>C</u>H₃−Th), 19.9 (s, <u>C</u> *t*Bu), 20.1 (s, <u>C</u> *t*Bu), 29.0 (s, <u>C</u>H₃ 756 *t*Bu), 29.3 (s, *CH*₃ *t*Bu), 55.5 (s, N(*CH*₃)₂), 112.9 (s, *CH* Ph), 127.1 757 (s, *C*H Th), 127.8 (s, *C*H vinyl), 127.9 (s, *C*H Th), 129.1 (s, *C*H Ph), 758 130.1 (s, *C* Th), 133.2 (s, *C* Th), 134.3 (s, *C* Th), 134.9 (s, *C* Ph), 759 135.2 (s, *C* Th), 137.1 (s, *C* Th), 138.0 (s, *C* Th), 140.3 (s, *C*−Si), 760 151.0 (s, Si−CH = *C*−Ph), 159.0 (s, *C* Ph), 162.8 (s, Si−C=*C*−Th); 761 ²⁹Si NMR (CD₂Cl₂, 79 MHz): *δ* (ppm) 16.9 (s). HRMS (ESI, 762 CH_3OH/CH_2Cl_2 (5/95)): calcd for $[C_{32}H_{43}SiNS_2+H]^+$, 534.2679; 763 found, 534.2679 (0 ppm). 764

Compound 5-D. The synthesis and purification of 5-D were 765 transposed from the described procedure for the protio-derivative 5 766 with Ph-C \equiv C-D as a starting material instead of Ph-C \equiv C-H.¹⁷ 767

¹H NMR (CD₂Cl₂, 400 MHz): *δ* (ppm) 1.10 (s, 9H, C<u>H</u>₃-tBu), 768 1.16 (s, 9H, C_{H3}-tBu), 1.73 (s, 3H, C_{H₃}-Th), 1.78 (s, 3H, C_{H₃− 769} Th), 2.16 (s, 3H, C_{H₃}–Th), 2.39 (s, 3H, C_{H₃}–Th), 5.90 (s, 1H, <u>H</u>− 770 Th), 6.65 (s, 1H, *H*−Th), 6.99−7.05 (m, 2H, *H*-*m*Ph), 7.11−7.19 (m, 771 3H, *H*-*o*Ph and *H*-*p*Ph); ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz): *δ* 772 (ppm) 14.5 (s, *C*H₃−Th), 14.6 (s, *C*H₃−Th), 15.1 (s, *C*H₃−Th), 15.4 773 (s, <u>C</u>H₃−Th), 19.9 (s, C-*t*Bu), 20.1 (s, C-*t*Bu), 29.0 (s, CH₃-*t*Bu), 29.3 774 (s, *C*H ⁷⁷⁵ 3-*t*Bu), 127.0 (s, *C*H-*p*Ph), 127.1 (s, *C*H−Th), 127.6 (s, *C*H*o*Ph), 127.9 (s, <u>C</u>H−Th), 127.9 (s, <u>C</u>H-*m*Ph), 128.9 (triplet 111, ¹J_{CD} 776 = 22.6 Hz, *C*D-vinyl), 130.1 (s, *C*2−Th), 133.3 (s, *C*2−Th), 134.4 (s, 777 *C*5−Th), 135.3 (s, *C*5−Th), 137.0 (s, *C*3−Th), 137.9 (s, *C*3−Th), 778 140.3 (s, *C*−Si), 142.3 (s, *C*-*ipso*Ph), 150.8 (s, Si−C=*C*−Th), 163.3 779 (s, Si−CH=*C*-Ph). HRMS (ASAP, 90 °C): exact mass (mono- 780 isotopic) calcd for $[C_{30}H_{37}DSiS_2]^+$, 491.22415; found, 491.2246 (1 781

ppm). 782 *Compound 6-PtBu* ⁷⁸³ *3.* A solution of silirene 1 (20.0 mg, 5.15 × 10[−]² mmol) and bis(tri-*tert*-butylphosphine)palladium(0) (26.2 mg, 5.15 × 784 10^{-2} mmol, 1.00 equiv) in C₆D₆ (0.65 mL) was heated for 13 h at 50 785 ^oC, giving yellow solution. 6-PtBu₃ was characterized in situ by 786 multinuclear NMR spectroscopy, showing a conversion toward the 787 OA product of 40%. 788

¹H NMR (C_6D_6 , 400 MHz): δ (ppm) 1.26 (d, 27H, ³J_{HP} = 11.7 789 Hz, CH₃</sub> PtBu), 1.53 (s, 18H, CH₃ SitBu), 2.14 (s, 3H, CH₃−Th), 790 2.17 (s, 3H, C_{H₃}−Th), 2.19 (s, 3H, C_{H₃}−Th), 2.29 (s, 3H, C_{H₃− 791} Th), 6.55 (s, 1H, <u>H</u> Th), 6.94 (s, 1H, <u>H</u> Th); ¹³C{¹H} NMR (C₆D₆, 792 100 MHz): δ (ppm) 14.5 (s, <u>C</u>H₃–Th), 15.0 (s, <u>C</u>H₃–Th), 15.3 (s, 793 *C*H₃−Th), 15.4 (s, *C*H₃−Th), 24.5 (s, *C* SitBu), 31.8 (s, *CH*₃ SitBu), 794 32.8 (d, ²J_{CP} = 8.3 Hz, <u>C</u>H₃ PtBu), 37.3 (s, <u>C</u> PtBu), 127.3 (s, <u>C</u>H 795 Th), 127.7 (s, *C*H Th), 128.4 (s, *C*quat.), 128.9 (s, *C*quat.), 134.3 (s, 796 *C*quat.), 134.6 (s, *C*quat.), 134.8 (d, *J*_{CP} = 2.4 Hz, *C*quat.), 138.7 (d, 797 *J*_{CP} = 8.8 Hz, <u>C</u>quat.), 146.4 (d, *J*_{CP} = 12.8 Hz, Si–<u>C</u>=C), 151.5 (d, *J*_{CP} 798 $= 46.1$ Hz, Si–C= C); ²⁹Si{¹H} NMR (C₆D₆, 79 MHz): *δ* (ppm) 799 -33.7 (s); ³¹P{¹H} NMR (C₆D₆, 202 MHz): δ (ppm) 80.9 (s). 800

Compound **6-P(otol)**₃. A solution of silirene 1 (20.0 mg, 5.15 \times 801 10⁻² mmol) and bis(tri-*o*-tolyl-phosphine)palladium(0) (36.8 mg, 802 5.15 × 10^{-2} mmol, 1.00 equiv) in C₆D₆ (0.65 mL) was heated for 4 h 803 at 50 °C, giving yellow solution. $6\text{-}P(\text{otol})_3$ was characterized in situ 804 by multinuclear NMR spectroscopy, showing a conversion toward the 805 OA product of 82%. 806

¹H NMR (C₆D₆, 400 MHz): *δ* (ppm) 1.35 (s, 18H, C<u>H</u>₃ SitBu), 807 1.97 (s, 3H, C_{H₃−Th), 2.15 (s, 3H, C_{H₃}−Th), 2.18 (s, 3H, C_{H₃− 808}} Th), 2.25 (s, 3H, C_{H₃}–Th), 2.46 (s, 3H, C_{H₃} tolyl), 6.56 (s, 1H, <u>H</u> 809 Th), 6.96 (s, 1H, *H* Th); the ortho tolyl proton resonance signals 810 could not be unambiguously assigned due to the complexity of the 811 aromatic region of the spectrum; ¹³C{¹H} NMR (C₆D₆, 100 MHz): δ 812 (ppm) 14.7 (s, <u>C</u>H₃–Th), 15.1 (s, <u>C</u>H₃–Th), 15.1 (s, <u>C</u>H₃–Th), 15.3 813 (s, <u>C</u>H₃–Th), 23.7 (d, ³J_{CP} = 11.8 Hz, <u>C</u>H₃ tolyl), 24.7 (s, <u>C</u> SitBu), 814 31.3 (s, \underline{CH}_3 SitBu), 126.0 (d, J_{CP} = 8.9 Hz, \underline{CH} tolyl), 127.0 (s, \underline{CH} 815 Th), 127.5 (s, *C*H Th), 128.5 (s br., *C*quat.), 129.3 (s, *C*quat.), 130.0 816 $(d, {}^{1}J_{CP} = 28.7 \text{ Hz}, \text{ P} - \text{_C})$, 130.4 (s br., <u>CH</u> tolyl), 131.9 (d, ³ $J_{CP} = 5.8 \text{ s}$ 17 Hz, *C*H tolyl), 134.8 (s, *C*quat.), 134.9 (s, *C*quat.), 135.5 (d, *J_{CP}* = 818 14.7 Hz, *C*H tolyl), 137.8 (d, *J_{CP}* = 1.2 Hz, *C*quat.), 138.7 (d, *J_{CP}* = 819 9.3 Hz, *C*quat.), 142.9 (d, *J*_{CP} = 11.6 Hz, *C o*tolyl), 146.0 (d, *J*_{CP} = 820

821 11.7 Hz, Si-<u>C</u>=C), 152.6 (d, *J*_{CP} = 55.0 Hz, Si-C=<u>C</u>); ²⁹Si{¹H} 822 NMR (C_6D_6 , 79 MHz): δ (ppm) −31.6 (s); ³¹P{¹H} NMR (C_6D_6 , 823 162 MHz): *δ* (ppm) 25.3 (s).

