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Sorbonne Université, CNRS, 75005 Paris, France.

∗ daniel.abergel@ens.fr

1

mailto:daniel.abergel@ens.fr


ABSTRACT

We report the observations and the analysis of a pulsed solid state sustained maser

generated by proton spins hyperpolarized by Dynamic Nuclear Polarization (DNP) at

cryogenic temperatures. Similar unconventional behaviour was observed recently [

Weber et al., Phys. Chem. Chem. Phys., 2019,21, 21278-21286], with induction decays

exhibiting multiple asymmetric maser pulses for short time (100ms) and persistent for

tens of second, when the spins are polarized negatively. We present new evidence

of such DNP NMR masers, and shed light on previously observed but unexplained

features of these masers through simulations of the non-linear spin dynamics using

the Bloch-Maxwell-Provotrov (BMP) equations for radiation damping and DNP, and

taking into account the (distant) dipolar field.
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I. INTRODUCTION

A large magnetization produced by a nuclear spin ensemble, when efficiently cou-

pled to the LCR resonant circuit of the the NMR detection probe, can create a coherent

radio frequency (rf) field with significant magnitude. If strong enough, such a field will

efficiently act back on the precessing magnetization to rotate the latter back to its equi-

librium direction, giving rise to a so-called maser pulse. This well-known phenomenon,

improperly termed radiation damping (RD), has been studied decades ago[1, 2] and has

motivated a wealth of methodological work aiming at its suppression or control in solu-

tion NMR.[3–5] Such a magnetization behavior can also be generated in the solid state,

when the spins are brought to a high level of polarization, as has been demonstrated

using dynamic nuclear polarization (DNP) at liquid helium temperatures. Even less

common is the observation of multiple, self-sustained, maser pulses in the solid state. A

few such examples have been observed in the context of DNP at liquid helium[6, 7] or

liquid nitrogen [8] temperatures.

This unusual magnetization dynamics is due to the combination of two competing

effects, namely, the coupling of the nuclear spins to the detection circuit that generates

a radiation feedback field that drives the magnetization back to the +z direction, and

known as radiation damping (RD); and an antagonist process that allows to rebuild

polarization towards a negative value. In this work, the latter is provided by DNP, when

negatively polarized nuclear spins are repolarized by electron spins and possibly also

by other nuclear spin species that are also DNP-hyperpolarized but uncoupled to the

NMR probe.[9] In this case, the latter nuclear spins represent a reservoir of polarization

that is indirectly transferred to the 1H spins through their interactions with the electron

spins.

We have recently observed such sustained masers followed by long lasting tails ex-

tending over several tens of seconds in DNP-hyperpolarized samples.[7] Following pre-

vious analyses of analogous experiments,[6, 9] the experiments were analyzed in clas-

sical terms using the nonlinear Bloch-Maxwell equations to take into account the cou-

pling of the magnetization with the detection circuit.[1, 2] In this analysis, DNP was

assumed to be in the thermal mixing regime,[10, 11] and described by the Provotorov

equations.[12, 13] The combination of both phenomena results in the Bloch-Maxwell-

Provotorov (BMP) equations that allow to shed some light onto the unusual nonlinear
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magnetization dynamics. However, the BMP esquations are deceptively simple, and are

not amenable to an analytical analysis, except in particular cases where analytical so-

lutions of the linearized BMP equations can be derived.[7] Such a study nevertheless

provides insight into the non intuitive behaviour of the magnetization dynamics.

Many aspects of this nonlinear dynamics still remain unclear, and not all of them

can be explained in the simple framework of the Bloch equations, which calls for a

more complete description of the spin system. In particular, in this context, the large

magnetization of such highly polarized samples that entails the presence of large distant

dipolar fields,[14, 15] contributes to the dynamics of the magnetization. This is unusual

in solid state NMR, where dipolar interactions between nuclear spins are of paramount

importance, but have no other effect on the magnetization dynamics other than a fast

decoherence, therefore a large line broadening[16, 17] with line widths of tens of kHz.

In contrast, possible effects of distant, much weaker, dipolar interactions, requires the

persistence of coherent magnetization on a much longer time scale. The effects of the

associated distant dipolar field (DDF) has been studied in the particular context of solid
3He in a seminal paper by Deville et al..[18] In that work, the unusual long transverse

relaxation time allowed to observe such effects. These were subsequently investigated

mainly in solution NMR, where the combination of radiation feedback and the distant

dipolar field have been the subject of a number of studies. Thus, the combination of

both these effects have been shown to produce complex magnetization dynamics, such

as spin turbulence[19] and spectral clustering.[20–22]

In typical solid state NMR samples, short NMR decoherence times prevent the devel-

opment of dynamical effects of the distant dipolar field (DDF), and to our knowledge,

no study of the combined collective effects of radiation feedback and the distant dipo-

lar field have been investigated in this context. Here, we explore the dynamics of a

magnetization subject to these combined effects in the context of DNP-hyperpolarized

spins at liquid helium temperatures, both numerically and experimentally. We provide

evidence for the manifestation of the DDF at long evolution times of the magnetiza-

tion and show that the fine features of the observed maser pulses can be related to the

interplay between the latter and radiation feedback.
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II. EXPERIMENTAL OBSERVATIONS

TEMPOL, because of its broad EPR resonance line typical of nitroxides, efficiently

polarizes nuclear spins with large gyromagnetic ratios, such as 1H, and was therefore

used as the polarizing agent. All the experiments were performed on fully protonated

compounds and with large volume (800µL) samples containing a mixture of 250 µL H2O,

400 µL unlabelled Glycerol, and 50 mM of the TEMPOL radical obtained from a 150 µL

stock solution. DNP experiments were performed in a Bruker prototype DNP polarizer

operating at a magnetic field of 6.7 T and at a temperature of ∼ 1.27 K. Microwave

(µw) irradiation was provided by an ELVA1 source emitting around 94 GHz, coupled to a

Virginia Diodes (VDI) frequency doubler to achieve irradiation at a frequency ν = 188.38

