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Abstract—Micro-mobility refers to a variety of small and
lightweight vehicles designed for individual use. These new
vehicles are inexpensive, simple to operate, and enjoyable to ride,
making them the easiest and most suitable mode of transportation
for trips of less than five miles. They have become extremely pop-
ular, especially with the advent of free-floating systems that offer
users flexible parking in order to facilitate the rental process.
However, the problem of imbalance and maldistribution is among
the major challenges of these systems, causing dissatisfaction and
loss of customers. Therefore, to ensure the balancing of the fleet
and to make the best decision for its reorganization, we must
consider strategic locations that are accessible to all. In this
paper, we propose a machine learning model for spatio-temporal
demand forecasting using a multi-output regression technique.
The main goal of the paper is to help pick the ideal areas for
fleet deployment and balance the system according to user needs.
Our solution, designed for public electric scooters, is based on
the estimation of user demand over a grid-based service area.
In addition, we propose an enhanced solution that outperforms
other baseline models, including the Random Forest, Gradient
Boosting, and Stacking Regressor.

Index Terms—micro-mobility, free-floating, maldistribution
problem, repositioning, spatio-temporal demand forecasting, ma-
chine learning, multi-output regression, time-series forecasting

I. INTRODUCTION

Nowadays, micro-mobility services have gained great popu-
larity. E-scooters, bikes, or motorcycles are examples of micro-
mobility devices that offer an attractive solution to minimize
car dependency while helping cities achieve their social and
environmental goals and improving road safety [1]. In fact,
these lightweight travel vehicles are receiving significant atten-
tion due to their ecological character and their ability to solve
problems such as traffic jams and increased carbon emissions
[1]. Many companies are taking full advantage of the shift in
people’s perceptions towards this new means of transportation;
bikes or e-scooters are used as a shared resource between
several users, hence the term ”shared micro-mobility”. Thanks
to their market dominance, these companies provide rental
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services and improve operational efficiency. Except for a
few minor structural variations, each of these companies has
its own rental strategy and fleet structure. For the parking
procedure, we generally have two operating modes: (i) a dock-
based system, where the user is required to park at the nearest
station in the service area, which facilitates the management
of micro-vehicles; (ii) a free-floating system, which allows
users to park the fleet freely, making the rental procedure more
convenient and easier [2]. Despite being the most convenient
mode, free-floating poses many regulatory challenges such as
poorly parked fleets by users, maintenance difficulties, and
unloaded fleet collection [3]–[5]. Furthermore, because of the
uncontrolled parking system, fleets can be parked in irrelevant
areas, leading to an unbalanced system.

Fleet maldistribution or imbalance is one of the major
problems that has a negative impact on usage rates and the
quality of the user experience within these types of systems.
It refers to the unavailability of services at a given time in
some regions or specific areas, i.e., fleets are not placed in
proper zones where there is a real need for services [6], [7].
Therefore, users are experiencing unsatisfactory services when
there are no nearby fleets available and suffer from the distance
they have to travel to find a micro-vehicle [7]. As a result,
micro-mobility companies are losing an important customer
base, which can have a significant impact on the company’s
revenue. Thus, improving user satisfaction is one of the goals
for micro-mobility operators.

To remedy this free-floating maldistribution problem, micro-
mobility operators must make fleet repositioning operations
to balance the system, which are often handled by trucks
or trailers driving around the city and moving fleets among
areas. These redistribution operations are usually performed
in a manual manner during the system idle periods (such as
midnight or early morning) based on points of interest such
as subway stations and universities or based on predefined
criteria like population density [3], [8]. However, as the
demand for these services continues to grow steadily, these
static redistribution plans are no longer effective, allowing



