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Doppler robustness of joint communication and radar
systems using the Wiener filter

Jean-Yves Baudais, Stéphane Méric, Bochra Benmeziane and Kevin Cinglant

Abstract—The orthogonal frequency-division multi-
plexing (OFDM) is a promising waveform for joint
radar and communication systems. In this article, a
unified approach is proposed to analyse both radar
and communication robustness with respect to Doppler
mismatch. The analytical study leads to an expression
that links the radar performance to the communication
one. The performance of a delay-Doppler radar is
quantified by modelling the delay response of the OFDM
radar with an appropriate random variable. Different
delay filters are analysed, among which the Wiener
filter. The analytical results are validated by simulations,
they show that the radar system benefits from the
Wiener filter, and the configurations where this filter
outperforms the other ones are outlined.

Index Terms—Joint radar communication, OFDM,
delay-Doppler radar, Wiener filter, SINR, PSLR.

I. Introduction
The orthogonal frequency-division multiplexing (OFDM)

is one of the waveforms used to allow joint radar and com-
munication (JRC) applications, especially in automotive
contexts [1]–[4]. To ensure both radar and communica-
tion capabilities, two dual-function radar communication
(DFRC) strategies are commonly proposed: a modulated
radar signal to transmit information bits, or a radar signal
processing based on wireless communication waveforms.
Both strategies lead to many designs, optimisations and
solutions, depending on many parameters [3], [5]. This
article investigates the latter strategy based on the OFDM
signal.

Both communication and radar systems suffer various
causes of degradation, among which the Doppler is the
one we are interested in. In communication systems, the
Doppler shift degrades the signal-to-interference plus noise
ratio (SINR), a key parameter that characterises the quality
of the transmission. The receiver estimates and compen-
sates the common frequency offset (CFO) due to this
Doppler, reducing the residual CFO, or the corresponding
residual Doppler shift, as low as possible [6]. In radar
systems, the Doppler shift can be an estimated parameter.
This is the case with delay-Doppler radar, considered in
this article. The performance of this radar is based on the
OFDM signal parameters [7], and on its ambiguity function
[8]. However, large Doppler values lead to a mismatch loss
that degrades the property of the ambiguity function, or
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of the delay-Doppler response, and reduces the detection
capabilities [9]. The radar performance impacted by the
Doppler shift has already been evaluated in the case of
the studied OFDM signal [10], [11]. All these results are
based on simulations and no link is drawn between the two
parts of the JRC system, according to our knowledge. We
then propose a unified analytical study that evaluates the
Doppler mismatch loss in both radar and communication
systems in JRC context.

The JRC performance is not only affected by the Doppler
mismatch, but also affected by the filter used at the receiver
side. The conventional radar filter is the matched filter (MF)
that minimises the signal-to-noise ratio (SNR) of the main
lobe of the delay-Doppler response. The zero-forcing filter
(ZF) is also introduced as a mismatched filter to recover
the orthogonality or to improve the side-lobe structure [9].
In the JRC context, it is also used to recover the channel
impulse response, regardless of the transmitted data [1]. We
propose to apply another filter: the Wiener filter (WF), also
called the linear minimum mean square error filter, widely
used in communication systems. This filter is also used in
radar systems to improve the delay resolution [12], or to
reduce the interference [13]. However, the robustness of this
filter has never been analysed in the JRC context, up to our
knowledge. We show in this article how the Doppler shift
affects the performance of the WF, and how it outperforms
the two other filters, combining the advantages of these two
filters. By modelling the OFDM delay-Doppler response
as a random variable (r.v.), the analytical study leads to a
simple performance formula, validated by simulations in a
wide range of configurations. The Doppler mismatch loss is
quantified and we show how it depends on the filter used,
and on the OFDM signal parameters. The study conducted
for both radar and communication systems exhibits the
dependence of the performance between both systems.

Contributions: The key contributions of this paper are
the analysis of the Doppler mismatch and the use of the
WF in JRC context:

• The OFDM JRC system is considered with the Doppler
shift of a moving environment or a moving JRC system.
To the best of our knowledge, the unified analytical
derivation of the Doppler mismatch proposed in this
article has never been conducted for both radar and
communication systems;

• The WF is considered as a potential replacement of
the MF or ZF for range estimation, or short time
processing. This filter has widely been studied for
spread-spectrum OFDM communication systems as
channel equaliser with one coefficient per subcarrier.
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The analytical expression of its performance is derived
in this article;

• The obtained analytical expressions characterise both
radar and communication systems, they are simple
and accurate to be used to design the JRC systems.

The rest of this article is organised as follows. Section II
introduces both communication and radar OFDM systems.
The three filters studied are presented in Section III. The
main results are developed in Section IV where the Doppler
effect on the delay response is modelled. These results are
applied in Section V to the peak-side-lobe ratio (PSLR)
and integrated-side-lobe ratio (ISLR) of radar systems,
to SINR metric used in communication systems, and in
Section VI to sparse OFDM signals. Section VII gives
some examples to illustrate and quantify the analytical
study. The consequences on JRC system design are drawn
in Section VIII. The conclusion closes the article, in
Section IX.

II. Joint radar and communication system

We consider a JRC system with the DFRC, where only
one waveform is used. Both radar and communication
systems are combined on a unique platform, with the same
radio frequency and base-band hardware [2]. The signal,
transmitted for communication purpose, is reflected back
to the transmitter by the target and processed for radar
applications. Before developing the signal expressions, we
give some inputs on the considered JRC context.

A. Scenario

The typical scenario is done with two JRC platforms.
Both can

• transmit OFDM signals,
• receive and process OFDM signals for the communi-

cation purpose,
• receive and process OFDM signals for the radar

application.
The signal transmitted by the first JRC platform is received
by the second one, for communication applications between
the two platforms. This signal is also reflected back by
the environment to the first JRC platform and processed
for radar applications. The tasks of the two platforms
can be exchanged and the first platform can received the
signal transmitted by the second one. With multiple JRC
platforms in a given electromagnetic area, centralised or
mobile ad-hoc networks can be used to share the space-time-
frequency resource among the platforms, and to synchronise
the network [14]. To simplify the analysis in our study, we
consider a space-time-frequency elementary resource used
by only one JRC platform at a time to transmit the signal.
This ensures an orthogonal transmission-reception and an
interference free signal processing. The radar system is a
mono-static one and, unlike [15], the same system is used
for uplink and downlink radar applications.