GHz for negative nuclear polarization. The absence of deuteration of the compounds

is unusual for DNP experiments, but turned out to be necessary to obtain sufficient

sample magnetization in our setup, therefore significant radiation feedback. This can

be explained by the moderate quality factor Q ≈ 127 of the probe used for NMR signal

detection at 1.2K. (full width at −3 dB was 2.23 MHz, measured at 285.325 MHz), as

well as the limited power of the µw source used for these experiments (≈ 32 mW) In

all experiments performed in this study, the µwave frequency was set so as to polarize

nuclear spins negatively. For the buildup experiments, nuclear spins were saturated by a

train of hard 90o pulses. The µwave source was subsequently turned on and the sample

was continuously irradiated. Short and low-power pulses (pulse power = 123.5 µW;

pulse length = 8 µs, flip angle = 0.1o) were used to achieve small flip angle read pulses

every 5 seconds for signal buildup monitoring. In the maser experiments, the nuclei

were also initially saturated by the same train of hard rf pulses. Then µwave irradiation

of the electron Zeeman spin transition was turned on for nuclear magnetization buildup,

but no rf monitoring of the signal was used in this case and the system was let to

polarize for ∼ 40 min, a duration sufficient to ensure a stationary state of the nuclear

polarization in these experimental conditions. This period was followed either by a

single, low power, short rf pulse to trigger radiation damping, or by no rf pulse at all.

Radiation damping was thus triggered either by short and low power pulse (8 µs at

1.23 µW ) with a small initial flip angle (0.01o), or by spin or electronic noise. The signal

was subsequently observed, without any further radiofrequency excitation, but in the

presence of continuous µwave irradiation.
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A. DDF in the ”linear regime”: line narrowing and line shifts

A shift of the NMR line proportional to the z component of the magnetization caused

by the presence of a strong dipolar field is a well documented phenomenon and is

observed in NMR of liquids.[15, 23, 24] In the case of hyperpolarized solids the line shift

effect due to the dipolar field is usually rationalized through the theory of moments.[11,

25] Indeed, a direct measurement of the 1H line shift is difficult and inaccurate in these

DNP experiments because the determination of the location of the maximum intensity is

prone to large errors on such broad and possibly non symmetrical lines. [26] Therefore,

the first moment, or center of gravity of the resonance line provides a measure of the

NMR line shift, which is identical to the shift of its maximum in the case of a symmetrical

line shape. It is defined as:

M1 =

∫ ∞

−∞
ωf(ω)dω , (1)

where f(ω) is the normalized NMR lineshape function.
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FIG. 1. Line narrowing and line shifts upon DNP buildup. Left: the resonance line widths are
respectively 16100 Hz, 11300 Hz, 5700 Hz and 4330 Hz from bottom to top. Right: experimental
first moments of the line M1 vs line intensity. Filled symbols denote values extracted from
experimental spectra; the straight line indicates the linear fit of the data (see text for details).

The first moment of the 1H NMR line was computed at different times of the buildup

experiment. However, at low polarization levels, the spectral line has not returned to

baseline at the edges of the spectral window (±50 kHz about the carrier). Therefore,

in order to avoid numerical errors due to the truncation of the tails of the NMR reso-
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nance lines, the first moments M1 were numerically fit to a numerical model. Using a

Lorentzian shape appeared acceptable for such symmetrical lines. And for consistency,

the same procedure was also used for narrower resonance lines obtained for higher

polarizations. The changes of the first moment upon increase of the signal intensity

during a buildup experiment are depicted in Figure 1. The graph clearly shows the lin-

ear dependence of the first moment with the line intensity, therefore the polarization

and the magnetization.

Interpreting the observed changes of M1 computed from the NMR line requires a

model of the magnetic interactions governing the dynamics. In the problem at hand,

these include the spin dipole-dipole interactions and the spin coupling with the probe

through radiation feedback. However, because the spins are on resonance with the

probe, radiation feedback induces no frequency shift.[2] The latter is thus only caused

by the presence of the dipolar field. Consequently, in these experiments, the first mo-

ment can indeed be related to the spin polarization, therefore magnetization, in the

sample. During the buildup experiment that led to the spectra of Fig. 1, the electron

polarization is in a steady state, so that the shift of the resonance line, measured by

the first moment, varies linearly with the nuclear (1H) z magnetization. In the DNP

sample, the shift of the nuclear first moment is due to the local dipolar fields gen-

erated by both the nuclei and the paramagnetic impurities.[11, 27] Thus, M1 is the

sum of the respective contributions of the nuclear and electrons, Mnn
1 = 2

3
µ0Iγ

2
HℏξNhPh

and Mne
1 = µ0SγhγeℏξNePe,[11, 27, 28] where I, S are the nucleus and electron

spins, Ne and Nh their densities, and Ph and Pe their concentrations. The shape fac-

tor ξ = 3
8πNh

∑
i
1−3 cos2 θij

r3ij
can be calculated for different sample shapes, and takes the

simple values (ξ = 0,−1/2 for a sphere or an infinitely long cylinder).[27]

In contrast, the computation of the second moment cannot be related to the line nar-

rowing observed upon DNP polarization (see Fig. 1, where the line width drops from

∼ 16 kHz to ∼ 4300 Hz). Indeed, The expression of the second moment derived in the

literature[25, 29] is based on a dynamical model where the spins are subject to a hamil-

tonian that accounts for the nuclear and electron-nucleus dipole dipole interactions, and

where the dynamics are described by a Liouville equation. However, in the presence of

radiation damping, the quantum description of the process is more involved, as it would

require to consider the complete {spin+field} system, and a dissipative relaxation op-

erator for the field, which leads to a nonlinear Liouville equation for the spins (see for

a discussion Ref. [30]). In this case, the theory of moments derived in the case of spin-
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spin interactions (as in Ref.[25] for instance) does not apply and, to our knowledge, no

similar treatment has been proposed.

The width and shape of the resonance line strongly depend on the radiation feed-

back from the probe that maintains a phase coherence between the spins, so that the

expressions derived in the literature for the second and higher moments for the case of

dipolar interactions do not apply. Thus, the decrease of the line width with increasing

magnetization (Figure 1) is a first manifestation of the qualitative change of dynamics

induced by radiation feedback from the probe upon hyperpolarization, and illustrates

its interference with dipole dipole interactions between nuclear spins.

