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Abstract—Nowadays, System-on-Chip (SoC) components are
found everywhere in all kinds of smart devices. Each System-
on-Chip contains many different blocks that provide specific
functionalities, such as WiFi or Bluetooth connectivity. Whereas
integrating each such block in a SoC typically requires paying
some royalties, not all blocks are necessary for all applications,
or throughout a device’s lifecycle. Moreover, it is not possible
to manufacture a specific SoC for each application. Significant
advantages are therefore expected to be gained by enabling
trustworthy remote SoC reconfiguration throughout their life
cycles. A few approaches attempting to address this challenge
have been proposed in the literature. They are typically based
on Blockchain technology in order to support decentralization
without relinquishing trust. Reviewing these approaches lead us
to identify a potential flaw in the proposed protocols. Indeed,
a SoC should be able to trust Blockchain information that it is
given, without requiring any centralization. In order to validate
our suspicions, we propose in this paper to use Verifpal: a
cryptographic protocol verification tool that works from textual
protocol models. We use it in a slightly unorthodox way in order
to model the trust relationships in one of the approaches from the
literature, and to verify it. The results show that, under some
assumptions, a flaw is indeed present. We propose and model
several possible fixes, and present their respective limitations.

Keywords—Blockchain; Trust Relationships; Re-configurable
Systems-on-Chip

I. INTRODUCTION

The Internet of things comprises many applications. One of
these applications is the possibility to reconfigure intellectual
property (IP) blocks found in hardware components, and in
particular in Systems-on-Chip (SoCs). This type of application
is not widespread yet because component reconfiguration
requires a high level of security that is difficult to achieve. The
main reason is that the components to reconfigure are typically
in an untrusted environment. The literature on approaches that
offer these possibilities is, according to the authors’ knowl-
edge, still thin [1]. The proposed approaches use Blockchain
technology to obtain security guarantees [2], [3]. Blockchain is
a technology originally designed to offer a decentralized cur-
rency system capable to work without trusted third parties [4].
The possibilities offered by Blockchain technology have been
extended to a wider set of applications with the smart contract
concept. These are programs that automatically run on a

Blockchain network, and whose results are immutable [5].
The purpose of Blockchain in SoC reconfiguration applications
is to avoid third parties and to decentralize trust. Setting up
the trust link between a chip and Blockchain data is not a
trivial task. Moreover, the published protocol descriptions lead
us to believe that trust flaws can appear when a component
interacts with the Blockchain network. It is because of this
potential design flaw that we propose to model and verify
an approach from the literature, along with potential fixes.
To this end, we use Verifpal, which is a tool designed to
be relatively easy to use, and which can be used to model
and verify cryptographic protocols [6]. All of the Verifpal
models created for this work, as well as additional figures,
are available on GitHub1. The rest of the paper is organized
as follows. Section II presents the context of this work, and
more especially what is modeled. Related work is presented
in section III. The modeling approach and an overview of
Verifpal are given in section IV. Section V, presents the model,
the verification results, and describes possible fixes. Notes on
potential threats to the validity of the results are presented in
section VI. Finally, section VII concludes and presents some
perspectives as well as some future work.

II. CONTEXT

Allowing the unconstrained reconfiguration of a component
makes it possible to offer many functionalities either during
production or in the finished products. Thus, it is envisioned
to offer ”à la carte” components to reduce the number of
SoC references, to allow dynamic royalty payments, or even
to enable the rental of hardware features. We call life cycle
management system (LCMS) [1] the sub-system which, when
integratred into a SoC, makes it capable of being reconfigured
throughout its life cycle. In the scope of this paper, we focus
on the protocol proposed by Islam et al [2]. However, a similar
problem seems to be present in other approaches, such as [3],
because they work on the same principles. Figure 1 represents
a simplified version of the protocol as a sequence diagram.
The different participants in this diagram are the following:

1https://github.com/meremST/trustability-model

https://github.com/meremST/trustability-model
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Figure 1. Sequence diagram of state of the art Blockchain-based SoC
reconfiguration protocol

• Alice is the SoC manufacturer.
• Bob is the buyer of the SoC.
• SoC is the reconfigurable component.
• Nodes Alice’s node and Bob’s node are Blockchain nodes

respectively owned by Alice and Bob. Since Alice and
Bob do not, in general, trust each other, they do not
necessarily trust the other party’s node.