B. Communication system
The OFDM communication system is first considered.

The signal is transmitted by one JRC platform and received
by the other one. Let n be the number of sub-carriers, which
transmit n complex symbols ak,i ∈ C\{0} during the time
t ∈ [0, T ), where T is the time period of the OFDM symbols.
The OFDM base-band symbol k = 0 with a rectangular
pulse shaping is [6, § 1.2.1]

x̃0(t) = 1√
n

n−1∑
i=0

a0,ie
2ıπfit, (1)

where fi are the sub-carriers. The orthogonality is ensured
with fi = i

T . The bandwidth at −3 dB used to transmit
the OFDM signal is n

T . A guard time, that is a cyclic
prefix, of duration τg is added to maintain the periodicity
for the signal processing at the receiver side, and to
absorb the channel multi-path, or to combine multiple
transmitted signals from different positions, as in the single
frequency network of digital video broadcasting-terrestrial.
The symbol k = 0 then writes

x0(t) = x̃0(t − τg) = 1√
n

n−1∑
i=0

a0,ie
2ıπfi(t−τg) (2)

for t ∈ [0, T + τg), and zero otherwise. The OFDM
transmission consists of multiple symbols and it is, with
t ∈ R and k ∈ Z,

x(t) =
∑

k

xk(t − k(T + τg)) . (3)

The analytical radio-frequency signal transmitted over the
carrier fc is

s(t) = x(t)e2ıπfct . (4)

The following usual assumption is made.

Assumption 1. The signal x(t) is a narrow-band signal,
i.e., max

i
fi ≪ fc, with i ∈ [0, n − 1).

Let the received base-band signal y(t) be sampled with-
out any synchronisation error nor delay, and normalised to
be unit power. In this first derivation, the communication
channel is considered Gaussian. The received signal is not
processed by the JRC platform that has transmitted the
signal, but by another one, the one to which the signal is
intended. The useful part of the k-th OFDM symbol is given
by t ∈ [k(T + τg) + τg, (k + 1)(T + τg)), where the nominal
OFDM sampling frequency is n

T . At t = jT
n +k(T +τg)+τg,

the digital signal is

yk(j) = 1√
n

n−1∑
i=0

ak,ie
2ıπ ij

n + bk(j) , (5)

with bk(j) the sample of the proper complex additive
white Gaussian noise (AWGN). The signal is firstly OFDM
demodulated with the Fourier transform, and the l-th
corresponding sample of the k-th OFDM symbol is

Yk(l) = 1√
n

n−1∑
j=0

yk(j)e−2ıπ jl
n = ak,l + Bk(l) , (6)
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where Bk(l) is also AWGN with the same characteristics
as bk(j).

Assumption 2. The noise is a proper AWGN with zero
mean and power σ2

b .

With synchronisation errors, due to oscillator mismatch-
ing or time varying channel, the Doppler shift appears.
This frequency offset leads to inter-carrier interference that
degrades the SNR, i.e., Yk(l) contains not only the ak,l

symbol but also the other symbols ak,l′ , l′ ̸= l, transmitted
by the other sub-carriers. The resulting SINR is [16], [17]

γSINR ≈
1 − (πν̃T )2

3
1

γSNR
+ (πν̃T )2

3

(7)

with ν̃ the residual Doppler shift after the frequency syn-
chronisation, ν̃T the relative residual Doppler normalised
by the sub-carrier spacing, and γSNR the input SNR. The
SINR approximation (7) needs ν̃T <

√
3

π , but in practice
it is accurate only for ν̃T ≤ 1

3 . We provide in this article a
new exact SINR expression for all Doppler values.

To ensure a low SNR degradation, the accuracy of
the OFDM synchronisation should be better than 2 %
of the carrier spacing [6, § 4.2.2.3]. Let us consider the
IEEE 802.11p standard [18] as an example. The number
of sub-carriers is n = 64 and, considering a 10 MHz
signal bandwidth, the residual Doppler shift after frequency
synchronisation should be less than 3 kHz. When the signal
is also used for radar applications, the question that arises
is what is the acceptable Doppler shift the radar system can
support with low performance degradation. This question
has already been tackled in the literature [11], [19], but
we provide the first analytical derivation and a simple
expression to calculate this degradation. Before answering
this question, the radar system is presented.

C. Radar system
A mono-static delay-Doppler radar system is considered.

The signal is transmitted by one JRC platform and received
by the same one. The resolutions and ambiguities, which
quantify the radar capabilities, are deduced from the charac-
teristics of the OFDM signal [7]. However, these resolutions
and ambiguities are not the purpose of this article. We focus
on the OFDM signal transmitted, received and processed
by the same JRC platform for radar applications. The
OFDM signal, transmitted for communication applications
in Section II-B, is reflected back to the radar by the target
and received with the delay

τ(t) = 2d(t)
c

= τ0 + 2v

c
(t − τg) , (8)

where d(t) is the radar-target distance at time t, τ0 is the
delay at the phase origin1, v is the radial speed of the
target in a coordinate system attached to the radar, and c
is the speed of light.

1For convenience sake, the origin of the phase is stated at t = τg,
as in (2).

The base-band received signal is, with (4),

y(t) = Aeıφ0s(t − τ(t))e−2ıπfct + b(t)
= Aeıφ0x(t − τ(t))e−2ıπfcτ(t) + b(t) . (9)

The path-loss and the target radar cross section (RCS)
are characterised through Aeıφ0 , with magnitude A and
argument φ0. As the target characteristics are not the point
in this article, the analysis is simplified by considering a unit
path-loss, unit and omnidirectional RCS, then Aeıφ0 = 1.
The usual radar signal processing considers τ(t) constant
during one received symbol. It equals τk such as

τk = τ0 + k(T + τg)2v

c
(10)

for the k-th symbol. However, to evaluate the Doppler
effect on the delay-Doppler response, we do not consider
this usual assumption and take into account the waveform
distortion introduced by the Doppler.

Using the IEEE 802.11p example and the practical rule
of 2 % of the sub-carrier spacing introduced above, the
target speed should check

v ≤ 0.02c

2fcT
= 79.5 m/s (11)

at 5.9 GHz to not increase the inter-carrier interference.
However, this upper bound of the speed is not enough with
high-speed targets of 5G usage scenarios [20]. Nevertheless,
we show in this article why this 2 % rule does not apply
to radar systems and when larger Doppler shift can be
supported. The following usual assumption is also made in
our study.

Assumption 3. The radial speed v of the target is such
that v

c ≪ 1.

The radar can process the OFDM signal as a pulse
modulated waveform. The radar signal processing is then
based on the ambiguity function analysis [21], [22]. This
conventional radar approach does not require an OFDM
signal with a cyclic prefix, contrary to an “OFDM ap-
proach”, where the cyclic prefix provides i) an inter-delay-
cell interference free signal in the radar system [23], ii) an
inter-symbol interference free signal in the communication
system [24]. We choose the OFDM approach to benefit
from the cyclic prefix for both systems. The first step of
the OFDM radar is then to demodulate the OFDM signal,
as in the communication system.

