Do highly anthropized hydrological conditions in marshes influence fish communities according to their life-history strategies?

Julie Crabot, Benjamin Bergerot, Anne Bonis, Olivier Goré, André
Mauchamp, Jean-Marc Paillisson

To cite this version:

Julie Crabot, Benjamin Bergerot, Anne Bonis, Olivier Goré, André Mauchamp, et al.. Do highly anthropized hydrological conditions in marshes influence fish communities according to their lifehistory strategies?. River Research and Applications, 2023, 10.1002/rra.4150. hal-04114883

HAL Id: hal-04114883
https://hal.science/hal-04114883
Submitted on 27 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
(cc) $\$$

Do highly anthropized hydrological conditions in marshes influence fish communities according to their life-history strategies?

Short running title

Fish response to hydrology in strongly anthropized marshes

Authors

Julie Crabot ${ }^{1}$, Benjamin Bergerot ${ }^{2}$, Anne Bonis ${ }^{1}$, Olivier Gore ${ }^{3}$, André Mauchamp ${ }^{2}$, Jean-

Marc Paillisson ${ }^{2}$

Affiliations
${ }^{1}$ Université Clermont Auvergne, CNRS, UMR GEOLAB, F-63000 Clermont-Ferrand, France
${ }^{2}$ Université de Rennes 1, CNRS, UMR ECOBIO, F-35000 Rennes, France
${ }^{3}$ Établissement Public du Marais Poitevin, F-85400 Luçon, France
Corresponding author: Julie Crabot, julie.crabot@gmx.fr

Acknowledgements

We are indebted to Hydroconcept and Aquascop which conducted the fish sampling. This research was supported by the EPMP (Établissement Public du Marais Poitevin) and the AELB (Agence de l'Eau Loire-Bretagne). We are grateful to the staff of the EPMP, PNRMP (Parc Naturel Régional du Marais poitevin) and all of the fieldworkers for fruitful discussions on the preliminary results. Lastly, we thank the UNIMA (Union des Marais de la Charente-Maritime) for providing the water quality data. The present version of this article was proof-read for English language by Annie Buchwalter.

Abstract

Alterations of natural hydrology in aquatic ecosystems are known to strongly impact the community composition of different taxa. Surprisingly, literature on the potential influence of hydrology on fish community composition is still very scarce in agricultural marshes, where canals represent one of the

few remaining aquatic habitats. This study is aimed to address this research gap by monitoring fish communities in independent hydrological units differing in hydrology management over a six-year period. We predicted variable fish responses to the hydrological context according to different lifehistory strategies (opportunistic, equilibrium or periodic species). Periodic and opportunistic species were the most frequently observed. Despite differences in hydrology between canals (but little variation among years), we found that hydrology explained only a very low proportion of variation in the composition of fish communities. In particular, flooding duration of meadows in early spring did not influence the composition of fish communities, not even the abundance of periodic species expected to rely on such temporary habitats. Instead, fish communities were more influenced by local habitat variables (aquatic vegetation cover, turbidity, tree roots and refuges under the canal banks). The hydrological management of most hydrological units for agricultural purposes (i.e. severe flood abatement in spring and shallow water depth in canals in summer) was found to be incompatible with conservation goals to promote more diverse fish communities between hydrological units. Therefore, we call for further investigations in similar habitats covering a larger range of hydrological conditions.

Keywords

ditch, seasonal wetland, water level, functional strategies, water regulation

Introduction

At the interface between aquatic and terrestrial systems, wetlands are crucial habitats for biodiversity (Williams et al., 2003). They are dynamic ecosystems where aquatic organisms typically experience changes in hydrology following seasonal pulses of rainfall (Williams 2006), or a decreased water supply because of water regulation and evapotranspiration. Intra-annual variability in hydrology results from climatic patterns but also reflects human control of water for a large range of uses (Rideout et al., 2021). In temperate wetlands, and more specifically in marshes, water management is primarily aimed at draining to lower water levels in late winter and spring for
agricultural purposes. This generally leads to strong changes in the seasonality of water levels, very low water levels in summer and low interannual variability (Duncan et al., 1999; Williams, 2006).

Alterations of natural hydrology in aquatic ecosystems (e.g. dam construction, river diversion, channelization, pumping or urbanization; see the review by Poff et al. (1997)) significantly affect the community composition of different biological groups; this has been particularly studied for fish and invertebrates, mainly in lotic ecosystems (Poff \& Ward, 1989; Poff \& Allan, 1995; Bunn \& Arthington, 2002; Bradley et al., 2017; White et al., 2019). For instance, reduced flow variability leads to decreased fish abundance (Bunn \& Arthington, 2002), and both elevated and reduced flow magnitude is associated with declines in fish abundance and diversity (Poff \& Zimmerman, 2010). As such, analyzing how hydrological alterations affect fish communities is undoubtedly important. This was first done by focusing on abundance and diversity data (Karr, 1981), however, functional approaches have been increasingly popular over the last decade, especially within the framework of the development of fish-based biomonitoring indices (Karr, 1981; Oberdorff et al., 2001; Pont et al., 2006). Using these approaches, one can compare taxonomically dissimilar communities and identify community assembly rules (Poff \& Allan, 1995).

To date, life-history strategies (LHS) of fish have been mainly studied in streams. Winemiller and Rose (1992) originally identified three major endpoints of LHS representing different trade-offs among growth, fecundity, life span and parental care. This was later validated using freshwater fish in France (Pont et al., 1995). First, opportunistic strategists are small-bodied, short-lived species with early maturation, and are generally associated with episodically disturbed habitats. Periodic strategists are large-bodied species with late maturation and high fecundity, and are typically favored in seasonally flooded habitats. Finally, equilibrium strategists are species of intermediate body size, displaying high parental care, with few offspring and high juvenile survival; they are usually associated with stable environments. These three species groups behave differently along hydrological gradients; for instance, the conversion of lotic habitats into lentic after the construction of a dam leads to a shift
from opportunism to equilibrium as the dominant strategy within fish communities (Mims \& Olden, 2013; McManamay \& Frimpong, 2015), or increased connectivity of aquatic patches leads to an increased proportion of periodic species (Miyazono et al., 2010).

The responses of fish communities to hydrological patterns in marshes are expected to differ from the responses of fish communities in streams. The fish communities of these two habitats are normally different. Marshes are mostly characterized by eurytopic to limnophilic species and to a lesser extent by rheophilic species. Furthermore, particular human uses of marshes - e.g. agricultural drainage - drastically control seasonal variations in water depth in such a way that the transition of early spring water depths is particularly rapid, far from the natural dynamics of rainfall patterns (Laffaille et al., 2004; Rehage \& Trexler, 2006; Rideout et al., 2021). Such high fluctuations of water depths at a key stage of the fish life cycle (i.e. spawning) should disadvantage equilibrium species and benefit periodic species better adapted to seasonal environmental variations (Winemiller, 2011). By contrast, where the water depth is very low throughout the year, fish communities are expected to support a much lower proportion of large-bodied periodic species, highly sensitive to hypoxia compared to small-bodied species (as showed experimentally by Robb and Abrahams, 2003). Periodic species also need sufficient water depth to move (Poizat \& Crivelli, 1997; Meyer \& Posey, 2009) and to escape predation (as showed in small streams by Harvey and Stewart, 1991).

Hydrological management of marshes also modifies the extent of the connectivity between aquatic habitat patches. Above all, it drives the availability of aquatic habitats, e.g. by flooding adjacent habitats within canals and streams. Such temporarily flooded habitats (e.g. wet meadows) provide attractive feeding (Junk, Bayley \& Sparks, 1989; Tockner, 2000) and nursing grounds (Cucherousset, Carpentier \& Paillisson, 2007, 2008; Miyazono et al., 2010; Scharbert \& Borcherding, 2013) that are essential for periodic species. They may also attract opportunistic species displaying early maturation, high habitat tolerance and a short generation time like cyprinid species, and smallbodied species because they offer refuges from large predators (Poizat \& Crivelli, 1997; Hohausová,

Lavoy \& Allen, 2010; Jopp, Deangelis \& Trexler, 2010; Volcan \& Guadagnin, 2020). Despite the potential influence of hydrology on fish communities in wetlands, this issue is still understudied: about 25 times more articles mentioning hydrology and fish were found on lotic ecosystems compared to wetlands in the Web of Science (6863 versus 276). Among those on wetlands, about 20 addressed the influence of hydrology on fish in these ecosystems.

This study aims to address this research gap by examining the influence of hydrology on the composition of fish communities in canals of a large marshland, according to their LHS. We sampled fish communities in independent hydrological units differing in hydrology management over a sixyear period. By conducting a multi-year study, we intended to account for possible annual differences in climate conditions and in turn in hydrology within the hydrological units. We expected hydrology, and more precisely water depth, water depth variation in early spring, and spring flooding duration of meadows to be drivers of the fish community composition, with contrasting effects according to the LHS of the species, as outlined above. As the experiment was carried out in natural conditions, it was not possible to control all environmental factors, so we also studied the possible influence of water physico-chemistry and canal morphology known to be of importance for fish communities (Smiley et al., 2008; DeZiel et al., 2019; Koschorreck et al., 2020).

Materials and methods

Study area

The study was conducted in the Marais poitevin, a ca. 1000-km² French hypertrophic marshland located along the Atlantic coast $\left(46^{\circ} 30^{\prime}-46^{\circ} 15^{\prime} \mathrm{N} ; 1^{\circ} 30^{\prime}-0^{\circ} 35^{\prime} \mathrm{W}\right.$, Figure 1$)$. The region is characterized by a warm Atlantic climate type, with rainfall greater than evapotranspiration in winter balanced by an almost equal deficit of 300 to 350 mm in summer. Flood peaks take place in meadows mostly in winter and the marshland is mostly dry in summer, sometimes until fall depending on the hydrological conditions. It is also characterized by intensive water management practices for agricultural purposes (EPMP, 2015). Land use is currently dominated by crops and meadows (50 and
40%, respectively), and the remaining areas are mostly woodlands (Godet \& Thomas, 2013). Important land-use changes have occurred over the last century, notably the conversion of more than 50% of meadows into croplands and the intensification of agricultural practices (Duncan et al., 1999; Godet and Thomas, 2013). The Marais poitevin is also composed of an $8200-\mathrm{km}$ long network of drainage canals that have been progressively established since the Middle Ages (EPMP, 2015). It has been historically divided into different hydrological units in which water management is controlled independently from the surrounding units because of different water regulations fixed by management committees. This leads to different hydrological patterns across units. We selected eleven hydrological units to represent the diversity of hydrology conditions in the study area (Figure 1; a detailed description of the hydrological units is provided in EPMP, 2015; Mauchamp et al., 2021). One section of a canal was selected in each hydrological unit to monitor the fish community from 2015 to 2020. The sampled canals were wide ($8.8 \pm 1.2 \mathrm{~m}$) and never dried out.

