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Abstract

High frequency, short wavelength acoustic wave generation in fluids, by means of

immersed nanotransducers, is key to applications ranging from the biomedical to the

ICT sector, all the way to investigating fundamental aspects of the mechanics of flu-

ids. In this context, the commonly adopted generation mechanism is the thermophone,

where the nanotransducer serves as a nanoheater for the surrounding fluid and the

acoustic wave is launched by water thermal expansion. Its performance, however, is

severely degraded when reaching up to hypersonic frequencies. We analytically investi-

gate the thermoacoustic response in the frequency domain for the case of a gold nanofilm

transducer in contact with water. We prove that another generation mechanism, the

mechanophone, sets in this critical frequency range, widening the acoustic generation

bandwidth. In the mechanophone it is the nanotransducer thermal expansion that

launches pressure waves in water. We find a threshold frequency discriminating be-

tween these two regimes, which can be tuned by acting on the Kapitza resistance at the

solid-liquid interface. We then show how the mechanophone mechanism can be acti-

vated in the frame of photoacoustic generation with pulsed laser sources. The unveiled

physics bears generality beyond the specific system and explains the acoustic generation

mechanisms in nanofluids.

Introduction

Acoustic wave generation in fluids (both liquids and gases) is a fundamental process for

both sound production systems and noninvasive imaging techniques. Its applications span

across a myriad of fields, ranging from diagnostic/therapy in the biomedical sector, non-

nondestructive testing in disparate industrial settings to submarine signal transmission.1

Since its discovery in 1880,2 the piezoelectric effect played a key role among the several

acoustic generation mechanisms.3–8 Despite the important biomedical and engineering ap-

plications of piezoelectric materials, alternative solutions are being investigated to increase
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the frequency bandwidth (in water, it is limited with both resonant and nonresonant use to

about 50-200MHz,9,10 with some exceptions at 300 MHz11). For instance, a recent method

is based on capacitive micromachined ultrasonic transducers (CMUTs),12 where the acous-

tic wave is generated by the attraction force between the plates of a condenser, resulting

in larger compatibility with silicon technology, and larger bandwidth than the piezoelectric

devices. The bandwidth limitation became a major issue with the advent of nanoresonators,

which sizes, in the few tens of nanometers range, unlocked the gate to acoustic frequencies

in the hypersonic frequency range.13,14

The search for ultra-wide-band acoustic sources, sought for dealing with meso- and nano-

scale applications, led to a renewed interest in the thermophone mechanism. In its simpler

form, the idea is to periodically deliver heat to a sample, i.e. the transducer, in contact with

a fluid. The heat transfer from the transducer to the fluid results in a periodic temperature

variation in the latter, which, through its thermal expansion, generates pressure waves in

the fluid itself. This approach is fully wideband since it does not rely on any resonance

phenomenon. Heat may be delivered to the transducer material in a variety of ways, the

most commonly adopted being driving an electrical current through or shining light on it.

Although the generation mechanism remains the thermophone, this process is often addressed

as thermophone effect when heat is fed electrically, and photophone (or photothermal or

photoacoustic) effect, when heat is fed via a light source. Interestingly, the latter two were

discovered at the same time as the piezoelectric effect and each one developed independently

as an autonomous research field, see for instance Refs. 15–19 and Refs. 20–27 for milestones

results in the history of the thermophone and photophone effects, respectively.

However, till recently, thermoacoustic generation was inefficient because of the lack of

materials with good thermo-mechanical properties. Only lately, with the advent of nan-

otechnology, innovative materials were made available with high thermal conductivity and

low heat capacity,28–31 paving the way to efficient thermophone-based transducers. Without

any pretension of being exhaustive, we mention efficient thermophones based on carbon nan-
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otubes,32–38 aluminum wires,39 gold wires,40 silver wires,41 graphene,42–46 and boron nitride

foams.47,48 Always due to the advent of nanotechnology, today, the thermophone, also in its

photoacoustic realization, makes the object of renewed interest, mainly for its potential in

imaging and therapeutic applications.49–53 In this context, a particular effort is dedicated to

the study of metal nanotransducers, which have proven to be efficient photoacoustic gener-

ators,54 exploiting their high and tunable optical absorption properties,55–57 high contrast

imaging features,58 and biocompatibility.59,60

Early quantitative photo-thermoacoustic models were developed for the efficient devel-

opment of photoacoustic spectroscopy, photoacoustic microscopy, and photoacoustic imag-

ing,61–64 and are the basis of successive developments. In particular, in Ref. 64, the concept

of the piston model was introduced. In this context, a great deal of effort has been devoted

to modeling and improving the thermophone response in the high-frequency range.65–77 The

bottom line is that the penetration length of the thermal wave in the fluid decreases as ω−1/2,

ω being the angular frequency with which heat is delivered to the nanotransducer. Thus,

the capacity to generate an acoustic wave decreases accordingly, and the efficiency of the

thermophone mechanism is severely degraded in the high-frequency regime.

However, propitiously, it was recently suggested that, in this high-frequency regime, a

second generation mechanism intervenes, addressed as mechanophone.78,79 In the thermo-

phone the heat transferred from the solid to the fluid generates compression and expansion

processes in the fluid itself, thus launching acoustic waves in the latter. Differently, in the

mechanophone, it is the heat retained in the solid that causes internal oscillations of stress

and strain that are transmitted to the fluid by pure mechanical transduction, ultimately

launching acoustic waves in the fluid. These aspects were numerically investigated in the

time domain,78,79 but yet lack an exhaustive physical comprehension and a formulation in

analytical terms. The latter is a major impediment towards uncovering the parameters com-

bination ruling the transition from the thermophone to the mechanophone regime. This

drawback ultimately prevents engineering, beyond a trial-and-error approach, efficient ther-
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Figure 1: Au nanotrasducer on water system. The 20 nm thick Au film (yellow, x ∈ [0, L]) is
in contact with a semi-infinite water layer (azure, x ∈ [L,+∞)). The origin of the coordinate
axis, x = 0, is at the Au film’s top surface. The Au film/water interface rests at x = L = 20
nm. Panel (a): free top film surface. Panel (b): clamped top film surface.

moacoustic nanotransducers operating in the high-frequency range.

We here solve the issue, by analyzing the case of a nanometric film transducer heated via

a time-harmonic source (we adopted a 20 nm thick gold film in numerical examples). The

bottom side of the film is in contact with water, the top side is either free or clamped, see

Fig.1. We adopt this simple 1D geometry to investigate the thermophone vs mechanophone

competition in the frequency domain. This approach allows us to formally retrieve the inter-

play of the parameters ruling the thermoacoustic generation in a clear, explicit form. As a

matter of fact, operating with a 1D geometry in the frequency domain yields analytical solu-

tions in relatively simple terms (e.g., exponential rather than Bessel functions, as in the case

of a cylindrical system77). We provide evidence that there is a specific threshold frequency

beyond which the mechanophone becomes more effective than the thermophone. This thresh-

old frequency is strongly dependent on the Kapitza resistance at the nanotransducer-fluid

interface, which can be controlled via interface engineering.80 We then switch to analyzing

the case of a realistic pulsed-excitation scenario. We show that the analytical results, ob-

tained in the frame of the frequency-domain formulation, remain good predictive tools also

for the photoacoustic problem triggered by a pulsed laser source. We investigate the acoustic

response of the system for different values of the laser pulse duration in order to fully explore

the frequency spectrum obtained in the previous analysis. We then uncover the interplay
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between pulse duration and Kapitzka resistance and its effects on thermoacoustic generation.

Theory

We introduce here the thermoacoustic model. We assume a solid layer (the nanotransducer),

extending in the region x ∈ [0, L] and a fluid medium (e.g., water) for x ∈ [L,+∞), see Fig.

1. The balance equations for the fluid in one-dimensional geometry read75,81

1

B0

∂p

∂t
= α0

∂T

∂t
− ∂v

∂x
,

ρ0
∂v

∂t
= −∂p

∂x
+ (λ0 + 2µ0)

∂2v

∂x2
, (1)

ρ0Cp0
∂T

∂t
= κ0

∂2T

∂x2
+ α0T0

∂p

∂t
.

where the pressure p (Pa), the temperature T (K) and the particle velocity v (m/s) are the

variables depending on time t (s) and space x (m). Moreover, ρ0 is the density (kg/m3),

B0 the bulk modulus (Pa) , α0 the coefficient of volumetric expansion (1/K), λ0 and µ0

the first and second viscosity coefficients (Pa·s), Cp0 the specific heat at constant pressure

(J/(kg·K)), T0 the ambient temperature (K) and κ0 the thermal conductivity (W/(m·K)).

All these parameters will be considered as constants in the fluid. The balance equations given

in Eq.(1) represent the conservation laws of mass, momentum, and energy once combined

with the linearized constitutive equations of the material. The linearization is justified in

the present context since thermoacoustic waves are usually represented by small variations

of the relevant quantities around given equilibrium values.