 Compound 6-COD. THF (2 mL) was added to a neat mixture of 825 silirene 1 (30.0 mg, 7.72 \times 10⁻² mmol) and (1,5-cyclooctadiene)- bis(trimethylsilylmethyl)palladium(II) (30.0 mg, 7.72 × 10[−]² mmol, 1.00 equiv), and the resulting solution was stirred for 1 h at room temperature, giving a dark solution. The solvent was evaporated under vacuum, and the residue thus obtained was further dried for 10 h under vacuum, giving a sticky brown residue. The residue was extracted with pentane (2 mL), and the pentane solution was filtered and placed at −30 °C, giving the expected compound as colorless blocks in 41% yield. Single crystals suitable for X-ray diffraction analysis were obtained in the same conditions.

835 ¹H NMR (CD₂Cl₂, 500 MHz, 243 K): *δ* (ppm) 1.07 (s, 18H, C<u>H</u>₃ ⁸³⁶ Si*t*Bu), 1.96 (s, 3H, C*H*3−Th), 1.98 (s, 3H, C*H*3−Th), 2.06−2.20 837 (br., 2H, C<u>H</u>₂ COD), 2.20–2.40 (br., 4H, C<u>H</u>₂ COD), 2.29 (s, 3H, ⁸³⁸ C*H*3−Th), 2.30 (s, 3H, C*H*3−Th), 2.52−2.66 (br., 2H, C*H*² COD), 839 4.88−5.67 (br., 2H, C*H* COD), 5.90 (br., 2H, C*H* COD), 6.27 (s, 840 1H, <u>H</u> Th), 6.43 (s, 1H, <u>H</u> Th); ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz, ⁸⁴¹ 243 K): *δ* (ppm) 14.0 (s, *C*H3−Th), 14.7 (s, *C*H3−Th), 15.2 (s, ⁸⁴² *C*H3−Th), 15.2 (s, *C*H3−Th), 23.3 (s br., *C* Si*t*Bu), 27.4 (br., *C*H2 843 COD), 30.0 (br., *C*H2 COD), 30.7 (s, *C*H3 Si*t*Bu), 105.1 (s. br., *C*H 844 COD), 122.2 (s. br., *C*H COD), 123.2 (s, *C*quat.), 125.4 (s, *C*H Th), 845 126.4 (s, *C*quat.), 126.5 (s, *C*H Th), 133.8, 133.8, 140.8, 146.4, 151.6 846 and 161.3 (s, <u>C</u>quat.); ²⁹Si{¹H} NMR (CD₂Cl₂, 99 MHz, 243 K): *δ* 847 (ppm) −34.8 (s).
848 Compound 6-1

 Compound 6-PPh3. To a solution of silirene 1 (40.0 mg, 0.103 mmol) and triphenylphosphine (27.0 mg, 0.103 mmol, 1.00 equiv) in THF (2.5 mL) was added (1,5-cyclooctadiene)bis- (trimethylsilylmethyl)palladium(II) (40.1 mg, 0.103 mmol, 1.00 equiv) as a powder in one portion, and the resulting mixture was stirred for 1 h at room temperature, giving a clear green solution.

854 The volatiles were then eliminated under reduced pressure, and the 855 residue was then dried under vacuum $(2 \times 10^{-2} \text{ (mmbar)})$ for 10 h, 856 giving a green solid. This solid was then washed two times with 857 pentane (2 times 1 mL), giving the expected compound as a clear 858 yellow powder in 65% yield (51 mg). All the attempts to grow single 859 crystals of 6-PPh₃ for X-ray diffraction analysis furnished crystals of 860 the known complex $[{\rm Pd}({\rm PPh}_3)_3]$.

861 H NMR (THF-d8 , 400 MHz): *δ* (ppm) 1.04 (s, 18H, C*H*³ *t*Bu), ⁸⁶² 1.86 (s, 3H, C*H*3−Th), 2.13 (s, 3H, C*H*3−Th), 2.32 (s, 3H, C*H*3− ⁸⁶³ Th), 2.34 (s, 3H, C*H*3−Th), 6.56 (s, 1H, *H* Th), 6.58 (s, 1H, *H* Th), 864 7.31−7.43 (m, 9H, *H p*Ph and *H m*Ph), 7.54−7.64 (m, 6H, *H o*Ph); $_{865}$ ¹³C{¹H} NMR (THF-d⁸, 100 MHz): *δ* (ppm) 14.7 (s, <u>C</u>H₃-Th), 866 14.9 (s, *C*H₃−Th), 15.0 (s, *C*H₃−Th), 15.1 (s, *CH*₃−Th), 24.7 (s, *C* 867 *t*Bu), 31.1 (s, *C*H3 *t*Bu), 127.3 (s, *C*H Th), 127.6 (s, *C*H Th), 128.7 868 (d, *J*_{CP} = 1.7 Hz, *C*quat.), 129.2 (s, *C*quat.), 129.2 (d, *J*_{CP} = 9.6 Hz, 869 *C*H *m*Ph), 130.6 (d, *J*CP = 1.4 Hz, *C*H *p*Ph), 134.7 (s, *C*quat.), 135.0 870 (d, *J*_{CP} = 15.9 Hz, <u>C</u>H *o*Ph), 135.3 (d, ¹*J*_{CP} = 31.2 Hz, <u>C</u>−P), 135.4 (s, 871 *C*quat.), 137.0 (s br., *C*quat.), 138.9 (d, *J*_{CP} = 9.9 Hz, *C*quat.), 146.3 872 (d, *J*_{CP} = 11.5 Hz, Si–<u>C</u>=C), 156.0 (d, *J*_{CP} = 63.4 Hz, Si–C=<u>C</u>); 873²⁹Si{¹H} NMR (THF-d⁸, 79 MHz): *δ* (ppm) −27.2 (d, *J*_{SiP} = 2.1 Hz); 874 ³¹P{¹H} NMR (THF-d⁸, 162 MHz): δ (ppm) 24.0 (s, 6-PPh₃).

875 *NMR Evidence for the Existence of an Equilibrium.* In the 876 NOESY ¹H,¹H NMR spectrum, exchange correlations are observed 877 between PPh₃ aromatic proton resonance signals of **6-PPh₃** and 878 [Pd(PPh₂)...]: exchange correlations are observed between thienvl 878 $[Pd(PPh₃)_n]$; exchange correlations are observed between thienyl 879 – CH, protons resonance signals of **6-PPh**, and **6-PPh**. $-CH_3$ protons resonance signals of 6-PPh₃ and 6-PPh₃.

880 In the NOESY ³¹P,³¹P NMR spectrum, exchange correlations are 881 observed between the PPh_3 resonance signal of $6\text{-} \text{PPh}_3$ and 882 [Pd(PPh₃)_n].
883 **Compoun**

 Compound 6-P(OPh)3. To a solution of silirene 1 (100 mg, 0.257 mmol) and triphenylphosphite (67.4 *μ*L, 79.8 mg, 0.257 mmol, 1.00 equiv) in THF (7 mL) was added (1,5-cyclooctadiene)bis- (trimethylsilylmethyl)palladium(II) (100 mg, 0.257 mmol, 1.00 equiv) as a powder in one portion, and the resulting mixture was stirred for 2 h at room temperature, giving a clear yellow solution.