Fish sampling

Each year, fish were sampled between the last week of June and the second week of July. At this time of the year, many aquatic habitats like meadows and narrow canals have dried out, and fish take refuge in larger canals. As a result, monitoring provides a good overview of the fish communities inhabiting the entire hydrological units. Moreover, this time of the season is optimal for sampling fish since the water depth in the canals is sufficient to conduct the fieldwork by boat but not too high to limit the efficiency of electrofishing (0.20 to 1.70 m). Lastly, all species had reproduced, so that all young-of-the-year individuals were reliably identifiable in the field, except for some Blicca bjoerkna and Abramis brama specimens grouped as breams in the analyses. Fish were sampled using the point abundance sampling approach (PAS; Copp and Persat, 1989; Nelva et al., 1979) with an electrofishing apparatus (Heron ${ }^{\circledR}$, Aigrette ${ }^{\circledR}$, or EFKO F.E.G. 8000^{\circledR} depending on the year, voltage during fishing operations $255 \pm 75 \mathrm{~V}$, amperage $7 \pm 5 \mathrm{~A}$). A total of 30 PAS were performed per canal, spaced out by at least 10 meters to provide independent samples. At each PAS, the anode was immersed about five
meters in front of the boat and near the canal bank where fish generally concentrate. All shocked fish within $1 \mathrm{~m}^{2}$ of the impact point of the anode were caught, identified to the species level, measured (fork length, mm), and released back into the water.

Environmental variables

The water depth was calculated for different periods (see below), and measured at two different spatial scales: locally, in the canal where fish were sampled ("fish canal" thereafter), and across 10 small nearby canals connected to the fish canal in order to better characterize the hydrological conditions of the hydrological unit (average value). Given that the daily water depth in any canal of a hydrological unit can be calculated using a limnigraph deployed in a permanent (always full of water) canal (taking into account the altitude of its bottom), we calculated the average water depth for two seasons: i) in winter (from November to February, prior to the spawning season and the fish monitoring campaign) because flooding peaked mostly during this period and could influence the spatial distribution of several fish species (Heermann \& Borcherding, 2006; Scharbert \& Borcherding, 2013; Morat et al., 2018), and ii) in spring (from March to June, before fish sampling) because it covered the spawning season of most of the studied species (Keith et al., 2020). Two additional hydrological variables were calculated at the hydrological unit scale to describe the rate of water depth changes at the pivotal period in early spring, namely the coefficients of variation of water depth in March and in April. We also assessed the amount of temporary fish-accessible aquatic habitats as expressed by the flooding duration (days) of at least 5\% (a maximum water depth ranging from 6 to 21 centimeters depending on the hydrological unit) and at least 20\% (a maximum water depth ranging from 14 to 44 centimeters) of the meadows in the whole hydrological unit (see Rapinel et al., 2018; Crabot et al., 2022 for a complete description of the calculation). We calculated these metrics at the hydrological unit scale because they better reflected the conditions experienced by fish before refuging in the largest canals in late spring. Preliminary tests were carried out using other quantiles (notably 10\% of flooded meadows), but they were not retained because the flooding
duration values were highly correlated ($r=0.9$) with those for the 5% and 20% quantiles and with water depth. Calculations were done for spring and winter, so that four flooding duration variables (two quantiles \times two seasons) were used for subsequent analyses.

We also considered a series of water physico-chemistry variables, most of them collected as part of a companion monitoring program on the eutrophication of the Marais poitevin (UNIMA, unpublished data). Chlorophyll a content ($\mu \mathrm{g} . \mathrm{L}^{-1}$), oxygen percentage saturation (\%), conductivity ($\mu \mathrm{S} . \mathrm{cm}^{-1}$), and ammonium, nitrite, nitrate and orthophosphate concentrations ($\mathrm{mg} . \mathrm{L}^{-1}$) were measured in one large canal representative of each hydrological unit, all year round (more details on the methodology are provided in Appendix A, see also values in Table 1). We also measured basic variables - water temperature $\left({ }^{\circ} \mathrm{C}\right)$, conductivity $\left(\mu \mathrm{S} . \mathrm{cm}^{-1}\right)$ and turbidity (m) - in the fish canal once a year, when sampling the fish. Lastly, we measured five habitat features: aquatic vegetation cover (\%), tree roots and refuges under the banks (i.e. crucial habitats for certain species to nurse and spawn; Kottelat \& Freyhof, 2007), width (m) of the canal section where fish were sampled, and the total network length ($\mathrm{km} / \mathrm{ha}$) of large permanent canals and that of narrower temporarily dried canals in the hydrological unit (Appendix A). These latter two variables were used as a proxy of the habitat heterogeneity for fish at the hydrological unit scale (Cucherousset et al., 2006).

Data analysis

All statistical analyses were conducted with R software version R-4.1.1 (R Core Team, 2021). We assessed the collinearity between the set of 25 environmental variables with the 'vifcor' function in the usdm package (Naimi, 2017), using an excessive correlation threshold of 0.7 as recommended in Dormann et al. (2013). The water depth in the fish canals and more broadly at the hydrological unit scale and measured in winter were removed from subsequent analyses.

To assess to what extent species composition changed in each hydrological unit over time, we calculated the cumulated species richness over six years and the average between-year similarity (the Jaccard index for presence-absence data and the Bray-Curtis index for abundance data) using the 'vegdist' function in the vegan package (Oksanen et al., 2020).

A body of literature supports the idea that juvenile fish respond differently to environmental conditions, and more specifically to hydrology, than older ones (Grenouillet et al., 2001; Gouraud et al., 2008; Bergerot \& Cattanéo, 2017). Since the relationship between fish communities and environmental variables yielded similar results when using all fish data or when removing the young-of-the-year from the dataset (they represented 38% of all fish caught, Appendices B and C), we only presented the results from the complete dataset. In practice, we computed a co-inertia analysis between a scaled principal component analysis (PCA) on environmental variables and a non-scaled PCA on fish abundances (11 sites $\times 6$ years, Hellinger transformed). By optimizing the covariance of the multivariate axes of the two tables, the co-inertia analysis summarizes variations of fish composition and environmental variables among samples simultaneously, and is a suitable analysis when the number of variables is high compared to the number of samples (Judes et al., 2021). The significance of the RV coefficient, which describes the strength of the correlation between the two tables, was tested with a Monte-Carlo test (999 permutations) on the sum of eigenvalues of the coinertia (Heo \& Gabriel, 1998). All these analyses were computed using the 'dudi.pca', 'coinertia' and 'RV.test' functions in the ade4 package (Dray \& Dufour, 2007).

We tested whether the species belonging to each of the three LHS (Table 2) were distributed differently using Syrjala’s test (Syrjala, 1996; 'syrjala' function in the ecespa package; Rot \& BlancoMoreno, 2022). This test is designed to be sensitive to the difference in the spatial distributions of two groups but not to the difference in their abundance (Rot \& Blanco-Moreno, 2022). We computed three separate pairwise tests: opportunistic vs. equilibrium, opportunistic vs. periodic and equilibrium vs. periodic.

Finally, to evaluate the weight of the hydrological variables as drivers of the composition of fish communities compared to the other environmental variables, we conducted a variation partitioning analysis using fish communities (abundance data) as the response table, and three explanatory tables (a hydrology table, a water physico-chemistry table, and a habitat table). The partitioning was based on a redundancy analysis. The results were plotted on a Venn diagram, using the 'varpart' function in the vegan package (Oksanen et al., 2020). The significance of the variation in the fish communities explained by each group of environmental variables was assessed using the 'rda' function in the vegan package (Oksanen et al., 2020).

Results

Description of the environmental conditions of the hydrological units

The hydrology of the canals fluctuated very little in spring between years whatever the hydrological unit (Figure 2a, b, d), but more so in winter (infrequent significant rainfalls in the winter of 2020 exceeded the flood mitigation capacities of the hydraulic structures in all hydrological units, while a rainfall deficit was noted in 2017; Figures 2c, e, f). Spring flood duration in meadows fluctuated between years, especially for 5% of the meadows (Figure $2 \mathrm{~g}, \mathrm{~h}$). Overall, hydrological conditions varied between canals (range of values in Table 1). The canals also varied for the other environmental variables (description not given, but ranges of values provided in Table 1).

Spring water depth and spring flood duration of 5% and 20% of the meadows in the hydrological units contributed significantly to the first two principal components of the PCA of all the environmental variables (Appendix D). Three other variables also significantly contributed to the PCA: the total network length of the large permanent canals in the hydrological units, the amount of tree root refuges, and the aquatic vegetation cover in the fish canals.

Description of fish communities

We caught 8070 individuals belonging to 25 species over the six years of the experiment (Table 2). The species pool was composed of three equilibrium species, 10 periodic species and 12 opportunistic species (Table 2). Overall, the five most abundant species represented more than 70\% of all individuals (Table 2): Rutilus rutilus (34\%), Ameiurus melas (16\%), Gambusia holbrooki (8\%), Anguilla anguilla (7\%) and bream (6\%). These species were also the most frequently recorded(occurrence $\geq 77 \%$, Table 2). Periodic, opportunistic and equilibrium species represented $57 \%, 24 \%$ and 19% of all individuals, respectively.