For the solid layer, the balance equations are cast in the same form75,82

1

B1

∂p

∂t
= α1

∂T

∂t
− ∂v

∂x
,

ρ1
∂v

∂t
= −∂p

∂x
+ (λ1 + 2µ1)

∂2v

∂x2
, (2)

ρ1Cp1
∂T

∂t
= κ1

∂2T

∂x2
+ α1T0

∂p

∂t
+ q,
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where the following quantities intervene

B1 =
Bs

1− 4
3

v2T
v2L

, (3)

α1 = αs

(
1− 4

3

v2T
v2L

)
, (4)

Cp1 = Cps

(
1− 4

3

v2T
v2L

Cps − Cvs

Cps

)
, (5)

ρ1 = ρs, (6)

κ1 = κs, (7)

and

vT =

√
µs

ρs
, (8)

vL =

√
λs + 2µs

ρs
, (9)

Bs = λs +
2

3
µs. (10)

For the solid, ρs is the density (kg/m3), Bs the bulk modulus (Pa), αs the coefficient of

volumetric expansion (1/K), λ1 and µ1 the first and second viscosity coefficients (Pa·s), λs

and µs the elastic Lamé constants (Pa), Cps and Cvs the specific heats at constant pressure

and volume respectively (J/(kg·K)) and κs the thermal conductivity (W/(m·K)). The term

q represents the power density (W/m3), applied to the solid material typically via the pho-

tothermal or Joule effect. We pinpoint that, throughout the paper, the quantities referring

to the liquid and nanotransducer are indexed with 0 and 1, respectively.

We make the following assumptions: 1) the viscous behavior of both the fluid and the

solid is neglected, 2) the effect of motion or deformation on heat transfer is neglected within

both the fluid and the solid regions, 3) in the solid layer we assume Cps = Cvs and therefore
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Cp1 = Cps. Hence, the equations for the fluid simplify to

1

B0

∂p

∂t
= α0

∂T

∂t
− ∂v

∂x
,

ρ0
∂v

∂t
= −∂p

∂x
, (11)

ρ0Cp0
∂T

∂t
= κ0

∂2T

∂x2
.

while those of the solid become

1

B1

∂p

∂t
= α1

∂T

∂t
− ∂v

∂x
,

ρ1
∂v

∂t
= −∂p

∂x
, (12)

ρ1Cp1
∂T

∂t
= κ1

∂2T

∂x2
+ q.

These equations represent the starting point of our analysis.

In the present work, viscous attenuation in water is neglected. We emphasize that, as

the frequency of the acoustic wave increases, acoustic attenuation in the fluid becomes more

prominent, therefore at certain frequencies ω (rad/s) of interest in this work, dissipative

effects may not be negligible. We observe that the acoustic wave shows an exponential decay

within the water in contact with the generating layer, described by an acoustic penetration

length Lac scaling as ω−2. The latter reads

Lac =
2C3

0

ω2

1

λ0+2µ0

ρ0
+
(

Cp0

Cv0
− 1

)
κ0

ρ0Cp0

, (13)

where all parameters indexed with 0 refer to water, and C0 =
√
(B0/ρ0)(Cp0/Cv0) is the

water sound velocity. This implies that all the following acoustic results are valid only in

a water layer that does not exceed Lac. This relation can be easily proved by starting

from the exact balance system described in Eq.(1).75 We emphasize that the parameters

characterizing water behavior can be frequency-dependent, and their high-frequency values
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are still an open issue. In particular, the viscosities of water are sensibly frequency-dependent

in the THz regime, and in this range, the fluid behavior turns out to be non-Newtonian.83

Moreover, also at the interface between solid and water, the amplitude and phase of the

progressive and regressive acoustic waves will be modified by viscosity, since the boundary

conditions depend on both the real and imaginary parts of the complex elastic moduli (one

simply has to refer to the phasor counterpart of Eq.(1)). For all these reasons, and to

explain the physics behind the acoustic generation problem by simple and clear solutions,

we neglected viscosity. Nevertheless, we used Eq.(1) (which considers viscosity and also the

effects of mechanical on thermal fields) numerically in some cases and then verified that the

transition between thermophone and mechanophone regimes for increasing frequencies turns

out to be confirmed for typical viscosity values of water.

Thermal behavior of the system

The equations in the previous section were formulated in the time domain. Here, we will

switch to the frequency domain, where we can solve analytically the equations describing

our system. To do so, we assume that the power density is homogeneously delivered to

the solid layer volume (x ∈ [0, L]) with a sinusoidal time-varying behavior of fixed angular

frequency ω: q(t) = qωeiωt. For ease of notation, from now on we will address qω as simply q.

Therefore, we can substitute all physical quantities with the corresponding complex-valued

phasors and, for the heat equations, we obtain

iωρ1Cp1T = κ1
∂2T

∂x2
+ q, x ∈ [0, L], (14)

iωρ0Cp0T = κ0
∂2T

∂x2
, x ∈ [L,+∞). (15)
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As for the boundary conditions, at the solid-fluid interface (x = L) we set84–87

T (L+)− T (L−) = −rJ(L), (16)

−κ1
∂T

∂x
(L−) = −κ0

∂T

∂x
(L+) = J(L), (17)

−k1
∂T

∂x
(0) = J(0) = 0. (18)

The quantity J(x) represents the heat flux defined as J(x) = −κ1
∂T
∂x

in the solid, and

as J(x) = −κ0
∂T
∂x

in the fluid, r (m2·K/W) is thermal boundary resistance, or Kapitza

resistance, between solid and fluid. The temperature exhibits a jump across the interface,

ruled by r, whereas the heat flux remains continuous. The top interface of the solid layer

(x = 0) is considered adiabatic.

The general solution of Eq.(14) for x ∈ [0, L] (nanotransducer) is

T (x) = Aeϑ1x +Be−ϑ1x +
q

iωρ1Cp1

, (19)

where A and B are unknown coefficients and ϑ1 is given by

ϑ1 =

√
2

2

√
ωρ1Cp1

κ1

(1 + i). (20)

On the other hand, the general solution of Eq.(15) for x ∈ [L,+∞) (fluid) is

T (x) = Ceϑ0x +De−ϑ0x, (21)

where C and D are unknown coefficients and ϑ0 is given by

ϑ0 =

√
2

2

√
ωρ0Cp0

κ0

(1 + i). (22)

We set C = 0 since the temperature must be finite for large values of x. We observe that,

while the imaginary part of ϑ0 corresponds to the propagation constant of the thermal wave,
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its real part defines the thermal length given by Lth = 1/ℜe {ϑ0} =
√

2κ0

ωρ0Cp0
,75 i.e. it

identifies the penetration length of the thermal wave into the fluid region. Enforcing the

boundary conditions stated in Eqs.(16), (17) and (18) leads to

A = B = − q

2iωρ1Cp1

× κ0ϑ0

κ0ϑ0 cosh(ϑ1L) + (1 + rκ0ϑ0)κ1ϑ1 sinh(ϑ1L)
, (23)

D =
q

iωρ1Cp1

κ1ϑ1 sinh(ϑ1L)e
ϑ0L

κ0ϑ0 cosh(ϑ1L) + (1 + rκ0ϑ0)κ1ϑ1 sinh(ϑ1L)
. (24)

We can finally write the solutions for the temperature in both regions as follows. In the

fluid, x ∈ [0, L],

T (x) =
q

iωρ1Cp1

(25)

×
[
1− κ0ϑ0 cosh(ϑ1x)

κ0ϑ0 cosh(ϑ1L) + (1 + rκ0ϑ0)κ1ϑ1 sinh(ϑ1L)

]
,

and in the solid, x ∈ [L,+∞),

T (x) =
q

iωρ1Cp1

(26)

× κ1ϑ1 sinh(ϑ1L)e
−ϑ0(x−L)

κ0ϑ0 cosh(ϑ1L) + (1 + rκ0ϑ0)κ1ϑ1 sinh(ϑ1L)
.

We recall that, to reconstruct a spatiotemporal behavior of a function f(x, t), we must use

the complex phasor fω(x) and apply the relation f(x, t) = ℜe {fω(x)eiωt}. In our case, this

procedure can be applied to both the temperature T and the heat flux J , where, for ease of

notation, the subscript ω has been dropped from the phasors.
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Acoustic behavior of the system

In both solid and fluid regions, the equations for pressure and velocity read, in the frequency

domain,

iω

B0,1

p = iωα0,1T − ∂v

∂x
, (27)

iωρ0,1v = −∂p

∂x
, (28)

with subscripts 0 and 1 for the fluid and solid respectively. This system of equations can be

easily rearranged in the more useful form

ω2ρ0,1
B0,1

p+
∂2p

∂x2
= ω2ρ0,1α0,1T, (29)

v = − 1

iωρ0,1

∂p

∂x
. (30)

Once the first equation is solved for the pressure p, the velocity field v can be directly obtained

from the second one. In order to solve the first equation one must consider the temperature

profile pertinent to each region, as obtained in the previous section. We now search for

the general solution of Eq.(29), valid for any profile T (x). We start by the homogeneous

counterpart of Eq.(29),

ω2ρ0,1
B0,1

ph +
∂2ph
∂x2

= 0, (31)

and we directly obtain the solution ph as

ph(x) = Ee−δ0,1x + Feδ0,1x, (32)
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where

δ0,1 = iω

√
ρ0,1
B0,1

, (33)

and where the constants E and F will be determined through the pertinent boundary con-

ditions. These two terms represent the progressive and regressive pressure waves. Regarding

the nonhomogeneous equation,

ω2ρ0,1
B0,1

pnh +
∂2pnh
∂x2

= ω2ρ0,1α0,1T, (34)

by adopting the method of variation of parameters (Lagrange’s method) we can write a

particular solution pnh in the form

pnh(x) = e(x)pe(x) + f(x)pf (x), (35)

where pe(x) = e−δ0,1x and pf (x) = eδ0,1x. We remark that Eq.(35) represents a simple

generalization of Eq.(32) where, however, the coefficients e and f depend on x. Therefore,

following Lagrange theory, the first derivatives of e and f fulfill the following algebraic system

e′(x)pe(x) + f ′(x)pf (x) = 0, (36)

e′(x)p′e(x) + f ′(x)p′f (x) = ω2ρ0,1α0,1T (x), (37)

where we used the compact notation g′(x) = ∂g/∂x for the spatial derivative. This system al-

ways has only one solution since the Wronskian determinant W (x) = pe(x)p
′
f (x)−pf (x)p