The guard interval requirement allows for one tap per
sub-carrier to demodulate the OFDM signal, as is already
the case in OFDM communication systems. Either the
delay τ(t) must be lower than τg, or the energy reflected
by a target with delay larger than τg must be insignificant.
The following assumption is then made.

Assumption 4. The OFDM guard interval is correctly
designed, i.e., τg ≥ τ(t) and the window of the Fourier
transform is correctly positioned, i.e., τ(t) ≥ 0.

The goal of the OFDM demodulation is to pick up the
useful part of the signal, applying the fast Fourier trans-
form, as would the communication system. Let us consider



4

the k-th OFDM symbol sampled at t = jT
n +k(T +τg)+τg,

j = 0, · · · , n − 1. The digital base-band received signal is

yk(j) = 1√
n

n−1∑
i=0

ak,ie
2ıπ i

T ( jT
n (1− 2v

c )−τk)e−2ıπfc(τk+ jT
n

2v
c )

+ bk(j) , (12)

which is given by (5) when τk = v = 0. Using Assumptions 1
and 3, it becomes

yk(j) = eıϕk

√
n

n−1∑
i=0

ak,ie
2ıπ ij

n e−2ıπ
iτk
T e−2ıπ jνT

n + bk(j) , (13)

with ϕk = −2πfcτk, and ν = fc
2v
c is the Doppler shift. Note

that the Doppler ν experienced by the radar system is not
the residual Doppler ν̃ experienced by the communication
system and ν ≥ ν̃. The digital signal yk(j) is OFDM
demodulated using the Fourier transform

Yk(l) = 1√
n

n−1∑
j=0

yk(j)e−2ıπ jl
n (14)

= eıϕk

n−1∑
i=0

ak,ie
−2ıπ

iτk
T Dn(i − l − νT ) + Bk(l) ,

where

Dn(u) = eıπu(1− 1
n ) sin πu

n sin π
n u

(15)

∀u ̸= 0 and Dn(0) = 1. If u ≪ n, then |D(u)| can be
approximated by | sinc πu|, with sinc u = sin u

u , which leads
to the next assumption.

Assumption 5. The sub-carrier number and the Doppler
shift are such that νT ≪ n.

The samples Yk(l), l = 0, · · · , n−1 and k = 0, · · · , m−1,
are the inputs used to get the delay-Doppler response
with Fourier transforms and to detect the targets. These
samples constitute a frame of m OFDM symbols. After
the OFDM demodulation, the next step is to apply the
filter to concentrate the energy of the received signal. In
communication systems, the samples Yk(l) in (14) are the
decision variables used to estimate the transmitted symbol
ak,l with inter-carrier interference due to the Doppler shift;
in radar systems, the samples Yk(l) are combined to detect
the target parameters using a filter.

III. Radar filters
A. Conventional filters

With the matched filter, the digital delay-Doppler re-
sponse is the processing of m OFDM symbols of n samples

χMF(i, j) = 1√
nm

n−1∑
l=0

m−1∑
k=0

Yk(l)ak,le
2ıπ il

n e−2ıπ jk
m , (16)

where ak,l is the complex conjugate of ak,l. With negligible
Doppler degradation, i.e., νT ≪ 1, Dn(u ̸= 0) = 0, and

χMF(i, j) = 1√
nm

n−1∑
l=0

m−1∑
k=0

(
|ak,l|2e−2ıπ

lτk
T e2ıπ il

n × (17)

e−2ıπ jk
m eıϕk + Bk(l)ak,le

2ıπ il
n e−2ıπ jk

m

)
.

With non-negligible Doppler, when Assumption 3 applies
and with an adapted m value, we can show that the
intensity of the delay-Doppler response is maximal for
j = m

(
1 + τg

T

)
νT , where T + τg is the pulse repetition

time. The maximal delay-response is thus obtained for
this j = m

(
1 + τg

T

)
νT Doppler cut, which is the new

assumption used throughout this article.

Assumption 6. The delay-response is analysed with a
convenient Doppler cut, i.e., m

(
1 + τg

T

)
νT .

Therefore, we can focus on the delay axis to address the
degradation of the delay response due to the Doppler shift.
The delay response of the k-th OFDM symbol is reduced
to

χMF(i) = eıϕk

√
n

n−1∑
l=0

|ak,l|2e−2ıπ
lτk
T e2ıπ il

n

+ 1√
n

n−1∑
l=0

Bk(l)ak,le
−ıϕk e2ıπ il

n (18)

Let us assume the target delay τk such that nτk

T =
iτ , then |χMF(iτ )|2 = max

i
|χMF(i)|2 with a proper noise

level. The MF is the filter that maximises the SNR of the
main lobe and this SNR becomes n times the input SNR.
All these SNR values are clearly defined in Section IV.
Note that with the subsequent delay-Doppler processing
in (17), also called short time-long time processing, the
total processing gain is not n but n × m.

In practice, nτk

T is real and can be reduced neither to N
nor Z. Non-integer values lead to spectrum leakage that can
be managed with a correctly chosen window [25]. To not
weigh down the analysis, only integer cases are presented
in this article, which is also called on-grid analysis. The
analysis can be easily generalised in all cases by considering
the window characteristics.

Assumption 7. The analysis is conducted in the case
where nτk

T ∈ N, which is equivalent to the general case with
a well chosen window to overcome the spectral leakage.

Another filter, a mismatched filter [9, § 4.10.3], is
introduced for JRC systems to recover the channel transfer
function, or the channel impulse response, regardless of the
data [1]. With the ZF, the delay profile is

χZF(i) = 1√
n

n−1∑
l=0

Yk(l)
ak,l

e2ıπ il
n (19)

and with a negligible Doppler degradation it writes

χZF(i) = eıϕk

√
n

n−1∑
l=0

e−2ıπ
lτk
T e2ıπ il

n

+ 1√
n

n−1∑
l=0

Bk(l)
ak,l

e2ıπ il
n . (20)

The ZF exhibits the impulse response of the target at the
price of a lower SNR in the main lobe, compared to the MF.
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However, with low noise levels, i.e., σ2
b → 0, the secondary

lobes tend to zero with the ZF, contrary to the MF. Note
that the ZF and the MF give the same delay response if the
amplitudes of the symbols are equal, i.e., |ak,l| = |ak,i| ∀i, l.
This is limited to communication systems with phase-shift
keying and 4-quadrature amplitude modulation (QAM). In
practice, larger orders of constellation are combined with
OFDM to get a high communication bit-rate.