Species richness and abundance differed between canals. Some supported both high richness and high abundance of fish (e.g. canal 4), and some supported few fish (e.g. canal 11, Figures 3a, b). The annual species richness was relatively stable over the study period in most of the canals. However, species turnover occurred (Fig. 3a). Between-years similarity calculations of species composition indicated that on average just over half of the species composition in terms of presence-absence did not vary over the years (0.61 ± 0.08, values for each canal provided in Figure $3 c$). Roughly comparable values were found for abundance data (0.51 ± 0.10, Figure $3 d$).

Associations between environmental variables and fish communities

There was a significant correlation between the composition of fish communities and the environmental variables ($\mathrm{RV}=0.54, \mathrm{p}<0.001$). The cumulative projected inertia on the first two axes reached 87% (81% on the first axis and 6% on the second axis, Figure 4). Most canals were very similarly distributed by both the environmental variables and species composition datasets (Figure 4a). Only canal 4 had a substantially different relative position between the two datasets. It was close to canal 6 in terms of fish composition, but close to canal 7 in terms of environmental conditions. Overall, the first axis of the co-inertia analysis was primarily structured along a gradient of tree root refuge availability (higher values on the right of the ordination), and large canal length and nitrate concentration to a lesser extent (higher values on the right of the ordination in Figure 4 b , see canonical weights of environmental variables in Appendix E). The left part of the ordination was
characterized by higher values of conductivity in the hydrological units and turbidity in the fish canals. As for species, the first axis was mostly positively correlated with the abundance of R. rutilus and to a lesser extent negatively correlated with the abundances of Carassius gibelio and G. holbrooki (Figure 4c, and canonical weights of species in Appendix E). The second axis of the coinertia analysis was negatively correlated with two environmental gradients: the coefficient of variation in water depth in April and the width of the fish canals. The lowest scores on this axis corresponded to higher abundances of A. anguilla, Esox lucius and Sander lucioperca, and the highest scores to a higher abundance of A. melas.

The spatial distribution of periodic species (Figure 4c) significantly differed from the spatial distributions of opportunistic $(p=0.010)$ and equilibrium ($p=0.034$) species, which were themselves comparable $(p=0.577)$, in line with the species location on the co-inertia plot (Figure $4 c)$.

Lastly, the variation partitioning analysis confirmed that the three groups of environmental variables (hydrology, physico-chemistry and habitat) significantly explained the composition of the fish communities ($\mathrm{p}<0.004$), with habitat variables contributing most, followed by physico-chemistry and hydrology variables (Figure 5).

Discussion

Studying the influence of different aspects of hydrology on biodiversity in highly regulated aquatic systems is a critical issue because, whether it is proved to have a key role, water regulations can be adjusted to meet conservation objectives. We showed that hydrology significantly differed between hydrological units, but explained only a small proportion of the variation of fish community composition (18\% co-explained with other environmental variables). Contrary to our expectations, the surface area of flooded meadows as well as the water depth in the canals of the hydrological units did not influence the composition of fish communities, especially in early spring, regardless of their LHS group.

Nevertheless, the distribution of periodic species, recorded most abundantly in the canals (57\% of the fish, 10 out of 25 species), differed from the distributions of opportunistic and equilibrium species. This pattern was mainly driven by R. rutilus on the first co-inertia axis and by A. anguilla and E. lucius on the second axis, and this arrangement of periodic species depended on specific environmental conditions. Rutilus rutilus was more abundant in canals with many tree roots and refuges under the banks, in line with Brosse \& Lek (2000) and Kottelat \& Freyhof (2007). The abundance of R. rutilus was to a lesser extent positively correlated with spring water depth in the canals, in line with Poizat \& Crivelli (1997) and Cucherousset et al. (2008). The other periodic species, notably A. anguilla and E. Lucius, were associated with large canals with marked variations in water depth in April (reaching up to -0.74 meters over three weeks). This is consistent with the expectation that periodic species are better adapted to seasonally fluctuating environments, as observed in some lotic habitats (Winemiller, 2011; Mims \& Olden, 2012).

Surprisingly, we did not find any association between the abundance of periodic species and the extent of temporarily flooded meadows in spring, although these habitats are generally used as nursing and feeding areas by periodic species (Cucherousset et al., 2007; Janáč et al., 2010; Miyazono et al., 2010). For example, Janáč et al. (2010) found that flood duration was the only environmental variable influencing the density of juvenile cyprinids (A. bjoerkna, Scardinius erythrophthalmus and R. rutilus) inhabiting the floodplain artificial waterbodies. This apparent variable outcome cannot be explained by differences in the range of flood duration experienced by fish because it was comparable and fairly large in both studies (for instance 3-120 and 0-82 days depending on the hydrological unit for the 5% and 20% thresholds we used, respectively). The role played by flood duration in river floodplains varies across studies. King et al. (2003) suggested that flooding for several weeks to months may be required for a floodplain to be successfully colonized by fish because a shorter flooding duration is apparently not enough (Beesley et al. 2012). Janáč et al. (2010) found that a 90-day flood (considering days with water temperature above $16^{\circ} \mathrm{C}$) was long enough
for an extensive use of floodplain habitats by phytophilous cyprinids. Therefore, the lack of a significant relationship between periodic fish and spring flooding duration of meadows in our study may indicate that: i) although flooding lasted long enough (sometimes up to 120 days), the pattern was too patchy to be suitable for fish (Appendix F), and/or ii) independently of flooding duration, water temperature, water depth and more widely environmental conditions (substrate, vegetation, food resources, see Cucherousset et al., 2007) are also decisive for the colonization of flooded meadows by fish and may have been limiting in the study area. Furthermore, the rapid decrease in water depth sometimes observed in the Marais poitevin in spring can be detrimental for the fish present in flooded areas (Foubert et al., 2019). Further investigations would be needed to explore these hypotheses.

Opportunistic fish - the most species-rich group (12 out of 25 species) - were most abundant in narrow, turbid and vegetated canals. This is consistent with previous observations, notably in floodplain lakes (Miranda \& Lucas, 2004; Miyazono et al., 2010); the results of these studies suggest that turbidity may favor small-bodied species by limiting predation by piscivorous fish. Similarly, vegetated areas can provide refuges for small-bodied species, such as mosquitofish, and suitable feeding grounds (Linden \& Cech, 1990). Opportunistic fish have also been found to be more abundant where water depth is less variable, contradictingthe results of other studies (Mims \& Olden, 2012; Hitt, Landsman \& Raesly, 2022). However, even if opportunistic fish benefit from habitats with high hydrological variability, they avoid habitats with strong seasonality (i.e. very predictable habitats) (Mims and Olden, 2012). By analogy, in our study, the canals with strong seasonal hydrological variability in early spring would not be suitable for opportunistic fish. Furthermore, although small-bodied opportunistic species can benefit from flooded meadows (Poizat \& Crivelli, 1997; Hohausová et al., 2010; Volcan \& Guadagnin, 2020), we found no evidence of such an association. This may be due to the possible inadequacy of flooded meadows for the reasons suggested above. Furthermore, none of the other hydrological variables that we used influenced the
distribution of opportunistic species (notably the most abundant species: Gasterosteus aculeatus, G. holbrooki and Lepomis gibbosus) suggesting that opportunistic fish species were insensitive to the range of hydrological conditions we studied.

The under-representation of the equilibrium strategy in our study (only three species) is typical of the biogeographic area of western Europe (Pont et al., 1995). This group was almost exclusively composed of A. melas (84% of the total of equilibrium fish), so that the relationships we found with the environmental conditions mainly reflected the ecology of A. melas and were probably not representative of the ecological niche of all equilibrium species. The abundance of A. melas was negatively correlated with variations in the water depth in the canals in April. This finding is in agreement with previous results in lotic habitats (Winemiller, 2011; Mims \& Olden, 2012). Furthermore, the abundance of A. melas was positively correlated with aquatic vegetation cover and turbidity, congruent with its benthic activity and detritivorous habits (Braig \& Johnson, 2003; Cucherousset et al., 2006).

Lastly, the unexplained part of the variation in fish community composition reached 65%. This can be partly attributed to the high mobility of fish, which are often able to leave when faced with unsuitable environmental conditions like progressive drying out (Cucherousset, Paillisson \& Roussel, 2013). Interspecific and intraspecific interactions were beyond the scope of the present study, but they likely influence the fish community composition of wetlands (Hanson et al., 2005). For instance, when fish take refuge in permanent canals when other aquatic habitats start to dry out, density dependence could be an important driver of the composition of fish communities (Rehage \& Trexler, 2006), and weaken the relationships with environmental drivers. In addition, we observed a turnover of almost half of the species between years in the canals, but this was largely due to occasional or rare species. High between-year variations of fish abundance are also common, related
for instance to variations in interannual variations of temperature or flow regime (Piffady et al., 2010).

To conclude, our study shows that hydrological fluctuations in the canals of the agricultural marsh of the Marais poitevin are not strongly related to the composition of fish communities, or to the three LHS of fish communities (only a few links were found on a case-by-case basis). The hydrology of the marsh is so regulated (strong flood abatement in early spring and low water depth in summer) that it does not play a pivotal role for fish. Further experimentations is required to cover a wider range of hydrological conditions, and notably more natural hydrological fluctuations (i.e. larger variations over the years). For example, limiting flood abatement in the Marais poitevin in early spring could result in an increase in water depth of about 6 cm in permanent canals, and less patchy flooded meadows (Appendix F). It is assumed that, in such conditions, flooded meadows would be more suitable in particular for periodic species. Lastly, we call for further investigations in other agricultural marshes since the question of the influence of hydrology on fish communities is largely understudied in these systems. Valuable guidelines could follow to conserve fish and the integrity of the remaining aquatic habitats represented by canals in agricultural marshes.