B. Observation of pulsed masers

A high nuclear polarization state was achieved by irradiating the sample with the µw

source without signal monitoring so as to avoid perturbation of the 1H magnetization

by radiofrequency pulses, during a period of time determined from preparatory buildup

experiments. This buildup time was set to 40 min. Signal acquisition then started and

lasted typically for tens to thousands of seconds, during which the sample was under

continuous µw irradiation. This experimental procedure led to consistent observations

of multiple maser pulses. In the example shown in Figure 2, the induction signals were

obtained on a total duration of 4000 s. In order to handle these large data sets, the

signal was acquired in a pseudo-2D fashion as a series of 200 scans of 20 s each, where

a single rf pulse only was used at the beginning of first scan to trigger radiation damping.

All other induction signals were acquired under µw irradiation, and no further rf pulse

was applied.

As shown in Figures 2(a)-2(b), these signals exhibit long series of maser bursts of ap-

proximately constant intensities and regularly spaced, except for the very first one. This

first maser burst immediately follows the trigger rf pulse, its peak intensity is roughly

∼ 10 times larger and its duration accordingly shorter, than those of the next maser

pulses. This feature is reproducible in all the experiments giving rise to sustained

masers. Besides, and although such sustained maser pulses were easily reproduced,

their duration and the delay between them could vary between different experiments in

an uncontrolled way. A striking feature of the observed sustained masers is the absence

of decay of the maser pulse intensities with time (except for the initial one), suggesting

that the magnetization reaches a pseudo-periodic asymptotic dynamics kind of regime.
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FIG. 2. Sustained maser upon continuous µw irradiation. 2(a),2(b) and 2(c) are the 1st,2nd and
19th, 20 s extracts of a single 200 × 20s induction signal collected as a pseudo-2D experiment.
No rf pulse was applied, and the sustained maser sequence was triggered by noise . Most of the
FIDs show an evenly spaced succession of maser bursts ( 2(a),2(b)). However, on few instances,
spurious maser pulses were also observed (2(c))

However, some irregularities appeared in these experiments, with the appearance of

maser pulses of various widths and at random delays between them.2(c) However, in

all our experiments, these were transient behavours that never led to a chaotic dynam-

ics.

Moreover, it is important to realize that, between the maser pulses, the detected sig-

nal, although weak, is never below the noise in these experiments. This is shown in Fig

3. This suggests that in this sequence, maser bursts are not triggered by noise, but by
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FIG. 3. Enlarged view of the 100 ms region starting at 1 s of the induction signal of Fig.
2(a). The signal remains significantly above the noise level between consecutive maser pulses,
indicating the persistence of magnetization coherence throughout the experiment (the same
vertical scale as in Fig. 2 is used) .

the persistent coherent in-plane magnetization throughout the experiment. It is worth

mentioning the orders of magnitude of the time scales involved in these experiments.

Indeed, not only the maser pulses were separated by delays on the order of the second,

but also their duration were on the order of ∼ 200 ms, as shown in Fig. 4(b). As men-

tioned above, the first maser was shorter, with a total duration of ∼ 50 ms (see Figure

4(a)). Therefore, applying a Fourier transformation to the decaying part of the pulse,

one obtains an narrow line. This is exemplified by the spectrum obtained after pro-

cessing the maser pulse occurring around 2.3 s in Figure 2(a). The obtained line width

is ∼ 10 Hz, a rather unusual value for a non rotating solid (Fig.4(c), and significantly

smaller than the dipolar line width.

C. Some manifestations of the dipolar field

A closer look at these bursts (Figure 4(a) and 4(b)) allows to identify additional

features. Indeed, one notices that the envelope of these maser pulses show an asym-

metric profile, with a faster rise than decay, a characteristics that is not explained by a

simple Bloch-Maxwell equations of the radiation feedback theory.[2, 31] Moreover, the

frequency offset of the signal with respect to the carrier frequency is not constant over
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FIG. 4. 4(a) and 4(b) are the first and second maser bursts of the experiment depicted in Figure
2(a). In 4(a) , the asymmetry of the maser is apparent. In 4(c) the Fourier transform of the
decaying part of the maser in 4(b) shows a line width reduction to ∼ 10 Hz. The spectrum was
obtained after Fourier transformation of 10380 points starting from the top of the maser burst.
No zero filling was used. Induction decay signal was acquired every 20.0 µs.

time, which can be seen by superimposing time traces of different bursts and comparing

the periodicity of the signals. Mere visual inspection of such a superposition, depicted

in Fig. 5 for the first fives maser pulses of Figure 2(a), shows a shorter period during the

first maser pulse than during the next ones. This phenomenon can be ascribed to the

presence of the DDF, the manifestations of which have already been described above,

further investigated by numerical simulations in the following.
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FIG. 5. Resonance frequency shifts due to the dipolar field - Extracts from the first (blue), and
three subsequent maser bursts of the induction signal depicted in 2(a) are shown. Superposition
of the time signals clearly shows that during the same time interval, the first signal exhibits 7 pe-
riods and the subsequent ones only 6 (the first MASER has been scaled down for visualization).

1. Observation of Chirped maser pulses

Further dramatic manifestations of the frequency shift caused by the dipolar field

were also observed. One such example is shown in Fig. 6(a), where the induction signal

has a quasi rectangular profile that lasts several tens of ms, quite remote from the typical

(or approximately) hyperbolic secant maser pulse envelope. These signals exhibited

time-varying frequency, giving rise to a squared chirped maser pulse, and a simultaneous

slight decaying intensity preceding an abrupt return to zero of the signal amplitude.

A time-frequency analysis of this FID based on the short-time Fourier transform[32]

depicted in Fig. 6(c) shows the frequency change with time during the pulse. The

frequency shift between the beginning and the end of the pulse was about 7500 Hz.

The combined resonance and intensity changes are characteristic of the presence of the

DDF,[33] and such induction signals are yet a surprising manifestation of nonlinear

dynamics of the magnetization in the simultaneous presence of a strong dipolar field

and an efficient radiation feedback.