for unevenness and imbalance in distributed fleets. Moreover,
it is not sufficient to redistribute statically according to the
type of area; in fact, it has been shown that variable criteria
such as day of the week, temperature, or wind speed are
important factors that have a significant impact on the use
of micro-mobility services [6], [9], [10]. Thus, automatic
redistribution methods that are based on pick-up demand
prediction within several zones can be an effective solution
for repositioning fleets based on user needs. This method
can assist the operators in enhancing the quality of their
decision-making since it is increasingly difficult for them to
make an appropriate fleet relocation decision manually by
examining all the variable criteria. Therefore, conducting a
comprehensive spatio-temporal short-term prediction taking
into account weather criteria over several spatial areas is of
great importance to the operator, who can move the fleets
from the areas with less demand to those with higher potential
user demands. These automated procedures not only assist to
balance supply and demand throughout different time periods,
but they also help maximize fleet utilization and decrease
the search time to find a fleet. In this context, studies have
been conducted to improve these redistribution strategies and
increase the service availability based on fleet mobility models
and forecasting using machine learning techniques [5], [7],
[11]–[15]. However, some studies do not provide an estimate
of the exact number of future demand within regions where a
fleet deployment is needed [13]–[15] or are computationally
complex [7], [12]; in addition, they take into account only a
few variable criteria which affect the model performance [5],
[7], [12], [14].

In this regard, we propose an effective prediction tool for
free-floating systems, based on pick-up demand forecasting
from real recorded departure trips, taking into account relevant
variable criteria in order to improve fleet distribution and
repositioning. Our solution provides micro-mobility operators
with future demand predictions, helping them select the best
fleet location; in this way, it will be easier for users to find a
fleet that improves their journey experience. To deal with the
problem of the uncontrolled parking procedure, our strategy
consists of using a grid over the operational service area to
specify the zones with corresponding predictions in which the
operator could deploy fleets. The key contributions of this
paper are listed below:

• A grid-based spatial framework was established as part
of the preprocessing phase.

• An experimental study based on demand forecasting
within zones using classical machine learning algorithms
is conducted; a visualization of results is also provided.

• A time-series forecasting solution is proposed to improve
our prediction results.

The rest of this paper is organized as follows: Section II
gives an overview of relevant literature focusing on free-
floating shared micro-mobility redistribution. In Section III,
we formulate the proposed approach and its different steps.
Section IV presents a case study based on e-scooters’ trip

data in the city of Chicago. Section V concludes the paper
and mentions future works.

II. LITERATURE REVIEW ON FREE-FLOATING SHARED
MICRO-MOBILITY REDISTRIBUTION

The availability of real data from publicly accessible shared
micro-mobility systems has helped researchers to examine
operational problems using demand forecasting, with a special
focus on the imbalance and maldistribution issue [3], [6],
[7], [11]–[15]. Notwithstanding, demand prediction in free-
floating systems is very challenging due to the characteristics
of spatial distributions and the uncontrolled parking procedure
since the system counts hundreds of parking positions every
day. Dividing the whole service area into small-scale spatial
units can be an effective solution to make the prediction.

In [5], the use of a square grid on the service zone
is proposed as a solution to identify the spatial units by
applying a Long Short-Term Memory (LSTM) for the demand
forecasting aspect. It consists of a service zone partition into
grid cells, using a field of 9 km2 where the model can predict
the future N steps for each cell of the grid. Based on the
obtained results, the system invites customers to group low-
load bikes to facilitate the pick-up process and balance the
system. This model is trained using a trip database recorded
in China in 2017. However, the time training period is limited
(less than one month), which does not ensure the model’s
performance. In [6], a Multi-Layer Perceptron model has
been implemented to predict hourly demand within a spatial
region partitioned into 20 x 20 grids. Several algorithms,
including Convolutional LSTM (Conv-LSTM) and XGBoost,
were compared on the same data set collected in Beijing,
China in 2017. However, the model’s performance in terms
of error is low. Using almost the same strategy of gridding,
an LSTM model has been implemented in [11] to predict
the level of hourly demand within grid cells. The spatial
unit was set to a 200 m square grid for the prediction. The
solution allows two types of prediction: (i) a prediction within
each grid cell; (ii) a prediction within 5 clusters that have
been made from grid cells (commercial areas, tourist areas,
etc.), for an operator-based rebalancing. Although the solution
provides good prediction results with accuracy, the model’s
performance, in terms of computing time for prediction, is
relatively low. The solution took 53∼78 s for the five clusters,
and 5700∼6390 s for 1164 square grids, indicating that it
cannot be deployed in real-time. Moreover, it does not allow
a comparison with other machine learning models on the used
dataset in comparison with other studies.