References

Beesley L., King A.J., Amtstaetter F., Koehn J.D., Gawne B., Price A., et al. (2012). Does flooding affect spatiotemporal variation of fish assemblages in temperate floodplain wetlands? Freshwater Biology, 57, 2230-2246. https://doi.org/10.1111/j.1365-2427.2012.02865.x
Benaglia T., Chauveau D., Hunter D.R. \& Young D.S. (2010). mixtools: An R Package for Analyzing Mixture Models. Journal of Statistical Software, 32, 1-29. https://doi.org/10.18637/jss.v032.i06
Bergerot B. \& Cattanéo F. (2017). Hydrological drivers of brown trout population dynamics in France. Ecohydrology, 10, e1765. https://doi.org/10.1002/eco. 1765
Bergerot B., Hugueny B. \& Belliard J. (2015). Relating life-history traits, environmental constraints and local extinctions in river fish. Freshwater Biology, 60, 1279-1291. https://doi.org/10.1111/fwb. 12561
Blanck A., Tedesco P. \& Lamouroux N. (2007). Relationships between life-history strategies of European freshwater fish species and their habitat preferences. Freshwater Biology, 52, 843859. https://doi.org/10.1111/j.1365-2427.2007.01736.x

Bradley D. c., Streetly M. j., Cadman D., Dunscombe M., Farren E. \& Banham A. (2017). A hydroecological model to assess the relative effects of groundwater abstraction and fine sediment pressures on riverine macro-invertebrates. River Research and Applications, 33, 1630-1641. https://doi.org/10.1002/rra. 3191

Braig E. \& Johnson D. (2003). Impact of black bullhead (Ameiurus melas) on turbidity in a diked wetland. Hydrobiologia, 490, 11-21. https://doi.org/10.1023/A:1023405823216
Brosse S. \& Lek S. (2000). Modelling roach (Rutilus rutilus) microhabitat using linear and nonlinear techniques. Freshwater Biology, 44, 441-452. https://doi.org/10.1046/j.13652427.2000.00580.x

Bunn S.E. \& Arthington A.H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30, 492-507. https://doi.org/10.1007/s00267-002-2737-0
Copp G.H. \& Persat H. (1989). Electrofishing and Point Abundance Sampling for the ichthyology of large rivers. Developments in Electrofishing (ed. by I.G. Cowx), Fishing News Books, Oxford
Crabot J., Mauchamp A., Bergerot B., Bonis A., Gore O., Rossignol N., et al. (2022). How hydrology and landscape shape Odonata assemblages in marshlands crossed by ditches. Freshwater Biology, 67, 1228-1241. https://doi.org/10.1111/fwb. 13913
Cucherousset J., Carpentier A. \& Paillisson J.-M. (2007). How do fish exploit temporary waters throughout a flooding episode ? Fisheries Management and Ecology, 14, 269-276. https://doi.org/10.1111/j.1365-2400.2007.00555.x
Cucherousset J., Carpentier A. \& Paillisson J.-M. (2008). Selective use and spatial distribution of native and non-native fish in wetland habitats. River Research and Applications, 24, 12401250. https://doi.org/10.1002/rra. 1149

Cucherousset J., Paillisson J.-M., Carpentier A., Eybert M.-C. \& Olden J.D. (2006). Habitat use of an artificial wetland by the invasive catfish Ameiurus melas. Ecology of Freshwater Fish, 15, 589596. https://doi.org/10.1111/j.1600-0633.2006.00199.x

Cucherousset J., Paillisson J.-M. \& Roussel J.-M. (2013). Natal departure timing from spatially varying environments is dependent of individual ontogenetic status. Naturwissenschaften, 100, 761768. https://doi.org/10.1007/s00114-013-1073-y

Czeglédi I., Sály P., Specziár A., Preiszner B., Szalóky Z., Maroda Á., et al. (2021). Congruency between two traditional and eDNA-based sampling methods in characterising taxonomic and traitbased structure of fish communities and community-environment relationships in lentic environment. Ecological Indicators, 129, 107952. https://doi.org/10.1016/j.ecolind.2021.107952
DeZiel B. (Asmus), Krider L., Hansen B., Magner J., Wilson B., Kramer G., et al. (2019). Habitat Improvements and Fish Community Response Associated with an Agricultural Two-Stage Ditch in Mower County, Minnesota. JAWRA Journal of the American Water Resources Association, 55, 154-188. https://doi.org/10.1111/1752-1688.12713
Dormann C.F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., et al. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Dray S. \& Dufour A.-B. (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22, 1-20. https://doi.org/10.18637/jss.v022.i04
Duncan P., Hewison A.J.M., Houte S., Rosoux R., Tournebize T., Dubs F., et al. (1999). Long-term changes in agricultural practices and wildfowling in an internationally important wetland, and their effects on the guild of wintering ducks. Journal of Applied Ecology, 36, 11-23. https://doi.org/10.1046/j.1365-2664.1999.00363.x
EPMP (2015). Atlas du Marais poitevin. Etablissement Public du Marais Poitevin, Lucon, France.
Foubert A., Le Pichon C., Mingelbier M., Farrell J.M., Morin J. \& Lecomte F. (2019). Modeling the effective spawning and nursery habitats of northern pike within a large spatiotemporally variable river landscape (St. Lawrence River, Canada). Limnology and Oceanography, 64, 803-819. https://doi.org/10.1002/Ino. 11075
Godet L. \& Thomas A. (2013). Three centuries of land cover changes in the largest French Atlantic wetland provide new insights for wetland conservation. Applied Geography, 42, 133-139. https://doi.org/10.1016/j.apgeog.2013.05.011

Gouraud V., Capra H., Sabaton C., Tissot L., Lim P., Vandewalle F., et al. (2008). Long-term simulations of the dynamics of trout populations on river reaches bypassed by hydroelectric installations-analysis of the impact of different hydrological scenarios. River Research and Applications, 24, 1185-1205. https://doi.org/10.1002/rra. 1129
Grenouillet G., Hugueny B., Carrel G., Olivier J.M. \& Pont D. (2001). Large-scale synchrony and interannual variability in roach recruitment in the Rhone River: the relative role of climatic factors and density-dependent processes. Freshwater Biology, 46, 11. https://doi.org/10.1046/j.1365-2427.2001.00637.x
Hanson M., Zimmer K., Butler M., Tangen B., Herwig B. \& Euliss N. (2005). Biotic Interactions as Determinants of Ecosystem Structure in Prairie Wetlands: An Example Using Fish. Wetlands, 25, 764-775. https://doi.org/10.1672/0277-5212(2005)025[0764:BIADOE]2.0.CO;2
Harvey B.C. \& Stewart A.J. (1991). Fish size and habitat depth relationships in headwater streams. Oecologia, 87, 336-342. https://doi.org/10.1007/BF00634588
Heermann L. \& Borcherding J. (2006). Winter short-distance migration of juvenile fish between two floodplain water bodies of the Lower River Rhine. Ecology of Freshwater Fish, 15, 161-168. https://doi.org/10.1111/j.1600-0633.2006.00132.x
Heo M. \& Gabriel K.R. (1998). A permutation test of association between configurations by means of the RV coefficient. Communications in Statistics Part B: Simulation and Computation, 27, 843-856
Hitt N.P., Landsman A.P. \& Raesly R.L. (2022). Life history strategies of stream fishes linked to predictors of hydrologic stability. Ecology and Evolution, 12, e8861. https://doi.org/10.1002/ece3.8861
Hohausová E., Lavoy R.J. \& Allen M.S. (2010). Fish dispersal in a seasonal wetland: influence of anthropogenic structures. Marine and Freshwater Research, 61, 682-694. https://doi.org/10.1071/MF09140
Janáč M., Ondračková M., Jurajda P., Valová Z. \& Reichard M. (2010). Flood duration determines the reproduction success of fish in artificial oxbows in a floodplain of a potamal river. Ecology of Freshwater Fish, 19, 644-655. https://doi.org/10.1111/j.1600-0633.2010.00449.x
Jopp F., Deangelis D. \& Trexler J. (2010). Modeling seasonal dynamics of small fish cohorts in fluctuating freshwater marsh landscapes. Landscape Ecology, 25, 1041-1054. https://doi.org/10.1007/s10980-010-9478-x
Judes C., Gouraud V., Capra H., Maire A., Barillier A. \& Lamouroux N. (2021). Consistent but secondary influence of hydropeaking on stream fish assemblages in space and time. Journal of Ecohydraulics, 6, 157-171. https://doi.org/10.1080/24705357.2020.1790047
Junk W., Bayley P. \& Sparks R. (1989). The Flood Pulse Concept in River-Floodplain Systems.
Karr J.R. (1981). Assessment of Biotic Integrity Using Fish Communities. Fisheries, 6, 21-27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
Keith P., Poulet N., Denys G., Changeux T., Feunteun E. \& Persat H. (2020). Les Poissons d'eau douce de France., Deuxième édition. Muséum national d'Histoire naturelle, Paris; Biotope, Mèze.
Koschorreck M., Downing A.S., Hejzlar J., Marcé R., Laas A., Arndt W.G., et al. (2020). Hidden treasures: Human-made aquatic ecosystems harbour unexplored opportunities. Ambio, 49, 531-540. https://doi.org/10.1007/s13280-019-01199-6
Kottelat M. \& Freyhof J. (2007). Handbook of European Freshwater Fishes. Publications Kottelat.
Laffaille P., Baisez A., Rigaud C. \& Feunteun E. (2004). Habitat preferences of different European eel size classes in a reclaimed marsh: A contribution to species and ecosystem conservation. Wetlands, 24, 642-651. https://doi.org/10.1672/02775212(2004)024[0642:HPODEE]2.0.CO;2
Lebret R., lovleff S., Langrognet F., Biernacki C., Celeux G. \& Govaert G. (2015). Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library. Journal of Statistical Software, 67, 1-29. https://doi.org/10.18637/jss.v067.i06

Linden A.L. \& Cech J.J. (1990). Prey selection by mosquitofish (Gambusia affinis) in California rice fields: effect of vegetation and prey species. Journal of the American Mosquito Control Association, 6, 115-120
McManamay R.A. \& Frimpong E.A. (2015). Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration. Ecological Applications, 25, 243-263. https://doi.org/10.1890/14-0247.1
Meyer D.L. \& Posey M.H. (2009). Effects of Life History Strategy on Fish Distribution and Use of Estuarine Salt Marsh and Shallow-Water Flat Habitats. Estuaries and Coasts, 32, 797-812. https://doi.org/10.1007/s12237-009-9164-x
Mims M.C. \& Olden J.D. (2013). Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshwater Biology, 58, 50-62. https://doi.org/10.1111/fwb. 12037
Mims M.C. \& Olden J.D. (2012). Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, 93, 35-45. https://doi.org/10.1890/11-0370.1
Miranda L.E. \& Lucas G.M. (2004). Determinism in Fish Assemblages of Floodplain Lakes of the Vastly Disturbed Mississippi Alluvial Valley. Transactions of the American Fisheries Society, 133, 358-370. https://doi.org/10.1577/03-060
Miyazono S., Aycock J.N., Miranda L.E. \& Tietjen T.E. (2010). Assemblage patterns of fish functional groups relative to habitat connectivity and conditions in floodplain lakes. Ecology of Freshwater Fish, 19, 578-585. https://doi.org/10.1111/j.1600-0633.2010.00438.x
Morat F., Gibert P., Reynaud N., Testi B., Favriou P., Raymond V., et al. (2018). Spatial distribution, total length frequencies and otolith morphometry as tools to analyse the effects of a flash flood on populations of roach (Rutilus rutilus). Ecology of Freshwater Fish, 27, 421-432. https://doi.org/10.1111/eff. 12357
Naimi B. (2017). usdm: Uncertainty Analysis for Species Distribution Models. R package version 1.118.