D. Comparison with previous experimental results

Our observations are in line with previous work[7, 9] in many respects, but also

show strikingly specific features. In ref.[7] the induction signals consistently exhibited

a short series of ∼ 2 − 4 ms maser pulses separated by delays of decreasing duration

for ∼ 100 ms, followed by monotonously decaying signal for tens of seconds, without

further maser pulses. No such signals were observed here, where, in contrast, all the

observed sustained maser series were of the kind shown in Figure 2, without damping
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FIG. 6. Unexpected ”square” maser chirped burst observed in a DNP-NMR maser experiments.
The shape of the signal differs dramatically from the typical hyperbolic secant kind of enve-
lope of the maser bursts (6(a)): a ∼ 18 ms induction signal with an only slightly decaying
intensity and ending abruptly was observed. Fig. 6(b) shows an enlarged view of the first
oscillations of the induction signal. The increasing period of oscillation is apparent on the in-
duction signal and evidenced by a time-dependent Fourier transform analysis of the induction
signal (6(c)). Pulse power was 0.123 mW, pulse length 8 µs, for a ∼ 0.1o flip angle. The time-
frequency analysis was performed using the STFT (Short Time Fourier Transform) method [32].
The spectrogram shown was obtained through the Scipy implementation of the STFT method
(scipy.signal.spectrogram).

of the pulse intensities. These discrepancies are quite puzzling, but some significant dif-

ferences between experimental conditions in which experiments were performed here

and in ref. [7] should be pointed out that may help their interpretation. Here, experi-

ments were performed with a probe of moderate Q, so that radiation damping was less

efficient. Therefore, in order to achieve a large enough magnetization, larger volume

samples were used (800 µL instead of 150 µL used in our dissolution-DNP setup) and

only unlabelled (non deuterated) compounds were used for the sample preparation in

order to increase the 1H density. We found that these conditions were necessary to

generate MASER pulses. Besides, the complete absence of 2H nuclei in the sample pre-

cluded repolarization of 1H through a cross-talk mechanism,[34–36] in contrast with

our previous study.[7] Finally, MASER pulses were not observed in the absence of con-

tinuous µw irradiation, which was deemed necessary in all cases in the present study.

This is explained by the absence of deuterium in the sample, which is not coupled to
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the probe but serves as a repolarization reservoir for 1H.[7]

III. THEORETICAL HYPOTHESES AND NUMERICAL MODEL

A. Model

The above suggests that dipolar field effects are effective in the magnetization dy-

namics of the experiments presented here and, therefore, the simple four-dimensional

model of the BMP equations misses some of the observed features of the dynamics.

Providing a detailed and effective model of the collective dynamics of a spin ensemble

subject to the combination of radiation feedback from the probe, dipolar field effects

and DNP is a complex task. However, one is only interested in the dynamics of a clas-

sical magnetization, so that the entire system can be described in terms of interacting

classical magnetic moments. Nevertheless, even with such a drastic simplification, the

complexity of this system requires further simplifications and hypotheses. In solids,

dipole-dipole interactions provide an efficient mechanism for decoherence, leading to

FIDs of a few hundreds of microseconds. This is particularly effective for near neigh-

bor interactions, where dipolar coupling is strong. Alternatively, because the dipolar

interactions fall off relatively fast as ∼ r3, these effects may assumed much weaker

at long distances, where the interaction energies are smaller and the associated time

scales accordingly longer. Therefore, we here assume that the environment of each spin

i is decomposed as follows. A small region centered on i, the dimensions of which

are large with respect to the first neighbor distances but much smaller than the sample

dimensions, is responsible for decoherence and the fast decay of the NMR signal. Alter-

natively, the long distance, and accordingly weaker, interactions with remote spins affect

the magnetization dynamics only on time scales that are much longer than the typical

inverse line width. Therefore, except for a contribution to the resonance frequency, this

DDF is not expected to affect the magnetization dynamics. This may nevertheless be the

case if phase coherence between spins is maintained long enough, as in the presence of

a strong radiation feedback. These considerations lead us to envisage a simplistic model

where all the spins in the system have a common T2 relaxation time (and a γ2 = T−1
2

rate) that represents the effect of the local dipolar interactions. Alternatively, the dipo-

lar contribution from remote spins, an active ingredients of the magnetization dynamics

in this context, is treated explicitly. In this model sample, the magnetic moments are
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sitting on a regularly spaced lattice and the local dipolar field at site i, Bd(ri), due to

the long range dipole dipole interactions can be explicitly computed for all moments in

the model sample as:

Bd(ri) =
µ0

4π

∑
j

3[m(rj).̂rij ]̂rij −m(rj)

|ri − rj|3
(2)

In these equations, m(ri) and m(rj) are the moments at sites i and j, and r̂ij = (ri −

rj)/|ri − rj| is the unit vector joining the positions i and j. Another essential ingredient

of the theoretical setup is the presence of the radiation feedback field from the coil and

acting on the nuclear spins. The coupling of the spins with the circuit induces a feedback

radiofrequency field Brd that obeys Kirchhoff equations.[1, 2] Assuming a homogeneous

rf field in the sample, this radiation feedback field is given by:

Brd =

∫
V

Gm+(r)e
−iψd3r (3)

where V is the sample volume, and the strength of spin-coil coupling is given by G =

µ0
2
ηQ, where η, γH, Q, and µ0 are respectively the filling factor, the gyromagnetic ratio,

the quality factor and the vacuum permeability. The corresponding radiation damping

rate is [2] γrd = µ0
2
γHηQm0, where m0 is the magnitude of the average magnetization

density:

m0 =
1

V

∫
V

m(r)d3r. (4)

The phase factor ψ depends on the impedance of the {spins + coil} circuit and its expres-

sion depends on the electrical model of the setup.[2, 37] When the Larmor frequency

of the spins exactly matches the probe natural frequency, ω0 = ωLC, then ψ = −π/2, and

the radiation feedback field lags the in-plane magnetization by 90o.