• Blockchain: corresponds to all the other nodes that consti-
tute the Blockchain. The presence of this Blockchain par-
ticipant makes it possible to model Blockchain-generated
consensus. By definition, the data it stores is immutable.

The protocol is composed of three separate phases:
• The registration phase corresponds to the moment when

Alice (the manufacturer) loads secrets in or retrieves
secrets from the SoC. These secrets can be very diverse,
such as identification means, the price and list of possible
configurations, or generated cryptographic elements. With
this information, Alice is then capable of creating a smart
contract in the Blockchain that aims at allowing future
owners to purchase configurations.

• The modification or upgrade request phase is the moment
when Bob (the SoC owner) will retrieve available con-
figurations, and will use the smart contract to buy one of
them. The payment is then validated by the Blockchain,
and the contract status changes to indicate that the user
now has access to a specific configuration.

• The data reception phase is when the SoC retrieves its en-

abled configuration from the Blockchain. The Blockchain
being by definition immutable, it is not possible to forge
this data.

The potential flaw of this protocol happens at the moment of
data reception by the SoC. If Bob could trick the SoC into
erroneously believing that he has actually paid for a given
configuration, then he would be able to access it without
paying. However, directly checking Blockchain information
is a time-consuming action that requires a large amount of
computing power [7], which is not actually available on this
type of component. The SoC must therefore trust a specific
node to give it reliable information.

III. RELATED WORK

The notion of trust is complex and can be interpreted in
several ways. Ruan and Durresi [8] summarize in their survey
how trust can be modeled in online social communities. Their
work is general enough to be applicable to devices and covers
a substantial part of the literature on this subject. The authors
conclude that each representation of trust depends on the
definition of trust on which it is based. Moreover, they present
different trust management scheme models. Compared to this
work, our needs in trust modeling are much simpler because
we only need to determine if a trust relationship is established
between two actors following a protocol. In the context of
research on the use of Blockchain technology in electronic
objects, Miraz [9] proposed a summary of the benefits as well
as of the challenges that this type of technology presents.
Solutions have been proposed to address interactions between
a Blockchain and the external environment. Caldarelli [10]
provides an overview of the research on oracles, which allow
the use of off-chain data in smart contracts. To the best of our
knowledge, oracles are not capable of reliably pushing data out
of the Blockchain, as required in our case. Other studies have
focused on modeling blockchain-based systems. Sukhwani
et al. [11] proposed a performance model of Hyperledger
fabric, a permissioned Blockchain network, to evaluate its
performance. Rocha and Ducassse [12] have worked on how
to model software based on smart contracts using UML. Like
Verifpal, there are several tools that can model protocols in
order to verify them. Among the most popular are ProVerif
and Tamarin. ProVerif is a tool by Bruno Blanchet [13], which
is able to automatically translate a protocol description into
Horn clauses, and to determine whether the desired security
properties hold by resolution on these clauses. The Tamarin
prover, proposed by Meier et al [14], is a tool that supports
the automated, unbounded, symbolic analysis of security pro-
tocols. In the case of our work, Verifpal was chosen because
it is comparatively easier to use but still powerful enough to
be able to support the models we need to create.

IV. APPROACH OVERVIEW

In order to verify if the trust flaw can be identified, we
propose to model the protocol, and verify it. To do this, it
is necessary to model trust by using a tool able to perform
verification.



A. Modeling Trust

There are several ways to formally model the protocol
from Figure 1. It should be possible to precisely model the
behavior of the Blockchain, and notably the different nodes
that compose it, but such a model could be hard to check.
Alternatively, it is also possible to consider a more abstract
model that focuses on the trust relationships between the
different actors. It is possible to model trust relationships with
the following principles.

• The set of honest nodes that compose the Blockchain
network can be regrouped into a single actor.

• The nodes used by the different actors must be modeled
separately because any actor could subvert their own
nodes. This means that a given actor will trust their nodes
but will not blindly trust the other actor’s nodes and vice
versa.

• Data contained in the Blockchain is public. The
Blockchain can therefore send and receive messages, and
it has the ability to perform operations on its data, but
it is not able to store a private key. Consequently, the
Blockchain cannot directly encrypt or sign data.

• Any data stored in the Blockchain is considered un-
forgeable. It is important to point out that although
data inside the Blockchain is immutable, in order to
read it with great confidence, it is necessary to be able
to cryptographically verify it. The only actors able to
directly read the Blockchain are the nodes.

By applying these rules and modeling the message exchanges
that describe the protocol, it is possible to create a verifiable
model on which a verification algorithm will be able to find
a counterexample if a flaw exists.