Nelva A., Persat H. \& Chessel D. (1979). Une nouvelle méthode d'étude des peuplements ichtyologiques dans les grands cours d'eau par échantillonnage ponctuel d'abondance. Comptes Rendus de l'Académie des Sciences, 289, 1295-1298
Oberdorff T., Pont D., Hugueny B. \& Chessel D. (2001). A Probabilistic Model Characterizing Fish Assemblages of French Rivers: A Framework for Environmental Assessment. Freshwater Biology, 46, 399-415. https://doi.org/10.1046/j.1365-2427.2001.00669.x
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2020). vegan: Community Ecology Package.
Piffady J., Souchon Y., Capra H. \& Parent E. (2010). Quantifying the effects of temperature and flow regimes on 0+ cyprinid fish abundance in the upper Rhone River using Bayesian hierarchical modelling. Freshwater Biology, 55, 2359-2374. https://doi.org/10.1111/j.13652427.2010.02453.x

Poff N. \& Ward J.V. (1989). Implications of Streamflow Variability and Predictability for Lotic Community Structure: A Regional Analysis of Streamflow Patterns. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1805-1818. https://doi.org/10.1139/f89-228
Poff N.L. \& Allan J.D. (1995). Functional Organization of Stream Fish Assemblages in Relation to Hydrological Variability. Ecology, 76, 606-627. https://doi.org/10.2307/1941217
Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., Richter B.D., et al. (1997). The Natural Flow Regime. BioScience, 47, 769-784. https://doi.org/10.2307/1313099
Poff N.L. \& Zimmerman J.K. (2010). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater biology, 55, 194205. https://doi.org/10.1111/j.1365-2427.2009.02272.x

Poizat G. \& Crivelli A.J. (1997). Use of seasonally flooded marshes by fish in a Mediterranean wetland: timing and demographic consequences. Journal of Fish Biology, 51, 106-119. https://doi.org/10.1111/j.1095-8649.1997.tb02517.x

Pont D., Allardi J., Belliard J., Boet P., Carrel G., Changeux T., et al. (1995). Stratégies démographiques des poissons des rivières françaises : premiers résultats. Bulletin Français de la Pêche et de la Pisciculture, 113-119. https://doi.org/10.1051/kmae:1995013
Pont D., Hugueny B., Beier U., Goffaux D., Melcher A., Noble R., et al. (2006). Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. Journal of Applied Ecology, 43, 70-80. https://doi.org/10.1111/j.13652664.2005.01126.x

R Core Team (2021). R: The R Project for Statistical Computing
Rapinel S., Rossignol N., Gore O., Jambon O., Bouger G., Mansons J., et al. (2018). Daily monitoring of shallow and fine-grained water patterns in wet grasslands combining aerial LiDAR data and in situ piezometric measurements. Sustainability, 10, 1-16
Rehage J.S. \& Trexler J.C. (2006). Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands: community structure relative to distance from canals. Hydrobiologia, 569, 359-373. https://doi.org/10.1007/s10750-006-0142-z
Rideout N.K., Lapen D.R., Peters D.L. \& Baird D.J. (2021). Ditch the low flow: Agricultural impacts on flow regimes and consequences for aquatic ecosystem functions. Ecohydrology, e2364. https://doi.org/10.1002/eco. 2364
Robb T. \& Abrahams M.V. (2003). Variation in tolerance to hypoxia in a predator and prey species: an ecological advantage of being small? Journal of Fish Biology, 62, 1067-1081. https://doi.org/10.1046/j.1095-8649.2003.00097.x
Rot M. de la C. \& Blanco-Moreno with contributions of P.M.D. and J.M. (2022). ecespa: Functions for Spatial Point Pattern Analysis
Scharbert A. \& Borcherding J. (2013). Relationships of hydrology and life-history strategies on the spatio-temporal habitat utilisation of fish in European temperate river floodplains. Ecological Indicators, 29, 348-360. https://doi.org/10.1016/j.ecolind.2013.01.009
Smiley P.C., Gillespie R.B., King K.W. \& Huang C. (2008). Contribution of habitat and water quality to the integrity of fish communities in agricultural drainage ditches. Journal of Soil and Water Conservation, 63, 218A-219A. https://doi.org/10.2489/jswc.63.6.218A
Syrjala S.E. (1996). A Statistical Test for a Difference between the Spatial Distributions of Two Populations. Ecology, 77, 75-80. https://doi.org/10.2307/2265656
Thorsteinson L.K. \& Love M.S. (2016). Alaska Arctic marine fish ecology catalog: U.S. Geological Survey Scientific Investigations Report 2016-5038. U.S. Geological Survey, Reston, VA.
Tockner M. (2000). An extension of the flood pulse concept. Hydrological Processes, 14, 2861-2883. https://doi.org/10.1002/1099-1085(200011/12)14:16/173.0.CO;2-F
Volcan M.V. \& Guadagnin D.L. (2020). Annual and non-annual fish assemblages respond differently to environmental and spatiotemporal variations of temporary wetlands from southern Brazil. Freshwater Biology, 65, 2023-2036. https://doi.org/10.1111/fwb. 13589
Wetzel R.G. \& Likens G. (2000). Limnological Analyses. Springer Science \& Business Media.
White J.C., Krajenbrink H.J., Hill M.J., Hannah D.M., House A. \& Wood P.J. (2019). Habitat-specific invertebrate responses to hydrological variability, anthropogenic flow alterations, and hydraulic conditions. Freshwater Biology, 64, 555-576. https://doi.org/10.1111/fwb. 13242
Williams D.D. (2006). The Biology of Temporary Waters. OUP Oxford.
Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P., et al. (2003). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation, 115, 329-341. https://doi.org/10.1016/S0006-3207(03)00153-8
Winemiller K. \& Rose K. (1992). Patterns of Life-History Diversification in North American Fishes: implications for Population Regulation. Canadian Journal of Fisheries and Aquatic Sciences, 49, 2196-2218. https://doi.org/10.1139/f92-242
Winemiller K.O. (2011). Life history strategies, population regulation, and implications for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences. https://doi.org/10.1139/f05-040

Data availability statement

The data that support the findings of this study are openly available in Dryad at https://doi.org/10.5061/dryad.mcvdnck5c .

FIGURE 1. Location of (a) the Marais poitevin on a map of France, and (b) the 11 hydrological units (gray areas) and the canals where fish were monitored (blue bold lines). The 11 hydrological units are isolated from the surrounding ones (not showed for clarity reasons) by hydraulic structures, and water management in each unit is based on a special water regulation. Blue thin lines represent the canal networks all over the study area.

FIGURE 2. Fluctuations of hydrological variables in the 11 hydrological units (unless otherwise indicated) over six years. (a.) Spring average water depth; (b.) spring average water depth in the fish canal; (c.) and (d.) coefficients of water depth variation in March and April; (e.) winter flood duration on 5% of the meadows; (f) winter flood duration on 20% of the meadows; (g.) spring flood duration on 5% of the meadows; and (h.) spring flood duration on 20% of the meadows. Different colors were used for the 11 hydrological units, and the bold black line represents the average values across all units.

FIGURE 3. Fish species richness (a.), abundance (b.), and between-year similarity in species composition expressed in presence-absence (c.) and abundance (d.) per canal (1 to 11) and year. Canals are ranked in a decreasing order for each descriptor. In each panel, the red line represents the mean value calculated for all canals and years. Blue squares indicate the cumulated species richness over six years.

FIGURE 4. Results of the co-inertia analysis. Scores of the canals (six years pooled) (a.). The nock and the head of the arrows indicate the positioning of the canals as described by fish communities and environmental variables, respectively, and their length reflects the divergence between the two datasets. Canonical weights of environmental variables (b.) and species composition (c.). Red, brown and blue labels stand for periodic, equilibrium and opportunistic species, respectively. Environmental variable codes are in Table 1, and fish species codes are in Table 2.

FIGURE 5. Relative contribution (\%) of hydrology (8 variables), physico-chemistry (10) and other habitat (5) variables in explaining the variance in the structure of fish communities in the 11 canals over six years.

Tables

618
619
620

Table 1 -Set of environmental variables (range of values) used to explain variations in fish communities in 11 hydrological units over six years (only one value if no change occurred over time). Measurements were done at the hydrological unit scale unless indicated otherwise (* only in the canals where fish were sampled). See Appendix A for a complete description of the measurement of the variables.