The last ingredient of the dynamical model is the DNP hyperpolarization process

of the nuclear spins, which provides the magnetization build-up mechanism. In our

experiments, performed at or below 4 K with TEMPOL radical concentrations above 50

mM, DNP is assumed to be in the thermal mixing regime,[35] a process described by

the Provotorov equations.[12, 13, 38, 39] In this thermal mixing description, electron-

electron and electron-nuclear spin interactions are associated to several coupled energy

reservoirs, each of which characterized by a spin temperature Ti (or its inverse βi =

1/kBTi). Thus, Nuclear Zeeman (NZ) and electron dipole-dipole, non Zeeman, (eeD)
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reservoirs are in thermal contact with each other,[10, 11, 40, 41] and when several

nuclear species are present, each one constitutes a distinct reservoir coupled to the

eeD reservoir, hence indirectly to one another,[34, 35] adding further complexity to the

associated Provotorov rate equations.

We recently proposed a simplified model[7] to empirically capture the effect of DNP

on the collective and macroscopic aspects of the nuclear spin dynamics, and to repro-

duce experimental observations. In this model, the nuclear inverse spin temperature βn

of the 1H Zeeman reservoir relaxes exponentially with time constant γn,ee, to the elec-

tron non-Zeeman spin temperature βee, which also exponentially relaxes (with rate γst)

to a stationary value that represents either its polarization upon µw irradiation, or the

lattice temperature. This toy model of DNP is relevant to the case where 2H nuclei are

present in large quantities in the sample, as these provide a source of polarization to

the 1H nuclei by an indirect ”cross-talk” mechanism through their interaction with the

electron non Zeeman reservoir.[34–36] Thus, the deuterium spins contribute to the re-

polarization of the protons and buildup of the nuclear magnetization, and compensate

at least partially the 1H Zeeman energy lost to the probe through radiation damping. In

this model setup, the z component of the nuclear spin magnetization density at point

r, mz(r, t), therefore tends to the time-varying value mth
oz(r, t), that ”relaxes” to a sta-

tionary value mst
0 (r). Again, the quantity mst

0 (r) pertains either to the stationary value

of the 1H magnetization upon µw irradiation, or to its thermal equilibrium, when µw

irradiation is turned off. This model therefore writes:

dmz(r, t)

dt
(r, t) = −γn,ee

[
mz(r, t)−mth

oz(r, t)
]

(5)

and:
dmth

oz

dt
(r, t) = −γst

[
mth

oz(r, t)−mst
0 (r)

]
(6)

In Eq. 5, mz(r, t) is related to the spin temperature βn of the 1H:

mz(r, t) =
γ2nℏ2NHB0

4kb
βn(t) (7)

where NH is the proton spin density; and βn itself relaxes to the temperature of the eDD
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reservoir βee(t), so that one has:

mth
oz(r, t) =

γ2nℏ2NHB0

4kb
βee(t) (8)

This model, introduced in ref. [7], will be referred to as model (A). In the experiments

discussed in this work, however, only 1H are present, and once polarized, 1H can only be

repolarized from direct interactions with the electrons, under µw irradiation. Therefore,

it is assumed that the nuclear spin magnetization density at point r, mz(r, t), builds up

exponentially towards its stationary value mst
0 (r), taken in this case as the stationary

polarization level obtained by DNP, with the time constant γn,ee:

dmz(r, t)

dt
(r, t) = −γn,ee

[
mz(r, t)−mth

o (r)
]

(9)

This will be referred to as model (B).

Finally, in the classical and empirical model proposed here, the modified Bloch-

Maxwell equations obeyed by the magnetization are:

d

dt
m(r, t) = γm(r, t)× (Brd(t) +Bd(t))− γ2(mx(r, t)x̂+my(r, t)ŷ)

− γn,ee(mz(r, t))−mth
oz(r, t))ẑ (10)

where, for model (B), mth
oz(r, t) is replaced by its constant value mth

o (r). Numerical simu-

lations of Equation 10 allows one to study the time evolution of the total magnetization,

and provide better insight into the largely non intuitive dynamics of this non local and

nonlinear system.

B. Numerical simulations

Numerical simulations aimed at better understanding the possible role of the dipolar

field in the experiments presented here, and also in previous work.[7] In all simulations,

classical moments with magnetization density m(ri), were located at fixed positions on

a grid. In this coarse grained representation of the sample, each moment represents

a ”cluster” of spins undergoing decoherence resulting from the strong, local dipolar

interactions within the cluster, and characterized by a unique relaxation rate γ2 for all

clusters, and given in Equation 10. In addition, the different clusters (i ̸= j) mutually

interact through long-distance dipolar interactions, where the dipolar field at the locus
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of mi and resulting from its interactions with the magnetization moments mj ̸=i in the

sample is written as:

Bd(ri) =
µ0

4π

∑
j ̸=i

1− 3 cos2 θij

2 |rij|3
× [3mz(rj)ẑ −m(rj)] (11)

where, in Equation 11, the secular approximation part of equation 2 for large B0 has

been assumed (see Ref. [15] for a general discussion). The distant dipolar field is a non-

local quantity, making its computation difficult. However, as has been recognized long

ago,[18] Equation 11 has the form of a convolution in the real space, so that its Fourier

transform with respect to the spatial coordinates is local quantity, which is expressed

as a product in the reciprocal space.[18] In terms of the three-dimensional Fourier

transforms Bd(ki) =
∫
d3r exp (iki · r)Bd (ri) and m(ki) =

∫
d3r exp (ik · r)m(ri), of

the dipolar field and magnetization, Bd(ki) is written as:

Bd(ki) =
µ0

6

[
3
(
k̂i · ẑ

)2

− 1

]
× [3mz(ki)ẑ−m(ki)] (12)

This expression can be numerically computed using the strategy introduced by Enss et

al.[33] Numerical simulations were performed on an ensemble of spins located on a

regularly spaced cubic lattice, with the shape of either a thin disk (21 × 21 × 7 grid

points) or an elongated cylinder (11× 11× 21 grid points). In order to avoid numerical

artifacts due to the periodicity induced by the FFT, zero padding was applied.[15, 33]

Satisfactory conditions were obtained by increasing the padding dimensions in test sim-

ulations until no significant changes on computed magnetization trajectories were ob-

served. The retained padding was 100× 100× 150 padding in the x, y, and z dimensions

for all simulations. Finally, because of the singularity at k = 0 this component was com-

puted from the average magnetization.[15, 33] Equations 10 were numerically solved

using explicit Runge-Kutta method of order 8 [42] implemented in Scipy[43] by the

scipy.integrate.solve ivp adaptive stepsize integrator. The simulations shown in this ar-

ticle were run on a on 10-core Dell Precision 5820 desktop computer.