B. Verifpal

Verifpal2 is a textual modeling and verification framework
for cryptographic protocols [6]. It is designed to make it rela-
tively easy to obtain a working model and to verify properties.
Verifpal offers formal verification for confidentiality, authen-
tication, freshness, and unlinkability properties. It is relatively
close to a textual sequence diagram specification. It uses
pre-defined cryptographic primitives to describe all protocol
cryptographic operations. This has the advantage of preventing
the use of ill-defined primitives. To check the security of
a protocol, Verifpal is based on the Dolev-Yao model [15].
Verification uses an algorithm that performs transformations
on protocol messages. These transformations come from a set
of mutations that an attacker would be able to perform from the
information that can be gathered by message interception, or
that can be reconstructed. Verifpal then checks if it has found
a contradiction to one of the queries (i.e., properties) specified
in the model. Verifpal allows to relatively easily and efficiently
model a given protocol. However, because of its relative youth,
its performance has not been significantly evaluated yet. The
choice to use this tool was motivated by its simplicity of use

2In this work, we used version 0.27.

and the speed with which one can obtain a working result. A
Verifpal model is divided into three parts.

• First comes the definition of attacker behavior.
• Then comes the protocol model consisting of the princi-

pals (i.e., the participants) and the message exchanges.
• Finally, the query section allows to formulate the prop-

erties to verify.
Attacker behavior. The attacker can be set as passive

or active. A passive attacker can access all exchanged mes-
sages, and will try to recover secrets from these messages.
An active attacker also has the possibility to inject mes-
sages, which corresponds to the Dolev-Yao attacker. Attacker
declaration is performed with attacker[passive] or
attacker[active] at the beginning of the model.

Protocol modeling. This is the core part of a Verifpal
model. The description of a protocol consists of two elements,
namely the declaration of principals, and the transmission
of messages. Each participants and its actions are declared
with the principal keyword, followed by the actor’s name.
The actions on the data performed by the actor can be
described inside brackets after its name. It is possible to use
principal whenever it is necessary for an actor to process
data. Possible data processing can be either the generation
of constants, or the use of cryptographic primitives. The
possibility to declare constants allows the representation of
data in general. It should be noted that Verifpal does not allow
mutable variable declaration, thus once declared, variables
cannot be reassigned. There are two ways to declare a constant.

• A principal can acquire the knowledge of any constant via
the knows statement. If the constant does not already ex-
ist, this declares it. knows is associated with a private
or public qualifier to determine if the constant is
supposed to be considered as known by everyone else.

• The generate function allows a principal to declare
a value generated on the fly. This corresponds to values
such as temporary session keys or random numbers that
are replaced at each iteration of the protocol.

A participant can later reveal a constant to an attacker via the
leak keyword in order to simulate data theft. Regarding crypto-
graphic primitives, they correspond to the basic functions that
allow to describe cryptographic protocols. These functions are
predefined in Verifpal, and are considered as ”perfect”. This
means they represent the theoretical operation of a crypto-
graphic concept, and not any implementation with its possible
limitations. There are many tools among these primitives to
describe as many different protocols as possible. In this article,
only those used in the models are presented, that is: public and
secret key generation, signatures and hash functions. Verifpal
allows the use of equations, which are used to represent
mathematical properties that make it possible to generate
public keys from private keys, or to establish shared secrets.
These equations are presented in the following form for the
generation of public keys: publicKey=GˆprivateKey.
Each key pair allows to perform asymmetric encryption or
to sign messages. Signatures are carried out via primitive



signedm=SIGN(k, m), with k a private key, m the mes-
sage to sign, and signedm the signed message. It is possible
to check this signature with primitive _=SIGNVERIF(Gˆk,
m, signedm)?, which will check that the signed message
signedm corresponds to m signed with private key k. Other
available primitives are one-way functions. They are per-
formed with primitive h=HASH(a,b,...). Result h is easy
to obtain from the given input but this input is impossible
to recover from h. To conclude about primitives, there is a
function that checks the equality of two values. It is presented
in the form _=ASSERT(c1, c2)? where c1 and c2 are
the values to compare.