′
e(x)

is different from zero, being given by the explicit relation W (x) = 2iω
√
ρ0,1/B0,1. Anyway,
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the solutions can be easily obtained and read

e′(x) = − 1

2i
ωα0,1T (x)

√
ρ0,1B0,1pf (x), (38)

f ′(x) =
1

2i
ωα0,1T (x)

√
ρ0,1B0,1pe(x), (39)

from which we obtain

e(x) = − 1

2i
ωα0,1

√
ρ0,1B0,1

∫
T (x)eδ0,1xdx, (40)

f(x) =
1

2i
ωα0,1

√
ρ0,1B0,1

∫
T (x)e−δ0,1xdx. (41)

Finally, the general solution of Eq.(29), holding on for any temperature profile T (x), can be

obtained as the sum of Eqs.(32) and (35). We eventually obtain

p(x) = ph(x) + pnh(x)

= [E + e(x)] e−δ0,1x + [F + f(x)] eδ0,1x, (42)

where e and f are given in Eqs.(40) and (41) and are functionals of T (x). We can now

specify this general solution for the solid and fluid regions. In the solid region (x ∈ [0, L]),

we use the temperature profile given in Eq.(25) to obtain e(x) and f(x) and, after some

straightforward calculations, we obtain

p(x) = Ee−δ1x + Feδ1x +

√
B1

ρ1

δ1
δ21 − ϑ2

1

α1q

Cp1

[
δ21 − ϑ2

1

δ21

− κ0ϑ0 cosh(ϑ1x)

κ0ϑ0 cosh(ϑ1L) + (1 + rκ0ϑ0)κ1ϑ1 sinh(ϑ1L)

]
, (43)

v(x) =
δ1

iωρ1
Ee−δ1x − δ1

iωρ1
Feδ1x +

√
B1

ρ1

δ1
δ21 − ϑ2

1

α1q

iωρ1Cp1

× κ0ϑ0ϑ1 sinh(ϑ1x)

κ0ϑ0 cosh(ϑ1L) + (1 + rκ0ϑ0)κ1ϑ1 sinh(ϑ1L)
. (44)
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On the other hand, in the fluid region (x ∈ [L,+∞)) we substitute the temperature profile

stated in Eq.(26), obtaining

p(x) = Ge−δ0x +Heδ0x +
ρ0
ρ1

√
B0

ρ0

δ0
δ20 − ϑ2

0

α0q

Cp1

e−ϑ0(x−L)

× κ1ϑ1 sinh(ϑ1L)

κ0ϑ0 cosh(ϑ1L) + (1 + rκ0ϑ0)κ1ϑ1 sinh(ϑ1L)
, (45)

v(x) =
δ0

iωρ0
Ge−δ0x − δ0

iωρ0
Heδ0x

+
1

iωρ1

√
B0

ρ0

δ0
δ20 − ϑ2

0

α0q

Cp1

e−ϑ0(x−L)

× κ1ϑ1ϑ0 sinh(ϑ1L)

κ0ϑ0 cosh(ϑ1L) + (1 + rκ0ϑ0)κ1ϑ1 sinh(ϑ1L)
. (46)

In the fluid phase, the coefficients E and F have been substituted with two new symbols G

and H to properly distinguish the different regions. We impose H = 0 to avoid regressive

waves in the fluid (the only acoustic wave comes from the top side of the system).

As for the boundary conditions at the solid liquid-interface we impose75,81,82

p(L−) = p(L+), (47)

v(L−) = v(L+). (48)

These relations are equivalent to the continuity of normal mechanical stress and displacement.

On the top surface of the nanotransducer (x = 0) we have two possibilities describing either

the free surface (zero-stress) condition

p(0) = 0, (49)

or the clamped surface (zero-displacement) condition

v(0) = 0. (50)
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Enforcing the conditions stated in Eqs.(47) and (48) yields

Ee−δ1L + Feδ1L +

√
B1

ρ1

δ1
δ21 − ϑ2

1

α1q

Cp1

×
[
δ21 − ϑ2

1

δ21
− κ0ϑ0 cosh(ϑ1L)

S

]
= Ge−δ0L +

ρ0
ρ1

√
B0

ρ0

δ0
δ20 − ϑ2

0

α0q

Cp1

κ1ϑ1 sinh(ϑ1L)

S
, (51)

δ1
iωρ1

Ee−δ1L − δ1
iωρ1

Feδ1L

+

√
B1

ρ1

δ1
δ21 − ϑ2

1

α1q
κ0ϑ0ϑ1 sinh(ϑ1L)

iωρ1Cp1S

=
δ0

iωρ0
Ge−δ0L +

√
B0

ρ0

δ0α0q

δ20 − ϑ2
0

κ1ϑ1ϑ0 sinh(ϑ1L)

iωρ1Cp1S
, (52)

where

S = κ0ϑ0 cosh(ϑ1L) + (1 + rκ0ϑ0)κ1ϑ1 sinh(ϑ1L). (53)

The free surface condition for x = 0 leads to

E + F +

√
B1

ρ1

δ1
δ21 − ϑ2

1

α1q

Cp1

[
δ21 − ϑ2

1

δ21
− κ0ϑ0

S

]
= 0, (54)

whereas the clamped surface condition leads to

E − F = 0. (55)

We introduce a binary parameter b such that b = +1 for the free surface condition and b = −1

for the clamped surface condition at x = 0. Hence, the three boundary conditions (two

continuity equations for x = L and one mechanical requirement at x = 0) are conveniently

16



cast as follows

Ee−δ1L + Feδ1L = Ge−δ0L + ξ, (56)

Ee−δ1L − Feδ1L =
δ0ρ1
δ1ρ0

Ge−δ0L + η, (57)

E + bF +
1 + b

2
φ = 0, (58)

where

ξ =
ρ0
ρ1

√
B0

ρ0

δ0
δ20 − ϑ2

0

α0q

Cp1

κ1ϑ1 sinh(ϑ1L)

S
(59)

−

√
B1

ρ1

δ1
δ21 − ϑ2

1

α1q

Cp1

[
δ21 − ϑ2

1

δ21
− κ0ϑ0 cosh(ϑ1L)

S

]
,

η =

√
B0

ρ0

δ0
δ20 − ϑ2

0

α0q
κ1ϑ1ϑ0 sinh(ϑ1L)

δ1Cp1S
(60)

−

√
B1

ρ1

α1q

δ21 − ϑ2
1

κ0ϑ0ϑ1 sinh(ϑ1L)

Cp1S
,

φ =

√
B1

ρ1

δ1
δ21 − ϑ2

1

α1q

Cp1

[
δ21 − ϑ2

1

δ21
− κ0ϑ0

S

]
. (61)

The solution for F can be obtained straightforwardly

F =

δ0ρ1
δ1ρ0

ξ − η +
(

δ0ρ1
δ1ρ0

− 1
)

1+b
2
φe−δ1L

δ0ρ1
δ1ρ0

(eδ1L − be−δ1L) + (eδ1L + be−δ1L)
, (62)

and the other coefficients can be directly calculated through the relations

E = −bF − 1 + b

2
φ, (63)

G = eδ0L
[
F
(
eδ1L − be−δ1L

)
− ξ − 1 + b

2
φe−δ1L

]
. (64)

This concludes the determination of the acoustic response of the system with both stress-free

(b = +1) and zero-displacement (b = −1) conditions at the top surface of the solid layer.
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Two distinct acoustic wave generation phenomena are predicted from the now-developed

model. On the hand, the heat that flows from the solid to the fluid creates compression and

dilatation processes in the latter at the same frequency as the applied power density, therein

driving acoustic waves. This is the so-called thermophone mechanism. On the other hand,

the energy applied to the system also generates an oscillatory strain and stress behavior

within the solid, which can thus act as a piston on the fluid, finally generating an acoustic

wave in the fluid region, addressed as mechanophone mechanism.78,79 In order to clarify the

interplay and magnitude of these two effects across the frequency spectrum, we calculate the

acoustic pressure generated in the two cases by alternatively turning off the thermophone

and the mechanophone effects. To turn off the thermophone, we set α0 = 0, and conversely,

to turn off the mechanophone we set α1 = 0. This choice is justified by the fact that the

total response of the system is given by the sum of the partial response with α0 = 0 and

the partial response with α1 = 0. This is well seen from the mathematical form of the three

coefficients in Eqs.(59), (60) and (61). Indeed, the three coefficients ξ, η, and φ are written

as a linear combination of α0 and α1.