889 The crude mixture was then filtered, and the resulting solution was 890 concentrated to dryness over 30 min at room temperature. The resulting residue was extracted with pentane (15 mL) at room 891 temperature and filtered, and the yellow pentane solution was placed 892 in the freezer at −40 °C, affording colorless crystals in a few hours. 893 The mother liquor was then eliminated via a syringe, and the crystals 894 were washed 4 times with −40 °C cold pentane (4 times 5 mL). The 895 crystals were then dried under vacuum at 0 °C for 5 h. NMR analysis 896 of the crystalline material revealed the presence of about 5% of 897 $[Pd(P(OPh)₃)₃]$ in addition to the expected compound (46% yield). 898 Attempts to separate the two complexes were unsuccessful. Crystals of 899 **6-P(OPh)**₃ suitable for X-ray diffraction were obtained from a 900 saturated THF/pentane solution at -30° C. saturated THF/pentane solution at -30 °C.

The compound $6\text{-}P(\text{OPh})_3$ was characterized by NMR at -40 °C 902 in THF 8 d. In the case of 29 Si NMR, no resonance signal could be 903 observed at low temperature, and the spectrum was recorded at room 904 temperature over a few hours, resulting in the partial decomposition 905 of the compound due to its thermal instability. Fast ¹H and ³¹P NMR 906 spectra could also be recorded at room temperature in CD_2Cl_2 for a 907
better resolution (see $S101-104$). better resolution (see [S101](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf)−104).

¹H NMR (THF-d⁸, 400 MHz, 233 K): *δ* (ppm) 1.30 (s, 18H, C<u>H</u>₃ 909 *t*Bu), 1.68 (s, 3H, CH₃−Th), 1.75 (s, 3H, CH₃−Th), 2.19 (s, 3H, 910 C*H*₃−Th), 2.34 (s, 3H, C*H*₃−Th), 6.08 (s, 1H, *H* Th), 6.55 (s, 1H, *H* 911 Th), 7.17−7.24 (m, 3H, *H p*Ph), 7.35−7.45 (m, 12H, *H o*Ph and *H* 912 mPh); ¹³C{¹H} NMR (THF-d⁸, 100 MHz, 233 K): *δ* (ppm) 14.4 (s, 913 *C*H₃−Th), 14.7 (s, *C*H₃−Th), 14.9 (s, *C*H₃−Th), 15.3 (s, *C*H₃−Th), 914 24.2 (s, *C t*Bu), 31.2 (s, *CH*₃ *tBu*), 121.8 (br., *CH oPh* or *CH mPh*), 915 125.4 (s, *C*H *m*Ph), 126.1 (br., *C*quat.), 127.1 (s, *C*H Th), 127.8 (s, 916 *C*H Th or *C*quat.), 127.9 (s, *C*H Th or *C*quat.), 130.3 (s, *C*H *o*Ph or 917 *CH mPh*), 133.4 (br., *C*quat.), 134.5 (s, *C*quat.), 141.0 (d br., *J*_{CP} = 918 12.3 Hz, *C*quat.), 143.4 (br., *C*quat.), 151.8 (d, ¹J_{CP} = 3.5 Hz, *C*−P), 919 165.3 (d, $^{1}J_{CP} = 151.7$ Hz, *C*quat.); ²⁹Si{¹H} NMR (C₆D₆, 79 MHz, 920 293 K): δ (ppm) -26.9 (d, $J_{\rm SiP}$ = 4.7 Hz); ³¹P{¹H} NMR (THF-d⁸, 921 162 MHz, 233 K): *δ* (ppm) 126.8 (s). One quaternary carbon was 922 not observed. 923

■ **ASSOCIATED CONTENT** 924
● Supporting Information

\bullet Supporting Information

The Supporting Information is available free of charge at ⁹²⁶ [https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00045](https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00045?goto=supporting-info). ⁹²⁷

Experimental details and characterization data and ⁹²⁸ Cartesian coordinates for the calculated structure ⁹²⁹ obtained by DFT calculations ([PDF](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf)). 930

Accession Codes 931

CCDC [2184696](https://summary.ccdc.cam.ac.uk/structure-summary?pid=ccdc:2184696&id=doi:10.1021/acs.inorgchem.3c00045)−[2184699](https://summary.ccdc.cam.ac.uk/structure-summary?pid=ccdc:2184699&id=doi:10.1021/acs.inorgchem.3c00045) contain the supplementary crys- ⁹³² tallographic data for this paper. These data can be obtained ⁹³³ free of charge via [www.ccdc.cam.ac.uk/data_request/cif,](http://www.ccdc.cam.ac.uk/data_request/cif) or by ⁹³⁴ emailing [data_request@ccdc.cam.ac.uk,](mailto:data_request@ccdc.cam.ac.uk) or by contacting The 935 Cambridge Crystallographic Data Centre, 12 Union Road, ⁹³⁶ Cambridge CB2 1EZ, UK; fax: +44 1223 336033. ⁹³⁷

■ AUTHOR INFORMATION
Corresponding Authors

Corresponding Authors

- Marc Devillard − *ISCR (Institut des Sciences Chimiques de* ⁹⁴⁰ *Rennes)*�*UMR 6226, Université de Rennes 1, CNRS, F-* ⁹⁴¹ *35042 Rennes, France;* [orcid.org/0000-0002-3821-0885;](https://orcid.org/0000-0002-3821-0885) ⁹⁴² Email: marc.devillard@univ-rennes1.fr 943
- Gilles Alcaraz − *ISCR (Institut des Sciences Chimiques de* ⁹⁴⁴ *Rennes)*�*UMR 6226, Université de Rennes 1, CNRS, F-* ⁹⁴⁵ *35042 Rennes, France;* [orcid.org/0000-0001-8705-5917;](https://orcid.org/0000-0001-8705-5917) ⁹⁴⁶ Email: gilles.alcaraz@univ-rennes1.fr 947

Authors 948

K

[0001-6898-4550](https://orcid.org/0000-0001-6898-4550) 953

[https://doi.org/10.1021/acs.inorgchem.3c00045](https://doi.org/10.1021/acs.inorgchem.3c00045?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Inorg. Chem.* XXXX, XXX, XXX−XXX

- ⁹⁵⁴ Clément Orione − *ScanMAT-CRMPO, Université de Rennes* ⁹⁵⁵ *1, F-35042 Rennes, France*
- ⁹⁵⁶ Marie Cordier − *ISCR (Institut des Sciences Chimiques de*
- ⁹⁵⁷ *Rennes)*�*UMR 6226, Université de Rennes 1, CNRS, F-*
- ⁹⁵⁸ *35042 Rennes, France*

⁹⁵⁹ Complete contact information is available at:

⁹⁶⁰ [https://pubs.acs.org/10.1021/acs.inorgchem.3c00045](https://pubs.acs.org/page/pdf_proof?ref=pdf)

961 **Notes**

⁹⁶² The authors declare no competing financial interest.

⁹⁶³ ■ **ACKNOWLEDGMENTS**

 We thank Dr. P. Jéhan (CRMPO, Rennes) and F. Lambert (CRMPO, Rennes) for the HRMS analyses, M. Escadeillas (CRMPO, Rennes) for the elemental analyses, and E. Caytan (ISCR, Rennes) for NMR analyses. This work was performed using HPC resources from CALMIP (Grant 2017-[p17010]). We also thank the CINES for the computing resources (Montpellier, allocation 2019-A0060810728 and 2020- AP010811752 awarded by GENCI).

⁹⁷² ■ **REFERENCES**

973 (1) Planells, A. R.; Ferao, A. E. [Accurate](https://doi.org/10.1021/acs.inorgchem.0c01316?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Ring Strain Energy 974 Calculations on Saturated [Three-Membered](https://doi.org/10.1021/acs.inorgchem.0c01316?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Heterocycles with One 975 Group 13−16 [Element.](https://doi.org/10.1021/acs.inorgchem.0c01316?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Inorg. Chem.* 2020, *59*, 11503−11513.

 (2) (a) Romero, A. H. Influence of the [heteroatom](https://doi.org/10.1007/s11224-018-1139-8) on the structure, bonding and ring strain of a series of [three-membered](https://doi.org/10.1007/s11224-018-1139-8) rings [containing](https://doi.org/10.1007/s11224-018-1139-8) a second, third, fourth and fifth row elements: a theoretical [investigation.](https://doi.org/10.1007/s11224-018-1139-8) *Struct. Chem.* 2018, *29*, 1623−1636. (b) Aysin, R. R.; Leites, L. A.; Bukalov, S. S. Aromaticity of [1-Heterocyclopropenes](https://doi.org/10.1021/acs.organomet.0c00351?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) [Containing](https://doi.org/10.1021/acs.organomet.0c00351?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) an Atom of Group 14 or 4. *Organometallics* 2020, *39*, 2749−2762. (c) Göller, A.; Clark, T. *σ**[-Aromaticity](https://doi.org/10.1007/pl00010724) in Three- [Membered](https://doi.org/10.1007/pl00010724) Rings. *J. Mol. Model.* 2000, *6*, 133−149. (d) Méndez- Rojas, M. A.; Merino, G. 1.09 - Three-membered Rings with One Silicon, Germanium, Tin or Lead Atom. In *Comprehensive Heterocyclic Chemistry III*; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier, 2008; pp 483−512.