In [14], the authors exploited the heatmap image prediction
strategy to identify the most future frequent zones for the
fleet. They proposed a Fully Convolutional Network (FCN) to
forecast user demand by processing historical demand density
images. The FCN model architecture is modified by adding the
masking process to better guide the model. The input to the
Masked Fully Convolutional Network (MFCN) is a series of
historical images representing the demand density at each hour.
The proposed model is trained on a dataset of electric scooter



usage over a 75-day period (2019) for the city of Calgary,
Canada. In [15], a combination of LSTM and Conv-LSTM
is proposed as a solution to predict short-term demand using
heatmap images for the demand characteristics in accordance
with weather and temporal criteria. The LSTM model is
used to capture temporal and weather features, while spatial
dependencies are discovered from heatmap images using the
Conv-LSTM model. To identify the zones, the solution relies
on a grid on the service zone. To ensure the performance of the
suggested solution, the study allows a comparison of different
algorithms on the same dataset, such as convolutional neural
networks and artificial neural networks. Figure 1 represents an
example of the model’s output.

Fig. 1. Example of predicted demand [15]

Using a similar approach, a recent work proposes a solution
in [13] that aims to predict the hourly user demand with high
spatial resolution using an Encoder-RNN-Decoder (ERD). To
efficiently extract latent features from an input heatmap image,
the solution relies on autoencoders instead of using a masking
process with a weighted loss. The algorithm’s structure is
mainly composed of 3 large parts: an encoder for features
extraction, the Recurrent Neural Network (RNN) cells for pre-
dicting future arrivals, and a data decoder. The study is based
on real-world collected data from the city of Chungju, South
Korea in 2019. Nonetheless, the use of heatmap images for
prediction in free-floating systems as a method does not allow
for a precise understanding of the user demand density or to
have an idea about the exact number of fleets that should be
placed in specific areas [13]–[15]. In addition, some algorithms
based on RNNs, like ERD, require a significant number of
trainable parameters, which increases the complexity of the
algorithm [13]. In [7], an automatic balancing system based
on deep reinforcement learning1 framework is proposed using
a new algorithm namely Hierarchical Reinforcement Pricing
(HRP). The solution consists of formulating the problem as a
Markov decision process with the use of the Gated Recurrent
Unit (GRU) algorithm for estimating future action values.
However, the solution lacks real-environment testing. In [12],
a multi-agent system based on deep reinforcement learning,
capable of proposing convenient alternative locations for each
reservation request, is proposed. In order to maximize the
availability of vehicles and minimize the number of reloca-
tion operations and battery replacements as well, the system
proposes two types of rebalancing; operator-based rebalancing

1Deep reinforcement learning involves the training of artificial agents to
interact with their environments and learn the best actions to take using a
deep neural network to increase reward and solve the problem.

and customer-based rebalancing. Since the solution is based on
a simulated environment, the number of iterations and actual
data are very few to evaluate the model’s performance. In
addition, the use of reinforcement learning in the context of an
automatic redistribution system is computationally complex.

With our proposed approach, we aim to implement a so-
lution with a clearer prediction output than heatmap images
and a lower computing cost based on a real-world database.
Besides, to meet the client’s needs, we offer a prediction per
period for a semi-dynamic balance and a prediction per hour
using an advanced method.

