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Abstract Wind-speed statistics are generally modelled using theWeibull distribution. How-
ever, theWeibull distribution is based on empirical rather than physical justification andmight
display strong limitations for its applications. Here, we derive wind-speed distributions ana-
lytically with different assumptions on the wind components to model wind anisotropy, wind
extremes and multiple wind regimes. We quantitatively confront these distributions with an
extensive set of meteorological data (89 stations covering various sub-climatic regions in
France) to identify distributions that perform best and the reasons for this, and we analyze
the sensitivity of the proposed distributions to the diurnal to seasonal variability. We find
that local topography, unsteady wind fluctuations as well as persistent wind regimes are
determinants for the performances of these distributions, as they induce anisotropy or non-
Gaussian fluctuations of the wind components. A Rayleigh–Rice distribution is proposed to
model the combination of weak isotropic wind and persistent wind regimes. It outperforms
all other tested distributions (Weibull, elliptical and non-Gaussian) and is the only proposed
distribution able to catch accurately the diurnal and seasonal variability.

Keywords Super-statistics · Surface wind · Wind anisotropy · Wind extremes ·
Wind regimes

1 Introduction

Understanding and modelling wind-speed statistics is key to a better understanding of
atmospheric turbulence and diffusion, and at stake in practical applications such as air qual-
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98 P. Drobinski et al.

ity and pollution transport modelling, estimation of wind loads on buildings, prediction of
atmospheric or space probe and missile trajectory, and wind-power analysis. This is done
using the distribution of wind speed M . The Weibull distribution is an extremely commonly
used paradigm used to model wind-speed statistics (e.g. Justus et al. 1976, 1978; Seguro and
Lambert 2000; Cook 2001; Weisser 2003; Ramírez and Carta 2005; Gryning et al. 2014),
and is defined as

p (M) = k

λ

(
M

λ

)k−1

exp

[
−

(
M

λ

)k
]

, (1)

where M is the wind speed, k > 0 is the shape parameter, and λ > 0 is the scale parameter of
the distribution. In wind-energy research the Weibull distribution is used to obtain additional
flexibility in order to fit an observed wind-speed histogram. A practical advantage over use
of the histogram is that the distribution is given by two parameters only, k and λ (Drobinski
2012).

To produce e.g. a wind atlas, the best parameter estimates are obtained using the method
of moments, which ensures that the energy content of the fitted Weibull distribution equals
the energy content of the observed histogram (Troen and Petersen 1989). The method of
moments is a method of estimation of distribution parameters introduced by e.g. Pearson
(1894, 1902a, b, 1936), and one begins with deriving equations that relate the moments of
the distribution (i.e., the expected values of powers) to the parameters of interest. Then a
sample is drawn and the moments are estimated from the sample, with the equations then
solved for the parameters, using the sample moments. This results in estimates of those
parameters. The method of moments ensures the best estimation of wind-energy potential
but does not ensure the maximum likelihood with the observed histograms. This can lead to
large errors when considering only a fraction of the wind distribution, between the cut-in and
cut-out wind speeds of a specific wind-turbine power curve for instance.

For some design applications including wind loads and structural safety, it is also neces-
sary to have information on the distribution of the complete population of wind speed at a
site. Estimation of fatigue damage must account for damage accumulation over a range of
extreme winds, the distribution of which is usually fitted with a distribution of the Weibull
type (Davenport 1966). In chemistry-transport modelling, the Weibull distribution is used to
represent the subgrid-scale variability of the wind speed. This allows improvement of the
simulation of aerosol saltation at the surface and emission fluxes into the atmosphere that are
triggered by a threshold in the wind speed (Menut 2008). In such contexts, maximizing the
likelihood of fitted distributions to observed wind-speed histograms is a major issue.