988 (3) Huang, C.-Y.; Doyle, A. G. The Chemistry of [Transition](https://doi.org/10.1021/cr500036t?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Metals 989 with [Three-Membered](https://doi.org/10.1021/cr500036t?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Ring Heterocycles. *Chem. Rev.* 2014, *114*, 990 8153−8198.

 (4) (a) Mathey, F.; Regitz, M. 2.1 - Three-membered Rings: 1. Phosphiranes and Phosphirenes. In *Phosphorus-Carbon Heterocyclic Chemistry*; Mathey, F., Ed.; Elsevier Science Ltd, 2001; pp 17−55. (b) Delouche, T.; Taifour, G.; Cordier, M.; Roisnel, T.; Tondelier, D.; Manzhi, P.; Geffroy, B.; Le Guennic, B.; Jacquemin, D.; Hissler, M.; et al. Si-containing polycyclic aromatic [hydrocarbons:](https://doi.org/10.1039/d1cc06309j) synthesis and [opto-electronic](https://doi.org/10.1039/d1cc06309j) properties. *Chem. Commun.* 2022, *58*, 88−91.

 (5) (a) Franz, A. K.; Woerpel, K. A. [Development](https://doi.org/10.1021/ar9900562?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of Reactions of [Silacyclopropanes](https://doi.org/10.1021/ar9900562?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) as New Methods for Stereoselective Organic [Synthesis.](https://doi.org/10.1021/ar9900562?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Acc. Chem. Res.* 2000, *33*, 813−820. (b) Nandi, G. C. Advances in the Synthesis and [Applications](https://doi.org/10.1002/ejoc.202001123) of Three Membered Sila, [Sila-Aza/-Phospha/-Oxa/-Thia](https://doi.org/10.1002/ejoc.202001123) Cyclopropanes. *Eur. J. Org. Chem.* 2020, *2021*, 587−606. (c) Anderson, L. L.; Woerpel, K. A. [Formation](https://doi.org/10.1021/ol802412b?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) and Utility of [Azasilacyclopentadienes](https://doi.org/10.1021/ol802412b?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Derived from Silacyclopro- penes and [Nitriles.](https://doi.org/10.1021/ol802412b?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Org. Lett.* 2009, *11*, 425−428. (d) Greene, M. A.; Prévost, M.; Tolopilo, J.; Woerpel, K. A. [Diastereoselective](https://doi.org/10.1021/ja305713v?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Synthesis of [Seven-Membered-Ring](https://doi.org/10.1021/ja305713v?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) trans-Alkenes from Dienes and Aldehydes by Silylene [Transfer.](https://doi.org/10.1021/ja305713v?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am. Chem. Soc.* 2012, *134*, 12482−12484. (e) Rotsides, C. Z.; Woerpel, K. A. Insertion [Reactions](https://doi.org/10.1021/acs.organomet.6b00469?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of [Silacyclopropanes:](https://doi.org/10.1021/acs.organomet.6b00469?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Evidence for a Radical-Based Mechanism. *Organo- metallics* 2016, *35*, 3132−3138. (f) Nobis, M.; Inoue, S.; Rieger, B. Modular [silacyclopropenes:](https://doi.org/10.1039/d2cc04565f) synthesis and application for Si−H containing substrate [functionalization.](https://doi.org/10.1039/d2cc04565f) *Chem. Commun.* 2022, *58*, 11159−11162. (g) Nobis, M.; Futter, J.; Moxter, M.; Inoue, S.; Rieger, B. Photo-Activity of [Silacyclopropenes](https://doi.org/10.1002/cssc.202201957) and their Application

in [Metal-Free](https://doi.org/10.1002/cssc.202201957) Curing of Silicones. *ChemSusChem* 2023, *16*, 1016 No. e202201957. 1017

(6) (a) Mu, Q.-C.; Chen, J.; Xia, C.-G.; Xu, L.-W. [Synthesis](https://doi.org/10.1016/j.ccr.2018.06.015) of 1018 [silacyclobutanes](https://doi.org/10.1016/j.ccr.2018.06.015) and their catalytic transformations enabled by 1019 [transition-metal](https://doi.org/10.1016/j.ccr.2018.06.015) complexes. *Coord. Chem. Rev.* 2018, *374*, 93−113. 1020 (b) Mohseni-Ala, J.; Auner, N. [Silacyclobutenes](https://doi.org/10.1016/j.ica.2006.05.024) − Synthesis and 1021 [reactivity.](https://doi.org/10.1016/j.ica.2006.05.024) *Inorg. Chim. Acta* 2006, *359*, 4677−4697. (c) Ishikawa, M.; 1022 Naka, A.; Kobayashi, H. The chemistry of [silacyclobutenes:](https://doi.org/10.1016/j.ccr.2016.12.011) Synthesis, 1023 reactions, and [theoretical](https://doi.org/10.1016/j.ccr.2016.12.011) studies. *Coord. Chem. Rev.* 2017, *335*, 58− 1024 75. (d) Qin, Y.; Han, J. L.; Ju, C. W.; Zhao, D. Ring [Expansion](https://doi.org/10.1002/anie.202001539) to 6-7- 1025 and 8-Membered [Benzosilacycles](https://doi.org/10.1002/anie.202001539) through Strain-Release Silicon- 1026 Based [Cross-Coupling.](https://doi.org/10.1002/anie.202001539) *Angew. Chem., Int. Ed.* 2020, *59*, 8481−8485. 1027 (e) Zhu, M.-H.; Zhang, X.-W.; Usman, M.; Cong, H.; Liu, W.-B. 1028 [Palladium-Catalyzed](https://doi.org/10.1021/acscatal.1c00975?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) (4 + 4) Annulation of Silacyclobutanes and 2- 1029 Iodobiarenes to [Eight-Membered](https://doi.org/10.1021/acscatal.1c00975?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Silacycles via C−H and C−Si Bond 1030 [Activation.](https://doi.org/10.1021/acscatal.1c00975?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *ACS Catal.* 2021, *11*, 5703−5708. (f) Wang, X. C.; Wang, 1031 H. R.; Xu, X.; Zhao, D. Ring Expansion to [8-Membered](https://doi.org/10.1002/ejoc.202100535) Silacycles 1032 through Formal [Cross-Dimerization](https://doi.org/10.1002/ejoc.202100535) of 5-Membered Palladacycles 1033 with [Silacyclobutanes.](https://doi.org/10.1002/ejoc.202100535) *Eur. J. Org. Chem.* 2021, *2021*, 3039−3042. 1034 (g) Shintani, R.; Moriya, K.; Hayashi, T. [Palladium-Catalyzed](https://doi.org/10.1021/ol301191u?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 1035 [Desymmetrization](https://doi.org/10.1021/ol301191u?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of Silacyclobutanes with Alkynes: Enantioselective 1036 Synthesis of Silicon-Stereogenic [1-Sila-2-cyclohexenes](https://doi.org/10.1021/ol301191u?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) and Mecha- 1037 nistic [Considerations.](https://doi.org/10.1021/ol301191u?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Org. Lett.* 2012, *14*, 2902−2905. (h) Chen, H.; 1038 Chen, Y.; Tang, X.; Liu, S.; Wang, R.; Hu, T.; Gao, L.; Song, Z. 1039 [Rhodium-Catalyzed](https://doi.org/10.1002/anie.201814143) Reaction of Silacyclobutanes with Unactivated 1040 Alkynes to Afford [Silacyclohexenes.](https://doi.org/10.1002/anie.201814143) *Angew. Chem., Int. Ed.* 2019, *58*, 1041 4695−4699. (i) Huo, J.; Zhong, K.; Xue, Y.; Lyu, M.; Ping, Y.; Liu, Z.; 1042 Lan, Y.; Wang, J. [Palladium-Catalyzed](https://doi.org/10.1021/jacs.1c05879?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Enantioselective Carbene 1043 Insertion into Carbon−Silicon Bonds of [Silacyclobutanes.](https://doi.org/10.1021/jacs.1c05879?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am.* 1044 *Chem. Soc.* 2021, *143*, 12968−12973. 1045