Once the principals have been declared, and the constants
generated and processed with primitives, the exchanges be-
tween the participants are expressed through messages. Mes-
sages are in the form A->B: m,[k]. In this example A is
sending a message to B that contains values m and k. These can
be constants or the result of the combination of any available
primitives previously calculated in a sender principal. It is
through messages that an attacker will be able to break the
protocol, when it is flawed. In the message example presented
above, constant k is written between brackets. That means that
it is guarded: an active attacker can still read it, but not tamper
with it. Guarded constants are useful to simplify models, and to
consider that the data in question is already pre-authenticated.
Finally, Verifpal offers a system of phases, which makes it
possible to compartmentalize the protocol. This can be used
to avoid state space explosion.

Query section. The last part of a Verifpal model is the query
section. Verifpal models are verified on different properties
that are defined as queries. The queries are expressed inside
the brackets of the queries[] statement. There are four
types of queries that can be checked.

• Confidentiality queries are the simplest. This is equivalent
to asking: ”can the attacker get a certain constant?” It is
expressed in the form confidentiality? m, with m
a secret constant.

• Authentication queries are used to verify that an attacker
cannot modify a message without the receiver notic-
ing. It is formulated as follows: authentication?
Alice->Bob: m. Here, it is the constant m sent to Bob
by Alice that is checked.

• Unlinkability queries are related to voting protocols. They
are used to verify that an attacker is not able to distin-
guish two constants during protocol execution. They are
expressed as unlinkability? m1, m2, with m1 and
m2 the two constants which must be indistinguishable.

• Freshness queries are used to ensure that it is not possible
to perform replay attacks. Their use is beyond the scope
of this paper.

C. Modeling Trust Relationships with Verifpal

As previously explained, Verifpal is a tool capable of
modeling cryptographic protocols in order to check specific
properties. These objectives are very close to the ones we want
to achieve: modeling trust. This section aims at presenting

how Verifpal is used in this work to model trust relationships.
The first step consists in modeling the protocol by sending
constants that correspond to the various messages sent by
the different actors. Each constant sent by message will be
”guarded” according to the trust that a certain actor has
towards the other actor. For instance, if Alice sends something
to her node, Alice trusts that node and the connection to it so
the data will be guarded. This prevents any changes that a real
attacker could not make to the data. When trust between two
parties is not established, the attacker must be able to modify
the data to be able to establish a counterexample if it exists.
These trust relationships are variable depending on the point
of view from which one is placed. From Alice’s point of view,
Bob’s node is untrusted, so messages between Bob’s node and
the SoC should be unguarded. The properties to be checked
can be represented using authentication queries. Indeed, if the
attacker is able to modify unguarded messages without the
protocol actors noticing it, then there is a vulnerability.

V. TRUST EVALUATION

The aim of this section is to describe the model and its
verification based on the rules established in the previous
sections. The modeling of three possible fixes, along with their
drawbacks, is also presented.

A. State of The Art Protocol

The protocol proposed by Islam et al. [2] is presented in
Figure 1. Listing 1 gives an excerpt of the Verifpal script
that models this protocol. The upgrade request (lines 1–
10) and data reception (lines 11–16) phases are shown. The
first message transmission represents the request for SoC
configuration modification and the adequate payment by Bob.
To get this request written into the Blockchain, Bob uses his
own node, which broadcasts it to all other nodes (including
Alice’s node). The actions performed by the Blockchain are
represented at line 8 in the code by a hash operation on all
the constants it has received, namely: the list of available
configurations (previously initialized by Alice), and the state
of the configuration requested by Bob. When the SoC makes
a request to retrieve its configuration state (line 11), it is this
hash that is provided to it, as well as the data it needs to
check it. The check is performed line 15 with the ASSERT
primitive, which compares the hash provided by Bob’s node
to the SoC’s own hash reconstruction. If an attacker is able
to fool the SoC, then this highlights a flaw in the protocol
or in our model. Verifpal will verify this thanks to the
authentication query. This query is used to ensure that an
attacker is not able to modify the content of the message
sent to the SoC. The execution of this Verifpal script gives
the output shown in Figure 2. The execution of this Verifpal
model gives a counterexample. It shows that an attacker is
able to create an alternative version of the Blockchain content
that will considered as valid by the SoC. By extrapolating, it
is possible to conclude that a malicious entity could unlock
any configuration without paying for it. Indeed, the data sent
by Bob is not trustworthy from the SoC’s point of view: the



Figure 2. Trust issue counterexample proposed by Verifpal

SoC access to the Blockchain depends on Bob’s node. The
SoC cannot naively trust Bob’s node to retrieve data from the
Blockchain, because it is possible for that node to falsify the
payment data for a new configuration.