III. STUDY OF FREE-FLOATING SMART REDISTRIBUTION

Our main goal is to study free-floating fleet redistribution,
based on forecasting future pick-up user demand using well-
defined criteria and historical trip data. We aim to assist
micro-mobility operators in making the best fleet redistribution
and picking the ideal areas for fleet deployment. Indeed,
optimal fleet locations contribute to improved service quality
and boost the number of satisfied users by minimizing user
travel distances to fleets. To this end, we propose a model
based on multi-prediction to estimate the number of future
pick-up demands based on user trips within each zone. To
have accurate estimations, we partition the service area into
hexagonal grid cells; each cell represents a specific zone. In
this context, we propose a Machine Learning-based tool for
fleet ReDistribution and Optimization (ML-RDO). Then, we
introduce an enhancement of this approach. In the following,
we detail the two approaches.

A. Machine Learning-based tool for fleet ReDistribution and
Optimization (ML-RDO)

ML-RDO relies on the prediction of user demands to allow
operators to balance their fleets and improve availability for
customers. As exposed in Figure 2, this method consists of 4
steps: Data cleaning and preparation, dataset splitting, models
construction and training, models evaluation, and exploitation.

Fig. 2. ML-RDO Overview

1) Data cleaning and preparation: Our data cleaning steps
entail removing duplicate and missing values from weather
and trip datasets, it also ensures data join and data encoding
[16]. Then, we proceed with the preparation phase of the



prediction environment. Our strategy is based on hexagonal
gridding of the operational service area. In fact, previous
studies generally divide the service zone into many sub-zones,
mainly using the square shape to predict scooter demand
for free-floating systems [5], [11], [13]–[15]. However, this
latter shape has several disadvantages, including an imprecise
definition of the nearest neighborhood [17]. In another context,
researchers have shown that the hexagon shape, which has six
sides, is particularly interesting since it covers a plane with
units of equal size and leaves no wasted space. Likewise,
when compared to square cell shapes, all the neighbors of
a hexagon are equally spaced apart, and have softer and
smoother gradients that make data interpretation much easier
[17]–[19]. Taking into consideration these advantages, our
operational zone is divided using the hexagonal shape with
the aid of Uber’s Hexagonal Hierarchical Spatial Index (H3)
library in python.

2) Train-valid-test split: The database is divided into
80% learning data (consisting of a set of labeled instances
that serve as learning examples), 10% validation data (used
for setting hyperparameters), and 10% to test the model’s
performance.

3) Models construction: In order to avoid creating several
models for each cell of the grid, which is impractical, we fully
employ the multiple output regression approach to forecast
user demand for micro-vehicles within all the created zones
at the same time. Indeed, normal regression predicts a single
value for each sample, while this approach allows making
several estimations and predicting Y numerical values from
an example given as input; in our case, Y is the number of
grid cells [20].

Since multi-output regression supports the output of mul-
tiple variables for each prediction, adapted machine learning
algorithms are needed. We will use classical machine learning
algorithms with reduced complexity in order to make accurate
predictions for each period within the cells of the grid. In
this context, we trained several algorithms and tested them to
identify the most suitable one for our specific task, mainly:

• Multi-Output Regressor: The Multi-Output Regressor
consists of representing each target by exactly one regres-
sor in which its examination may lead to gaining infor-
mation and predicting future values [21]. In our case, the
Multi-Output Regressor algorithm is used in combination
with the Stacking Regressor [20] or the Gradient Boosting
Regressor [21] since they do not support multiple output
regression.

• Stacking Regressor: The Stacking algorithm integrates
the forecasts from many estimators such as K-nearest
neighbors, using an assembly process. Instead of simply
gathering the results to retain the majority forecast, the
model asks a final estimator to learn to distinguish
between the right and erroneous answers [20], [21].

• Gradient Boosting Regressor: The Gradient Boosting
Regressor is a special case of the boosting method where

errors are minimized by the gradient descent algorithm.
It consists of a prediction model in the form of many de-
cision trees in order to reward weak learners and generate
a final accurate prediction. Weak learners are parameters
that perform slightly better than random choices. Unlike
the Random Forest algorithm, decision trees in Gradient
Boosting are built additively, one at a time [21].