(7) (a) Hermanns, J.; Schmidt, B. Five- and [six-membered](https://doi.org/10.1039/a705305c) silicon− 1046 carbon [heterocycles.](https://doi.org/10.1039/a705305c) Part 1. Synthetic methods for the construction of 1047 [silacycles.](https://doi.org/10.1039/a705305c) *J. Chem. Soc., Perkin Trans. 1* 1998, *1*, 2209−2230. (b) Huo, 1048 J.; Zhong, K.; Xue, Y.; Lyu, M.; Ping, Y.; Ouyang, W.; Liu, Z.; Lan, Y.; 1049 Wang, J. [Ligand-Controlled](https://doi.org/10.1002/chem.202200191) Site- and Enantioselective Carbene 1050 Insertion into Carbon-Silicon Bonds of [Benzosilacyclobutanes.](https://doi.org/10.1002/chem.202200191) 1051 *Chemistry* 2022, *28*, No. e202200191. 1052

(8) (a) Sanzone, J. R.; Woerpel, K. A. High [Reactivity](https://doi.org/10.1002/anie.201510056) of Strained 1053 [Seven-Membered-Ring](https://doi.org/10.1002/anie.201510056) trans-Alkenes. *Angew. Chem., Int. Ed.* 2016, *55*, 1054 790−793. (b) Sanzone, J. R.; Hu, C. T.; Woerpel, K. A. [Uncatalyzed](https://doi.org/10.1021/jacs.7b03986?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 1055 Carboboration of [Seven-Membered-Ring](https://doi.org/10.1021/jacs.7b03986?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) trans-Alkenes: Formation of 1056 Air-Stable [Trialkylboranes.](https://doi.org/10.1021/jacs.7b03986?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am. Chem. Soc.* 2017, *139*, 8404−8407. 1057 (c) Greene, M. A.; Liu, Y.; Sanzone, J. R.; Woerpel, K. A. 1058 Carboalumination of [Seven-Membered-Ring](https://doi.org/10.1021/acs.orglett.0c02711?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) trans-Alkenes. *Org.* 1059 *Lett.* 2020, *22*, 7518−7521. 1060

(9) (a) Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; 1061 Yamaguchi, S. Silole Derivatives as Efficient Electron [Transporting](https://doi.org/10.1021/ja962829c?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 1062 [Materials.](https://doi.org/10.1021/ja962829c?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am. Chem. Soc.* 1996, *118*, 11974−11975. (b) Yamaguchi, 1063 S.; Tamao, K. [Theoretical](https://doi.org/10.1246/bcsj.69.2327) Study of the Electronic Structure of 2,2′- 1064 Bisilole in Comparison with 1,1′[-Bi-1,3-cyclopentadiene:](https://doi.org/10.1246/bcsj.69.2327) *σ**−*π** 1065 [Conjugation](https://doi.org/10.1246/bcsj.69.2327) and a Low-Lying LUMO as the Origin of the Unusual 1066 Optical Properties of 3,3′,4,4′[-Tetraphenyl-2,2](https://doi.org/10.1246/bcsj.69.2327)′-bisilole. *Bull. Chem.* 1067 *Soc. Jpn.* 1996, *69*, 2327−2334. (c) Yamaguchi, S.; Tamao, K. [Silole-](https://doi.org/10.1039/a804491k) 1068 containing *σ*- and *π*-conjugated [compounds.](https://doi.org/10.1039/a804491k) *J. Chem. Soc., Dalton* 1069 *Trans.* 1998, 3693−3702. (d) Hissler, M.; Dyer, P. W.; Réau, R. 1070 Linear organic *π*[-conjugated](https://doi.org/10.1016/s0010-8545(03)00098-5) systems featuring the heavy Group 14 1071 and 15 [elements.](https://doi.org/10.1016/s0010-8545(03)00098-5) *Coord. Chem. Rev.* 2003, *244*, 1−44. (e) Zhan, X.; 1072 Barlow, S.; Marder, S. R. [Substituent](https://doi.org/10.1039/b822760h) effects on the electronic 1073 [structure](https://doi.org/10.1039/b822760h) of siloles. *Chem. Commun.* 2009, *15*, 1948−1955. 1074

(10) (a) Corey, J. Y. Siloles Part 1: Synthesis, [Characterization,](https://doi.org/10.1016/B978-0-12-378649-4.00001-0) and 1075 [Applications.](https://doi.org/10.1016/B978-0-12-378649-4.00001-0) *Adv. Organomet. Chem.* 2011, *59*, 1−180. (b) Santra, S. 1076 Synthesis and [Application](https://doi.org/10.1002/slct.202001673) of Siloles: From the Past to Present. 1077 ChemistrySelect 2020, 5, 9034–9058. 1078

(11) (a) Furukawa, S.; Kobayashi, J.; Kawashima, T. [Development](https://doi.org/10.1021/ja906566r?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of 1079 a Sila-Friedel−Crafts Reaction and Its [Application](https://doi.org/10.1021/ja906566r?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) to the Synthesis of 1080 [Dibenzosilole](https://doi.org/10.1021/ja906566r?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Derivatives. *J. Am. Chem. Soc.* 2009, *131*, 14192− 1081 14193. (b) Furukawa, S.; Kobayashi, J.; Kawashima, T. [Application](https://doi.org/10.1039/c0dt00136h) of 1082 the [sila-Friedel](https://doi.org/10.1039/c0dt00136h)−Crafts reaction to the synthesis of *π*-extended silole 1083 derivatives and their [properties.](https://doi.org/10.1039/c0dt00136h) *Dalton Trans.* 2010, *39*, 9329−9336. 1084 (c) Dong, Y.; Takata, Y.; Yoshigoe, Y.; Sekine, K.; Kuninobu, Y. [Lewis](https://doi.org/10.1039/c9cc07692a) [acid-catalyzed](https://doi.org/10.1039/c9cc07692a) synthesis of silafluorene derivatives from biphenyls and [dihydrosilanes](https://doi.org/10.1039/c9cc07692a) via a double sila-Friedel−Crafts reaction. *Chem. Commun.* 2019, *55*, 13303−13306.

 (12) (a) Liang, Y.; Zhang, S.; Xi, Z. [Palladium-Catalyzed](https://doi.org/10.1021/ja2024959?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Synthesis of [Benzosilolo\[2,3-b\]indoles](https://doi.org/10.1021/ja2024959?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) via Cleavage of a C(sp3)−Si Bond and Consequent [Intramolecular](https://doi.org/10.1021/ja2024959?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) C(sp2)−Si Coupling. *J. Am. Chem. Soc.* 2011, *133*, 9204−9207. (b) Kuninobu, Y.; Yamauchi, K.; Tamura, N.; Seiki, T.; Takai, K. [Rhodium-catalyzed](https://doi.org/10.1002/anie.201207723) asymmetric synthesis of [spirosilabifluorene](https://doi.org/10.1002/anie.201207723) derivatives. *Angew. Chem., Int. Ed.* 2013, *52*, 1520− 1522. (c) Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K. Rhodium-Catalyzed Synthesis of [Benzosilolometallocenes](https://doi.org/10.1021/acs.orglett.5b01373?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) via the [Dehydrogenative](https://doi.org/10.1021/acs.orglett.5b01373?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Silylation of C(sp2)−H Bonds. *Org. Lett.* 2015, *17*, 3102−3105. (d) Shibata, T.; Shizuno, T.; Sasaki, T. [Enantioselective](https://doi.org/10.1039/c5cc00723b) synthesis of planar-chiral [benzosiloloferrocenes](https://doi.org/10.1039/c5cc00723b) by Rh-catalyzed [intramolecular](https://doi.org/10.1039/c5cc00723b) C−H silylation. *Chem. Commun.* 2015, *51*, 7802− 7804. (e) Zhang, Q. W.; An, K.; Liu, L. C.; Yue, Y.; He, W. [Rhodium-](https://doi.org/10.1002/anie.201502548) catalyzed [enantioselective](https://doi.org/10.1002/anie.201502548) intramolecular C-H silylation for the syntheses of [planar-chiral](https://doi.org/10.1002/anie.201502548) metallocene siloles. *Angew. Chem., Int. Ed.* 2015, *54*, 6918−6921. (f) Zhang, Q. W.; An, K.; Liu, L. C.; Zhang, Q.; Guo, H.; He, W. Construction of Chiral [Tetraorganosilicons](https://doi.org/10.1002/anie.201609022) by Tandem Desymmetrization of [Silacyclobutanes/Intermolecular](https://doi.org/10.1002/anie.201609022) De- [hydrogenative](https://doi.org/10.1002/anie.201609022) Silylation. *Angew. Chem., Int. Ed.* 2017, *56*, 1125−1129. (g) Zhang, L.; An, K.; Wang, Y.; Wu, Y.-D.; Zhang, X.; Yu, Z.-X.; He, W. A Combined [Computational](https://doi.org/10.1021/jacs.0c13335?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) and Experimental Study of Rh- Catalyzed C−H Silylation with [Silacyclobutanes:](https://doi.org/10.1021/jacs.0c13335?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Insights Leading to a More [Efficient](https://doi.org/10.1021/jacs.0c13335?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Catalyst System. *J. Am. Chem. Soc.* 2021, *143*, 3571− 3582. (h) Shintani, R.; Kurata, H.; Nozaki, K. [Rhodium-catalyzed](https://doi.org/10.1039/c5cc04172d) intramolecular [alkynylsilylation](https://doi.org/10.1039/c5cc04172d) of alkynes. *Chem. Commun.* 2015, *51*, 11378−11381. (i) Chen, S.; Mu, D.; Mai, P.-L.; Ke, J.; Li, Y.; He, C. Enantioselective construction of six- and [seven-membered](https://doi.org/10.1038/s41467-021-21489-6) triorgano- substituted [silicon-stereogenic](https://doi.org/10.1038/s41467-021-21489-6) heterocycles. *Nat. Commun.* 2021, *12*, 1117 1249.