However, it has been long known that the Weibull distribution is only an approxima-
tion and may fit poorly the wind-speed statistics, especially in the case of non-circular (i.e.
non-isotropic) or non-normal (i.e. non-Gaussian wind components) distributions (Tuller and
Brett 1984). The wide use of the Weibull distribution is purely empirical and there is a lack
of physical background justifying the use of the Weibull distribution to model wind statis-
tics. Many previous studies have considered the limitations of the Weibull distribution for
modelling wind speeds (e.g. Bauer 1996; Erickson and Taylor 1989; Li and Li 2005; Carta
et al. 2009; He et al. 2010; Morrissey and Greene 2012). Bauer (1996), Erickson and Taylor
(1989) and He et al. (2010) quantified the deviation of the surface wind-speed distribution
from the Weibull distribution from in situ, remotely sensed and modelled wind speeds. In
situ and modelled oceanic surface wind speeds from extratropical latitudes are reasonably
well simulated by theWeibull distribution (Bauer 1996). About 30–35% of modelled surface
wind-speed frequency distributions are found to be non-Weibull (Erickson and Taylor 1989),
and slightly less over the ocean (30–32%) than over land (30–35%) with seasonal variations.
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Conversely, the remotely sensed wind speeds agree poorly with the corresponding empirical
distributions. At a more regional scale, He et al. (2010) showed that measured surface wind-
speed frequency distributions in North America are sensitive to the underlying land-surface
types, seasonal and diurnal cycles, and the departure from a Weibull distribution is larger at
nighttime.

Possible better suited surface wind-speed frequency distributions have been investigated
(e.g. Carta et al. 2009, for a review). Some wind-speed distributions were based on the use
of the bivariate normal distribution with wind speed and direction as variables (Smith 1971;
McWilliams et al. 1979; McWilliams and Sprevak 1980; Colin et al. 1987; Weber 1991,
1997), some on more ad hoc distributions based on the fact that wind speed is defined on the
positive real line [0,+∞[, which generally have an exponential-like distribution (Bryukhan
and Diab 1993; Li and Li 2005; Morrissey and Greene 2012). The Weibull distribution
parameters present a series of advantages with respect to other distributions (e.g. flexibil-
ity, dependence on only two parameters, simplicity of the estimation of its parameters) but
cannot represent all the wind regimes (e.g. those with high percentages of null wind speeds,
bimodal distributions, …). Therefore, its generalized use cannot be justified. Other distrib-
utions based on an expansion of orthogonal polynomials (Morrissey and Greene 2012) or
the maximum entropy principle (Li and Li 2005) can produce more accurate estimates of
the wind-speed distribution than the Weibull function, and can represent a wider range of
data types as well. Such distribution functions have been compared to each other (Gamma,
Rayleigh, Weibull and Weibull mixture, Beta, log-normal, inverse Gaussian distributions)
and the mixture distributions have provided the highest values of coefficient of determina-
tion (Carta et al. 2009). In general, the other tested wind-speed distributions displayed lower
performance.

In this study,wepropose to derivewind-speed distributions based on the use of the bivariate
distributionwith the twowind components. Indeed, by contrast with thewind-speedmodulus,
wind components obey the momentum conservation equations (e.g. Salameh et al. 2009),
which provide great physical insight for the derivation of the wind-speed distribution. As
stated above, several authors proposed the use of the bivariate normal distribution with wind
speed and direction as variables. For instance, the isotropic Gaussian model of McWilliams
et al. (1979) and McWilliams and Sprevak (1980) was derived from the assumptions that
the wind-speed component along the prevailing wind direction is normally distributed with
non-zero mean and a given variance, while the wind-speed component along the orthogonal
direction is independent and normally distributed with zero mean and the same variance.
The anisotropic Gaussian model of Weber (1991, 1997) is a generalization of the model of
McWilliams et al. (1979). In Weber (1991), no restrictions are imposed on the standard
deviations of the longitudinal and lateral fluctuations. The marginal wind-speed distrib-
utions are obtained after integration over the direction variable (Colin et al. 1987; Carta
et al. 2008). Here, we go one step further, and use wind records at 89 locations in France
to:

– compute alternative distributions analytically with different assumptions on the wind
components: (1) normal distributions with different variances to model wind anisotropy;
(2) non-Gaussian distributions, from the super-statistics theory, to better model wind
extremes; (3) a mixture of normal distributions to model multiple wind regimes.