We used an idealized initial state in which all moments mi have the same initial

value (0,−mo sin(ϕ),mo cos(ϕ)), where mo is the magnitude of mi and ϕ is the initial flip

angle, which was set to −1o. The control parameter of the dipolar field effects in our

simulations was the magnetization density parameter mo, which can be related to the

average dipolar field ωdip at equilibrium: ωdip = γHµ0
2m0

3
for a disk-shaped sample and
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ωdip = γHµ0
2m0

6
for a cylinder.[15]

Using these numerical tools, we performed simulations of the magnetization dynam-

ics that follows an initial period of spin DNP-hyperpolarization ending by a small trigger

pulse, for models (A) and (B) above that pertain to different experimental conditions,

namely, DNP samples composed of a mixture of1H/2H, or of protons only.

Sustained masers under µw irradiation - 1H only (model B) In a first round of sim-

ulations we investigated situations described by model (B), an idealization of the ex-

periments presented above. In order to ensure the presence of maser pulses in the

simulations, we set the condition γ2/γrd ≤ 1 at the initial time of the trajectory, when

the magnitude of the total magnetization is largest. The latter was equal to the sta-

tionary hyperpolarized magnetization mst
0 , which was set to a negative value, as only a

negative polarization is expected to lead multiple masers.

In Figure 7, the traces of the magnitude of the transverse magnetization,
√
m2
x(t) +m2

y(t)

(red) and of the mz component of the magnetization are shown. The typical multiple

maser pattern is recovered, and is understood to be due to the presence of two antag-

onist processes, namely, the radiation feedback that rotates the magnetization vector

towards its equilibrium direction, and the (negative) polarization process that builds up

the z component of the magnetization towards its stationary state mst
0 .[9, 44] As shown

by our experiments, one of the ingredients involved in the dynamics is the presence of

a strong enough dipolar field in the sample to affect the evolution of the magnetization.

Therefore, we next investigated these through a ensemble of simulations. In our numer-

ical model, the dynamics can be studied by varying its strength through the (uniform)

spin density mo assigned to each moment on the lattice, the control parameter for this

purpose.

In this series of simulations we assumed continuous a µw irradiation, which is part

of model (B), with γn,ee = 20.0 Hz. Besides, the radiation damping time constant and

the transverse relaxation rate γ2 were set to the fixed value γrd = 2.0 kHz and γ2 = 650

Hz, so that the ratio γrd/γ2 was above unity, the theoretical maser threshold. Note that

changing the value of mo also affects the value of the radiation damping constant, so

keeping γrd fixed in these simulations implied changing the parameter G in Equation 3

accordingly. The value of γn,ee = 20.0 Hz was chosen so as to mimic a buildup process

that occurs on a much longer time scale than individual maser pulses, and therefore

likely not interfering with the latter.

The effect of the DDF on the dynamics is presented in Figure 7, where the simulations
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FIG. 7. Simulations of the effect of the DDF on the magnetization dynamics for Model (B).
The envelope of the transverse magnetization MT =

√
m2
x +m2

y is depicted in red and the

z component in blue. The strength of the dipolar field, measured by the frequency ωdip is
controlled by the magnetization density mo. 7(a), 7(b) γrd/γ2 = 3.10, ωdip/γrd = 44.45, mo =

400.0 A/m 7(c), 7(d) γrd/γ2 = 3.10, ωdip/γrd = 22.22, mo = 200.0 A/m 7(e) 7(f) γrd/γ2 = 3.10,
and the distant dipolar interactions are absent. All simulations were performed with fixed values
of the radiation damping time constant γrd = 2.0k Hz, decay rate γ2 = 650 Hz, and electron-
nuclei equilibration rate γn,ee = 20.0 Hz. Simulations were performed on a disk-shaped sample.

show typical series of sustained maser bursts for different values of the spin density mo.

Interestingly, the envelope of the transverse signal shown in Figure 7(a) qualitatively

reproduces the main features of the experiments, in which an apparent ”steady-state” of

regularly spaced masers was observed. Alternatively, in the simulations performed with

decreasing values ofmo (from top to bottom), the intensities of the bursts monotonously

decay and the transverse magnetization eventually reaches a constant intensity, indicat-

ing a steady-state precession about the z axis. Besides, the details of each maser pulse

envelope are also affected. Indeed, one observes that for large values of mo, each pulse
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FIG. 8. Simulations of the magnetization dynamics for different values of the relaxation rate γ2
and ratio γrd/γ2 (Model B). 8(a), 8(b) γrd/γ2 = 3.10 and γ2 = 650 Hz; 8(c), 8(d) γrd/γ2 = 2.0

and γ2 = 1.0 kHz Simulations were performed for a disk-shaped sample and fixed values of the
radiation damping time constant γrd = 2.0k Hz, of γn,ee = 20.0Hz, and for a ratio ωdip/γrd =

44.45. The envelope of the transverse magnetization is depicted in red and the z component in
blue.

exhibits an asymmetric profile with several pulses within it, whereas in the absence of

any distant dipolar field, this ”bursts within burst” pattern disappears, and the maser

shape recovers the conventional symmetric, hyperbolic secant profile, as expected from

the simpler BMP model used in previous work.[7, 9]

The effect of the decoherence rate γ2 on the maser pulse dynamics was also inves-

tigated, and results are illustrated in Figure 8. Two such simulations, performed at

constant γrd and m0, therefore identical RD and DDF effects, and for different values γ2

leading to γrd/γ2 = 3.1 and γrd/γ2 = 2, are shown. In both cases a continuous series

of sustained maser are obtained. For larger γrd/γ2 ratios, maser pulses are sharper and

have shorter duration, which attests for a more efficient RD for longer transverse relax-

ation, a known and expected feature. This is associated with larger excursions of mz

during the pulses and larger the maximum excursion from its initial value (see Figure

8). Nevertheless, it is noteworthy that in all the simulations, the mz component remains

close to its initial value, within ∼ 79−86% of its minimum, indicating that the trajectory

of the magnetization vector lies in the proximity of the south pole of the Bloch sphere.