Hydrological units

Metric	Variable	Abbreviation	Unit	1		2		3		4		5		6		7		8		9		10		11	
				min	max																				
Hydrology	Spring average water depth	spr.wd	meter	0.51	0.62	0.64	0.75	0.28	0.42	0.81	0.98	0.21	0.29	0.70	0.78	0.34	0.44	0.45	0.56	0.34	0.52	0.24	0.38	0.57	1.06
	Spring water depth (fish canal)	spr.wd.samp	meter	0.49	0.59	1.26	1.37	0.44	0.58	1.27	1.44	1.03	1.11	1.08	1.16	1.23	1.40	0.72	0.83	1.50	1.68	0.95	1.09	1.52	2.01
	Coefficient of water depth variation (March)	vc.wd03	-	0.03	0.11	0.02	0.07	0.01	0.05	0.01	0.10	0.01	0.08	0.01	0.12	0.00	0.88	0.00	0.11	0.02	0.18	0.01	0.19	0.03	0.15
	Coefficient of water depth variation (April)	vc.wd04	-	0.01	0.05	0.01	0.04	0.01	0.02	0.01	0.03	0.00	0.04	0.00	0.02	0.00	0.01	0.00	0.01	0.01	0.02	0.01	0.03	0.02	0.10
	Winter flood duration (20% of meadows)	dur20win	days	1	83	0	15	0	19	0	81	0	51	0	111	14	115	6	107	0	78	0	110	0	105
	Spring flood duration (20% of meadows)	dur20spr	days	6	49	2	8	0	14	4	79	0	11	3	65	10	39	0	39	0	20	2	29	0	46
	Winter flood duration (5\% of meadows)	dur5win	days	80	120	18	96	24	120	25	106	4	99	0	118	41	120	21	118	15	119	0	116	1	118
	Spring flood duration (5\% of meadows)	dur5spr	days	66	118	29	84	38	120	10	120	4	35	42	120	25	55	9	53	10	59	11	57	3	61
Physicochemistry	Oxygen saturation	sato2	\%	79.0	128.0	77.8	97.9	58.6	102.4	67.1	112.2	45.2	120.6	51.3	91.8	62.4	74.3	69.9	81.1	67.5	79.2	61.8	98.2	53.2	90.9
	Ammonium	nh4	$\mathrm{mg} . \mathrm{L}^{-1}$	0.02	0.48	0.01	0.05	0.03	0.15	0.04	0.08	0.07	2.03	0.07	0.11	0.05	0.40	0.08	0.15	0.06	0.12	0.04	0.12	0.02	0.12
	Nitrite	no2	mg. L^{-1}	0.01	0.32	0.08	2.87	0.01	4.07	0.16	17.57	0.01	0.70	0.11	16.57	0.15	5.44	0.08	11.73	0.12	8.41	0.09	4.32	0.10	14.45
	Nitrate	no3	mg. L^{-1}	0.32	1.07	2.87	12.33	0.67	4.07	17.57	56.35	0.50	1.07	3.65	38.63	5.44	40.80	11.73	30.80	8.41	26.15	4.32	23.10	14.45	42.15
	Orthophosphate	orthop	$\mathrm{mg} . \mathrm{L}^{-1}$	0.02	0.04	0.02	0.06	0.04	0.23	0.02	0.07	0.20	0.94	0.04	0.12	0.02	0.05	0.06	0.12	0.04	0.10	0.04	0.15	0.05	0.55
	Chlorophyll a	chla	$\mu \mathrm{g} . \mathrm{L}^{-1}$	37	169	24	57	65	290	4	235	198	1871	8	93	16	58	4	28	7	36	9	78	2	77
	Annual average conductivity	cond	$\mu \mathrm{Scm}$	855	1853	671	1031	1851	3985	487	703	1505	2304	468	604	658	803	562	594	577	669	627	702	660	810
	Conductivity at sampling date*	cond.sample	$\mu \mathrm{S} . \mathrm{cm}$	589	2040	600	1531	706	6050	439	3331	531	1589	364	941	486	601	491	584	509	598	507	611	639	774
	Temperature*	temp	${ }^{\circ} \mathrm{C}$	20.3	24.6	22.9	27.9	20.1	26.1	19.4	24.2	20.6	26.8	20.2	23.9	15.9	24.1	16.6	24.5	19.9	24.7	19.1	23.7	18.2	23.9
	Turbidity*	turb	m	-5	-1	-15	-2	-8	-3	-35	-10	-3	-1	-15	0	-80	-1	-15	-3	-25	-6	-12	-2	-60	-12
Habitat features	Canal width*	width	m	7.50		10.00		10.00		10.00		7.00		8.50		9.50		7.00		9.00		9.00		9.50	
	Presence of tree root refuges*	tree.roots	-	1		1		1		3.5		2		3.5		5		3.5		4		4		2.5	
	Aquatic vegetation cover*	aqua.veg	\%	0.65		0		0.10		0.80		0.15		0.70		0.20		0.05		0.10		0.05		0.15	
	Length of large canal network	I.large	km/ha	18		30		8		32		35		7		57		56		49		54		23	
	Length of narrow canal network	I.nar	km/ha	99		112		78		35		82		32		109		138		166		84		21	

Table 2. Fish species sampled in the canals (1 to 11, all years pooled) classified according to life-history strategies: abundance, total abundance, and occurrence (number of canals where species were caught). Literature sources used to classify the fish according to a life history strategy: 1: Czeglédi et al., 2021; 2: Winemiller and Rose, 1992; 3: Bergerot et al., 2015; 4: Blanck et al., 2007; 5: Pont et al., 1995; 6: Thorsteinson and Love, 2016). Occasional discrepancies were found in the literature when assigning a species to a life-history strategy group. In that case, we referred to the most comparable papers with ours (i.e. similar biogeographic zone and/or habitat type).

Figure legends

FIGURE 1. Location of (a) the Marais poitevin on a map of France, and (b) the 11 hydrological units (gray areas) and the canals where fish were monitored (blue bold lines). The 11 hydrological units are isolated from the surrounding ones (not showed for clarity reasons) by hydraulic structures, and water management in each unit is based on a special water regulation. Blue thin lines represent the canal networks all over the study area.

FIGURE 2. Fluctuations of hydrological variables in the 11 hydrological units (unless otherwise indicated) over six years. (a.) Spring average water depth; (b.) spring average water depth in the fish canal; (c.) and (d.) coefficients of water depth variation in March and April; (e.) winter flood duration on 5% of the meadows; (f) winter flood duration on 20% of the meadows; (g.) spring flood duration on 5% of the meadows; and (h.) spring flood duration on 20% of the meadows. Different colors were used for the 11 hydrological units, and the bold black line represents the average values across all units.

FIGURE 3. Fish species richness (a.), abundance (b.), and between-year similarity in species composition expressed in presence-absence (c.) and abundance (d.) per canal (1 to 11) and year. Canals are ranked in a decreasing order for each descriptor. In each panel, the red line represents the mean value calculated for all canals and years. Blue squares indicate the cumulated species richness over six years.

FIGURE 4. Results of the co-inertia analysis. Scores of the canals (six years pooled) (a.). The nock and the head of the arrows indicate the positioning of the canals as described by fish communities and environmental variables, respectively, and their length reflects the divergence between the two datasets. Canonical weights of environmental variables (b.) and species composition (c.). Red, brown and blue labels stand for periodic, equilibrium and opportunistic species, respectively. Environmental variable codes are in Table 1, and fish species codes are in Table 2.

FIGURE 5. Relative contribution (\%) of hydrology (8 variables), physico-chemistry (10) and other habitat (5) variables in explaining the variance in the structure of fish communities in the 11 canals over six years.

Appendices

Appendix A - Protocols for measuring environmental conditions other than hydrology in the hydrological units

We considered ten water physico-chemistry variables. Seven were measured bi-monthly in one large canal in each hydrological unit covered by a companion program on the eutrophisation of the Marais poitevin (UNIMA, unpublished data). These variables were oxygen saturation (\%), conductivity ($\mu \mathrm{S} . \mathrm{cm}^{-1}$), measured in situ in the top 30 centimeters of the water column using a portable electronic multi-parameter probe (WTW 3430, Thermo Fisher Scientific Inc.), chlorophyll a concentration (measured by spectrophotometry after acetone extraction), and ammonium, nitrite, nitrate and orthophosphate concentrations ($\mathrm{mg} . \mathrm{L}^{-1}$), all measured in the laboratory from a water sample also collected from the top 30 centimeters of the water column. Mean annual values were used for subsequent analyses. Three additional variables were measured directly in the canals where fish were caught, at the same sampling date: water temperature (${ }^{\circ} \mathrm{C}$), conductivity ($\mu \mathrm{S} . \mathrm{cm}^{-1}$), and turbidity (m ; using a Secchi disk; Wetzel \& Likens).

Five other variables described the habitats for fish in the sampled canals and the hydrological units. The number of refuges for fish along the two banks of each sampled canal stretch was visually measured once at the time of the first electrofishing, and converted into five classes: $1 /$ scarce roots, 2 / frequent roots, 3 / frequent roots and refuges under the banks, $4 /$ frequent roots, refuges under the banks, and scarce woody debris jams, $5 /$ frequent roots, refuges under the banks, and woody debris jams. The canal width (m), and the aquatic vegetation cover (\%; Mauchamp et al., 2021) were also considered. Measurements were done at the time of electrofishing. Two additional variables were measured at the hydrological unit scale to described habitat heterogeneity: the total length of the network of large permanent canals, and the total length of narrower, temporarily dried canals (both in km.ha ${ }^{-1}$). These variables were measured using QGIS 3.2 (QGIS Development Team, 2021).

Mauchamp, A., Gore, O., Paillisson, J.-M., Bergerot, B., Bonis, A., 2021. Delineating the influence of water conditions and landscape on plant communities in eutrophic ditch networks. Wetlands Ecol Manage. https://doi.org/10.1007/s11273-021-09792-x
QGIS Development Team (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project Wetzel, R.G., Likens, G., 2000. Limnological Analyses. Springer Science \& Business Media.

Appendix B - Age-specific decomposition analyses based on length-frequency distributions. To explore this issue, we used an age-specific polymodal decomposition method that consists in fitting Gaussian components to the length-frequency histograms for each species (all canals and years pooled) when possible (Benaglia et al., 2010), using the Rmixmod package in R software (Lebret et al., 2015). The associated 95\% confidence intervals were calculated, and all fish within them were included in the given cohort. The models converged for seven species, and the cohorts were estimated visually for the other species, and then validated based on literature data.

B1 - Length-frequency histograms for all species with age-specific components (different colors) reported for seven species. The bracket indicates the Young-of-the-Year ($0+$) cohort. " 0 " indicates that no $0+$ was caught. Species are ranked in the same order as in Table 2. Please note that the chart scales may differ across species.

B2 - Size and age-specific cohorts for each species.