Purely mechanophone acoustic generation mechanism

In this first case, we cancel the thermophone effect by suppressing the thermal expansion in

the fluid: α0 = 0. The mechanophone thus remains the only generation mechanism. The

coefficients entering Eqs.(59), (60) and (61) reduce to

ξ = −

√
B1

ρ1

δ1
δ21 − ϑ2

1

α1q

Cp1

[
δ21 − ϑ2

1

δ21
− κ0ϑ0 cosh(ϑ1L)

S

]
, (65)

η = −

√
B1

ρ1

α1q

δ21 − ϑ2
1

κ0ϑ0ϑ1 sinh(ϑ1L)

Cp1S
, (66)

φ =

√
B1

ρ1

δ1
δ21 − ϑ2

1

α1q

Cp1

[
δ21 − ϑ2

1

δ21
− κ0ϑ0

S

]
. (67)
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By means of these coefficients, we can elaborate the expression for the pressure of the acoustic

wave in the fluid (x > L), obtaining

p(x) = −e−δ0(x−L) (68)

×
η
(
eδ1L − be−δ1L

)
+ (1 + b)φ+ ξ

(
eδ1L + be−δ1L

)√
ρ1B1

ρ0B0
(eδ1L − be−δ1L) + (eδ1L + be−δ1L)

,

Now, we separately analyze the cases with b = +1 (free surface at x = 0) and b = −1

(clamped surface at x = 0). For b = +1, we obtain the following expression for the pressure

intensity

|p| =

∣∣∣∣∣η sinh(δ1L) + φ+ ξ cosh(δ1L)√
ρ1B1

ρ0B0
sinh(δ1L) + cosh(δ1L)

∣∣∣∣∣
=

∣∣∣∣∣ηi sin
(
ω
√

ρ1
B1
L
)
+ ϕ+ ξ cos

(
ω
√

ρ1
B1
L
)

√
ρ1B1

ρ0B0
i sin

(
ω
√

ρ1
B1
L
)
+ cos

(
ω
√

ρ1
B1
L
) ∣∣∣∣∣, (69)

where we used the fact that δ0 is a purely imaginary number. On the other hand, for b = −1,

we obtain

|p| =

∣∣∣∣∣ η cosh(δ1L) + ξ sinh(δ1L)√
ρ1B1

ρ0B0
cosh(δ1L) + sinh(δ1L)

∣∣∣∣∣
=

∣∣∣∣∣ η cos
(
ω
√

ρ1
B1
L
)
+ ξi sin

(
ω
√

ρ1
B1
L
)

√
ρ1B1

ρ0B0
cos

(
ω
√

ρ1
B1
L
)
+ i sin

(
ω
√

ρ1
B1
L
)∣∣∣∣∣. (70)

For small values of the frequency ω, i.e. ω
√

ρ1
B1
L ≪ 1, we expand to second-order the

trigonometric and hyperbolic functions, including those appearing in S, see Eq.(53). Tedious

yet straightforward calculation leads to the following expression for b = +1

|p| ≃ qα1ρ1L
3

2
√

ρ0κ0Cp0

ω3/2, ω ≪ 1

L

√
B1

ρ1
, (71)
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and, for b = −1, to

|p| ≃ qα1L
2

√
ωB0

κ0Cp0

, ω ≪ 1

L

√
B1

ρ1
. (72)

This means that for small values of the frequency, a transducer with a free surface drives a

pressure wave in water scaling with ω3/2, whereas for the clamped surface case the scaling is

ω1/2. Although in the general case |p| depends on the thermal resistance (S depends on r in

previous solutions), for small frequencies this dependence does not appear in Eqs.(71) and

(72). These approximations, for both free and clamped generating layers, will prove useful to

find the threshold frequency separating the thermophone and mechanophone contributions.

To conclude, we point out that the mechanophone behavior could be defined by imposing

the condition r → ∞. Indeed, so doing we prevent heat transfer from the solid to the fluid,

eliminating the thermophone effect. In this case, however, we obtain the highest efficiency

of the mechanophone mechanism. In fact, if α0 = 0 but r remains finite, we have no

thermophone effect but we still have some heat entering the fluid, reducing the energy at

disposal for driving mechanical stress oscillations in the solid. Instead, when the resistance r

becomes infinite, we eliminate the thermophone effect but we conserve all the energy in the

solid thus maximizing its mechanical oscillations, which in turn drive, by the piston effect,

the acoustic wave in the fluid. This analysis is conducted in detail in the Appendix, and is

important both for a better understanding of the system’s energetics and to get a clear view

of the resonance phenomena observed at high frequencies.

Purely thermophone acoustic generation mechanism

In this second case, we suppress the mechanophone effect by suppressing the thermal expan-

sion in the solid: α1 = 0. The thermophone thus remains the only generation mechanism.
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The coefficients entering Eqs.(59), (60) and (61) reduce to

ξ =
ρ0
ρ1

√
B0

ρ0

δ0
δ20 − ϑ2

0

α0q

Cp1

κ1ϑ1 sinh(ϑ1L)

S
, (73)

η =

√
B0

ρ0

δ0
δ20 − ϑ2

0

α0q
κ1ϑ1ϑ0 sinh(ϑ1L)

δ1Cp1S
, (74)

φ = 0. (75)

We obtain the expression for the pressure of the acoustic wave in the fluid (x > L) as

p(x) = −e−δ0(x−L)

√
B0

ρ0

δ0
δ20 − ϑ2

0

α0q

Cp1

κ1ϑ1 sinh(ϑ1L)

S

×
θ0
iω

B1

ρ1

(
eδ1L − be−δ1L

)
+ ρ0

ρ1

(
eδ1L + be−δ1L

)√
ρ1B1

ρ0B0
(eδ1L − be−δ1L) + (eδ1L + be−δ1L)

. (76)

In order to further simplify this expression, since for the thermophone mechanism the de-

formation of the film is not relevant, we can add the additional assumption that B1 → ∞,

which cancels wave propagation in the film and thus all resonance phenomena. This leads

to

p(x) = −e−δ0(x−L) B0δ0
δ20 − ϑ2

0

α0ϑ0q

iωρ1Cp1

κ1ϑ1 sinh(ϑ1L)

S
, (77)

where the parameter b has obviously disappeared since the boundary condition for x = 0 no

longer has any effect on the undeformable solid. Summarising, Eq.(77) is exact under the

hypotheses α1 = 0 and B1 → ∞. The intensity of the pressure of the acoustic wave is then

given by

|p| = α0ρ0q

ρ1Cp1

√
ωCp0B0

κ0

∣∣∣∣∣ 1

δ20 − ϑ2
0

κ1ϑ1 sinh(ϑ1L)

S

∣∣∣∣∣. (78)

We analyzed, in the case of the mechanophone mechanism, an approximation of the pres-

sure generated for low frequencies since this mechanism is less effective in that portion of the
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spectrum, see Eq.(71) or Eq.(94) for b = +1 and Eq.(72) or Eq.(98) for b = −1. Assuming

that, conversely, the thermophone mechanism is less effective for high frequencies,78,79 we now

develop a valid approximation for intermediate and/or high frequencies. The two approxi-

mations will allow us to determine a threshold frequency beyond which the mechanophone

mechanism will be more effective than the thermophone. With this aim in mind, we now turn

the attention to the term in absolute value in Eq.78. For large enough frequencies, the ratio

κ1ϑ1 sinh(ϑ1L)/S can be approximated by κ1ϑ1/[κ0ϑ0+(1+rκ0ϑ0)κ1ϑ1] since 2 sinh(ϑ1L) ≃

2 cosh(ϑ1L) ≃ exp(ϑ1L) for |ϑ1L| ≫ 1, that is for ω → ∞. Moreover, if ℜe {rκ0ϑ0} ≫ 1

and ℜe {rκ1ϑ1} ≫ 1, we obtain the simpler relation κ1ϑ1 sinh(ϑ1L)/S ≃ 1/(rκ0ϑ0). These

two further assumptions correspond to ω ≫ 2/(r2ρ0κ0Cp0) and ω ≫ 2/(r2ρ1κ1Cp1), where

typically 2/(r2ρ1κ1Cp1) < 2/(r2ρ0κ0Cp0) and therefore only the first condition is sufficient

to justify the approximation. This is especially true if we take gold for the solid film and

water for the liquid, and if we work in the frequency range of interest for real case sce-

narios (see the next Section for numerical examples). In addition, it is easy to prove that

|1/(δ20 − ϑ2
0)| ≃ κ0/(ωρ0Cp0) for ω ≪ B0Cp0/κ0. Summing up, these approximations can be

applied to Eq.(78) eventually obtaining

|p| =
√
B0ρ0

ρ0Cp0ρ1Cp1

α0q

ωr
,

2

r2ρ0κ0Cp0

≪ ω ≪ B0Cp0

κ0

. (79)

This result shows the degradation of the thermophone effect for increasing ω within the

central frequency range, described by a scaling of the pressure intensity ∼ 1/ω. For even

larger frequency values it is easily seen that the scaling shifts to a faster 1/ω2, a fact that,

however interesting, is not relevant to the present analysis.

We remark that for r → 0, the fraction κ1ϑ1 sinh(ϑ1L)/S approximate to κ1ϑ1/[κ0ϑ0 +

(1 + rκ0ϑ0)κ1ϑ1] but the inequalities ℜe {rκ0ϑ0} ≫ 1 and ℜe {rκ0ϑ0} ≫ 1 no longer hold.
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Figure 2: Water pressure intensity frequency spectrum for the case of gold free film sur-
face at x = 0 (b = +1) and r = 3 × 10−8 m2K/W. The total pressure (Eq.(45), black
curve) is compared to the sole mechanophone contribution (Eq.(69), blue curve) and sole
thermophone contribution (Eq.(76), red curve). Moreover, the low-frequency approximation
of the sole mechanophone response (Eq.(71), blue dashed line) and the high-frequency ap-
proximation of the sole thermophone response (Eq.(79), red dashed line) are reported. The
intersection of the two approximated curves identifies the threshold frequency beyond which
the mechanophone mechanism becomes predominant.