It is possible to combine the advantages of both ZF and
MF filters using the well-known WF, which is another
mismatched filter.

B. Wiener filter
The WF is widely used in multi-user communication

systems. Among other applications, this filter is used for
multi-carrier code division multiple access (MC-CDMA)
systems to benefit from ZF and MF capabilities [6]. The
Wiener radar filter is applied as in MC-CDMA receiver,
i.e., in the frequency domain, to minimise the mean square
error between the transmitted symbol ak,l and the one
received on each sub-carrier [26]. The coefficients of the
WF are then ak,l

|ak,l|2+σ2
b

, ∀k ∈ [0, m) and ∀l ∈ [0, n), while
they are ak,l and 1

ak,l
with MF and ZF, respectively. With

the WF, the delay profile is

χWF(i) = 1√
n

n−1∑
l=0

Yk(l) ak,l

|ak,l|2 + σ2
b

e2ıπ il
n . (21)

With a negligible Doppler degradation, the delay re-
sponse becomes

χWF(i) = eıϕk

√
n

n−1∑
l=0

|ak,l|2

|ak,l|2 + σ2
b

e−2ıπ
lτk
T e2ıπ il

n (22)

+ 1√
n

n−1∑
l=0

Bk(l) ak,l

|ak,l|2 + σ2
b

e2ıπ il
n .

A first comparison of the three filters can be done, based
on (18), (20) and (22). With low noise levels, i.e., σ2

b → 0,
the WF behaves like the ZF, and with σ2

b ≫ |ak,l|2, the WF
behaves like the MF, with a multiplicative coefficient. The
well-known trade-off property of the WF is recovered, be-
tween the SNR maximisation of the MF and the distortion
rejection of the ZF [27, § 6.2].

We can now move on to the core part of this article:
the effect of the Doppler shift on the delay profile of the
OFDM radar, where this delay profile is modelled as an
r.v.

IV. Delay response
We start with the general expression of the delay profile

for all the three presented filters. To lighten the notation,
ϕk is set to zero. Then,

χ(i) = 1√
n

n−1∑
l=0

Yk(l)ck,le
2ıπ il

n

= 1√
n

n−1∑
l=0

n−1∑
j=0

ak,jck,le
2ıπ

(
il
n − τkj

T

)
Dn(j − l − νT )

+ 1√
n

n−1∑
l=0

Bk(l)ck,le
2ıπ il

n , (23)

where ck,l ∈ {ak,l; ak,l

|ak,l|2 ; ak,l

|ak,l|2+σ2
b

} is the filter coefficient
for MF, ZF and WF, respectively.

In communication systems, the complex symbols ak,l are
unknown to the receiver and they are considered as r.v.
Contrary to the communication receiver, the mono-static
radar receiver knows the complex symbols. However, and
to go further, the moments of the delay profile (23) are
studied and the following assumption is required.

Assumption 8. The symbols ak,l are independent and
identically distributed (i.i.d.) proper complex r.v. with zero
mean, variance σ2

a and forth moment µ4
a.

The first moment derivation can now be done using
Assumptions 2, 7 and 8

E[χ(i)] = 1√
n

σ2
caDn(−νT )

n−1∑
j=0

e
2ıπ

(
ij
n − τkj

n

)
=

√
nσ2

caDn(−νT )δi,
nτk

T
, (24)

where δi,j is the Kronecker delta function, and σ2
ca =

E[ak,jck,j ] is a function of |ak,l|2, a second moment. The
signal energy is proportional to the main lobe |E[χ(iτ )]|,
which is

√
n with the MF and when νT = 0, because

all the Fourier transforms are normalised to be a unit
transformation in our derivations. With Assumption 8, the
signal power is σ2

a and the input SNR is σ2
a

σ2
b

.
The first moment analysis is not enough to study the

secondary lobes, which all equal zero in (24), for the three
filters. This analysis does not allow to calculate the SNR
of the delay profile, which is expected to be n

σ2
a

σ2
b

with the
matched filter. A higher moment analysis is required.

The second moment analysis is based on the expectation
of the intensity of the delay profile, i.e., E[|χ(i)|2]. With

Aj,l = ak,jck,le
2ıπ

(
il
n − τkj

T

)
Dn(j − l − νT ) (25)

and using Assumptions 2 and 8, the expectation of the
intensity of the delay function is

E[|χ(i)|2] = 1
n

n−1∑
l=0

n−1∑
j=0

n−1∑
l′=0

n−1∑
j′=0

E[Aj,lAj′,l′ ]

+ 1
n

n−1∑
l=0

E[|Bk(l)|2]E[|ck,l|2]

= 1
n

n−1∑
l=0

E[|Al,l|2] + 1
n

n−1∑
l=0

n−1∑
j=0
j ̸=l

E[|Aj,l|2]

+ 1
n

n−1∑
l=0

n−1∑
j=0
j ̸=l

E[Aj,jAl,l] + σ2
b σ2

c . (26)

All the other terms E[Aj,lAj′,l′ ], i.e., with the index set
{j, l = j, j′ ̸= j, l′ /∈ {l, j′}}∪{j, l = j, j′ = j, l′ ≠ l}∪{j, l ̸=
j, j′, l′ ≠ l} ∪ {j, l, j′ ̸= j, l′ = l}, are equal to zero in (26)
because
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i) {ak,l}l=0,··· ,n−1 are zero mean, i.i.d. r.v.;
ii) {ck,l}l=0,··· ,n−1 are zero mean, i.i.d. r.v.;

iii) ak,l and ck,l′ are independent ∀l ̸= l′.
The first results can now be stated, using the notations
E[|ak,jck,j |2] = µ4

ca and E[|ck,j |2] = σ2
c .

Proposition 9. The expectation of the intensity of the
main lobe, at i = iτ , is

E[|χ(iτ )|2] =
(
µ4

ca + (n − 1)σ4
ca

)
sinc2 πνT

+ σ2
c σ2

a(1 − sinc2 πνT ) + σ2
c σ2

b .

Proof. See Appendix A.

Proposition 9 gives a simple expression of the main lobe
intensity. With a large n, i.e., with a large OFDM symbol
size and high number of sub-carriers, the expectation of
the main lobe intensity is approximated by nσ4

ca sinc2 πνT ,
which is |E[χ(iτ )]|2 given by the first moment analysis.
The first moment analysis of the main lobe is reasonably
enough in this case of a large OFDM symbol size. For
all OFDM symbol sizes, the second moment expression is
required and it is linked to the first one by

E[|χ(iτ )|2] = |E[χ(iτ )]|2 + (µ4
ca − σ4

ca) sinc2 πνT (27)
+ σ2

c σ2
a(1 − sinc2 πνT ) + σ2

c σ2
b .