Thus, with these parameters, the maser effect is actually rather inefficient, due to too
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fast decoherence. Again, as shown in the previous example, the envelope of the maser

pulse exhibits a clear asymmetry, with the presence of multiple, smaller, maser pulses

within the main pulse. But for the lower γrd/γ2 ratio, this asymmetry vanishes, sug-

gesting that the presence of the faster decoherence prevents the distant dipolar field to

significantly impact on the magnetization dynamics.

Sustained masers - the ”cross-talk” situation We also performed numerical studies

of model (A), which was introduced to mimics the magnetization dynamics of the 1H

nuclear spins in the presence of a 2H reservoir. The presence of this additional nuclear

spin reservoir allows for the repolarization of the former, both with and without µw

irradiation, by an indirect ”cross-talk” mechanism through the electron non Zeemann

reservoir.[34, 35] In this case, only the 1H spins are coupled to the detection circuit of

the spectrometer, to which they lose energy, whereas the likewise hyperpolarized 2H

only exchange energy with other spins. As detailed in ref.[7] and explained above, this

process leads to partial repolarization, i.e., re-cooling, from deuterium spins, together

with a loss of polarization, therefore heating, of the 1H nuclei. Thus, model (A) intro-

duces a simplified description of this process, where the z magnetization mz(r, t) tends

to the value mth
0z(r, t) that corresponds to the deuterium spin temperature, whilst deu-

terium spins itself relaxe to thermal equilibrium, in the absence of µw irradiation (see

Eqs. 5 and 6).

In our simulations, the equilibrium magnetization mst
o was set to mst

o = −0.05 × mmw
oz ,

where mmw
oz represents the 1H stationary (negative) magnetization upon microwave ir-

radiation, and the initial state of the magnetization. Figure 9 shows simulations per-

formed on an disk-shaped model sample. The model parameters were assigned the

following values mo = 200 A/m, γ2 = 650 Hz, γrd = 2 kHz, so that γrd/γ2 = 3.1 and

ωdip/γrd = 22.22. In this model, the rates of return to the lattice temperature of the
2H reservoir is set to γst = 0.030 Hz and the 1H/2H equilibration rate of spin tempera-

tures is γn,ee = 20 Hz (see Eq; 6. During the early stage of the dynamics, the in-plane

magnetization envelope exhibits a succession of a few (∼ 7− 8) maser bursts of decay-

ing intensities with time, until it reaches a long-term evolution of monotonous decay.

Due to the presence of the dipolar field the asymmetry and the ”bursts within burst”

profiles are also reproduced. At longer evolution times the amplitude of the in-plane

magnetization decays monotonously, whereas the z component of the magnetization

returns to its thermal equilibrium value, in the absence of µw irradiation, with the γst

time constant. These simulations thus reproduce satisfactorily the basic features of the
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FIG. 9. Magnetization dynamics for DNP model (A) The envelope of the transverse magnetiza-
tion is depicted in red and the z component in blue. 9(a) 9(b) γrd/γ2 = 3.10, ωdip/γrd = 22.22

γ2 = 650Hz, γrd = 2.0 kHz, γn,ee = 20.0 Hz and γst = 0.030 Hz. Calculations were performed
for a disk-shaped sample (see text for details).

experimental observations described in Reference [7], i.e., asymmetric masers at short

times and long lasting monotonous decay at long times.

IV. DISCUSSION

A. How to interpret the effect of the dipolar field on the dynamics

The work presented here aims at better understanding the complex non linear dy-

namics of a large magnetization subject to efficient radiation damping. To do so, the

dynamical effects of the dipolar field were investigated through numerical simulations

of a simplified model, which provided results that are consistent with several observed

effects, both in this and previous work. In particular, it was found that for strong dipo-

lar fields, the predicted evolution of the magnetization (Figures 7(a)) was similar to

the observed one and depicted in Figures 2(a)-2(b), that is, a ”steady state” of regularly
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spaced maser bursts. It is also noteworthy that in the absence of dipolar field, the model

gives qualitatively the same predictions as the four-dimensional simplified BMP model

introduced in Reference[7]. This transition is illustrated in Figure 7. It is also inter-

esting that we were not able to reproduce the kind of long term evolution either with

the simplified BMP model, or with the present lattice model without DDF. In our view,

these elements strongly suggest that the kind of induction signal observed in this work

attests for the presence of an effective DDF. The noted asymmetry and the ”bursts within

burst” profile are clearly also due to the presence of the DDF. However, the mechanism

through which the dipolar field produces these effects is somewhat unclear. The dipolar

field essentially contributes an average z component that is much larger than its trans-

verse x and y components. The average ⟨ωd,z⟩ = −⟨Bd,z(r)⟩/γ component is depicted in

Figure 10 for a trajectory of model (B). It appears that its time evolution mirrors the Mz

component of the magnetization, and therefore contributes a time-varying precession

frequency to the magnetization. Considering its effect on an isolated burst, one would

expect its effect to be that of a chirp pulse, with a time-varying offset frequency. How-

ever, the local dipolar field Bd(ri) at each site of the sample is not uniform, achieving a

distribution of its z components, therefore of precession frequencies across the sample,

as shown in Figure 10(b). From the dynamical viewpoint, this amounts to the existence

of an inhomogeneity of B0, albeit a time-dependent one. This is interesting, as it points

to an effect that was already invoked in the context of solution NMR, where B0 inhomo-

geneity was shown to lead to such non-decaying sustained maser pulses, an effect not

explained by the Bloch-Maxwell equations.[45]

B. A comment on time scales

The simulations presented in this work qualitatively explain a number of features

of the magnetization dynamics under DNP and radiation feedback conditions. The

models introduced in this work involve a large number of parameters and time scales

(γn,ee, γrd, γst, γ2, shape of the sample and spin density) that control the kind of dynam-

ics that the magnetization undergoes, and exploring the complete parameter space is a

formidable task. We have restricted the study to ranges of parameters that were able

to reproduce experimental observations and, as it turns out, some of them may seem

remote from the experimental ones. Although these values were arbitrary to some ex-

tent, the important point made in our study are the roles played by the relative values
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FIG. 10. Average and standard deviations of the dipolar field (z component). Simulations were
performed for model B, with fixed values of the radiation damping time constants γrd = 2.0

kHz and γn,ee = 20.0 Hz. Simulations were performed on a cylindrical-shaped sample. In