– perform in-depth verification of these distributions against observations covering various
sub-climatic regions in France to identify those distributions that perform optimally, and
the reasons for this, such as terrain complexity and dominant weather regimes.

– analyze the sensitivity of the proposed distributions to the diurnal to seasonal variability.
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Section 2 presents the data and the methodology, while Sect. 3 discusses the performance
of the Weibull distribution. Section 4 presents three alternative wind-speed distributions
and how they are derived from the wind components. Finally Sect. 5 presents how these
distributions fit the observations, analyzes their sensitivity to diurnal cycle and seasonal
variability and summarizes their performances.

2 Observations and Methodology

2.1 Wind Measurements

We use wind measurements at a height of 10 m above the ground from the NOAA ISD-Lite
database (Smith et al. 2011). This database has long time records, but we only use measure-
ments made between January 1 2010 and December 31 2013 because the accuracy is better
over these recent years: the wind speed M is binned with intervals of 1 knot (0.514ms−1)1

instead of 2 knots for previous years, and there are less gaps in the records. The wind direc-
tion D is binned with intervals of 10◦. The 10-min averaged wind speeds and directions are
recorded every hour. Among all the stations present in the ISD-Lite database, we select sta-
tions in Francewhere the accuracy is 1 knot over the four years andwhere the data availability
is greater than 97% over each one of the four years, with a minimum of 85% for each month.
We therefore retain 89 stations. At each station we have about 3.4 × 104 measurements so
that the extremes should be well described. However, on average, the wind-speed records are
correlated over a 10-h time period leaving thus about 3 × 103 independent samples. Calm
conditions (M = 0) have been removed before all calculations since they are not taken into
account in the Weibull distribution nor in the other distributions that we plan to use. The
calm conditions represent 5.2% of the entire dataset with of course disparities among sta-
tions. Most are around 3% but 14 stations are above 10%. When wind components are used
instead of wind speed, the zonal (west–east) and meridional (south–north) wind components
(u and v) are derived from the wind speeds and directions. The wind components are often
correlated so we use the procedure described by Crutcher and Baer (1962) to reduce com-
ponent correlation to zero. The change of variable u → u′, v → v′, is obtained by a simple
rotation of an angle ψ defined by

tan(2ψ) = 2
ρuv

σ 2
u − σ 2

v

, (2)

where ρuv is the correlation coefficient and σ 2
u and σ 2

v are the component variances. The pro-
cedure relies on the property that any Gaussian joint probability distribution is characterized
by a covariance matrix, which is positive and definite. Therefore, the matrix is fully charac-
terized by its eigenvalues (which we call σu and σv) and its eigenvectors are orthonormal. In
the new base (which has been rotated by an angle ψ calculated over the entire dataset), the
matrix is diagonal and has no cross-terms, corresponding to the correlation. We verified at
all stations that u′ and v′ have no correlation. Considering correlation free components for
the wind field allows the manipulation of simpler expressions for the distributions. The final
results are not affected if fit to the real meridional/zonal components instead of the rotated
ones. For the sake of simplicity thereafter u and v notations are used for the rotated wind
components u′ and v′.

1 The data were recorded in knots and not in m s−1.
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2.2 Wind Regimes at the Studied Stations

The topography of France is presented in Fig. 1, with the locations of the 89 weather stations.
The stations located in the northern and western parts of France are in rather flat terrain. The
stations located in the south-east part of France are in a much more complex environment
with elevated mountain ridges: the Pyrénées to the south-west (highest elevation 3404 m),
the Alps to the east (highest elevation 4807 m) and the Massif Central in between (highest
elevation 1886 m). The Rhône valley separates the Alps from the Massif Central by a gap
200 km long and 60 km wide, and the Aude valley separates the Pyrénées from the Massif
Central.