Then, from Eq.(78), the pressure intensity can be approximated by

|p| =
α0q

ρ1Cp1

√
k0B0

ωCp0

×
√

ρ1Cp1κ1

|
√

ρ0Cp0κ0 +
√
ρ1Cp1κ1(1 + rκ0ϑ0)|

, (80)

where we have eliminated the singularity for r = 0 exhibited by Eq.(79). In particular, for

r = 0 (perfect thermophone condition), the approximation reads:

|p| = α0q

ρ1Cp1

√
k0B0

ωCp0

√
ρ1Cp1κ1√

ρ0Cp0κ0 +
√

ρ1Cp1κ1

, (81)

which will be used to prove that also for r = 0, the mechanophone effect can still prevail over
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Figure 3: Water pressure intensity frequency spectrum for the case of gold clamped film
surface at x = 0 (b = −1) and r = 3 × 10−8 m2K/W. The total pressure (Eq.(45), black
curve) is compared to the sole mechanophone contribution (Eq.(70), blue curve) and sole
thermophone contribution (Eq.(76), red curve). Moreover, the low-frequency approximation
of the sole mechanophone response (Eq.(72), blue dashed line) and the high-frequency ap-
proximation of the sole thermophone response (Eq.(79), red dashed line) are reported. The
intersection of the two curves from the approximations identifies the threshold frequency
beyond which the mechanophone mechanism becomes predominant.

the thermophone at high enough frequencies. We remark that, for r = 0, the degradation

of the thermophone efficiency scales as 1/
√
ω, see Eq.(81), whereas it scales as 1/ω for suffi-

ciently large values of r, see Eq.(79). We thus conclude that increasing the Kapitza resistance

from zero to a sufficiently high value not only degrades the thermoacoustic performance but

also changes the shape of the pressure wave frequency dependence.

Results & Discussion

We compare here the magnitude of mechanophone and thermophone mechanisms by identi-

fying the threshold frequency corresponding to the predominance of one of the two effects.

Moreover, we discuss a pulsed excitation scenario within a time-domain perspective.
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Relative magnitude of mechanophone and thermophone mechanisms

For the sake of calculations, we contextualize the previous results for the case of a gold film,

L = 20 nm, in contact with water. We take the following material-dependent parameters:

ρ0 = 103 kg/m3, B0 = 2.15 × 109 Pa, α0 = 3.03 × 10−4 1/K, Cp0 = 4.4 × 103 J/(kg·K),

κ0 = 6.07 × 10−1 W/(m·K) for water and ρs = 19.32 × 103 kg/m3, µs = 27 × 109 Pa,

λs = 160 × 109 Pa, αs = 42 × 10−6 1/K, Cps = 130 J/(kg·K), κs = 310 W/(m·K) for gold.

These parameters can be found in the literature, for example in Refs. 55,88,89. The 20 nm

thick gold film, for the clamped surface case, can be deposited over a rigid substrate made

out of a material with an acoustic impedance higher than Au. This can be achieved via

plasma-enhanced chemical vapor deposition (PECVD) or other sputtering techniques. This

sample may then be covered/immersed in water. On the other hand, the free surface case can

be realized by chemically synthesizing gold nanoplatelets and drop casting them on the water

surface.90–92 Although these methods may change the parameters slightly from those of bulk

material, we use standard values here, as the results only serve to delineate the underlying

physics. Regarding the thermal boundary resistance, we assume r = 3 × 10−8 m2K/W, a

realistic value for the gold/water interface.93 In the following, we also consider the ideal case

with zero thermal resistance, and a case with a larger resistance r = 3× 10−7 m2K/W, the

latter can be possibly achieved through interface functionalization,80 e.g. with a graphene

coating.94 Figures 2 and 3 report the frequency spectrum of the pressure generated in water

for the case of the free gold film surface (i.e. b = +1) and for that of a clamped surface

(i.e. b = −1), respectively. The curves are normalized with respect to the power density q

absorbed by the gold film. These spectra show that the thermophone is predominant at low

frequencies, while the mechanophone prevails at high frequencies. Indeed, in these figures,

we compare the complete solution for the total pressure (α0 ̸= 0 and α1 ̸= 0, black line)

given by Eq.(45) with the purely mechanophone solution (α0 = 0, blue line) given in Eq.(69)

(with b = +1) or Eq.(70) (with b = −1) and the purely thermophone solution (α1 = 0, red

line) given in Eq.(76) (with b = ±1). The thermophone contribution clearly overlaps the
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total pressure for low values of ω, while for large ω values the mechanophone becomes the

only significant contribution, overlapping the total pressure. In both figures, in the high-

frequency range, the mechanophone effect and, as a consequence, the total pressure, show

very prominent upward and downward peaks. These are due to the activation of the film’s

vibrational modes, resulting in resonances (upward peaks) and anti-resonances (downward

peaks). The peaks, in Fig.2, correspond to the acoustic eigenfrequencies of a free-standing

Au film: ωn = πvLn/L, where vL =
√

B1

ρ1
=

√
λs+2µs

ρs
is the sound longitudinal velocity,

see Eq.(9), and n=1,2,3,...etc. Specifically, the resonances (upward peaks) frequencies corre-

spond to the eigenmodes with odd n, whereas antiresonances (downward peaks) correspond

to the eigenmodes with even n (see Appendix). In Fig.2, we see both resonance and an-

tiresonance (in the purely mechanophone and total responses). This is due to the fact that

the source term q in the last line of Eq.(2) is spatially homogeneous, ultimately resulting

in a spatially homogeneous mechanical excitation of the film. We remark that for thicker

films, the heating can be inhomogeneous, and so this behavior can be significantly altered.95

Also the purely thermophone case presents downward peaks at the same odd n frequencies,

despite the nanofilm thermal expansion being zero in this case. This is due to the expansion

and compression of water which, in the thermophone effect, pushes against the nanofilm acti-

vating its eigenfrequencies, specularly to what happens during the mechanophone effect. We

emphasize that we only observe antiresonances because mechanical energy can only transit

from the fluid to the solid, hence leading to a pressure reduction in the liquid itself. We also

remark that the formula for the high-frequency thermophone approximation, see Eq.(79),

doesn’t show any peak. This is due to the gold bulk modulus approximation B1 → ∞,

which we implemented for extracting Eq.(79), which implies an incompressible nanofilm.

Finally, notice that the pressure presents different resonance frequencies in the case of a

free film surface (as in Fig.2) and in that of the clamped film surface (as in Fig.3). This is

consistent with the free-free and free-clamped film’s breathing modes96 (see Appendix).

Threshold frequency. Returning to the thermophone and mechanophone contributions,
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the curves corresponding to these two effects intersect for a given frequency, corresponding

to the threshold for the predominance of one of the two effects. Nonetheless, from the

mathematical point of view, it is challenging to find such a threshold frequency by looking for

intersections between the two curves related to mechanophone (blue curve) and thermophone

(red curve) effects. However, it turns out to be rather easy to find the intersection between

the approximated pressure curves, plotted in Figs.2 and 3, for both the mechanophone (blue

dashed curve) and thermophone (red dashed curve) mechanisms, respectively. To this end,

for the free surface case (b = +1, Fig.2), we calculate the intersection point between the

low frequency (LF) approximation of the mechanophone, given in Eq.(71), and the high

frequency (HF) approximation of the thermophone, in Eq.(79). The frequency threshold

turns out to be:

ω∗(b = +1) =

[
2
α0

α1

1

rρ21Cp1L3

√
B0κ0

Cp0

]2/5

. (82)

It represents the frequency beyond which the mechanophone prevails for the case of a free

surface at x = 0, as can be appreciated from Fig.2. For the clamped surface case (b = −1,

Fig.3), we follow the same reasoning, intersecting the curves pertaining to the low frequency

(LF) approximation of the mechanophone response Eq.(72) with that of the high frequency

(HF) approximation of the thermophone response Eq.(79). For the frequency threshold we

obtain:

ω∗(b = −1) =

[
α0

α1

1

rρ1Cp1L2

√
κ0

ρ0Cp0

]2/3
, (83)

that represents the frequency beyond which the mechanophone prevails for the case of a

clamped surface at x = 0, as can be appreciated from Fig.3.

Eqs.(82) and (83) for the threshold frequencies are valid only for finite values of the

thermal boundary resistance. In the case of r → 0, the threshold values are obtained by

adopting Eq.(80) instead of Eq.(79). We remark that a threshold frequency, beyond which
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the mechanophone is more efficient than the thermophone, exists even for the limiting case

of r = 0. Also for this case, we consider both the cases b = +1 and b = −1. When b = +1

(free surface at x = 0), we intersect the curves given by Eq.(81) and Eq.(71), obtaining:

ω∗(b = +1, r = 0) =

[
2
α0

α1

1

ρ21Cp1L3
κ0

√
B0ρ0

×
√
ρ1Cp1κ1√

ρ0Cp0κ0 +
√

ρ1Cp1κ1

]1/2

. (84)

On the other hand, when b = −1 (clamped surface at x = 0), we intersect the curves given

by Eq.(81) and Eq.(72), this time yielding

ω∗(b = −1, r = 0) =
α0

α1

1

ρ1Cp1L2
κ0

×
√
ρ1Cp1κ1√

ρ0Cp0κ0 +
√

ρ1Cp1κ1

. (85)

These results show that even in the most unfavorable conditions for the mechanophone,

i.e. where the thermal boundary resistance is negligible, there still exists a threshold fre-

quency, beyond which the mechanophone mechanism turns out to be predominant over the

thermophone.

