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ABSTRACT

Microsatellites and drones are often equipped with digital
cameras whose sensing system is based on color filter arrays
(CFAs), which define a pattern of color filter overlaid over
the focal plane. Recent commercial cameras have started
implementing RGBW patterns, which include some filters
with a wideband spectral response together with the more
classical RGB ones. This allows for additional light energy
to be captured by the relevant pixels and increases the overall
SNR of the acquisition. Demosaicking defines reconstructing
a multi-spectral image from the raw image and recovering the
full color components for all pixels. However, this operation
is often tailored for the most widespread patterns, such as the
Bayer pattern. Consequently, less common patterns that are
still employed in commercial cameras are often neglected. In
this work, we present a generalized framework to represent
the image formation model of such cameras. This model is
then exploited by our proposed demosaicking algorithm to
reconstruct the datacube of interest with a Bayesian approach,
using a total variation regularizer as prior. Some preliminary
experimental results are also presented, which apply to the
reconstruction of acquisitions of various RGBW cameras.

Index Terms— Color Filter Array, Demosaicking, Con-
vex Optimization, Computational Imaging.

1. INTRODUCTION

In certain remote sensing setups, constellations of microsatel-
lites or drones are utilized for acquiring data. These platforms
have limited payload capacity, which necessitate the use of
novel solutions for the onboard instruments and often incor-
porate miniaturized commercial cameras.

In this configuration, the acquired raw image is transmit-
ted as a downstream data to a ground station, which is re-
sponsible for processing it to reconstruct the desired datacube.
Cameras based on color filter arrays (CFAs) represent a pop-
ular choice for this task. The CFA defines an array of spectral
filters overlaid over the sensors, typically arranged in periodic
patterns. The incident light is consequently filtered by their

(a) Bayer CFA (b) Sparse 3 CFA

(c) Kodak CFA (d) Sony CFA

Fig. 1: Bayer CFA and the three RGBW CFAs tested in the experi-
mental section.

unique spectral response of each filter, before being captured
by the sensor.

The usual image acquisition process uses a predeter-
mined CFA pattern to assign a color to each pixel of the
sensor. While the most common pattern is the Bayer pattern
Fig. 1a [1, 2] other configurations exist. Some alternative
designs exist, in which the filters’ spectral response does
not necessarily cover the RGB wavelengths. Such patterns
are known with the more generic term spectral filter arrays
(SFAs). For example, this category includes filters in the
near infrared/ultra violet wavelength range, alternative color
patterns such as cyan/magenta/yellow (CMY), and most rele-
vantly to our work, wideband pixels. In the latter case, known
as RGBW SFAs, the relevant sensor typically either does not
include a filter, matching the sensor sensitivity response, or
just cuts off the near infrared components. In layman terms,
those pixels are often just referred as ”white”, and they al-
low for higher throughput of light energy which allows for



increased brightness. An example of those patterns is the
Sparse 3 CFA which is used in the AMICal Sat project [3] to
study northern lights from a microsatellite. Same goes for the
Kodak and Sony patterns which are presented in Fig. 1.

The process of reconstructing the full color image from
acquisitions taken with CFA-based cameras is known as de-
mosaicking. As previously mentioned, this is typically done
on the ground segment. It can be done in multiple ways:
by classic interpolation between the pixels [1, 4], by model-
based methods which relies on a known mathematical model
linking the input to the raw acquisition. More recently neu-
ral networks strategies appeared [5, 6], in general they are
based on end-to-end training with large data-sets. However,
all those methods have drawbacks. The interpolation methods
often only work with specific patterns, posing restrictions for
our scenario. Model-based approaches need a precise knowl-
edge of the real acquisition conditions. We model the image
formation with a mathematical formulation. This simulates
the camera’s acquisition process, inspired by [7]. While al-
lowing for remarkable flexibility, the model is very sensitive
to inaccurate modeling of the real operations performed by
the camera. Finally, data-driven based methods need a huge
amount of data to be trained on and are often specialised on
specific CFAs, leaving few possibilities for adaptation beside
new training. For example, [5] proposes an efficient demo-
saicking neural network for Bayer CFA, but fails at recon-
structing RGBW images. So is the case for the methods that
focus only on Bayer CFA, like in [4, 2, 1].