• Random Forest Regressor: A Random Forest algorithm
consists of a set of independent decision trees from
which it performs parallel learning. Thus, it reduces the
prediction variance of a single decision tree to enhance its
performance. Each tree in the Random Forest is trained on
a different random subset of the data, using the bagging
principle. The results are then averaged [20].

A machine learning model consists of several extrinsic
and intrinsic parameters which are required by the model
when making predictions. The adjustable parameters,
or hyperparameters, are tuned; they allow us to control
the tuning process. This process involves playing with
hyperparameters throughout the learning phase until the ideal
set of values is found. Thus, it plays a key role in finding
the best model by minimizing the predefined loss function.
The process of adjusting hyperparameters when training the
model is known as the hyperparameter tuning stage.

4) Model’s evaluation: Finding the best model that accu-
rately and precisely predicts scooter demand with a low error
rate is the aim of our evaluation step. We measure our model
performance by Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE), computed as follows [22]:

MAE =
1

n

n∑
i=1

(

∑q
j=1 |yij − ŷij |

q
) (1)

RMSE =

√√√√ 1

n

n∑
i=1

∑q
j=1(yij − ŷij)2

q
(2)

Where yi and ŷi are the vector of actual and predicted
outputs for xi, respectively; q is the number of outputs
and n is the number of instances. The evaluation metrics
in regression problems enable us to precisely measure the
error rate of our models by assessing the average difference
between the observations (true values in the test dataset) and
model output (predicted demands). These criteria’s constant
range of values is [0,+∞[. In fact, the closer the value is to
0, the more accurate the model’s predictions are.

5) ML-RDO exploitation: Considering the operator’s needs
and capacity in accordance with the strategy employed, our
proposed prediction solution can be used to improve the
redistribution operations and the quality of the user experience.
Additionally, our tool is adaptable by modifying the size of the
spatial units according to the operator’s service zone size. In
this context, the operator can choose between two strategies:
(i) a customer-based strategy, in which he can put in place an
incentive plan to ask customers to help in the redistribution



process dynamically and return the fleet in popularly predicted
areas where there will be high pick-up demand in the future;
(ii) an operator-based strategy, by doing the redistribution
operations by workers when necessary, after analyzing the
results of the prediction.

B. Enhanced ML-RDO

Due to the temporal dependence of our data, we suggest
using time-series techniques based on a more potent approach
such as deep learning, which can improve our prediction
outcomes. Time-series forecasting is a crucial area of machine
learning that is often overlooked due to the time component
that makes this technique more challenging to handle [23]. The
previously mentioned advanced technique is typically used
for event prediction based on time-stamped historical data.
It predicts future values based on the complex processing of
current and previous data, with the assumption that future
patterns will be similar to historical trends. For our case, we
fully employ the multivariate forecast since we have multiple
outputs using a single-step model that learns to predict the
next value of the series based on a given history, known
as lookback windows or time steps. One of the powerful
algorithms that have excellent predictive ability for time-series
data is the LSTM network [10], [11]. It learns a function
that maps a series of previous observations as input to an
output observation. Based on RNNs, which has a structure that
repeats itself, LSTMs can retain longer sequences of data and
simulate local and temporal dependencies by using dedicated
gates to keep the details of previous hidden states ht−1 in
memory cells ct and manage the flow of information. There are
three gates in a typical LSTM [10]; the input gate it decides
whether the input should change the content of the cell ct;
the forget gate ft decides whether to reset the cell content to
0; the output gate ot decides whether the cell content should
influence the neuron’s output. Filtering by the output gate ot
is then performed to finally obtain the output ht.

it = σ(Wi[ht−1, xt]) + bi (3)

ft = σ(Wf [ht−1, xt]) + bf (4)

ot = σ(Wo[ht−1, xt]) + bo (5)

ct = ft ∗ ct−1 + it ∗ tanh(Wc[ht−1, xt]) + bc (6)

ht = ot ∗ tanh(ct) (7)

A T timestamp vector series x = (x1...xt−1) serves as the
input, while the output vector sequence h = (h1...ht−1) serves
as the output. The cell then combines the input xt with the
prediction at the previous step ht−1 to calculate the output
ht; σ and tanh are the two nonlinear activation functions
that help the network learn complex patterns in the data.
W and b are the weights and biases learned by the model.
LSTM’s advanced architecture, which combines at timestamp
T , hidden state ht, cell state ct, and gates, enables it to
effectively process temporal data with long-term dependencies
by selectively retaining important information from previous
time steps.