In the northern and western regions, all wind directions are experienced, even though
this part of France is located in the storm track so that strong winds are often from the
west, from the Atlantic Ocean (Vautard 1990; Plaut and Vautard 1994; Simonnet and Plaut
2001). Indeed, over the north-west Atlantic cyclones originate, travel eastwards and affect the
European continent. In the southern region, frequent channelled flow can persist for several
days. The strongest and most frequent channelled valley flow is the mistral, which derives
from the north/north-west in the Rhône valley (Drobinski et al. 2005), and occurring when a
synoptic northerly flow impinges on the Alpine range. As the flow experiences channeling,
it is substantially accelerated and can extend offshore over horizontal ranges exceeding few
hundreds of kilometres (Salameh et al. 2007; Lebeaupin Brossier and Drobinski 2009). The
mistral occurs all year long but exhibits a small seasonal variability either in speed and
direction, or in its spatial distribution (Orieux and Pouget 1984; Guénard et al. 2005, 2006).

4◦W 0◦ 4◦E 8◦E

44◦N

47◦N

50◦N

Nantes

Pau

Orange

Topography

0 1000 2000 3000

Altitude (m)

Fig. 1 Map of France’s topography with the locations of the 89 weather stations used in this study, including
the three stations used as examples: Nantes, Pau and Orange
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The mistral shares its occurrence with a northerly land breeze and southerly sea breeze (e.g.
Bastin andDrobinski 2005, 2006; Drobinski et al. 2006, 2007), which can also be channelled
in the nearby valleys (Bastin et al. 2005b) or interact with the mistral (Bastin et al. 2005a,
2006). In such a region, accounting for such persistent wind systems for modelling the wind-
speed statistics is thus mandatory.

We will often refer to three stations as examples among the 89 stations: Nantes is in flat
terrain, such as most stations in north-western France; Pau is in a more complex topographic
region, close to the Pyrénées mountains, and Orange is in the Rhône valley and influenced
by the mistral channelled flow.

2.3 Goodness-of-fit of the Distributions

We introduce several wind-speed distributions and analyze how they fit the observational
data. The comparison is made on the cumulative density function (CDF) for wind speed,
and we compute a distance score between the CDF of the tested distribution (F) and the
observed empirical CDF (F̂n). It must be noted that the Weibull distribution leads to an
analytic expression for the CDF, but not so for the other distributions that will be derived
hereafter. Therefore the CDF (F) are numerically computed from their probability density
function (PDF) expressions. To be consistent among distributions, even the Weibull CDF is
numerically computed from its PDF.

The empirical CDF (F̂n) for a set of observations (x1, . . . , xn), of length n is defined by

F̂n(t) = number of elements ≤ t

n
= 1

n

n∑
i=1

1{xi ≤ t}. (3)

Because of the coarse resolution of the observations (1 knot), this empirical CDF is a step
function so we add a small random noise to the wind-speed data in order to smooth the CDF.
The added noise is a continuous uniform distribution between −0.5 knot and +0.5 knot, and
ensures a continuous empirical CDF. Figure 2 shows examples of the CDFs with or without
smoothing. Adding this noise does not affect the fitting of the distributions and it is not
necessary to compute the distance scores. But the steps in the CDF lead to overestimation of
the distances between F̂n and F , especially at the stations with low mean wind speeds, such
as at Pau, where we see large steps. So smoothing the empirical CDF enables us to better
quantify the performances of the distributions and to make comparison between different
stations easier.

The goodness-of-fit scores used herein are Cramer–von Mises and modified Anderson–
Darling statistics. A general equation for these scores is

Δ2
n = n

∫ ∞

−∞

(
F(x) − F̂n(x)

)2
ω(x) dF(x), (4)

where ω(x) is a weighting function. Various expressions of ω(x) are given in Table 1, and
details for numerical computations of the solution to this equation are given in Appendix 1.