Table B2.1. Size and age-specific ($0+$ to $3+$) cohorts for the seven species for which the age-specific polymodal decomposition was successful: number of individuals (Nb), number of cohorts as found in the best model with associated basic statistics (Bayesian Information Criterion (BIC) and log-likelihood), and summary for each cohort.

Species Scientific name	Code	Nb	Length of individuals (mm)		Number of cohorts	Retained BIC model	loglikelihood	0+			Nb	1+		N	2+		3+		
			Min	Max				Nb	Len	gth (sd)		Len Mean				$\begin{aligned} & \text { igth } \\ & \mathrm{n}(\mathrm{sd}) \end{aligned}$	Nb		$\begin{aligned} & \text { igth } \\ & \mathrm{n}(\mathrm{sd}) \end{aligned}$
Abramis brama\& Blicca bjoerkna	Bre	517	28	428	3	5436	-2693	67		(6)	315	103	(28)	135	170	(62)			
Ameiurus melas	Ame	1299	20	286	2	13557	-6761	130		(4)	1169	134	(42)						
Anguilla anguilla*	Ang	547	22	782	3	6572	-3261	225		(32)	210	211	(59)	112	367	(134)			
Carassius gibelio	Car	342	16	428	4	3854	-1895	171	60	(17)	31	2442	(18)	99	157	(21)	41	338	(39)
Gambusia holbrooki	Gam	617	7	61	3	4576	-2262	68		(1)	308		(5)	241	34	(11)			
Perca fluviatilis	Per	289	6	426	2	2797	-1384	139		(8)	150		(42)						
Rutilus rutilus	Rut	2722	11	800	2	27712	-13836	1578	63	(23)	1144	110	(46)						

*Due to the specificity of the ecology of Anquilla anguilla (diadromous species), the age-specific cohorts better represent individual residence years in the marsh.

Table B2.2. Cohorts for species ($0+$ and $>0+$) for which the age-specific polymodal decomposition was unsuccessful, estimated visually and validated from literature data.

			Length of individuals		0+			>0+			
Species	Code	Nb	Min	Max	Nb		gth	Nb		ean gth d)	Literature sources
Alburnus alburnus	Alb	45	60	159	0			45	111	(28)	Gozlan et al., 2003
Barbatula barbatula	Bar	7	71	92	0			7	77	(9)	Kováč, Copp \& Francis, 1998; Vinyoles et al., 2010
Cyprinus carpio	Cyp	143	47	842	90	71	(13)	53	401	(154)	Vilizzi, 1998; Lechelt, Kocian \& Bajer, 2017
Esox lucius	Eso	50	81	723	0			50	218	(173)	Cucherousset et al., 2009
Gasterosteus aculeatus	Gas	425	10	40	211	20	(3)	214	30	(3)	Sillett \& Foster, 2000; Kume et al., 2006
Gobio gobio	Gob	17	30	102	17	70	(24)	0			Watkins et al., 1997; Pollux et al., 2006
Gymnocephalus cernua	Gym	38	37	123	15	50	(8)	23	96	(14)	Kováč et al., 1998; Lorenzoni et al., 2009
Lepomis gibbosus	Lep	361	11	127	5	25	(8)	356	73	(20)	Copp et al., 2004; Uzunova et al., 2008
Leucaspius delineatus	Leu	2	41	49	0			2	45	(6)	Gozlan et al., 2003
Micropterus salmoides	Mic	254	23	368	221	35	(4)	33	198	(86)	Moyle \& Holzhauser, 1978; Hamilton \& Powles, 1979
Platichthys flesus	Pla	3	202	217	0			3	208	(8)	Andersen et al., 2005; Mendes, 2019
Pseudorasbora parva	Pse	71	21	88	11	28	(4)	60	57	(13)	Rosecchi, Crivelli \& Catsadorakis, 1993
Pungitius laevis	Pun	1			0			1	43	(0)	Keivany \& Nelson, 2000
Rhodeus amarus	Rho	2	60	61	0			2	61	(1)	Podobailo, Shukh \& Kutsokon, 2021
Sander lucioperca	San	105	37	886	98	68	(13)	7	515	(328)	Persson \& Brönmark, 2008; Zingel \& Paaver, 2010
Scardinius erythrophthalmus	Sca	201	30	214	9	36	(4)	192	95	(35)	Gozlan et al., 2003
Squalius cephalus	Squ	5	93	103	0			5	98	(5)	Pompei et al., 2011; Nyeste et al., 2019
Tinca tinca	Tin	7	23	349	1	23	(0)	6	299	(35)	Kennedy \& Fitzmaurice, 1970; Harka, Sály \& Antal, 2007

Andersen B.S., Carl J.D., Grønkjaer P. \& Støttrup J.G. (2005). Feeding ecology and growth of age 0 year Platichthys flesus (L.) in a vegetated and a bare sand habitat in a nutrient rich fjord. Journal of Fish Biology, 66, 531-552. https://doi.org/10.1111/j.0022-1112.2005.00620.x
Copp G., FOX M., Przybylski M., Godinho F. \& Vila-Gispert A. (2004). Life-time growth patterns of pumpkinseed Lepomis gibbosus introduced to Europe, relative to native North American populations. Folia Zoologica -Praha-, 53, 237-254
Cucherousset J., Paillisson J.-M., Cuzol A. \& Roussel J.-M. (2009). Spatial behaviour of young-of-the-year northern pike (Esox lucius L.) in a temporarily flooded nursery area. Ecology of Fresh Water Fish, 18, 314-322. https://doi.org/10.1111/j.1600-0633.2008.00349.x
Gozlan R., Pinder A.C., S.Durand \& Bass J.A.B. (2003). Could the small size of sunbleak. Leucaspius delineatus (Pisces, Cyprinidae) be an ecological advantage in invading British waterbodies? Folia Zoologica -Praha-, 52, 99-108
Hamilton J.G. \& Powles P.M. (1979). Feeding habits and growth of young-of-the-year largemouth bass (Micropterus salmoides) near its northern limit, Nogies Creek, Ontario. Canadian Journal of Zoology, 57, 1431-1437. https://doi.org/10.1139/z79-185
Harka Á., Sály P. \& Antal L. (2007). Data to the growth of yoy (0+) tenches (Tinca tinca L.) in Tisza Lake. Acta Agraria Debreceniensis, 102-105.
https://doi.org/10.34101/actaagrar/25/3042

Keivany Y. \& Nelson J.S. (2000). Taxonomic review of the genus Pungitius, ninespine sticklebacks (Gasterosteidae). Cybium: international journal of ichthyology, 24, 107-122
Kennedy M. \& Fitzmaurice P. (1970). The Biology of the Tench Tinca tinca (L.) in Irish Waters. Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science, 69, 31-82
Kováč V., Copp G.H. \& Francis M.P. (1998). Morphometry of the stone loach, Barbatula barbatula: do mensural characters reflect the species' life history thresholds? In: When do fishes become juveniles? Developments in environmental biology of fishes, (Eds G.H. Copp, V. Kováč \& K. Hensel), pp. 105-115. Springer Netherlands, Dordrecht.
Kume M., Kuwahara T., Arai T., Okamoto M. \& Goto A. (2006). A part of the Japan Sea form of the threespine stickleback, Gasterosteus aculeatus, spawns in the seawater tidal pools of western Hokkaido Island, Japan. Environmental Biology of Fishes, 77, 169-175. https://doi.org/10.1007/s10641-006-9068-6
Lechelt J.D., Kocian M.J. \& Bajer P.G. (2017). Low downstream dispersal of young-of-year common carp from marshes into lakes in the upper mississippi river region and its implications for integrated pest management strategies. https://doi.org/10.3391/MBI.2017.8.4.03
Lorenzoni M., Pace R., Giovanni P., Viali P. \& Carosi A. (2009). Growth, catches and reproductive biology of ruffe Gymnocephalus cernuus in Lake Piediluco (Umbria, Italy). Folia Zoologica, 58, 420-435
Mendes C.V.R. (2019). Factors affecting early life patterns of the european flounder Platichthys flesus in a nursery habitat
Moyle P.B. \& Holzhauser N.J. (1978). Effects of the Introduction of Mississippi Silverside (Menidia audens) and Florida Largemouth Bass (Micropterus salmoides floridanus) on the Feeding Habits of Young-of-year Largemouth Bass in Clear Lake, California. Transactions of the American Fisheries Society, 107, 574-582. https://doi.org/10.1577/15488659(1978)107<574:EOTIOM>2.0.CO;2
Nyeste K., Dobrocsi P., Czeglédi I., Czédli H., Harangi S., Baranyai E., et al. (2019). Age and diet-specific trace element accumulation patterns in different tissues of chub (Squalius cephalus): Juveniles are useful bioindicators of recent pollution. Ecological Indicators, 101, 1-10. https://doi.org/10.1016/j.ecolind.2019.01.001
Persson A. \& Brönmark C. (2008). Pikeperch Sander lucioperca trapped between niches: foraging performance and prey selection in a piscivore on a planktivore diet. Journal of Fish Biology, 73, 793-808. https://doi.org/10.1111/j.1095-8649.2008.01956.x
Podobailo A., Shukh A. \& Kutsokon Yu. (2021). Age and Growth of the European Bitterling Rhodeus amarus (Cyprinidae, Actinopterygii), in the Uday and Perevod Rivers (Dnipro basin, Ukraine). Zoodiversity, 55. https://doi.org/10.15407/zoo2021.05.361
Pollux B.J.A., Korosi A., Verberk W.C.E.P., Pollux P.M.J. \& van der Velde G. (2006). Reproduction, Growth, and Migration of Fishes in a Regulated Lowland Tributary: Potential Recruitment to the River Meuse. Hydrobiologia, 565, 105-120. https://doi.org/10.1007/s10750-005-1908-4
Pompei L., Carosi A., Pedicillo G., Rocchini E. \& Lorenzoni M. (2011). Age and growth analysis of the chub, Squalius squalus (Bonaparte, 1837), in the Assino Creek (Umbria, Italy). Knowledge and Management of Aquatic Ecosystems, 09. https://doi.org/10.1051/kmae/2011011
Rosecchi E., Crivelli A.J. \& Catsadorakis G. (1993). The establishment and impact of Pseudorasbora parva, an exotic fish species introduced into Lake Mikri Prespa (north-western Greece). Aquatic Conservation: Marine and Freshwater Ecosystems, 3, 223-231. https://doi.org/10.1002/aqc. 3270030306
Sillett K.B. \& Foster S.A. (2000). Ontogenetic niche shifts in two populations of juvenile threespine stickleback, Gasterosteus aculeatus, that differ in pelvic spine morphology. Oikos, 91 , 468-476. https://doi.org/10.1034/j.1600-0706.2000.910307.x
Uzunova E., Velkov B., Studenkov S., Georgieva M., Pavlova M., Pehlivanov L., et al. (2008). Growth, age and size structure of the introduced pumpkinseed (Lepomis gibbosus L.) population from small ponds along the Vit River (Bulgaria). Bulgarian Journal of Agricultural Science, 14, 227-234
Vilizzi L. (1998). Age, growth and cohort composition of 0+ carp in the River Murray, Australia. Journal of Fish Biology, 52, 997-1013. https://doi.org/10.1111/j.10958649.1998.tb00599.x