IV. A CASE STUDY BASED ON TRIP DATA OF E-SCOOTER
SHARING IN CHICAGO

Our objective is to help identify the best fleet parking
locations to balance the system and optimize fleet deployment
based on demand history. The proposed models are trained
to predict the number of future pick-up demands within each
grid cell, taking into account the selected meteorological and
temporal criteria. To implement the machine learning and deep
learning models, Python 3.7 was used. A visualization tool was
also created with the aid of the Python Folium module [24].
This section includes a presentation of the used datasets, the
hyperparameter tuning process, as well as a comparison of
various trained model outputs.

A. Dataset description

The trip dataset used in this case study corresponds to
630,816 electric scooter trips excluding errors, collected in the
city of Chicago [25], during the five months of summer/fall
2020. It is provided by Pilot, a program to assess the viability
of scooter sharing in Chicago. Each transaction record includes
details such as trip ID, scooter check-out/in time, start and end
locations, trip duration, and trip distance. After converting to
date-time format, the instance’s check out/in dates are used
to extract temporal criteria such as weekday names, days, and
months. The meteorological data, which includes temperature,
humidity level, wind speed, pressure, and other variables,
is gathered from an open-source database [26]. Figure 3,
represents the average demand for each hour of the day over
the entire period; the demand begins to rise slightly at 10 a.m
and peaks at 5/6 p.m. Hence, the rate of use of e-scooters in
Chicago rises during the early evening hours and the night. We
can also notice that the demand is higher during the weekends
than on weekdays. Thus, the temporal criteria are relevant to
our case and have an impact on the number of trips.

Fig. 3. Average user demands for each hour

In order to conduct a thorough study, we will compare two
different grid sizes of 24 and 73 cells. Hence, the spatial unit
was set to ≈ 36km2 and ≈ 5km2, for 24 and 73 grid cells
respectively, over 549.077km2 Pilot service area in Chicago.
Figure 4 and Figure 5, represent a visualization of our grid
cells applied to the operational zone2 after the preparation

2In order to use all recorded trips, the cells outside the service area are not
eliminated.



phase. In our case, unneeded hexagons, those where no trips
were initiated in the whole database, are removed.3

Fig. 4. Hexagon grid visualization (24 cells)

Fig. 5. Hexagon grid visualization (73 cells)

B. ML-RDO hyperparameters tuning

The values of the hyperparameters parameters of the used
algorithms, outlined in Section III-A3, are chosen using the
random search technique. It enables iterative exploration of
all possible set combinations of parameters, with a random
way selection to train the model and calculate the score.
Table I shows the principal selected hyperparameters of each
algorithm.
For Stacking Regressor, the selected estimators are Support
Vector Regression, Extra-Trees Regressor, Decision-Tree Re-
gressor, K-nearest neighbors, and Random Forest Regressor as
the final estimator of the model [20], [21].

• For SVR, we fix 2 parameters: (i) the parameter C
is a regularization parameter that determines how low
training error and low testing error are traded off; (ii)
the parameter gamma determines the degree to which a
single training example has an impact.

• For KNN, we fix the parameter k, which refers to the
number of neighbors.

For Gradient Boosting Regressor, we fix:
• Learning rate: it refers to the rate of speed where the

gradient moves during gradient descent.
• Loss function: it measures how near the predicted values

are to the original label values.

3Due to the lack of unsuccessful demands in the dataset, we were unable
to consider them in our analysis. However, it remains conceivable to integrate
them if they would be provided.

• Max leaf nodes: it refers to the maximum number of
leaves in the tree.