10(a), the envelope of the transverse magnetization MT =
√
m2
x +m2

y is depicted in red and

the z component in blue and the average ⟨ωd,z⟩ in orange. Simulations were performed for
γrd/γ2 = 3.10, ωdip/γrd = 22.22, γ2 = 650Hz. In 10(b) the average ⟨ωd,z⟩ (orange), the standard
deviation of ωd,z (green), and the transverse magnetization are shown (the latter in arbitrary
units).

of the ratios γrd/γ2 and ωdip/γrd: the former determines the maser threshold, whereas

the latter controls the manifestation of DDF effects. Moreover, we have assumed a time

scale separation between γrd, γ2 and ωdip, on the one hand, and on the much slower

rates γn,ee and γst, on the other hand. This corresponds to the much longer polarization

buildup times.

Experimentally, one of the striking facts is that the observed duration of a typical

maser pulse is on the order of ms to tens of ms despite the broad lines (∼ 25 kHz).

A crude analysis of the classical Bloch-Maxwell equations may lead to the erroneous

conclusion that such a large relaxation rate γ2 necessarily implies very narrow maser

bursts. However, this is not necessarily true, as can be understood from the analysis

made by Bloom[31] of radiation damping in the absence of T1 relaxation. Indeed,
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analytical solutions derived there show that the duration of a single maser pulse can

actually be long. This can be seen from the relation between the radiation damping rate

in the presence and in the absence of transverse relaxation, γrd and γ∞rd :[31]

γrd
γ∞rd

=

√(
γ2
γ∞rd

)2

+ 2 cos θ0
γ2
γ∞rd

+ 1 (13)

where θ0 is the initial flip angle. Then, for ratios γ2
γ∞rd

= 1 + ϵ larger but close to unity,

and for flip angles close to π, θ0 = π − h so that cos θ0 = − cosh = 1 − h2

2
to first

order, one sees that the ratio of Equation 13 can be made arbitrarily small, meaning

that γrd ≪ γ∞rd . This is illustrated in Figure11 This allows to explain why, even for very

broad lines such as the ones in our experiments (∼ 25 kHz), for extremely small flip

angles and a radiation damping rate that is almost equal to the line width, maser bursts

lasting tens of ms are observed. In fact, this situation was met experimentally when

monitoring the polarization buildup with small pulses that trigger the DNP-NMR maser

when the growing magnetization approaches the condition γ2 ≈ γrd. And although the

simulations of Figure 11 were performed for the simple situation of a single maser pulse,

they support the non intuitive magnetization dynamics in the more complex situation

where radiation damping and the distant dipolar field are preent.

In our simulations, we have used values of γ2 that are much lower than what the

experimental line widths suggest (∼ 25 kHz). This was imposed by numerical issues

and we were not able to perform simulations with such large γ2 and the required small

flip angles values. However, based on the above discussion, we argue now that this

does not affect the relevance of our calculations that provide insight into these complex

phenomena.

C. Sample shape

Because it is determined by a large nonlinear differential system that, moreover,

depends on many parameters, a complete exploration of the magnetization dynamics

defined by the models of the DNP NMR maser proposed in this work is a formidable

task. Nevertheless, we here illustrate by dynamics simulations the effect of the shape

of the sample on the DDF, and on the magnetization dynamics. We considered the

dynamics of model (A) for a specimen with the shape of a flat disk or an elongated

cylinder. Results are depicted in Figure 12). Simulations were performed with identical
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FIG. 11. Dependence of a single maser time duration on the γ∞rd/γ2 ratio, for a fixed flip angle
θ = 179.999o, in the Bloom model[31]. The curves were obtained from Equations (14) in [31],
with γ2 = 25 kHz. For ratios approaching unity, the duration increases roughly a tenfold.

parameter values to show the pure effect of the sample shape on the dynamics. They

show similar behaviors, with at short times, the series of maser bursts, followed by

a transient stage of sustained precession in the intermediate region, and an evolution

towards thermal equilibrium in the long term, when no significant radiation damping is

present. However, the details of the maser pulses , in particular, are different, and can

be ascribes to the different values of the DDF, therefore of the ωdip/γrd ratios due to the

different shapes of the samples. Nevertheless, as expected, the overall characteristics of

the dynamics are conserved.

V. CONCLUSIONS

In this paper, we have presented an experimental and numerical analysis of a 1H DNP-

NMR maser operating at 1.2 K. The unexpected experimental observations of distant

dipolar field effects in this context can be explained by the presence of an efficient

radiation feedback that leads to a persistent coherence of the magnetization on time

scales of seonds or minutes. An analysis based on a classical model taking into account

radiation feedback from the probe and the presence of a dipolar field, together with

a simplified model for DNP polarization provided sound description of this complex

process.
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FIG. 12. Magnetization dynamics for DNP model (A) computed with γ2 = 650Hz, γrd = 2.0kHz

(γrd/γ2 = 3.10), γn,ee = 151.5Hz and γst = 1.0 Hz, for 12(a) 12(b) an elongated cylinder with
ωdip/γrd = 11.11; and 12(c) 12(d) a disk-shaped sample ωdip/γrd = 22.22.
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D. Kurzbach, Angew. Chem. Int. Ed., 2018, 57, 5171–5175.

[45] D. Abergel, A. Louis-Joseph and J.-Y. Lallemand, Journal of Chemical Physics, 2002, 116,

7073–7080.

30


	Dipolar field effects in a solid-state NMR maser pumped by Dynamic Nuclear Polarization.
	Abstract
	
	Introduction
	Experimental Observations
	DDF in the "linear regime": line narrowing and line shifts
	Observation of pulsed masers
	Some manifestations of the dipolar field
	Observation of Chirped maser pulses

	Comparison with previous experimental results

	Theoretical hypotheses and Numerical model
	Model
	Numerical simulations

	Discussion
	How to interpret the effect of the dipolar field on the dynamics
	A comment on time scales 
	Sample shape 

	Conclusions
	Conflicts of interest
	Acknowledgements
	References