B. Possible Fixes

We have seen that accessing Blockchain data from the SoC
cannot be direct, and should not only depend on a subvertible
node. In order to address this issue, this section presents
possible fixes, all of which have their own limitations.

1) Trust The Node: The simplest fix is to have the SoC trust
the data sent by Bob’s node. In Verifpal, this means modifying
line 12 of Listing 1 into Bob_node -> SoC: [data],
[updtRequestAndPay]. The data is no longer vulnerable
to attacks, and Verifpal can no longer find a counterexample.
The problem with this solution comes from the consequences
of establishing this trust relationship between Bob’s node and
the SoC. For Alice to trust Bob’s node, she must be its owner,
or at least control it. However, in this situation Bob may
be harmed because Alice is able to refuse his configuration
requests or even to scam him. We could also imagine that
Alice and Bob agree to use a node from a trusted third party.
But in this situation, the benefits of decentralization is lost.

2) Add a Contract-like Signature System: One way to allow
the SoC to trust the data received from Bob’s node is to have
Alice countersign Bob’s reconfiguration requests. Figure 3
presents the sequence diagram showing one way to achieve
this. Listing 2 shows the Verifpal code that models the upgrade
request (lines 4–20) and data reception phases (lines 21–28).
With this protocol, when Bob makes a configuration request
via the Blockchain, the payment made to Alice is blocked.
Alice is notified and generates the certificate that unlocks the
configuration. By sending this configuration via Blockchain
the payment can be unlocked (the Blockchain is able to verify
the certificate). Bob is able to retrieve the certificate and can
provide it to the SoC. Finally, the SoC can verify the certificate
and configure itself accordingly.

When verifying this model Verifpal does not find any
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Figure 3. Sequence diagram of the signature based fix

possible attack. The limitations of this approach come from
the fact that Alice must generate certificates. We therefore lose
part of the automation allowed by smart contracts. This implies
that Alice is able to refuse to validate configurations requested
by Bob. Although Alice is not able to steal Bob (i.e., accepting
payment without validating), she can prevent Bob from using
his SoC in the way he wanted to.

3) Make the SoC Verify Blockchain Data: One way to allow
the component to access configurations while not depending
on Alice’s endorsement is to make the SoC have direct access
to the Blockchain as shown in Figure 4. This implies that the
SoC is a node of the Blockchain in its own right. Technically
this approach is hard to achieve. This is because it is necessary
for the component to maintain and verify the Blockchain
itself. However, this requires too much resources in terms
of computing, memory and network [7] for the low-powered
components that SoCs are. In the absence of the ability to
act as a node, partial verification might be feasible. In a
proof of work (PoW) [4] Blockchain like Bitcoin or formerly
Ethereum, it should be possible to verify an affordable number
of blocks. This number should be high enough that the
cost of forging these blocks significantly exceeds the cost of
purchasing the SoC configurations. Modeling data recovery
via such an approach is presented in Listing 3. In this model,
a single block is considered, as a simplification. The request



Listing 1. Excerpt code of the upgrade request and the data reception phase
1 // Upgrade request
2 Bob −> Bob node : [updtRequestAndPay ]
3

4 principal Bob node [ ]
5 Bob node −> Blockchain : [ updtRequestAndPay ]
6

7 principal Blockchain [
8 data = HASH (updtRequestAndPay , chipInfoAndPrice )
9 ]

10 Blockchain −> Bob node : [data ]
11 // Data reception
12 Bob node −> SoC : data , updtRequestAndPay
13

14 principal SoC [
15 _ = ASSERT (data ,HASH (updtRequestAndPay , chipInfoAndPrice ) ) ?
16 ]
17 queries [
18 authentication? Bob node −> SoC : data
19 ]

Listing 2. Verifpal signature-based fix excerpt code.
1 principal Bob [
2 knows p r i v a t e updtRequestAndPay
3 ]
4 // Upgrade request
5 Bob −> Bob node : [updtRequestAndPay ] , [pkAlice ]
6

7 principal Bob node [ ]
8 Bob node −> Blockchain : [updtRequestAndPay ] , [pkAlice ]
9 Blockchain −> Alice node : [updtRequestAndPay ]

10

11 principal A l i c e [
12 g e n e r a t e s certificate
13 signed_certif = SIGN (skAlice , certificate )
14 ]
15 A l i c e −> Blockchain : [signed_certif ] , [certificate ]
16