For Random Forest, we fix:
• Max depth: it represents the maximum depth of the tree.
• Random state: it controls the bootstrapping’s randomness

as well as the sample sizes utilized to construct trees.

TABLE I
LIST OF IMPORTANT HYPERPARAMETERS AND THEIR VALUES

Stacking Gradient Boosting Random Forest
SVR:
C=1e-3
gamma=0.1
KNN:
k=5

Learning rate=0.2
max depth=600
loss function=Huber
max-leaf nodes=30

max depth=5
random state=0

C. ML-RDO results

In order to forecast the demand within zones throughout the
day, our strategy involves applying a prediction by time period,
as defined below:

• 6 a.m, 7 a.m, 10 a.m, 11 a.m: Morning
• 8 a.m, 9 a.m: Morning Rush Hour
• From 12 p.m to 3 p.m: Afternoon
• 4 p.m to 6 p.m: Evening Rush Hour
• 6 p.m to 10 p.m: Evening
• 11 p.m to 5 a.m: Night

Table II presents a comparison of the outcomes of the exam-
ined models, after the hyperparameters tuning process. The
obtained results show that the Gradient Boosting in combina-
tion with the Multi-Output Regressor model outperforms all
the benchmark models. It also produces efficient and stable
prediction results despite the cells’ size variation, as indicated
by the MAE value of around 0.6 and RMSE values ranging
from 0.9 to 1.1. Therefore, the Gradient Boosting algorithm is
more adapted to our multiple output problem (i.e. 73 and 24
outputs) than the Random Forest and Stacking models, which
are rather suitable for a single output regression.

TABLE II
PERFORMANCE OF ML-RDO MODELS

Metrics Cells Stacking Gradient Boosting Random Forest
MAE 24-cells 1.946 0.673 1.492

73-cells 1.079 0.577 0.773
RMSE 24-cells 3.471 1.106 2.604

73-cells 1.638 0.919 1.165

As shown in Figure 6, we present a visualization of the
obtained results for 73 cells on a real map for a selected
random instance from the test dataset, mainly the prediction
results for a day and a specific time period. In Figure 6, the
number of future pick-up demands estimated by the Gradient
Boosting in combination with the Multi-Output Regressor
model is shown in each hexagonal cell. This demonstrates
the precision of our prediction results, as the operator can
redistribute the fleets and place them in areas where there will
be high user demand in the future. By clicking on the cell, he
can know the exact centroid position of the area.



Fig. 6. (a) Prediction result visualization on map (73 cells); (b) Prediction
result visualization on map (24 cells)

Figure 7 shows the difference between the predicted and actual
values of the previously selected instance. The green color
represents the correct values predicted by the model, while
the red and yellow colors represent an underestimation and
overestimation, respectively. The number in the cells indicates
the difference between the actual demands and the predicted
demands. Using Eq.1 on this instance, the value of MAE is
0.328 for Figure 7.a and 0.583 for Figure 7.b, which confirms
that the predicted user pick-up demand is extremely close to
reality. Adapting the redistribution operations according to the
results of these predictions improves the availability of the
fleets, i.e. the quality of the user’s experience.

Fig. 7. (a) Visualization of the difference between actual and predicted values
(73 cells); (b) Visualization of the difference between actual and predicted
values (24 cells)

D. E-ML-RDO results

Since time-series techniques are time-related, we decided to
create hourly predictions and estimate the next hour’s demand
using the previous 12H, 24H, or 48H instances. The database
was divided into 80% training and 20% validation data. The
weights and biases of the LSTM model were trained using 1e-
5 as a learning rate, 50 validation steps, 100 epochs, and Adam
[27] as the optimization method, which is ideal for large-scale
prediction. To avoid over-fitting, early stopping callback has
been used; it enables the training to be automatically stopped

when a chosen metric has stopped improving. The Patience
parameter of early stopping was fixed at 5; it refers to the
number of epochs with no improvement, after which training
will be stopped. Table III illustrates the final structure of
our model. It combines two layers of neurons, LSTM and
Dense layer4. The number of trainable parameters represents
the number of weights and biases that get updated during the
training process in each layer.