We now give an intuitive physical interpretation of these results. To this end, Eqs. (82)

and (83) are conveniently cast in the forms:

ω∗(b = +1) =

[
α0

α1

1

τ1τ
1/2
0

2

L

ρ0
ρ1

√
B0

ρ0

]2/5

, (86)

and

ω∗(b = −1) =

[
α0

α1

1

τ1τ
1/2
0

]2/3

, (87)

with τ1 = rρ1Cp1L, τ0 = r0ρ0Cp0L and r0 = (κ0/L)
−1. The quantity τ1 yields an estimate of
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the film’s cooling time. Specifically, the temperature time evolution of a hot film’s cooling

follows a single exponential decay with a time constant τ1, provided that the Biot number

satisfies Bi = (L/κ1) /r ≪ 1, and the surrounding environment (water) remains isothermal

during the film’s cooling process. Similarly, τ0 is the exponential cooling time of a warm

water slab of thickness L, i.e. with the same dimensions as the Au film, in contact, on

one side, with a colder isothermal water environment. In the latter scheme, (i) the water’s

slab temperature is assumed spatially homogeneous during the cooling process, and (ii)

the Fourier equation throughout the slab is substituted by a Kapitza resistance boundary

condition at the interface between the warm water slab and the cold isothermal water in

contact with it. The introduced Kapitza resistance is therefore r0 = (κ/L)−1. The cooling

time of a slab is the same as the warming time of the same slab in contact with an isothermal

hot reservoir; with this respect, the situation may be seen as very similar to the charging

and discharging dynamics of a capacitor in an electrical circuit. It is thus convenient to look

at the system as a gold film in contact with a water slab of the same thickness under the

above-mentioned lumped-model assumptions.

Within this lumped-elements viewpoint, the physics ruling ω∗(b = ±1) stems out rather

intuitively. The ratio α0/α1 implies that the thermophone dominates for all frequencies, i.e.

ω∗(b = ±1) → ∞, if the thermal expansion of the liquid is much greater than that of the film.

Vice-versa, the mechanophone effect always dominates, i.e. ω∗(b = ±1) → 0, if the thermal

expansion of the film far exceeds that of the liquid. Let’s now comment on the physics

behind the fact that ω∗(b = ±1) is a monotonously decreasing function of τ1 and τ0. For the

sake of clarity, we address limiting case scenarios. As for τ1, in a situation where the metal

film is thermally decoupled from the liquid (i.e. r → ∞), the film’s cooling time τ1 → ∞,

hence Eqs.(86) and (87) show that the mechanophone is the dominant contributing term at

all frequencies. This is consistent with the following intuitive physical picture: heat transfer

to the liquid is here impeded, hence water expansion cannot effectively occur and only the

mechanophone contributes to generating the acoustic wave in water. On the contrary, when
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Figure 4: Effect of the thermal boundary resistance on the pressure intensity frequency
spectrum with film surface free at x = 0 (b = +1). The physical parameters and color codes
are the same as for the curves in Figures 2 and 3, except the values of r, which are shown
in the figure. The approximated high-frequency response of the thermophone with r = 0 is
obtained from Eq.(81). The thermophone response scales as ∼ 1/ω for r > 0, and as 1/

√
ω

for r = 0.

the thermal coupling between the metal film and the liquid approaches the perfect case (i.e.

r → 0), the film’s cooling time τ1 → 0, hence Eqs.(86) and (87) show that the thermophone

is the dominant effect at all frequencies. In such a scenario, heat transfer to the liquid

is maximum and the mechanophone contribution is expected to diminish. As for τ0, in a

situation where the liquid slab heating time τ0 → ∞ (for instance because of a very low

liquid thermal diffusivity D0 = κ0/(ρ0Cp0)), Eqs.(86) and (87) show that the mechanophone

dominates at all frequencies. This is consistent with the fact that, in such conditions, the

water’s slab temperature remains constant, hence water expansion cannot take place. The

contrary holds when τ0 → 0 (very high liquid thermal diffusivity).

Noticeably, only ω∗(b = +1) is a monotonously increasing function of the liquid bulk

modulus B0, whereas ω∗(b = −1) does not depend on it. These results may be intuitively

grasped as follows. The metallic film undergoes a thermal expansion ∆L. For b = −1

(clamped surface), the metallic film has zero displacement at its top surface (x = 0), hence
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Figure 5: Effect of the thermal boundary resistance on the pressure intensity frequency
spectrum with film surface clamped at x = 0 (b = −1). The physical parameters and color
codes are the same as for the curves in Figures 2 and 3, except the values of r, which are
shown in the figure. The approximated high-frequency response of the thermophone with
r = 0 is obtained from Eq.(81). The thermophone response scales as ∼ 1/ω for r > 0, and
as 1/

√
ω for r = 0.

the maximum displacement, ∆L, occurs at the film-liquid boundary (x = L). Continuity

of the displacement field thus leads to the same expansion on the liquid side of the bound-

ary regardless of B0 (we recall that the results are obtained under the constraint that the

thermal response affects the mechanical one but not vice-versa: expansion does not imply

a temperature change). Otherwise stated, the piston effect, provided by the film pressing

on the liquid, is independent of B0, and so is the frequency threshold. On the contrary,

for b = +1, at x = 0 the film surface is free. This implies that the film thermal expansion

leads to a non-zero displacement both at x = 0 and x = L. Let’s start with the limit case

B0 → 0: the metallic film would be free-standing and the displacement field would have the

same absolute value, ∆L/2, but an opposite sign at the two boundaries. As B0 increases,

the displacement absolute value diminishes at x = L and augments at x = 0, till it reaches

the value ∆L at x = 0 and a null value at the x = L interface for B0 → ∞. Continuity

of the displacement field across the x = L interface implies that the expansion of the liq-
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uid in contact with the interface decreases with continuity from ∆L/2 to zero as B0 grows

from zero to large values. Therefore, the mechanophone contribution (piston effect) is a

monotonously decreasing function of B0. This explains why ω∗(b = +1) → ∞ as B0 → ∞,

i.e. the mechanophone contribution is not present for high enough values of B0. Similar

arguments can also be developed for Eqs.(84) and (85).

A comparison of different thermal boundary resistances values in the thermophone vs

mechanophone competition, in the frequency domain, is reported in Figs.4 and 5, where

we show the pressure vs frequency curve (same colors as for Figs.2 and 3) for r = 0 and

3× 10−7 m2K/W. Fig.4 and Fig.5 show results for the free (b = +1) and clamped (b = −1)

surfaces, respectively. In both cases, as the thermal boundary resistance decreases, the

thermophone contribution is effective over a broader frequency range, with the threshold

frequency, above which the mechanophone prevails, shifting towards higher frequencies. From

the point of view of applications, therefore, the mechanophone effect at high frequencies is

particularly important in systems where the thermal boundary resistance is sufficiently high.

In addition, in Figs.4 and 5, we can appreciate that the degradation of the efficiency of

the thermophone mechanism follows a 1/ω law when r is sufficiently high, in accordance

with Eq.(79), and instead scales as 1/
√
ω when r is exactly zero, as predicted from Eq.(81).

However, despite the higher slope of degradation of the thermophone mechanism in the

case of r > 0, mechanophone compensation extends the efficiency of the total pressure to a

significantly wider frequency range.

We now compare some of our asymptotic behaviors of the sound pressure level, for low

and high values of ω, with results from the literature. We consider the free film surface

results (as shown, e.g., in Fig.4), and we can deduce with a thorough analysis that, in the

low-frequency range, the thermophone pressure always falls between two asymptotic bounds

scaling as
√
ω and ω, the actual behavior depending on the thermal parameters and geometry

of the system.65,66 Indeed, the ideal behavior, scaling as ω in the low-frequency range, is

considered as the ultimate limit for the thermoacoustic efficiency.29,42,69 The high-frequency
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thermophone regime (whose scaling law varies from 1/ω to 1/
√
ω, depending on r) is less

studied since it is not useful for most applications. However, the thermophone asymptotic

behavior for large ω can be found, e.g., in Refs. 75,77, where the near-field sound pressure

level is investigated in a large spectrum. Unfortunately, no comparison is possible for the

mechanophone case, for each thermal boundary resistance value. To the authors’ knowledge,

the asymptotic behaviors in such cases are presented here for the first time.

Pulsed excitation scenario: a time-domain perspective

The frequency sweep analysis, performed in previous sections, is very instructive from a

fundamental standpoint. It yields plain and handy formulas, allowing us to inspect how the

interplay of the thermal parameters and excitation frequency affect the generation mechanism

and the crossover from the thermophone to mechanophone regime. Excitation with time-

harmonic sources, covering the frequency range so far explored, is though unrealistic in a true

experimental scenario, where the exploited source would rather be a pulsed laser delivering

gaussian laser pulses of duration τ . For instance, in the case of the Au nanofilm on water,

with r = 3×10−8 m2K/W, the mechanophone becomes predominant for angular frequencies

beyond the GHz range, see Fig.4. Such a wide acoustic bandwidth (BW) is excitable for

example with a laser pulse with τ = 50 ps, i.e. BW ∼ 1/τ ∼ 20 GHz.

The question then arises whether the handy and insightful frequency-sweep analysis re-

mains a good predictive tool also for the photoacoustic problem triggered by a pulsed laser

source. At first glance, the answer might appear affirmative. As a matter of fact, a pulsed

laser excitation may be seen in Fourier space as a sum of time-harmonic sources, covering

the angular frequency range from 0 Hz to ∼ τ−1. Nevertheless, this needs to be proved since,

a priori, there is a difference between exciting the system with a single frequency ω or with

all frequencies up to the frequency ω. With this aim in mind, we now investigate the same

gold film/water system, but under impulsive excitation as opposed to a time-harmonic one.