17 principal Blockchain [
18 _ = SIGNVERIF (pkAlice , certificate , signed_certif , ) ?
19 data = HASH (signed_certif , chipInfoAndPrice )
20 ]
21 // Data reception
22 Blockchain −> Bob node : [data ] , [signed_certif ] , [certificate ]
23 Bob node −> SoC : data , signed_certif , certificate
24

25 principal SoC [
26 _ = SIGNVERIF (pkAlice , certificate , signed_certif ) ?
27 _ = ASSERT (data , HASH (signed_certif , chipInfoAndPrice ) ) ?
28 ]

isn’t present in the listing and lines 1–5 present the addition of
a new block in front of the one that contains the updates. At
data recovery time (lines 6–13), the upper block is guarded
in order to represent the fact that it is not forgeable. The
SoC verifies (lines 11–12), that the block that contains the
update is not forged because it is protected by the new block
that represents the most up-to-date state of the Blockchain.
Verifpal does not find any counterexample with this model,
which means that this protocol could be effective. The main
drawback of this approach is that it can only work with
proof of work Blockchains. However, this type of Blockchain
presents some scalability issues [16], and has a very high
energy consumption [17]. This is why Ethereum recently
switched to proof-of-stake [18].

VI. THREATS TO VALIDITY

There are several points in our approach that may be critical
to the validity of our results. First, the used tool is not perfect.

Indeed, Verifpal is still beta software, and the author does
not guarantee that verification is exhaustive [6]. The models
are nonetheless simple enough to have high confidence in
the abilities of Verifpal to verify them. Second, the Verifpal
models have been simplified to the extreme, and mainly
express the trust relationships. This means that one could
blame them for pointing out the obvious. In the case of the
flaw demonstration in the studied protocol, this can indeed be
the case, as the counterexample can be found without tools.
However, the validity of the proposed fixes is, in this situation,
more difficult and the use of a protocol verification tool is an
improvement. Finally, it is not impossible that the flaw we
have found is simple enough for the authors of the original
protocol to consider it relatively easy to avoid.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we discussed a Blockchain-based protocol
proposed in the literature [2] to enable SoC reconfiguration.



Listing 3. Verifpal Blockchain verification fix excerpt code
1 principal Blockchain [
2 data = HASH (updtRequestAndPay , chipInfoAndPrice )
3 g e n e r a t e s newBlocktransaction
4 newBlock = HASH (data ,newBlocktransaction )
5 ]
6 Blockchain −> Bob node : [data ] , [newBlock ] , [newBlocktransaction ]
7 Bob node−>SoC : data ,updtRequestAndPay , [newBlock ] , [newBlocktransaction ]
8

9 principal SoC [
10 // Upper block verification
11 _ = ASSERT (newBlock , HASH (data ,newBlocktransaction ) ) ?

↪→
12 _ = ASSERT (data ,HASH (updtRequestAndPay , chipInfoAndPrice ) ) ?

↪→
13 ]

Blockchain
SoC

Bob's node
Bob

Blockchain

SoC

Bob's node

Bob

ref
Registration Phase

ref
Upgrade Request Phase

Data Reception Phase

Query latest
config and
N blocks
following

Send config
and blocs
as response

Checks blocks
validity

Figure 4. Sequence diagram of the block verification based fix

We showed, by modeling the protocol with Verifpal [6], that its
current design has a flaw on the SoC data access. We proposed
several possible approaches to fix this flaw, at the cost of
losing some Blockchain properties. Among these solutions,
two stand out. A first one that solves the problem through a
decentralized certificate exchange system. The main problem
is that it requires the approval of both parties regularly, which
implies potential censorship by one of the actors. A possible
solution could be a system of sanctions and/or compensations
to push the actors not to behave in this way. A second solution
proposes to allow the SoC to partially verify the Blockchain.
In this situation, the security guarantees on the validity are
weaker than with direct access to the Blockchain, but if the
forging cost is more important than the component value,

it can be considered as equivalent. The main problem with
this solution is the need to use a proof of work Blockchain,
which is energetically expensive. Our approach has several
limitations. Our models are relatively simple and could be
extended to more accurately model the Blockchain. Moreover,
Verifpal is not directly designed for this kind of verification,
but it is relatively easy to learn and use. Possible extensions
of this work include: the use of a more appropriate modeling
language to represent trust. A more precise version of the
protocol model could also be considered. One of the possible
future works would be the implementation of one of the
proposed fix, for example: the certificate exchange system with
a proof of concept in solidity, the Ethereum dedicated smarts
contracts language.
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