 (13) (a) Matsuda, T.; Kadowaki, S.; Yamaguchi, Y.; Murakami, M. Gold-catalysed intramolecular [trans-allylsilylation](https://doi.org/10.1039/b804721a) of alkynes forming [3-allyl-1-silaindenes.](https://doi.org/10.1039/b804721a) *Chem. Commun.* 2008, *24*, 2744. (b) Shimizu, M.; Mochida, K.; Hiyama, T. Modular approach to [silicon-bridged](https://doi.org/10.1002/anie.200804146) biaryls: [palladium-catalyzed](https://doi.org/10.1002/anie.200804146) intramolecular coupling of 2-(arylsilyl)- aryl [triflates.](https://doi.org/10.1002/anie.200804146) *Angew. Chem., Int. Ed.* 2008, *47*, 9760−9764. (c) Mochida, K.; Shimizu, M.; Hiyama, T. [Palladium-Catalyzed](https://doi.org/10.1021/ja901622b?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Intramolecular Coupling of [2-\[\(2-Pyrrolyl\)silyl\]aryl](https://doi.org/10.1021/ja901622b?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Triflates through [1,2-Silicon](https://doi.org/10.1021/ja901622b?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Migration. *J. Am. Chem. Soc.* 2009, *131*, 8350−8351. (d) Shintani, R.; Otomo, H.; Ota, K.; Hayashi, T. [Palladium-](https://doi.org/10.1021/ja302278s?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Catalyzed Asymmetric Synthesis of [Silicon-Stereogenic](https://doi.org/10.1021/ja302278s?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Dibenzosiloles via Enantioselective C−H Bond [Functionalization.](https://doi.org/10.1021/ja302278s?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am. Chem. Soc.* 2012, *134*, 7305−7308.

 (14) (a) Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M. Synthesis of Silafluorenes by [Iridium-Catalyzed](https://doi.org/10.1002/chin.200720164) [2 + 2 + 2] Cycloaddition of [Silicon-Bridged](https://doi.org/10.1002/chin.200720164) Diynes with Alkynes. *Org. Lett.* 2007, *9*, 133. (b) Ohmura, T.; Masuda, K.; Suginome, M. [Silylboranes](https://doi.org/10.1021/ja073896h?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Bearing [Dialkylamino](https://doi.org/10.1021/ja073896h?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Groups on Silicon as Silylene Equivalents: [Palladium-Catalyzed](https://doi.org/10.1021/ja073896h?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Regioselective Synthesis of 2,4-Disubstituted [Siloles.](https://doi.org/10.1021/ja073896h?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am. Chem. Soc.* 2008, *130*, 1526−1527. (c) Ohmura, T.; Masuda, K.; Takase, I.; Suginome, M. [Palladium-Catalyzed](https://doi.org/10.1021/ja907170p?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Silylene- 1,3-Diene [4 + 1] Cycloaddition with Use of [\(Aminosilyl\)boronic](https://doi.org/10.1021/ja907170p?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Esters as Synthetic [Equivalents](https://doi.org/10.1021/ja907170p?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of Silylene. *J. Am. Chem. Soc.* 2009, *131*, 16624−16625. (d) Yabusaki, Y.; Ohshima, N.; Kondo, H.; Kusamoto, T.; Yamanoi, Y.; Nishihara, H. Versatile [synthesis](https://doi.org/10.1002/chem.200903408) of blue luminescent siloles and germoles and [hydrogen-bond-assisted](https://doi.org/10.1002/chem.200903408) color [alteration.](https://doi.org/10.1002/chem.200903408) *Chem.*�*Eur. J.* 2010, *16*, 5581−5585. (e) Tobisu, M.; Onoe, M.; Kita, Y.; Chatani, N. [Rhodium-Catalyzed](https://doi.org/10.1021/ja9022978?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Coupling of 2- [Silylphenylboronic](https://doi.org/10.1021/ja9022978?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Acids with Alkynes Leading to Benzosiloles: Catalytic Cleavage of the Carbon−Silicon Bond in [Trialkylsilyl](https://doi.org/10.1021/ja9022978?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) [Groups.](https://doi.org/10.1021/ja9022978?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am. Chem. Soc.* 2009, *131*, 7506−7507. (f) Onoe, M.; Baba, K.; Kim, Y.; Kita, Y.; Tobisu, M.; Chatani, N. [Rhodium-](https://doi.org/10.1021/ja3096174?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Catalyzed Carbon−Silicon Bond [Activation](https://doi.org/10.1021/ja3096174?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) for Synthesis of Benzosilole [Derivatives.](https://doi.org/10.1021/ja3096174?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am. Chem. Soc.* 2012, *134*, 19477−19488. (g) Liang, Y.; Geng, W.; Wei, J.; Xi, Z. [Palladium-Catalyzed](https://doi.org/10.1002/anie.201108154) [Intermolecular](https://doi.org/10.1002/anie.201108154) Coupling of 2-Silylaryl Bromides with Alkynes:

Synthesis of Benzosiloles and [Heteroarene-Fused](https://doi.org/10.1002/anie.201108154) Siloles by Catalytic 1154 Cleavage of the [C\(sp3\)-Si](https://doi.org/10.1002/anie.201108154) Bond. *Angew. Chem., Int. Ed.* 2012, *51*, 1155 1934−1937. 1156

(15) (a) Seyferth, D.; Duncan, D. P.; Vick, S. C. [Novel](https://doi.org/10.1016/s0022-328x(00)93712-4) two atom 1157 insertions into the silacyclopropane and [silacyclopropene](https://doi.org/10.1016/s0022-328x(00)93712-4) rings. *J.* 1158 *Organomet. Chem.* 1977, *125*, C5−C10. (b) Seyferth, D.; Vick, S. C.; 1159 Shannon, M. L.; Lim, T. F. O.; Duncan, D. P. Two atom [insertions](https://doi.org/10.1016/s0022-328x(00)80868-2) 1160 into the silacyclopropane and [silacyclopropene](https://doi.org/10.1016/s0022-328x(00)80868-2) rings: mechanistic 1161 [considerations.](https://doi.org/10.1016/s0022-328x(00)80868-2) *J. Organomet. Chem.* 1977, *135*, C37−C44. 1162 (c) Boudjouk, P.; Samaraweera, U.; Sooriyakumaran, R.; Chrusciel, 1163 J.; Anderson, K. R. Convenient Routes to [Di-tert-butylsilanediyl:](https://doi.org/10.1002/anie.198813551) 1164 Chemical, Thermal and [Photochemical](https://doi.org/10.1002/anie.198813551) Generation. *Angew. Chem., Int.* 1165 *Ed.* 1988, *27*, 1355−1356. (d) Belzner, J.; Ihmels, H. A [novel](https://doi.org/10.1016/0040-4039(93)88099-5) route to 1166 stable [silacyclopropenes](https://doi.org/10.1016/0040-4039(93)88099-5) - First synthesis of silacyclopropenes bearing 1167 vinylic [hydrogen.](https://doi.org/10.1016/0040-4039(93)88099-5) *Tetrahedron Lett.* 1993, *34*, 6541−6544. 1168