For those reasons this work proposes a general method
able to solve the demosaicking problem for commercial de-
signs of RGBW CFAs. This method relies on a model-based
approach and minimizes a regularized convex cost function.

The novel contribution of this work are:

• a forward model capable of simulating the camera’s ac-
tion, with support for the RGBW Sparse 3, Kodak and
Sony patterns;

• a model-based method using Chambolle-Pock’s algo-
rithm to minimize a convex optimization problem solv-
ing the demosaicking challenge for RGBW patterns.

2. PROPOSED FRAMEWORK

This section presents the acquisition process and the recon-
struction. The first step is to model the image acquisition
process usually done by the camera itself. This operation is
performed by a forward model taking in input the reference
image, in order to obtain the raw image. Then the reference
image will be reconstructed into a RGB image from the raw
image using a model-based method.

In the RGBW case the reference image, representing the
incoming electromagnetic radiation from a scene under target
is denoted by X ∈ RM×N×(C+1) where C is the number of
channels (C = 3 for a RGB image), an additional channel is

added containing the panchromatic, or ”white”, information.
M and N being the spatial dimensions. The raw image rep-
resenting the observation is encoded by Y ∈ RM×N , a scalar
matrix coming from the forward model. Finally we denote by
X̂ ∈ RM×N×C the image reconstructed from the raw image
Y .

2.1. Forward model

We describe here our proposed framework for image forma-
tion, by reinterpreting the model proposed in [7] for our tar-
get. In order to apply a CFA a mask H ∈ RM×N×(C+1) is
used, encoding the wanted CFA. The output of the CFA oper-
ation is obtained with:

Y =

C+1∑
k=1

Xk ⊙Hk +N (1)

where ⊙ is the Hadamard product between matrices, Xk and
Hk are matrices which denote the k-th channel of the tensors
X and H respectively. Moreover N ∈ RM×N is a noise ten-
sor representing the physical noise on the sensor. Addition-
ally it models the mismatch between the forward model and
the real camera. The tensor H encoding the mask contains
a ones in the spectral channel associated to the correspond-
ing spectral filter is kept. The rest is set at zeros, discarding
the information at those positions. The image Y is then com-
posed of scalar values, where for each pixel is kept only the
information from the selected channels.

The deterministic part of eq. (1) is a linear operation,
which we denote as A : RM×N×(C+1) → RM×N . We can
therefore express Y as:

Y = A(X) +N .

For convenience, we also derive here the adjoint AT (Y )
of A as the tensor Z ∈ RM×N×(C+1) whose k-th channel is
[7]:

Zk = Hk ⊙ Y , ∀k ∈ {1, ..., C + 1}.

2.2. Model-based demosaicking

The demosaicking problem aims to reconstruct a RGB image
from the raw acquisition. However this task is ill-posed as
there are more unknowns than there is information as the goal
is to recover data lost during the acquisition process. This
problem can be reformulated as a minimization of a cost func-
tion with a regularization term:

X̂ = argmin
X

(
∥A(X)− Y ∥2F + λ∥L(X)∥221

)
(2)

where ∥ ·∥F is the Frobenius norm, λ∥L(·)∥221 is the regular-
izer: L is the isotropic total variation operator, λ is a tuning



parameter, and || · ||221 denotes an ℓ2 norm in the channel and
gradient domains followed by an ℓ1 norm in the spatial one.
This term is derived from [7] and [8], where experimentation
yielded good results in a similar setup to ours. Note that in
this setting X̂ ∈ RM×N×(C+1), but as the method’s goal is
to reconstruct only the RGB image the panchromatic chan-
nel is simply discarded and X̂ is considered as a tensor of
RM×N×C .