Let’s, therefore, proceed to illustrate the time-domain perspective.
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Figure 6: Time evolution of the pressure field for varying Kapitza resistances r (row) and
pulse durations τ (columns) for the case of the gold free film surface at x = 0 (b = +1). We
adopted r = 3 × 10−8 m2K/W in panels (a, b, c, d), r = 3 × 10−7 m2K/W in panels (e, f,
g, h), and r = 0 m2K/W in panels (i, j, k, l). Left-axis: pressure in water 10 nm from the
nanofilm/water interface: total pressure (black curves), thermophone pressure contribution
(red curves) and mechanophone pressure contribution (blue curves). Right-axis: light pulse
intensity (orange dashed line). The light pulse intensity maximum occurs at the time instant
t0. The scales differ in each panel. Insets in panels of column 1: modulus of FT of the total
pressure. The thermophone pressure contributions (red curves) have been multiplied by a
factor of 20 in panel (a), 200 in panel (e), and 5 in panel (f), for ease of visibility.

For the sake of brevity, we only address the case of the Au film of thickness 20 nm with

free boundary conditions at x = 0 (b = +1). This system closely resembles the Au nanoplate-

on-water sample experimentally addressed in the seminal paper Ref. 90 under pulsed laser

excitation.

The opto-thermo-acoustic dynamics of the system occurs via the following steps: (i)

initially the system is at equilibrium at a uniform temperature T0; (ii) a light pulse strikes

the system and delivers energy to the gold nanofilm; (iii) the nanofilm converts the absorbed

energy into heat, raising its temperature and exchanging heat with the water region through
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the Kapitza resistance; (iv) both the nanofilm and water expand, launching acoustic waves

in water via the mechanophone and thermophone effects.

As for the modeling, we address the problem in the time domain. Specifically, the thermal

dynamics is described by Eq. (12) (last line) for the nanofilm and Eq. (11) (last line) for

water. The acoustic response is accounted for through Eq. (12) (first and second lines) for

the nanofilm, and Eq.(11) (first and second lines) for water. Also, the boundary conditions

remain unaltered. The only difference concerns the source term q entering the third line of

Eq. (12), which is now a pulse in time rather than being harmonic. The laser pulse intensity

(W/m2) has gaussian temporal dependence:

I(t) = 2

√
ln (2)

π

Φ

τ
exp

(
− 4 ln (2)

(t− t0)
2

τ 2

)
, (88)

where τ is the pulse temporal full width at half maximum (FWHM), t0 is the time at which

the pulse temporal peak occurs, and Φ is the laser fluence (J/m2). In our simulations, we will

explore different τ values, while Φ will always be kept constant (≈ 7.5 J/m2, a typical value

used in experiments) for the sake of comparison. We do not consider here the femtosecond

regime, where the metal electrons and lattice are out of equilibrium upon laser absorption.97

We chose the laser wavelength λp=550 nm, a value typically used in bio-photoacoustics

applications. The latter falls in the visible range and within the water transparency window.

We can therefore assume absorption to be negligible in water, while being effective only

within the Au film. The refraction index (defined by its real, n, and imaginary, κ, parts)

at 550 nm is n=1 for air, n=0.39 and κ=2.48 for the gold film,98 and n=1.33 for water.99

With these values, we calculate an absorption coefficient A=0.18 for the air/20 nm gold

film/water multi-layer.100 Furthermore, given the exiguous film thickness (also matching

the light penetration depth in Au), hot electrons contribute to homogenizing the absorbed

power density q throughout the film101,102 on a timescale shorter than the mechanical and

thermal dynamic timescales involved in the launching of the pressure wave in water. We
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remark that the penetration depth here reported, matching the film thickness, is calculated

for the case of a semi-infinite Au region. It is here mentioned just because it is often

used as a handy figure of merit. However, the actual absorption coefficient A=0.18 has been

calculated by solving the electromagnetic problem for the realistic air/20 nm gold film/water

multi-layer, yielding a spatially flattened energy deposition within the film depth (eventually

corresponding to a larger penetration depth). In summary, the source term q is here assumed

spatially homogeneous and reads q(t) = AI(t)/L. The equations are then solved numerically

via Finite Element Methods.

We now discuss simulation results for the impulsive excitation scheme. First of all, we

need to identify the values of τ to be adopted for a meaningful comparison with the frequency-

domain study. With reference to Fig.2, for r = 3×10−8 m2K/W, the frequency domain is suit-

ably partitioned into four spectral regions: (1) low-frequency range (ω ≤ 108 rad/s), where

the thermophone contribution prevails; (2) intermediate-range close to the frequency thresh-

old (ω ≈ 3×109 rad/s), where the thermophone and mechanophone contribute similarly; (3)

high-frequency range (ω ≈ 3×1010 rad/s), where the mechanophone is predominant; and (4)

very high-frequency range (ω ≥ 5×1011 rad/s), where the mechanophone is predominant and

the nanofilm oscillations are activated. To access these spectral regions, we need to excite

the system with a light pulse of duration τ ≈ 1/ω, with ω={108, 3× 109, 3× 1010, 5× 1011}

rad/s. This approximately corresponds to τ = 10 ns, 500 ps, 50 ps, and 1 ps. We underline

once more that the laser pulse potentially excites all frequencies up to 1/τ , that is, within

its bandwidth.

Figure 6 shows the time evolution of the pressure in the water, 10 nm from the nanofilm/water

interface, for the above-mentioned τ values (columns) and for the Kapitza resistances r ad-

dressed so far (rows). In each panel, the total pressure (black curve) is reported together

with the thermophone (red curve) and the mechanophone (blue curve) contributions. The

laser pulse intensity profile, I(t), is also reported (orange dashed line, right axis). We analyze

the results row by row, that is fixing the Kapitza resistance value and increasing the light
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pulse duration (moving across different columns).

Let’s start with the first row, i.e. r = 3 × 10−8 m2K/W. Panel (a) corresponds to

τ = 1 ps, hence the BW includes all frequencies up to the “very high frequency” range. The

mechanophone effect outperforms the thermophone (note that for visualization purposes the

thermophone contribution has been amplified by a factor of 20). Moreover, such a short

light pulse triggers resonances of the nanofilm, thus resulting in water pressure oscillations,

as appreciated from the inset of panel (a), where the magnitude of the Fourier transform (FT)

of the total pressure is reported in arbitrary units. The frequencies resonances match those

reported in Fig.2 (odd n eigenmodes of the film), whereas the FT spectrum correctly shows

exactly zero contributions from the frequencies corresponding to the antiresonances in Fig.2

(FT spectra are in linear scale instead of logarithmic scale). Moving to τ = 50 ps in panel

(b), the BW includes all frequencies up to the “high frequency” range, and again the main

contribution is provided by the mechanophone effect. In this case, though, the frequency

BW does not extend far enough to activate the film’s acoustic eigenmodes. The situation

changes in panel (c), where τ = 500 ps implies a BW reaching up to the threshold frequency

(ω ≈ 3 × 109 rad/s, see Fig.2). In this case, the thermophone and the mechanophone have

very similar amplitudes, the total pressure being generated from both mechanisms. Finally,

the thermophone prevails over the mechanophone for τ = 10 ns in panel (d), where the light

pulse BW overlaps only the “low frequency” region. Here the thermophone effect dominates.

Summarizing, for the case of r = 3×10−8 m2K/W, the salient features match the predictions

of the frequency-sweep analysis.

We now explore the role of Kapitza resistance in the frame of the pulsed excitation scheme.

The discussion is always with reference to Fig.6 (now, second row with r = 3×10−7 m2K/W).

For an increased r value, the frequency threshold is shifted towards smaller frequencies.

This can be seen in panel (g), where the mechanophone contribution exceeds by far the

thermophone one. This is in contrast to what happens for r = 3 × 10−8 m2K/W in panel

(c), where, for the same τ = 500 ps, the thermophone and mechanophone contributions
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are comparable. The fact that the mechanophone prevails at high Kapitza resistances is

appreciated also for τ = 1 ps in panel (e), and for τ = 50 ps in panel (f). For the sake of

visualization, we had to multiply the thermophone contributions by a factors of 200 in panel

(e), and of 5 in panel (f). For τ = 10 ns in panel (h), corresponding to the low-frequency

region, the thermophone contribution exceeds the mechanophone one, but to a lesser extent

than for the r = 3× 10−8 m2K/W case in panel (d).

We now turn to the case with r = 0 m2K/W (third row). The result with τ = 50 ps in

panel (j) demonstrates the threshold frequency shifts towards higher values for a vanishing

Kapitza resistance. Indeed, the thermophone contribution is higher than the mechanophone

one, at variance with the finite Kapitza resistances cases discussed in the previous figure’s

rows, where the major contribution was provided by the mechanophone. The dominance of

the thermophone is, of course, even more remarkable for τ = 500 ps in panel (k), and for

τ = 10 ns in panel (l). Nevertheless, the case with τ = 1 ps in panel (i) shows a prevailing

mechanophone contribution. This result demonstrates that, even in the case of an impulsive

excitation, there is a frequency threshold above which the mechanophone prevails even in

the worst-case scenario of a vanishing Kapitza resistance.