Vinyoles D., De Sostoa A., Franch C., Maceda-Veiga A., Casals F. \& Caiola N. (2010). Life-history traits of the stone loach Barbatula barbatula. Journal of Fish Biology, 77, $20-32$. https://doi.org/10.1111/j.1095-8649.2010.02653.x
Watkins M.S., Doherty S. \& Copp G.H. (1997). Microhabitat use by 0+ and older fishes in a small English chalk stream. Journal of Fish Biology, 50, $1010-1024$. https://doi.org/10.1111/j.1095-8649.1997.tb01626.x
Zingel P. \& Paaver T. (2010). Effects of turbidity on feeding of the young-of-the-year pikeperch (Sander lucioperca) in fishponds. Aquaculture Research, 41, 189-197. https://doi.org/10.1111/j.1365-2109.2009.02317.x

Appendix C - Co-inertia analysis of the fish communities from the 11 hydrological units (1 to $\mathbf{1 1}$) without the Young-of-the-year from the complete dataset.

There was a significant correlation between the structure of the fish communities and the environmental variables ($\mathrm{RV}=0.53, \mathrm{p}<0.001$). The cumulative projected inertia on the two first axes reached 88%, with 81% projected on the first axis and 7% on the second axis.

C1 - Results of the co-inertia analysis. (a.) Scores of the sampled canals (six years pooled). The nock and the head of arrows indicate the positioning of the canals as described by environmental variables and fish communities, respectively, and their length reflects the divergence between the two datasets. Canonical weights of (b.) environmental variables and (c.) species composition. Red, brown and blue labels stand for periodic, equilibrium and opportunistic species, respectively. The full species names and the environmental variables are available in Appendices $B 2$ and $D 2$, respectively.

C2 - Canonical weights of the species (left) and the environmental variables (right) in the co-inertia analysis. Colors indicate the lowest (blue) and highest (red) values for each of the first two axes. The full species names and the environmental variables are available in Appendices B2 and D2, respectively.

Species	Axis 1	Axis 2	Environmental variables	Axis 1	Axis 2
Car	-0.379	0.230	cond	-0.378	0.009
Gam	-0.321	0.315	turb	-0.229	0.212
Ame	-0.184	0.203	sato2	-0.211	0.109
Cyp	-0.180	0.019	temp	-0.210	-0.006
Gas	-0.159	-0.145	cond.sample	-0.206	-0.014
Ang	-0.069	-0.479	chla	-0.198	0.130
Bre	-0.061	0.220	orthop	-0.170	-0.020
Pse	-0.037	0.096	dur5spr	-0.168	0.086
San	-0.017	-0.006	nh4	-0.097	0.097
Lep	0.003	0.073	vc.wd04	-0.093	-0.487
Tin	0.004	0.007	dur5win	-0.046	0.157
Leu	0.004	0.005	aqua.veg	-0.033	0.109
Rho	0.006	0.006	spr.wd	0.025	-0.321
Pun	0.007	0.002	width	0.061	-0.336
Pla	0.007	-0.124	vc.wd03	0.074	-0.007
Squ	0.011	-0.107	I.nar	0.079	0.384
Gob	0.025	0.058	no2	0.081	-0.191
Bar	0.029	0.008	dur20spr	0.116	0.068
Gym	0.033	0.073	dur20win	0.187	0.041
Mic	0.038	0.063	spr.wd.samp	0.255	-0.346
Alb	0.074	-0.085	no3	0.326	-0.036
Eso	0.088	-0.523	I.large	0.330	0.242
Sca	0.098	-0.249	tree.roots	0.452	0.223
Per	0.169	0.034			
Rut	0.772	0.332			

Appendix D - Principal component analysis of the 23 environmental variables all six years pooled

D1 - Representation of the PCA variables. The color indicates the relative contribution (contrib.) of a given variable to the principal dimensions.

D2 - Contribution of each variable to the first two axes of the PCA, in decreasing order of importance. Measurements were done at the hydrological unit scale unless indicated otherwise (* only in the canals where fish were sampled).

Variable	Abbreviation	Dim. 1	Dim. 2	Cumulated contribution
Length of the large canal network	I.large	3	14	18
Spring average water depth	spr.wd	3	13	16
Spring flood duration (5\% of meadows)	dur5spr	0	16	16
Number of tree root refuges	tree.roots	12	4	16
Spring flood duration (20\% of meadows)	dur20spr	6	9	14
Aquatic vegetation cover*	aqua.veg	1	13	14
Nitrate	no3	13	0	13
Annual average conductivity	cond	12	0	12
Turbidity*	turb	9	2	11
Winter flood duration (20\% of meadows)	dur20win	9	0	10
Length of narrow canal network	I.nar	0	9	10
Spring water depth of fish canals	spr.wd.samp	6	0	7
Conductivity at sampling date*	cond.sample	3	3	6
Chlorophyll a	chla	5	1	6
Temperature*	temp	5	1	6
Oxygen saturation	sato2	4	1	5
Orthophosphate	orthop	2	2	4
Canal width*	width	1	3	4
Ammonium	nh4	2	2	4
Coefficient of water depth variation (March)	cv03	3	0	3
Winter flood duration (5\% of meadows)	dur5win	1	2	3
Coefficient of water depth variation (April)	cv04	0	2	2
Nitrite	no2	0	0	0

Appendix E - Canonical weights of the species (left) and the environmental variables (right) in the co-inertia analysis performed on all fish data. Colors indicate the lowest (blue) and highest (red) values for each of the first two axes. The full species names and the environmental variables are available in Appendices B2 and D2, respectively.

Species	Axis 1	Axis 2	Environmental variables	Axis 1	Axis 2
Car	-0.312	0.129	cond	-0.369	0.032
Gam	-0.309	0.404	turb	-0.244	0.273
Cyp	-0.244	-0.099	temp	-0.228	-0.022
Gas	-0.185	-0.113	sato2	-0.215	0.071
San	-0.170	-0.349	cond.sample	-0.202	-0.016
Ame	-0.150	0.474	chla	-0.195	0.293
Ang	-0.067	-0.431	dur5spr	-0.164	-0.062
Bre	-0.044	-0.022	orthop	-0.132	0.288
Pse	-0.025	0.153	nh4	-0.092	0.247
Leu	0.004	0.003	vc.wd04	-0.088	-0.465
Tin	0.005	0.009	dur5win	-0.043	-0.038
Rho	0.005	0.000	aqua.veg	-0.024	0.216
Pla	0.006	-0.071	spr.wd	0.038	-0.227
Pun	0.006	-0.002	width	0.048	-0.437
Lep	0.007	0.236	I.nar	0.049	0.100
Squ	0.009	-0.051	vc.wd03	0.075	-0.033
Gob	0.025	0.061	no2	0.087	0.035
Bar	0.027	0.000	dur20spr	0.119	0.123
Gym	0.030	0.041	dur20win	0.208	0.075
Alb	0.065	-0.018	spr.wd.samp	0.272	-0.170
Mic	0.065	0.088	I.large	0.305	0.192
Eso	0.084	-0.369	no3	0.339	0.030
Sca	0.096	-0.025	tree.roots	0.454	0.281
Per	0.187	0.047			
Rut	0.770	0.159			

Appendix F - Spatial pattern of flooded meadows in the 11 hydrological units

In this study, we examined the link between variation in the composition of fish communities and the amount of temporary fish-accessible aquatic habitats as expressed by the flooding duration (days) of at least 5% (corresponding to a maximum water depth ranging from 6 to 21 centimeters depending on the hydrological unit) or 20% (a maximum water depth ranging from 14 to 44 centimeters) of the meadows in the whole hydrological unit, notably in spring. Here, we gather maps of flooded meadows in the 11 hydrological units for the two selected thresholds and three associated landscape metrics. We also provide the results for the threshold of 30% of flooded meadows (i.e. 6 additional centimeters of water on average) as a possible hydrological management scenario (Appendix F1). Then, classical landscape metrics were computed to describe the shape of the flooded surfaces: mean patch size, largest patch index (proportion of the largest patch of flooded surface compared to the total area of meadows on the hydrological unit) and number of isolated patches (Appendix F2).
Globally, flooding does not result in one large continuous area in most hydrological units but rather in many small patches. For instance, for the 20% threshold, the surface of the largest flooded patch only reached 1 to 11% of the total meadow cover, depending on the site. The mean patch size increased on average by 174% and 51% when the flooded surface increased from 5% to 20% and from 20% of 30% of the meadows, respectively. For the same thresholds, the largest patch size increased on average by 516% and 109%. The number of patches increased by 156% when the flooded surfaces increased from 5% to 20%, then reached a plateau.

F1 - Spatial distribution of flooded areas for all sites and quantiles 5\%, 20\%, 30\% The canal networks were not represented for readability.

4.

5.

6.

7.

8.

9.

10.

11.

F2- Landscape metrics characterizing the flooded surfaces for all sites and quantiles 5\%, 20\%, 30\%
Different colors were used for the 11 hydrological units, and the bold black line represents the average values across all units.
a.