TABLE III
LIST OF SELECTED E-ML-RDO’S HYPERPARAMETERS

Layer Description Parameters
LSTM (64 neurons) LSTM input layer 35328

Dense (24/73 neurons) Deeply connected layer 4680

Table IV represents a comparison of the two proposed so-
lutions using MAE and RMSE as evaluation metrics. With
both cell sizes, the enhanced version of ML-RDO shows better
performance than the classical one, with an MAE of 0.32 and
RMSE of around 0.5.

TABLE IV
COMPARISON OF THE PROPOSED PREDICTION METHODS

Metrics Cells Number ML-RDO E-ML-RDO
MAE 24-cells 0.673 0.322

73-cells 0.577 0.328
RMSE 24-cells 1.106 0.464

73-cells 0.919 0.541

Based on different lookback windows of 12, 24, and 48
previous hours, Table V shows the overall evaluation results of
the E-ML-RDO solution with both 24 and 73 cells. We observe
that despite changing the lookback window, the solution is
stable with a slight change using 48 hours compared to 12 and
24 hours, due to the number of previous instances it considers.
We can also notice that the enhanced solution outperforms
the classical version because of the temporal aspect that has
been well exploited by the time-series technique and the
LSTM model. This later is able to keep historical temporal
information over a long period of time. This is understandable
given the significance of the temporal aspect on the e-scooter
usage rate in Chicago as shown in Figure 3.

TABLE V
PERFORMANCE OF E-ML-RDO OVER SEVERAL LOOKBACK WINDOWS

Lookback window Cells Number MAE RMSE
12H 24-cells 0.372 0.552

73-cells 0.376 0.591
24H 24-cells 0.332 0.494

73-cells 0.331 0.533
48H 24-cells 0.322 0.464

73-cells 0.328 0.541

Thinking about deploying our solution in a real-time applica-
tion, this section represents the computing time to make the

4A dense layer is used to project the output of the LSTM layer to the desired
dimension. The number of its neurons is fixed depending on the cells’ number,
i.e., 24 or 73.



prediction. Table VI represents the computing time of the ML-
RDO solution for the two cell sizes using both the classical
solution and the enhanced version.

TABLE VI
ML-RDO COMPUTING TIME

Computing time Classical ML-RDO E-ML-RDO
24-cells 0.03470 s 0.02738 s
73-cells 0.03557 s 0.02973 s

We can see that the computing time for both approaches is
extremely fast, which demonstrates that our solution is highly
suitable for real-time applications. In addition, the enhanced
solution slightly outperforms the classic one with approx 28
milliseconds, proving its efficiency.

V. CONCLUSION

In order to solve the maldistribution problem, this study seeks
to develop an efficient prediction model based on machine
learning algorithms. We evaluated the performance of the
proposed ML-RDO approach, using a test case study of the
e-scooter system in Chicago. Weather and time variables,
such as weekdays, temperature, humidity, and so on, were
used to improve our prediction results. Using a hexagonal
grid, the Gradient Boosting in combination with the Multi-
Output Regressor model is suggested for predicting scooter
demand per period, which produces a successful forecast. As
a second stage, the LSTM model, as an hourly demand time-
series forecasting, provided good results and outperformed the
other baselines. This prediction tool enables micro-mobility
operators to adapt the launch and redistribution plan to lean
to the zones with higher demand, allowing the user to easily
find a fleet. Our method has a lower computational complexity
with clearer prediction results to facilitate the redistribution
process for operators. It is also adaptable to both customer-
based and operator-based strategies. Additionally, the proposed
tool can be used in a variety of ways such as optimizing
pricing strategies, or improving safety while reducing the
risk of fleet collisions in popularly predicted areas. In future
work, we propose to consider more external features such as
traffic volume and events. Additionally, adapting our solution
to dock-based systems would be a valuable improvement.
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