In the case of the Cramer–vonMises (CvM) statistic (W 2
n ), the weight is constant (ω(x) =

1) so that the centre of the distribution actually dominates the equation. Here, the centre of
the distribution is not one single point but the region around the median, mean or maximum
of the distribution (where the PDF is above, say, 0.1). The Anderson–Darling score (A2

n)
puts weight on the tails of the distributions, where the tail corresponds to the part of the
distribution that exceeds the 90th centile. In order to analyze the upper tail corresponding
to strong winds, we can use the modified right-tail Anderson–Darling (ADR) statistic (R2

n)
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Fig. 2 Comparison of the discrete “step-function” empirical CDF (black) and its continuous version after
adding a small random noise to the wind-speed data (red), at three stations: a Nantes, b Pau, c Orange

Table 1 Goodness-of-fit statistics

Name Δ2
n ω(x)

Cramer–von Mises (CvM) W 2
n 1

Anderson–Darling (AD) A2n [F(x)(1 − F(x))]−1

Right-tail AD (ADR) R2
n [1 − F(x)]−1

Right-tail AD of second degree (AD2R) r2n [1 − F(x)]−2

(Sinclair et al. 1990) or, for even greater weight placed on the tail, the modified right-tail
ADR of second degree (AD2R) statistic (r2n ) as defined by Luceño (2006).

We will use the W 2
n and r2n scores to assess the goodness-of-fit on the centre and tail

of the distributions. As in any goodness-of-fit test, there are thresholds for rejection of the
null hypothesis (i.e. the hypothesis that the observed data are drawn from F) for different
significance levels. But these thresholds depend on the distribution F , on the autocorrelation
in the data and could only be estimated by simulations (e.g. Ahmad et al. 1988). Therefore
the question of limit values for the metrics is very complex and beyond the scope of the
present work. Rather than defining thresholds we will simply compare the scores of different
fits at each station.
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Fig. 3 Wind-speed distributions at three stations: a Nantes, b Pau, c Orange. Black observed distributions.
Colours Weibull distributions fitted by four different methods: MLE (pink) or minimizing ADR (blue), CvM
(green) or AD2R statistics (orange). The y-axis is divided into a linear axis and a logarithmic axis (to better
resolve the tail)

3 Performance of Weibull Distribution

As a reference before introducing other distributions, we consider theWeibull distribution for
the wind speed M (Eq. 1). First we benchmark four different methods for fitting the Weibull
distribution because there are several possible fitting procedures. Popularmethods include the
method of moments, often used in a wind atlas, or by the usual maximum likelihood estimate
(MLE). The principle of the MLE, originally developed by Fisher (1912, 1922), states that
the desired probability distribution is the one that makes the observed data “most likely”,
which means that one must seek the value of the distribution parameters that maximize the
likelihood. We compare the MLEmethod and three minimization algorithms based on CvM,
ADR or AD2R statistics. The ADR minimization means that the algorithm finds the best
parameters to minimize the R2

n score measuring the distance between the empirical CDF
and the fitted CDF. Examples of the Weibull fits from the four fitting methods are given in
Fig. 3 at three stations. While good fits have a similar shape regardless of the fitting methods
in Nantes (Fig. 3a), spurious fits in Pau or Orange show a significant spread (Fig. 3b, c).
CvM and AD2R represent bounds for the fits, favouring on the one hand the centre of the
distribution (CvM), and on the other hand the tail (AD2R). ADR minimization is a good
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compromise favouring the tail but not overly so, and also yields results similar to the MLE.
For these reasons we adopt the ADR minimization for all fits throughout the study.

In the flat terrain of northern France, as at Nantes (Fig. 3a), the Weibull distribution
describes well the centre of the distribution but it tends to underestimate the tails of the
distributions. In wind energy, the tail of the wind distribution is not important for estimating
the wind resource but it is of high importance when addressing wind loading and damage
fatigue, pollutant transport or the impact of wind storms. In more complex terrain, the fit to
the Weibull distribution is less accurate. For example, at Pau in the Pyrénées, the distribution
is more peaked than for the Weibull approximation (Fig. 3b), and is worse in the southern
valleys such as at Orange (Fig. 3c). The wind-speed distribution exhibits a peak at low wind
speeds (about 2 m s−1) followed by a “shoulder”, with a more concave shape between 6 and
12 m s−1 due to the channelled flow. Figure 3c shows that the Weibull distribution cannot
fit such a complex shape, and we estimate that, in these particular cases, using a Weibull
distribution leads to errors exceeding 10% on occasions regarding the wind energy.