Conclusions

We developed a fully analytical model describing acoustic wave generation in a fluid triggered

by a solid nanometric film, i.e. the nanostransducer, upon absorption of a sinusoidal time-

dependent power density. Two generation mechanisms are evidenced: the thermophone

and the mechanophone. In the former, the nanotransducer plays the role of a nano-heater,

harmonically heating the proximal liquid. The resulting time-harmonic thermal expansion

of the liquid ultimately drives the pressure wave in the liquid itself. In the latter, it is the

sinusoidal thermal expansion of the nanotransducer, directly acting as a mechanical piston

on the surrounding liquid, that drives the pressure wave. We recognize the relevant physical
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parameters ruling the generation mechanism. Specifically, we find a threshold excitation

frequency governing the transition from the thermophone to the mechanophone mechanism.

The role of the Kapitza resistance as a tuning parameter is unveiled. We then proved that

the frequency-sweep analysis remains a good predictive tool also for the case of impulsive

photoacoustic excitation triggered by a pulsed laser source.

The present results rationalize, on a formal basis, the physics behind recent numeri-

cal findings on impulsive acoustic excitation in nanofluids.54,55,78,79 Furthermore, they allow

revisiting, under a broader perspective, impulsive hypersonic acoustic wave generation in

polymers,103 and solid nanostructures,104 triggered by heated solid nano-transducers. From

an applicative stand-point, the mechanophone effect is of interest in bio-related applica-

tions requiring short acoustic wave generation while avoiding overheating the fluid. The

mechanophone can potentially drive very short acoustic wavelengths in liquids, by activat-

ing the eigenmodes of the nanometric transducer. This will prove useful in developing local

high-resolution acoustic imaging techniques. On the same footing, the mechanophone can

be adopted to gain further insight into nanoparticle-fluid interactions at ultrahigh acoustic

frequencies,90 and to inspect the mechanical response of liquids in the hypersonic frequency

range105–110 and in glass-forming polymers.111 In particular, this approach could be useful to

elucidate the high-frequency collective dynamics in liquid water, marking a transition from

ordinary or “slow” water, with sound velocity ≃ 1500 m/s, to “fast” water with a sound

velocity ranging up to ≃ 3200 m/s. Indeed, in the THz frequency range, water might re-

spond as a solid rather than a liquid, its dispersion becoming non-linear and the sound

velocity increasing to 3200 m/s.112 This phenomenon has been predicted by molecular dy-

namic simulations and observed through inelastic x-ray scattering.113–116 The mechanophone

regime can be also useful to experimentally demonstrate dewetting during terahertz vibra-

tions of nanoparticles. Indeed, molecular simulations proved the formation of a vacuum layer

around a high-frequency vibrating nanoparticle in water.117 Also, high-frequency thermoa-

coustic waves can induce a refractive index modulation with pressure and temperature in
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water,118,119 which can be probed by detecting liquid resonances, e.g. by nanoplasmonics.120

This effect could be exploited to realize realistic transduction systems, able to probe the

water behavior in extreme conditions.121

In order to clarify the physical origin of the generation mechanisms, some simplifying

assumptions were made, namely viscous phenomena and mechanical effects on heat prop-

agation were disregarded. Neglecting viscous attenuation in the fluid limits the region of

validity of the pressure waveform here reported. The pressure profile remains valid within a

distance from the interface on the order of the acoustic penetration depth, which scales as

ω−2, see Eq.(13).75,112 The model can be generalized to encompass the effect of fluid viscosity

and of the mechanical response on the thermal one. Both aspects will make the object of

prospective work.

Appendix: Highest efficiency of the mechanophone mech-

anism

In this Appendix, we suppress the thermophone mechanism by considering a very large

Kapitza resistance. So doing, we prevent the transit of heat from the solid to the fluid,

and the only way left to generate the acoustic wave in the fluid is to exploit the oscillatory

deformations of the solid. This represents the most efficient mechanophone since there is no

heat lost in the fluid and all the energy input contributes to the expansion and compression

of the solid, which through the piston effect, generates the wave in the fluid. We then apply

the limiting condition r → ∞, or equivalently, S → ∞, as one can see from Eq.(53). Under

this assumption, Eqs.(59), (60) and (61) simplify as follows

ξ = −B1

ρ1

α1q

iωCp1

, (89)

η = 0, (90)

φ =
B1

ρ1

α1q

iωCp1

. (91)
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Figure 7: Comparison of the pressure spectrum of the system with the most efficient
mechanophone (r → ∞). Left panel: we compare the complete solution given by Eq.(45)
with the highest mechanophone efficiency (r → ∞) given in Eq.(93) and the thermophone so-
lution given in Eq.(76) (with b = +1). We also show the low frequency (LF) approximation of
the mechanophone response given in Eq.(94) and the high frequency (HF) approximation of
the thermophone response given in Eq.(79). Right panel: we compare the complete solution
given by Eq.(45) with the highest mechanophone efficiency (r → ∞) given in Eq.(97) and
the thermophone solution given in Eq.(76) (with b = −1). We also show the low frequency
(LF) approximation of the mechanophone response given in Eq.(98) and the high frequency
(HF) approximation of the thermophone response given in Eq.(79). Anti-resonances and
quasi-resonances are given by the analysis developed in the Appendix. We adopted a ther-
mal boundary resistance r = 3× 10−8 m2· K/W between gold and water.

From these coefficients, we can determine the closed-form expression for the pressure within

the fluid, i.e. for x > L

p(x) = e−δ0(x−L) B1α1q

iωρ1Cp1

×
(
eδ1L + be−δ1L

)
− (1 + b)√

ρ1B1

ρ0B0
(eδ1L − be−δ1L) + (eδ1L + be−δ1L)

, (92)

where b = ±1 depends on the boundary condition used for x = 0. The spatial pressure

decrease is not present because dissipative phenomena related to fluid viscosity have been

neglected (δ0 is purely imaginary). We separate the analysis for the two possible mechanical

conditions at x = 0.
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First, we consider the free surface condition at x = 0, characterized by b = +1. After

straightforward algebra we get the pressure intensity |p| for x > L as

|p| = B1α1q

ωρ1Cp1

1− cos
(
ω
√

ρ1
B1
L
)

√
ρ1B1

ρ0B0
sin2

(
ω
√

ρ1
B1
L
)
+ cos2

(
ω
√

ρ1
B1
L
) ,

(93)

where we considered the fact that δ0 is a purely imaginary number and where, without

limiting the generality, q is supposed to be real and positive. For low values of ω, we exploit

the second order approximation 1 − cos(x) ∼ x2/2 (x ≪ 1) for the numerator, whereas the

square root in the denominator ∼ 1. This leads to

|p| ≃ α1qL
2

2Cp1

ω, ω ≪ 1

L

√
B1

ρ1
. (94)

The result stated in Eq.(93) is also useful to understand the physics occurring for high fre-

quencies. Indeed, we can identify the anti-resonances that vanish the numerator (generating

downward pressure peaks)

ωa−r
n =

2nπ

L

√
B1

ρ1
, n = 1, 2, 3, ..., (95)

and the quasi-resonances that minimize the denominator (it never vanishes identically but

can take values close to zero that create upward pressure peaks)

ωq−r
n =

(2n− 1)π

L

√
B1

ρ1
, n = 1, 2, 3, ..., (96)

which can be easily identified in Fig.7 (left panel).

We can now perform the same analysis for the clamped surface condition at x = 0,

corresponding to b = −1. In this case, the general result obtained in Eq.(92) delivers (for
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x > L)

|p| = α1q
√
ρ0B0L

ρ1Cp1

∣∣∣∣∣ sin
(
ω
√

ρ1
B1

L
)

ω
√

ρ1
B1

L

∣∣∣∣∣√
ρ0B0

ρ1B1
sin2
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ω
√

ρ1
B1
L
)
+ cos2

(
ω
√

ρ1
B1
L
) .

(97)

In this case, we observe a plateau response for low frequencies described by

|p| ≃ α1q
√
ρ0B0L

ρ1Cp1

, ω ≪ 1

L

√
B1

ρ1
. (98)

Concerning the high-frequency behavior, we can identify the anti-resonances

ωa−r
n =

πn

L

√
B1

ρ1
, n = 1, 2, 3, ..., (99)

and the quasi-resonances

ωq−r
n =

(
n− 1

2

)
π

L

√
B1

ρ1
, n = 1, 2, 3, ..., (100)

which can be easily identified in Fig.7 (right panel).

In Fig.7, we compare the pressure spectra of the system (for both free and clamped sur-

faces at x = 0) with the highest mechanophone efficiency and with the purely thermophone

response. As already discussed for Figs.2 and 3, we can identify the crossover between the

two generation mechanisms. For b = +1 (free surface at x = 0), we compare the low fre-

quency (LF) approximation of the highest mechanophone response given in Eq.(94) and the

high frequency (HF) approximation of the thermophone response given in Eq.(79). The new
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frequency threshold turns out to be

ω∗
∞(b = +1) =

1

L

√
2
α0

α1

1

rρ1

√
B0ρ0

ρ0Cp0

, (101)

and represents the frequency beyond which the mechanophone prevails when b = +1, as one

can see in Fig.7 (left panel). We added the subscript ∞ to remind us that we are considering

the highest efficiency of mechanophone with r → ∞. For b = −1 (clamped surface at x = 0),

we compare the low frequency (LF) approximation of the highest mechanophone response

given in Eq.(98) and the high frequency (HF) approximation of the thermophone response

given in Eq.(79). As before, we can determine the new frequency threshold eventually

obtaining

ω∗
∞(b = −1) =

α0

α1

1

rL

1

ρ0Cp0

, (102)

and represents the frequency beyond which the mechanophone prevails when b = −1, as one

can see in Fig.7 (right panel).
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