(16) (a) Palmer, W. S.; Woerpel, K. A. [Synthesis](https://doi.org/10.1021/om9704861?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of Silirenes by 1169 [Palladium-Catalyzed](https://doi.org/10.1021/om9704861?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Transfer of Silylene from Siliranes to Alkynes. 1170 *Organometallics* 1997, *16*, 4824−4827. (b) Palmer, W. S.; Woerpel, K. 1171 A. Palladium-Catalyzed Reactions of [Di-tert-butylsiliranes](https://doi.org/10.1021/om000870p?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) with 1172 [Electron-Deficient](https://doi.org/10.1021/om000870p?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Alkynes and Investigations of the Catalytic 1173 [Cycle.](https://doi.org/10.1021/om000870p?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Organometallics* 2001, *20*, 3691−3697. (c) Buchner, K. M.; 1174 Woerpel, K. A. Palladium- and [Nickel-Catalyzed](https://doi.org/10.1021/om901042j?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Carbon−Carbon 1175 Bond Insertion Reactions with [Alkylidenesilacyclopropanes.](https://doi.org/10.1021/om901042j?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Organo-* 1176 *metallics* 2010, 29, 1661−1669. 1177

(17) Devillard, M.; Nour Eddine, N.; Cordier, M.; Alcaraz, G. 1178 [Dithienylethene-Based](https://doi.org/10.1002/anie.202102540) Photochromic Siloles: A Straightforward and 1179 [Divergent](https://doi.org/10.1002/anie.202102540) Synthetic Strategy. *Angew. Chem., Int. Ed.* 2021, *60*, 1180 12356−12359.

(18) Seyferth, D.; Shannon, M. L.; Vick, S. C.; Lim, T. F. O. 1182 Silacyclopropenes. 3. [Palladium-catalyzed](https://doi.org/10.1021/om00120a011?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) insertion reactions. *Organo-* 1183 *metallics* 1985, *4*, 57–62. 1184

(19) Ishikawa, M.; Naka, A.; Ohshita, J. The [Chemistry](https://doi.org/10.1002/ajoc.201500271) of 1185 [Silacyclopropenes.](https://doi.org/10.1002/ajoc.201500271) *Asian J. Org. Chem.* 2015, *4*, 1192−1209. 1186

(20) Herz, F. A. D.; Nobis, M.; Wendel, D.; Pahl, P.; Altmann, P. J.; 1187 Tillmann, J.; Weidner, R.; Inoue, S.; Rieger, B. [Application](https://doi.org/10.1039/d0gc00272k) of 1188 [multifunctional](https://doi.org/10.1039/d0gc00272k) silylenes and siliranes as universal crosslinkers for 1189 [metal-free](https://doi.org/10.1039/d0gc00272k) curing of silicones. *Green Chem.* 2020, *22*, 4489−4497. 1190

(21) (a) Ishikawa, M.; Fuchikami, T.; Kumada, M. [\[PdCl2\(PEt3\)2\]-](https://doi.org/10.1039/c3977000352a) 1191 Catalysed formation of [1,4-disilacyclohexa-2,5-diene](https://doi.org/10.1039/c3977000352a) from 1-silacyclo- 1192 [propene.](https://doi.org/10.1039/c3977000352a) *J. Chem. Soc., Chem. Commun.* 1977, *10*, 352a. (b) Ishikawa, 1193 M.; Sugisawa, H.; Kumada, M.; Higuchi, T.; Matsui, K.; Hirotsu, K. 1194 Palladium-catalyzed formation of [1,4-disila-2,5-cyclohexadienes](https://doi.org/10.1021/om00071a013?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) from 1195 [1-silacyclopropenes.](https://doi.org/10.1021/om00071a013?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Organometallics* 1982, *1*, 1473−1477. 1196

(22) The monitoring of the reaction includes the previously 1197 described ethynylbenzene $[R = H (compound 5)]$. In the case of 1198 the amino substituents $[R = NH_2 (4e)$ and $NMe_2 (4f)]$, the results 1199 were not included due to the instantaneous coordination of the 1200 substrate to $Pd(0)$ hampering a meaningful comparison with the 1201 other −R groups. 1202

(23) (a) Ikenaga, K.; Hiramatsu, K.; Nasaka, N.; Matsumoto, S. 1203 [\(Trialkylstannyl\)dimethylsilane](https://doi.org/10.1021/jo00071a009?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) as a new precursor of dimethylsily- 1204 lene: a novel synthesis of 3,4-disubstituted [1-silacyclopenta-2,4-dienes.](https://doi.org/10.1021/jo00071a009?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 1205 *J. Org. Chem.* 1993, *58*, 5045−5047. (b) Li, L.; Zhang, Y.; Gao, L.; 1206 Song, Z. Recent advances in C−Si bond [activation](https://doi.org/10.1016/j.tetlet.2015.01.184) via a direct 1207 [transition](https://doi.org/10.1016/j.tetlet.2015.01.184) metal insertion. *Tetrahedron Lett.* 2015, *56*, 1466−1473. 1208 (c) Tahara, A.; Nagino, S.; Sunada, Y.; Haige, R.; Nagashima, H. 1209 Syntheses of Substituted [1,4-Disila-2,5-cyclohexadienes](https://doi.org/10.1021/acs.organomet.8b00302?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) from Cyclic 1210 [Hexasilane](https://doi.org/10.1021/acs.organomet.8b00302?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Si6Me12 and Alkynes via Successive Si−Si Bond 1211 Activation by [Pd/Isocyanide](https://doi.org/10.1021/acs.organomet.8b00302?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Catalysts. *Organometallics* 2018, *37*, 1212 2531−2543. 1213

(24) (a) Ishikawa, M.; Sugisawa, H.; Harata, O.; Kumada, M. 1214 Nickel-catalyzed reaction of [silacyclopropenes](https://doi.org/10.1016/s0022-328x(00)86021-0) with acetylenes. in 1215 convenient route to [1-silacyclopenta-2,4-dienes.](https://doi.org/10.1016/s0022-328x(00)86021-0) *J. Organomet. Chem.* 1216 1981, *217*, 43−50. (b) Ishikawa, M.; Ohshita, J.; Ito, Y.; Iyoda, J. 1217 [Silicon-carbon](https://doi.org/10.1021/ja00283a052?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) unsaturated compounds. 22. The formation and 1218 reactions of a [nickelasilacyclobutene.](https://doi.org/10.1021/ja00283a052?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am. Chem. Soc.* 1986, *108*, 1219 7417−7419. (c) Ohshita, J.; Isomura, Y.; Ishikawa, M. [Silicon-carbon](https://doi.org/10.1021/om00110a036?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 1220 unsaturated compounds. 24. Some reactions of a [nickelasilacyclobu-](https://doi.org/10.1021/om00110a036?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) 1221 [tene.](https://doi.org/10.1021/om00110a036?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Organometallics* 1989, *8*, 2050−2054. (d) Ohshita, J.; Hasebe, 1222 H.; Masaoka, Y.; Ishikawa, M. [Silicon-Carbon](https://doi.org/10.1021/om00016a006?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Unsaturated Com- pounds. 49. Nickel-Catalyzed Reactions of [2-Adamantyl-2-\(trimethyl-](https://doi.org/10.1021/om00016a006?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) [siloxy\)-1,1-bis\(trimethylsilyl\)silene.](https://doi.org/10.1021/om00016a006?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Organometallics* 1994, *13*, 1064− 1066.