It is interesting to note that, in the expression of E[|χ(iτ )|2],
only the |E[χ(iτ )]|2 term depends on n. The noise contri-
bution in (27) is σ2

c σ2
b , the SNR of the main lobe with

MF and νT = 0 is then n
σ2

a

σ2
b

, n times the input SNR as
expected.

The next step is to find the properties of the secondary
lobes.

Proposition 10. The secondary lobes intensity is asymp-
totically an exponential r.v. with parameter λ such that

1
λ

= E[|χ(iτ )|2] − nσ4
ca sinc2 πνT .

Proof. See Appendix B.

Using Propositions 9 and 10, the expectation of the
secondary lobes intensity does not depend on n. When n
increases, the main lobe intensity increases, but the mean
secondary lobes intensity remains unchanged. One obtains
that the mean distance between the main lobe and the
secondary ones is nσ4

ca sinc2 πνT , which increases with n.
This distance is then zero when the Doppler shift is a
multiple of the sub-carrier spacing.

V. Application to PSLR, ISLR and SINR
A. Radar metrics

Instead of the distance, two ratios are used to characterise
the delay profile and to reduce it to one parameter. These
ratios are the PSLR

γPSLR = E

 |χ(iτ )|2

max
i ̸=iτ

|χ(i)|2

 (28)

and the ISLR

γISLR = E

 |χ(iτ )|2∑
i ̸=iτ

|χ(i)|2

 . (29)

These metrics can be linked to the performance of target
detectors, like the adaptive threshold detector [9]. Both
PSLR and ISLR depend on the energy of the main lobe.
In our model, the main lobe size equals one because the
sampling frequency is the nominal OFDM one, and the
analysis is done under Assumption 7. This energy is then
reduced to |χ(iτ )|2. With an anti-leakage window, the main
lobe size is larger and this has to be considered in the PSLR
and ISLR definition. We continue the derivations under
Assumption 7.

Proposition 11. The PSLR is

γPSLR ≈ 1
Hn−1

+
n

Hn−1

µ4
ca

σ4
ca

− 1 + σ2
c

σ4
ca

σ2
a(1−sinc2 πνT )+σ2

b

sinc2 πνT

,

with Hn the nth harmonic number.

Proof. See Appendix C.

For a constant noise and fixed modulation parameters,
and with a large number n of sub-carriers, the PSLR is
proportional to n

Hn−1
. The explanation is as follows: i) the

intensity of the main lobe is proportional to n; ii) the mean
secondary lobes intensity does not depend on n, however
the probability of having larger secondary lobes increases
with n. Therefore, the largest secondary lobe intensity
depends on n and it is proportional to Hn−1. The ratio
between the intensity of the main lobe and the intensity
of the largest secondary lobe gives the asymptotic result,
i.e., when n is large.

Proposition 12. The ISLR is

γISLR ≈ 1
n − 1 +

1 + 1
n−1

µ4
ca

σ4
ca

− 1 + σ2
c

σ4
ca

σ2
a(1−sinc2 πνT )+σ2

b

sinc2 πνT

.

Proof. See Appendix D.

The PSLR and ISLR depend on each other. The ISLR
used here can be obtained from the PSLR with the equality

(n − 1)γISLR = Hn−1γPSLR , (30)

which is based on Propositions 11 and 12.
Propositions 11 and 12 exhibit the characteristics of the

three filters through µ4
ca

σ4
ca

and σ2
c

σ4
ca

.

B. MF, ZF and WF comparison
The three filters are characterised by the filter coefficients

ck and the parameters µ4
ca, σ2

ca and σ2
c , with expressions

summarised in Table I. Note that the filters are applied
in the frequency domain with only one coefficient ck, a
multiplying factor, per subcarrier k, as in the OFDM
communication system [26]. The differences between the
three filters are given by the expression of ck, which needs
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Table I
Modulation parameters.

MF ZF WF
ck ak

ak
|ak|2

ak

|ak|2+σ2
b

µ4
ca µ4

a 1 E

[
|ak,i|4

(|ak,i|2+σ2
b

)2

]
σ2

ca σ2
a 1 E

[
|ak,i|2

|ak,i|2+σ2
b

]
σ2

c σ2
a E

[
1

|ak,i|2

]
E

[
|ak,i|2

(|ak,i|2+σ2
b

)2

]

Figure 1. Normalised delay response parameters versus input SNR
in dB, for {4, 16, 1024}-QAM.

the knowledge of the transmitted symbol ak for the three
filters, and the knowledge of the noise power σ2

b for the
WF. The parameters characterise the constellation size
and shape. Contrary to the MF and ZF, the modulation
parameters with the WF depend on the noise level σ2

b .
Fig. 1 plots µ4

ca

σ4
ca

and σ2
c

σ4
ca

versus the input SNR σ2
a

σ2
b

for the
WF, and for three QAM. In this results, the power of the
constellations is normalised such as σ2

a = 1. As the MF and
ZF do not depend on the input SNR, only one point per
modulation is plotted for both µ4

ca

σ4
ca

and σ2
c

σ4
ca

parameters, and
it is positioned where the convergence with the WF occurs.
Furthermore, µ4

ca

σ4
ca

does not depend on the constellation size
for the ZF, but it depends on the constellation size for the
MF. The opposite is observed with σ2

c

σ4
ca

: it does not depend
on the constellation size for MF as it would with the ZF.
As expected, the modulation parameters with the WF vary
between the MF and the ZF, with a dependency with the
size of the constellation. The WF becomes the MF when
the input SNR approaches zero, i.e., the noise approaches
infinity, and it becomes the ZF when the input SNR goes
to infinity, i.e., the noise approaches zero.

C. Robustness of OFDM communication
To compare radar and communication systems, we

provide a new formulation of the SINR (7) using the
derivation developed for the analysis of the delay function.

Figure 2. OFDM SINR, (a) simulation, (b) from (7), (c) Proposi-
tion 13, in dB versus ν̃T , with n = 28, 16-QAM, input SNR of 10
and 20 dB.

The SINR is defined by the ratio on the mean value of the
signals at the output of the demodulated OFDM symbol

γSINR =

1
n

∑
l

Sl

1
n

∑
l

Il

, (31)

where Sl is the useful signal power and Il is the power of
the interference plus noise on sub-carrier l (14). We recall
that the Doppler experienced by the communication system
is the residual Doppler ν̃ and not the Doppler ν, because of
the synchronisation process in the communication system
that reduces ν to ν̃.