The Chambolle-Pock algorithm [9] is a well-known iter-
ative algorithm used to solve optimization problems repre-
sented by the sum of two convex functions. This is the case
of the demosaicking problem and it can be re-written in the
Chambolle-Pock’s framework:

min
X

f(X) + g(L(X))

where f and g denote respectively the fidelity term ∥A(·) −
Y ∥2F and the regularization term λ∥ · ∥221 of the previous
equation. The primal and dual variables are then updated
from an arbitrary initialization with the following iterations
[10, 9]:

{
Xq+1 = proxτ,f (X

q − τLT (Zq))
Zq+1 = proxσ,g∗(Zq + σL(2Xq+1 −Xq))

(3)

with τ and σ being the proximal steps for f and g∗ (the
Fenchel conjugate of g) respectively. q is the iteration num-
ber which goes from 1 to Q, the total number of iterations,
Xq and Xq are the primal and dual variables at the q-th
iteration.

3. EXPERIMENTAL RESULTS

In this section we present the results on the RGBW patterns
Sparse 3, Kodak and Sony. The associated code to reproduce
the results of this section is publicly available on GitHub 1.
We compare our method with the technique presented in
[11], which is used on the microsatellite AMICal Sat and was
quickly extended to work with Kodak and Sony patterns. The
idea of the approach is to extract in one image the luminance
(a scalar image with full spatial resolution) of the reference
image by interpolating the pixels in the W channel associated
with the RGB spectral filters. The colors are extracted in
another image (of lower spatial resolution by full spectral
resolution), by interpolating the R, G and B channels. Then
those two images will be merged into a RGB image of full
spectral and spatial resolution.

Concerning our method we need to tune the parameters
introduced in eq. (2) and eq. (3) which are: λ, τ , σ and Q. The
algorithm will run through Q = 400 iteration as empirical
results showed no real improvement with higher number of
iterations. The parameters λ, τ and σ are optimized by the
Python module Optuna [12].

1At https://github.com/mattmull42/RGBW demo

Fig. 2: Example acquisitions with RGBW SFAs cameras. Refer-
ence scene (top left), outputs: Sparse 3 (top right), Kodak (bottom
left) and Sony (bottom right).

The table of errors and the following figures are computed
on the PAirMax remote sensing multispectral dataset [13]. All
the experiences are done with simulated acquisitions using
our simulated forward model. The reference is not used in
our reconstruction algorithm. We present in Fig. 2 a zoomed
region of the outputs of the forward operator. The CFA pat-
terns are noticeable, especially in the blue region.

Fig. 3 shows the proposed reconstruction along with the
pansharpening method on the three CFAs.

Table 1 presents the mean and standard deviation of the
mean squared error (MSE) of the reconstructions compared
to the references, with and without an additive Gaussian noise
of zero mean and standard deviation of 0.05.

Baseline [11] Proposed
Without noise With noise Without noise With noise

Sparse 3
1.35× 10−2

±1.2× 10−2
1.84× 10−2

±1.1× 10−2
1.95× 10−3

±1.9× 10−3
3.05× 10−3

±2.5× 10−3

Kodak
1.29× 10−2

±1.1× 10−2
1.47× 10−2

±1.1× 10−2
2.63× 10−3

±3.3× 10−3
2.11× 10−3

±2.8× 10−3

Sony
1.24× 10−2

±1.1× 10−2
1.40× 10−2

±1.1× 10−2
2.56× 10−3

±3.2× 10−3
2.82× 10−3

±2.6× 10−3

Table 1: The mean and standard deviation of the MSE of the two
methods, with and without noise (best results in bold).

The pansharpening method has the advantage to be quick
to implement and to perform, as the results are obtained in less
than a second. However it has two main drawbacks. Firstly
it is dependent from the setup as it cannot be used in with a
CFA where we do not have a majority of pixels without filter.
Moreover this algorithm is dependent on the quality of the
interpolations inside the pansharpening process.