 (25) (a) Tanabe, M.; Osakada, K. [Structure](https://doi.org/10.1021/ja017888r?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of 4-Sila-3- [platinacyclobutene](https://doi.org/10.1021/ja017888r?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) and Its Formation via Pt-Promoted *γ*-Si−H Bond Activation of [3-Sila-1-propenylplatinum](https://doi.org/10.1021/ja017888r?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Precursor. *J. Am. Chem. Soc.* 2002, *124*, 4550−4551. (b) Tanabe, M.; Osakada, K. Insertion of Alkynes into the Pt−Si Bond of [Silylplatinum](https://doi.org/10.1002/chem.200305344) Complexes Leading to the Formation of [4-Sila-3-platinacyclobutenes](https://doi.org/10.1002/chem.200305344) and 5-Sila- [2-platina-1,4-cyclohexadienes.](https://doi.org/10.1002/chem.200305344) *Chem.*�*Eur. J.* 2004, *10*, 416−424. (c) Lee, V. Y.; Aoki, S.; Yokoyama, T.; Horiguchi, S.; Sekiguchi, A.; Gornitzka, H.; Guo, J.-D.; Nagase, S. [Toward](https://doi.org/10.1021/ja401072j?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) a Silicon Version of Metathesis: From [Schrock-Type](https://doi.org/10.1021/ja401072j?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Titanium Silylidenes to Silatitanacy- [clobutenes.](https://doi.org/10.1021/ja401072j?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *J. Am. Chem. Soc.* 2013, *135*, 2987−2990. (d) Hadlington, T. J.; Kostenko, A.; Driess, M. [Cycloaddition](https://doi.org/10.1002/chem.202000009) Chemistry of a Silylene- Nickel Complex toward Organic pi-Systems: From [Reversibility](https://doi.org/10.1002/chem.202000009) to C-H [Activation.](https://doi.org/10.1002/chem.202000009) *Chem. - Eur. J.* 2020, *26*, 1958−1962.

 (26) The process is equilibrated and the oxidative addition proceeds with release of one equivalent of phosphine that can in turn bind 1243 remaining $[(PR_3)_2Pd]$ starting material in the medium. $[(PR_3)_2Pd]$ complex is actually in equilibrium regarding to ligand redistribution 1245 and $[Pd(PR₃)_n]$ species as well as free phoshine can be observed.

1246 (27) In the case of E^R , the considerably upfield shifted signal in the ²⁹Si NMR results from the strong contribution of the terminal titanium silylene-alkyne *π*-complex to the overall structure (see ref 25c).

 (28) Pan, Y.; Young, G. B. Syntheses and [spectroscopic](https://doi.org/10.1016/s0022-328x(98)01071-7) character- istics of [dialkylpalladium\(II\)](https://doi.org/10.1016/s0022-328x(98)01071-7) complexes; PdR2(cod) as precursors for [derivatives](https://doi.org/10.1016/s0022-328x(98)01071-7) with N- or P-donor ligands. *J. Organomet. Chem.* 1999, *577*, 257−264.

 (29) (a) McAtee, J. R.; Martin, S. E.; Ahneman, D. T.; Johnson, K. A.; Watson, D. A. [Preparation](https://doi.org/10.1002/anie.201200060) of allyl and vinyl silanes by the [palladium-catalyzed](https://doi.org/10.1002/anie.201200060) silylation of terminal olefins: a silyl-Heck [reaction.](https://doi.org/10.1002/anie.201200060) *Angew. Chem., Int. Ed.* 2012, *51*, 3663−3667. (b) Rojas, A. J.; Pentelute, B. L.; Buchwald, S. L. [Water-Soluble](https://doi.org/10.1021/acs.orglett.7b01911?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Palladium Reagents for Cysteine S-Arylation under ASmbient Aqueous [Conditions.](https://doi.org/10.1021/acs.orglett.7b01911?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Org. Lett.* 2017, *19*, 4263−4266.

 (30) (a) Irie, M. [Diarylethenes](https://doi.org/10.1021/cr980069d?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) for Memories and Switches. *Chem. Rev.* 2000, *100*, 1685−1716. (b) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. [Photochromism](https://doi.org/10.1021/cr500249p?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of Diarylethene Molecules and Crystals: [Memories,](https://doi.org/10.1021/cr500249p?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Switches, and Actuators. *Chem. Rev.* 2014, *114*, 12174−12277.

 (31) The existence of the equilibrium was ascertained, in the case of 1267 **6-PPh**₃, by the presence of cross-peaks in the ¹H⁻¹H and ³¹P⁻³¹P NOESY NMR spectra that are indicative of an exchange process.

1269 (32) Bratovanov, S.; Koźmiński, W.; Fässler, J.; Molnar, Z.; Nanz, D.; Bienz, S. Synthesis and Characterization of [1,2-Disubstituted](https://doi.org/10.1021/om9701579?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) Vinylsilanes and Their Geometric [Differentiation](https://doi.org/10.1021/om9701579?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) with 3J(29Si,1H)- Coupling Constants. Application of a Novel [Heteronuclear](https://doi.org/10.1021/om9701579?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) J-Resolved NMR [Experiment.](https://doi.org/10.1021/om9701579?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Organometallics* 1997, *16*, 3128−3134.

 (33) Compound 5 appears as a 0.68:1 rotameric mixture illustrating 1275 the prefered positionning of the thienyl groups within the molecule.³ This well-known feature in DTE-based photochromic molecules was confirmed by low temperature analysis of a pure sample of 5.

 (34) Schager, F.; Bonrath, W.; Pörschke, K.-R.; Kessler, M.; Krüger, C.; Seevogel, K. [\(R2PC2H4PR2\)Pd0](https://doi.org/10.1021/om9702035?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as)−1-Alkyne Complexes. *Organo-metallics* 1997, *16*, 4276−4286.

 (35) (a) Amatore, C.; Pfluger, F. [Mechanism](https://doi.org/10.1021/om00158a026?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of oxidative addition of [palladium\(0\)](https://doi.org/10.1021/om00158a026?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) with aromatic iodides in toluene, monitored at [ultramicroelectrodes.](https://doi.org/10.1021/om00158a026?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Organometallics* 1990, *9*, 2276−2282. (b) Ama- tore, C.; Jutand, A.; Khalil, F.; M'Barki, M. A.; Mottier, L. [Rates](https://doi.org/10.1021/om00032a045?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) and [mechanisms](https://doi.org/10.1021/om00032a045?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) of oxidative addition to zerovalent palladium complexes generated in situ from mixtures of Pd0(dba)2 and [triphenylphos-](https://doi.org/10.1021/om00032a045?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as)[phine.](https://doi.org/10.1021/om00032a045?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) *Organometallics* 1993, *12*, 3168−3178.

 (36) Although the HOMO orbital is mainly made of a Pd d or-bital, it also partially describes the C1−C2 bond, with the overlapping of two sp hybridized orbitals, as well as the Si−C1 and Si−Pd bonds, via the overlapping of a Si p or-bital with both the C1 sp hybrid on one

side and the Pd d orbital on the other side. The HOMO-4 accounts 1292 for the Si−C1 and Pd−C2 bonds, involving a first overlapping 1293 between a sp hybrid on C1 and a p orbital on Si and a sec-ond 1294 overlapping between a sp hybridized orbital on C2 and a d orbital on 1295 the Pd metal. The HOMO-7 orbital mainly describes the C1−C2 1296 bond, through the interaction between sp orbitals, whereas the 1297 HOMO-10 mainly de-scribed the Si−Pd bond, via the interaction 1298 between a p orbital on the Si center and a d orbital on Pd. The 1299 HOMO-18 orbital, finally, displays the overlapping of a C2 sp 1300 hybridized orbital with both a Pd d orbital on one side and a C1 sp 1301 hybridized orbital on the other side, together with an additional slight 1302 bonding interaction between the same C1 sp hybridized orbital and a 1303 Si p orbital. 1304

(37) For sake of clarity, the LUMO is also depicted in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S3- 1305 DFT. It consists of an antibonding interaction between the Si and Pd 1306 atoms together with a bonding interaction between Pd and 1307 phosphorus. 1308

(38) To get more insight into the coordination of the alkyne to C 1309 $(6-PPh₃)$, we computed the molecular orbitals of complex D. As 1310 shown in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.3c00045/suppl_file/ic3c00045_si_001.pdf) S5-DFT, the orbital accounting for the bonding with 1311 phenylacetylene is the homo-7 one, resulting from the overlapping 1312 between the homo orbital of C and the lumo orbital of phenyl- 1313 acetylene. Only the Pd metal interacts with phenylacetylene, a Pd d 1314 orbital overlapping the *π** orbital of the alkyne C−C bond. 1315

(39) (a) Zhao, Y.; Truhlar, D. G. Density [Functionals](https://doi.org/10.1021/ar700111a?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) with Broad 1316 [Applicability](https://doi.org/10.1021/ar700111a?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as) in Chemistry. *Acc. Chem. Res.* 2008, *41*, 157−167. 1317 (b) Schultz, N. E.; Zhao, Y.; Truhlar, D. G. [Benchmarking](https://doi.org/10.1002/jcc.20717) 1318 [approximate](https://doi.org/10.1002/jcc.20717) density functional theory for s/d excitation energies in 1319 3d [transition](https://doi.org/10.1002/jcc.20717) metal cations. *J. Comput. Chem.* 2008, *29*, 185−189. 1320