Proposition 13. The SINR is

γSINR = sinc2 πν̃T

1 − sinc2 πν̃T + σ2
b

σ2
a

.

Proof. See Appendix E.

Proposition 13 provides an exact expression of the
SINR and its validity is now numerically evaluated. Fig. 2
compares (7), curve (b), and Proposition 13, curve (c),
in the case where n = 28. The modulation tested by
simulation is the 16-QAM. Both curves (b) and (c) are
compared to the SINR (31) obtained by simulation, curve
(a). The simulation values, curve (a), are superimposed
to the results obtained with Proposition 13, curve (c).
This superimposition shows the accuracy of the proposed
analytical approach for all the residual Doppler ν̃T and
the input SNR, whereas the gap between the curves (a)
and (b), which is obtained with the approximation (7),
crumbles when ν̃T ≥ 0.3.

The SINR is also linked to the PSLR and ISLR approxi-
mations, which constitutes the next proposition, and which
is the interest of Proposition 13.
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Proposition 14. Under the same Doppler and residual
Doppler shift, the PSLR is a function of the SINR with

γPSLR ≈ 1
Hn−1

+
n

Hn−1

µ4
ca

σ4
ca

− 1 + σ2
c σ2

a

σ4
ca

1
γSINR

.

Proof. The result is obtained by combining Proposition 11
and 13 with ν = ν̃.

Proposition 14 shows the link between the PSLR and
the SINR. The radar performance is then linked to the
communication one. Obviously, the PSLR is a positive,
increasing and concave function of the SINR. The remark-
able result is that this link does not depend on the Doppler
shift, nor the sub-carrier spacing2. It depends only on
the number n of sub-carriers and on the parameters of
the constellations. Another interesting result is that the
radar system benefits from the number n of sub-carriers
more than the communication system does, as the PSLR
increases with n at a given SINR. However, Proposition 14
is quite limited, as ν ̸= ν̃ in practice. Nevertheless, it is
used to show how both radar and communication systems
are robust to their own Doppler shift.

A similar proposition can be simply derived for the ISLR
using (30).

VI. Extension to non-full OFDM signal
With the scenario presented in Section II, one JRC

platform can use all the sub-carriers of the OFDM symbols,
but only one platform can transmit on a space-time-
frequency resource at a time to ensure interference free
communications and interference free radar detection. To
increase the communication and radar flexibility, multiple
transmissions should be possible at the same space-time-
frequency resource in a given area. The interference is then
mitigated in the waveform domain [14]. Random sparse
OFDM symbols can then be used, where a random sequence
of active sub-carriers is assigned to each JRC platform
in the given area. To perform interference free systems,
the sequences have to be managed by the network in a
centralised or in an ad-hoc manner.

The transmitted symbols are defined in C instead of
C\{0} to take into account the empty sub-carriers, which
are the inactive sub-carriers. We model the random set
of active and inactive sub-carriers with a Bernoulli r.v.
with parameter p. To simplify the analysis, the symbol
ak,i transmitted on the sub-carrier i of the k-th OFDM
symbol becomes pk,iak,i, with ak,l ∈ C\{0}, pk,i ∈ {0, 1}
and E[pk,i] = p for all k and i. With this model, the delay
profile (23) becomes

χ(i) = 1√
n

n−1∑
l=0

n−1∑
j=0

pk,jak,jpk,lck,le
2ıπ

(
il
n − τkj

T

)
(32)

2This analysis can be misleading, because the parameter is the
sub-carrier spacing 1

T
and the relative Doppler νT does not depend

on n, in our approach. If the parameter had been the bandwidth
W = n

T
, the relative Doppler would have been νn

W
, and then it would

have depended on the number n of sub-carriers. However, we choose
to work with fixed OFDM symbol time duration.

× Dn(j − l − νT ) + 1√
n

n−1∑
l=0

Bk(l)pk,lck,le
2ıπ il

n .

Using (32) and Proposition 11, we can now derive the last
proposition.

Proposition 15. The PSLR with the sparse OFDM signal
is

γPSLR ≈ 1
Hn−1

+
n

Hn−1

µ4
ca

pσ4
ca

− 1 + σ2
c

σ4
ca

σ2
a(1−sinc2 πνT )+

σ2
b

p

sinc2 πνT

.

Proof. See Appendix F.

Proposition 15 shows that the PSLR is an increasing
function of p and n, but in a different way. The PSLR with
the couple of the number of sub-carriers and the ratio of
activity (n, p) with p < 1 is not the PSLR with (np, 1). It
can also be proved that the PSLR with (n, p) and p < 1 is
lower than the PSLR with (np, 1), when νT is not to high,
i.e., νT < 0.4.

VII. Simulation results
The transmitted OFDM signal uses n sub-carriers with

QAM, which are all active, p = 1. All Assumptions 1
to 8 are taken into account in the simulated radar-
communication system. The simulation results are based
on (23), the exact expression of the output filters. None
of the results depend on the chosen value iτ , which is
arbitrarily set to zero. The input SNR is σ2

a

σ2
b

and the power
of the constellations is normalised to 1. Some numerical
values of the constellation parameters are given in [28].
The number of considered OFDM symbols in a frame is
1, since there is no slow time radar signal processing in
our analysis. The results can be extended to an operating
delay-Doppler radar system by simply multiplying all the
gains by m to take into account the slow time processing.
From Figure 4 to Figure 9, the solid line curves are for
the analytical results and the marks are for the simulation
results.

Fig. 3 gives the histogram of the secondary lobes, i.e.,
|χ(i ̸= iτ )|2, of the three filters with n = 213, νT = 0.1, a
16-QAM and with an input SNR of 10 dB. The empirical
distributions, obtained from the square of the amplitude
of (23), for i ̸= iτ and for one OFDM symbol, are
compared to the probability density functions obtained
with Proposition 10. The figure confirms the accuracy of
our analytical derivations.

The PSLR versus the input SNR is presented in Fig. 4.
The simulation results are given by (28) and the analytical
ones are obtained with Proposition 11. The curves confirm

1) The accuracy of our analytical developments;
2) The behaviour of the WF, between the MF and the

ZF.
For a null Doppler, the WF tends to the MF at low SNR
and outperforms the ZF, whereas it tends to the ZF at
high SNR and outperforms the MF. However, for a Doppler
value of 40 % of the sub-carrier spacing and for a large
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Figure 3. Secondary lobe distributions with σ2
a/σ2

b = 10 dB, n = 213,
νT = 0.1, 16-QAM.