On the contrary the proposed method is flexible and run-
ning it for 400 iterations is only 20 seconds. It solves prob-
lems represented by eq. (2), and only the operator A has to
be adjusted to reflect a change in the acquisition setup. Our
proposed algorithm can hence be applied almost effortlessly
on CFA patterns such as the ones presented in this work.



Fig. 3: Reconstruction results. Reference is on top, baseline method
on first column, proposed on second column. 2nd line is Sparse 3,
3rd line is Kodak and 4th line is Sony.

4. CONCLUSION

In this work, we proposed a flexible image formation model
for cameras that implement CFAs with RGBW patterns. This
framework can be easily adjusted to adapt to different pat-
terns. We proved that our proposed inversion method, which
employs a Chambolle-Pock solver with a TV prior, improves
the quality of the image by a factor of 10 in comparison to
traditional interpolation techniques.

5. REFERENCES

[1] J. S. J. Li and S. Randhawa, “Colour filter array demo-
saicking using cubic spline interpolation,” in IEEE Int.
Conf. Acoust., Speech and Signal Process. (ICASSP),
2007, vol. 1, pp. 865–868.

[2] T. Yamaguchi and M. Ikehara, “Image demosaicking via
chrominance images with parallel convolutional neural
networks,” in IEEE Int. Conf. Acoust., Speech and Sig-
nal Process. (ICASSP), 2019, pp. 1702–1706.

[3] M. Barthelemy, E. Robert, V. Kalegaev, V. Grennerat,

T. Sequies, G. Bourdarot, E. Le Coarer, J.J. Correia, and
P. Rabou, “Amical sat: A sparse RGB imager on board a
2u cubesat to study the aurora,” IEEE Journal on Minia-
turization for Air and Space Systems, vol. 3, no. 2, pp.
36–46, 2022.

[4] H.S. Malvar, Li wei He, and R. Cutler, “High-quality
linear interpolation for demosaicing of bayer-patterned
color images,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2004, vol. 3,
p. 485.

[5] S M A Sharif, R. Ali Naqvi, and M. Biswas, “Beyond
joint demosaicking and denoising: An image process-
ing pipeline for a pixel-bin image sensor,” in IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2021, pp. 233–242.

[6] K. Feng, Y. Zhao, J. C.-W. Chan, S. G. Kong, X. Zhang,
and B. Wang, “Mosaic convolution-attention network
for demosaicing multispectral filter array images,” IEEE
Transactions on Computational Imaging, vol. 7, pp.
864–878, 2021.

[7] D. Picone, M. Dalla Mura, and L. Condat, “Joint de-
mosaicing and fusion of multiresolution coded acqui-
sitions: A unified image formation and reconstruction
method,” IEEE Transactions on Computational Imag-
ing, vol. 9, pp. 335–349, Mar. 2023.

[8] Y.-W. Wen, Michael K. Ng, and Y.-M. Huang, “Effi-
cient total variation minimization methods for color im-
age restoration,” IEEE Transactions on Image Process-
ing, vol. 17, no. 11, pp. 2081–2088, 2008.

[9] E. Esser, X. Zhang, and T. F. Chan, “A general frame-
work for a class of first order primal-dual algorithms for
convex optimization in imaging science,” SIAM Jour-
nal on Imaging Sciences, vol. 3, no. 4, pp. 1015–1046,
2010.

[10] T. Pock and A. Chambolle, “Diagonal precondition-
ing for first order primal-dual algorithms in convex op-
timization,” in International Conference on Computer
Vision. 2011, IEEE.

[11] Teledyne e2v, “Application note : How to interpolate
the sparse 3 onyx sensor,” 2018.

[12] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama,
“Optuna,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &;
Data Mining. 2019, ACM.

[13] G. Vivone, M. Dalla Mura, A. Garzelli, and F. Pacifici,
“A benchmarking protocol for pansharpening: Dataset,
preprocessing, and quality assessment,” IEEE Journal
of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 14, pp. 6102–6118, 2021.