Figure 4. PSLR in dB versus the input SNR in dB with n = 210,
νT ∈ {0; 0.4}, 16-QAM.

Figure 5. PSLR in dB versus νT with σ2
a/σ2

b ∈ {−10, 20} dB, n = 210,
16-QAM.

Figure 6. PSLR in dB versus n with 16-QAM, νT = 0.1, and two
input SNR {0, 20} dB.

Figure 7. PSLR in dB versus the constellation size M with n = 210,
νT = 0.2 and two input SNR {0, 20} dB.

input SNR, the MF still outperforms the WF. This is
highlighted in Fig. 5 where the PSLR is plotted versus the
Doppler νT . For a large input SNR, 20 dB here, the PSLR
of the WF and ZF are superimposed, but they remain up
to 3 dB below the PSLR of the MF for νT > 0.3. In this
case, a large input SNR and Doppler, the maximisation
of the SNR of the main lobe becomes decisive to improve
the PSLR. Hence, the MF is the only best filter in this
case. As exhibited in Fig. 5, the ZF and WF PSLR are
sensitive to the Doppler at a high SNR regime, i.e., 20 dB.
The PSLR crashes and loses more than 10 dB with a 0.2
increase in νT . In contrast in a lower SNR regime, the ZF
and WF PSLR are robust and can support Doppler shifts
up to 20 % of sub-carrier spacing with less than 1 dB of
degradation. Contrary to WF and ZF, the MF is robust in
any SNR regime. In a low SNR regime, −10 dB, the MF
and WF PSLR are superimposed and outperform the ZF
one.
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The next two figures show the PSLR versus the number n
of sub-carriers and the size M of the constellations, i.e., the
M -QAM. Fig. 6 exhibits a quasi-linear dependence of the
PSLR on n, with a logarithmic axis. The slope of the curves
is around 5

2 , which means that the dependence is sub-linear
with a linear power-law coefficient around 0.8. Fig. 7 shows
a counter-intuitive result with a high input SNR: the WF
deviates from the ZF when the constellation size increases.
The explanation is that the high SNR regime depends on
the size of the constellation, and 20 dB is not high enough
for a 64-QAM, contrary to smaller constellation sizes. The
shape of the curves is saw-tooth, because the constellations
are square when M is a power of even numbers, and they
are rectangular when M is a power of odd numbers. The
differences between the analysis and simulation, which
come from Jensen’s inequality in Proposition 11 and are
less than 0.1 dB as in other figures, are more visible in this
Fig. 7, because of the close up into the y-axis.

The same comparisons and relative results, not presented
here, are obtained with the ISLR, which is deduced from the
PSLR using (30). The accuracy of the last results, given
by Proposition 14 and Proposition 15, are also verified
in all the presented cases. The Doppler independence of
the PSLR from the SINR is verified. The Doppler shift
affects the radar system performance as much as the
residual Doppler shift affects the communication system
performance, when the Doppler is relative to the carrier
spacing. A higher SNR means that the radar system can
detect farther targets or targets with lower RCS.

VIII. JRC system design
The JRC requirements can be given as the SINR and

PSLR measures, for the communication and radar parts,
respectively. Feasibility regions can be expressed as a
function of the input SNR and the relative Doppler νT and
ν̃T supported by the JRC system. With Propositions 11
and 13, the bound of the feasibility region is derived
through the lowest SNR the system can handle at a given
Doppler shift.

The two last figures, Fig. 8 and 9, give the SNR-
Doppler couples that fulfil the JRC system requirements.
In Fig. 8, the Doppler ν̃T is the relative residual Doppler
not corrected by the synchronisation process. For exam-
ple, a minimal SNR of 12 dB is required to ensure a
SINR of 5 dB at a residual Doppler shift of 0.25. If a
2 % of the sub-carrier spacing ensures a negligible SNR
degradation and enough margin of safety for operating
systems, more residual Doppler can be supported at low
SINR requirements, i.e., when the communication system
uses low orders of modulation. The figure also exhibits the
maximal residual Doppler supported, but at a price of a
noiseless transmission, i.e., infinite input SNR. In Fig. 9,
the Doppler νT is the one seen by the radar system. Only
few results of simulations are provided to not clutter this
figure. Three particular PSLR values are chosen to exhibit
the filter behaviours. At low PSLR requirements, huge
Doppler shifts can be supported, up to 0.7 at a PSLR
of 10 dB. At high PSLR requirements, i.e., 30 dB, the

Figure 8. Required input SNR in dB versus ν̃T to reach 4 SINR
values in dB, {5, 10, 15}.

Figure 9. Required input SNR in dB versus νT to reach 4 PSLR
values in dB, {10, 22, 30}, n = 210, 16-QAM.

MF does not operate and it needs a larger sub-carriers
number. Note that the ZF needs higher SNR than the MF
at low and medium PSLR requirements. This figure also
demonstrates the capabilities of the WF compared to the
MF and ZF. In a wide range of SNR-Doppler couples, the
WF outperforms the MF and ZF. It needs lower SNR at a
given Doppler to satisfy the PSLR requirement.

IX. Conclusion
This article has quantified the Doppler robustness of

the OFDM waveform in the JRC context. The dual
communication and radar system uses a single OFDM
signal to perform communication and radar applications at
the same time. Both systems have been studied within the
same analytical framework, leading to an expression that
links the radar performance to the communication one. The
radar system benefits from the proposed Wiener filter, and
the configurations where this filter outperforms the other
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ones are outlined. All the results have been conducted in
an interference free scenario for both systems, using an
orthogonal transmission in space-time-frequency domain.
Further works will be provided in the case of interference
scenarios and non orthogonal multiple access systems.

Appendix A
Proof of Proposition 9

The main lobe intensity is obtained for iτ = nτk

T . The
three terms in (26) have to be calculated

E[|Aj,j |2] = E[|ak,jck,j |2]|Dn(νT )|2 , (33)

and for all j ̸= l

E[|Aj,l|2] = E[|ak,jck,l|2]Dn(j − l − νT )2

= E[|ak,j |2]E[|ck,l|2]|Dn(j − l − νT )|2 (34)

and

E[Aj,jAl,l]

= E[ak,jck,j ]E[ak,lck,l]e2ı π
n (iτ − τkn

T )(j−l)|Dn(νT )|2

= E[ak,jck,j ]E[ak,lck,l]|Dn(νT )|2 . (35)

Using Assumption 5, and with (33), (34) (35) and (26),
the expectation of the main lobe intensity is

E[|χ(iτ )|2] =
(
µ4

ca + (n − 1)σ4
ca

)
sinc2 πνT + σ2

c σ2
agn(νT )

+ σ2
c σ2

b , (36)

where

gn(x) = 1
n

n−1∑
j=0

n−1∑
l=0
l ̸=j

sin2 πx

n2 sin2 π
n (j − l − x)

(37)

=
n−1∑
j=1

n − j

n

(
sin2 πx

n2 sin2 π
n (j − x)

+ sin2 πx

n2 sin2 π
n (j + x)

)
for all x ∈ R+\N, and for the all the integers y where
the function is not defined, gn(y) = lim

x→y
gn(x). A simpler

expression of this function gn can be given. We then
need the following proposition to finish the proof of
Proposition 9.

Proposition 16. For all x ∈ R

gn(x) = 1 − |Dn(x)|2 .

Proof. We use the complete summation to obtain the result

gn(x) + |Dn(x)|2 = 1
n3

n−1∑
j=0

n−1∑
l=0

sin2 πx

sin2 π
n (j − l − x)

= 1
n3

n−1∑
j=0

n−1∑
l=0

∣∣∣∣∣
n−1∑
k=0

e2ı π
n (j−l−x)k

∣∣∣∣∣
2

= 1
n3

n−1∑
k=0

n−1∑
i=0

e−2ı π
n x(k−i)

∣∣∣∣∣∣
n−1∑
j=0

e2ı π
n j(k−i)

∣∣∣∣∣∣
2

= 1
n

n−1∑
k=0

n−1∑
i=0

e−2ı π
n x(k−i)δk,i

= 1 , (38)

where δk,i is the Kronecker delta function.

Proposition 16 is then used in (36) to finish the proof of
Proposition 9. With Assumption 5, the sinc function can
be used instead of the ratio of sinus functions.

Appendix B
Proof of Proposition 10

The expectation of the secondary lobes intensity is
E[|χ(i)|2] with i ̸= iτ . The three terms of (26), already
calculated when i = iτ in the proof of Proposition (9), have
to be calculated when i ≠ iτ . Only E[Aj,jAl,l] differs and it
equals zero when i ̸= iτ . As the reciprocal of the parameter
λ of an exponential r.v. is its expectation, the mathematical
expression of the proposition is then proved. It remains to
obtain that the secondary lobes are an exponential r.v. To
simplify the analysis, let τk = 0. Therefore, (23) becomes

√
nχ(i) =

n−1∑
l=1

n−1∑
j=0

ak,jck,le
2ıπ il

n Dn(j − l − νT )

+
n−1∑
l=0

Bk(l)ck,le
2ıπ il

n . (39)

The second term in (39) is an independent sum of n
complex Gaussian r.v. This term is then complex Gaus-
sian. The first term is composed of n2 independent r.v.
ak,jck,le

2ıπ il
n Dn(j − l − νT ) uniformly dominated

|ak,jck,le
2ıπ il

n Dn(j − l − νT )| ≤ max |ak,j | max |ck,l| ,
(40)

where the maximum are evaluated over all the points of
the constellation. The variance of the r.v. of the first term
of (39) is {

σ2
aσ2

c |Dn(j − l − νT )|2, ∀j ̸= l,
(µ4

ca − σ4
ca)|Dn(−νT )|2, ∀j = l,

(41)

and the sum of these n2 variances goes to infinity with
n. Under the conditions of uniform bound of the n2 r.v.
and unbounded sum of the n2 variances, the Lindeberg’s
theorem implies that the first term converges also to a
complex Gaussian r.v. [29, § 7.3.1]. Then,

√
nχ(i) is the sum

of two Gaussian r.v. and converges to a complex Gaussian
r.v. The secondary lobes |χ(i)|2 are asymptotically a
chi-squared r.v. with two degrees of freedom, i.e., an
exponential r.v.

Appendix C
Proof of Proposition 11

Firstly, using the first order of the Taylor expansion, or
the Jensen’s inequality, the expectation of a ratio in (28)
is approximated by the ratio of the expectations

E

 |χ(iτ )|2

max
i ̸=iτ

|χ(i)|2

 ≈ E[|χ(iτ )|2]
E[max

i ̸=iτ

|χ(i)|2] . (42)
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Secondly, the expectation in the denominator in (42), which
is the expectation of the maximal value of n − 1 r.v.
{|χ(i)|2}i ̸=iτ , is obtained using the n − 1-th order statistic,
i.e., the largest order statistic. Then, with F the cumulative
distribution function of |χ(i)|2, and with Proposition 10,

E[max
i̸=iτ

|χ(i)|2] =
∫ ∞

0

∂F (x)n−1

∂x
xdx

=
∫ ∞

0
(n − 1)λe−λx(1 − e−λx)n−2xdx

= 1
λ

n−1∑
k=1

(−1)k+1

k

(
n − 1

k

)

= 1
λ

n−1∑
k=1

1
k

, (43)

where the last equality can be obtained by mathematical
induction. The combination of (43), (28) and Propositions 9
and 10 ends the proof.

Appendix D
Proof of Proposition 12

The Jensen’s inequality is also used and

E
[ ∑

i̸=iτ

|χ(i)|2
]

= (n − 1)E[|χ(i ̸= iτ )|2] . (44)

The proof is ended using Propositions 9 and 10.

Appendix E
Proof of Proposition 13

Using (14),

Sl = E

[∣∣∣eıπk ak,le
−2ıπ

lτk
T Dn(−ν̃T )

∣∣∣2
]

= σ2
a|Dn(ν̃T )|2 (45)

and

Il = E

[∣∣∣∣eıπk

n−1∑
i=0
i ̸=l

ak,le
−2ıπ

iτk
T Dn(i − l − ν̃T ) + Bk(i)

∣∣∣∣2]

= σ2
a

n−1∑
i=0
i ̸=l

|Dn(i − l − ν̃T )|2 + σ2
b . (46)

Then,

γSINR = |Dn(ν̃T )|2
n−1∑
l=0

n−1∑
i=0
i ̸=l

|Dn(i − l − ν̃T )|2 + σ2
b

σ2
a

. (47)

The proof is concluded with Proposition 16 in Appendix A.

Appendix F
Proof of Proposition 15

With (32), the expectations needed to calculate the
average intensity of the lobes are

E[|pk,jak,jpk,jck,j |2] = pE[|ak,jck,j |2] = pµ4
ca , (48)

E[|pk,jak,j |2] = pE[|ak,j |2] = pσ2
a , (49)

E[|pk,jck,j |2] = pE[|ck,j |2] = pσ2
c , (50)

E[pk,jak,jpk,jck,j ] = pE[ak,jck,j ] = pσ2
ca . (51)

The proof is ended by including these new expectations in
Propositions 9 and 10.
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