For a more quantitative analysis, we use the Cramer–von Mises (W 2
n ) and AD2R scores

(r2n ) to quantify the distance between the empirical and the predictedCDFs. The quantitiesW 2
n

and r2n measure the distance between the empirical CDF (F̂n) and the fitted distribution’sCDF,
with a weight on the values in the centre or at the right tail of the distribution, respectively.
For example at Nantes, Pau and Orange, the Cramer–von Mises (W 2

n ) scores for the Weibull
distribution are 2, 44 and 24 respectively, and the AD2R scores (r2n ) are 840, 1560 and 1460.
We need to be careful when comparing stations, for example we see a lower W 2

n score at
Orange than at Pau whereas the Weibull fit appears poorer. Indeed the score values depend
on the function F̂n , different at each station and dependent on the number of observations n.
So we cannot compare one station to another but we can compare the scores of several fits
at a unique station (see Sect. 5). Nevertheless, it is important to provide an estimate of the
fit quality. Based on our observations of all fits, we consider that a Cramer–von Mises score
(W 2

n ) < 2 indicates a good fit for the centre of the distribution, and anAD2R score (r2n ) < 100
indicates a good fit for the tail of the distribution. This is consistent with that we observed at
the three stations where only the fit at the centre of the distribution at Nantes is excellent.

Figure 4 shows amap of theW 2
n and r2n scores for theWeibull distribution. It mainly shows

that the Weibull distribution is suited to model the centre of the wind-speed distribution in
northern France where the W 2

n score <2. In southern France, the measured wind-speed
histograms deviate significantly from the Weibull distribution. As expected, this figure also
shows the low performance of the Weibull distribution for the highest wind-speed values,
with r2n score exceeding 100 nearly everywhere. Note that the systematic deviation from the
Weibull distribution in the southern region might be related to the complex topography. In the
following, we investigate alternative distributions, where topography-induced effects such as
wind anisotropy and the existence of persistent wind regimes are captured.

4 Alternative Wind-Speed Statistics Models

For a deeper insight into the differences between observed wind-speed distributions and the
commonly usedWeibull distribution, we now consider bivariate distributions of the two wind
components to take into account the wind-field anisotropy. At many stations in the southern
regions, where theWeibull distribution does not model the wind statistics well, the wind field
is very anisotropic. Indeed, we see in Fig. 5 that at Pau and Orange the wind components u
and v have very different statistics, whereas at Nantes u and v have not identical but close
PDFs. To evaluate the wind anisotropy at all stations we use the variance ratio σ 2

u /σ 2
v (or the
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4◦W 0◦ 4◦E 8◦E

44◦N

47◦N

50◦N

Weibull fit: scores

0 1 2 4 8 16 32 64 128 256

W 2
n and 0.1 × r2n

Fig. 4 Weibull distribution fit by minimizing the ADR score. At each station, the foreground circle gives the
W 2
n score (value <2 for a good fit at the centre of the distribution). The background circle gives the r2n score

(value < 100 for a good fit at the tail of the distribution) multiplied by 0.1 to have a common colour axis

inverse ratio in the case of σv > σu). Figure 6a shows this ratio, and we see that the wind
field is nearly isotropic in the north-western region (i.e. variance ratio ≈1) but becomes very
anisotropic in the south-eastern region where the flow is channelled by the mountains and
the variance ratio can exceed 3.

4.1 Elliptical Distribution

The very first approach to model anisotropy is to consider a bivariate distribution of the
Gaussian wind components u and v with variances σ 2

u and σ 2
v . We recall that u and v are not

correlated, and in the case of zero means, μu = μv = 0, the joint PDF is

p(u, v; σ 2
u , σ 2

v ) = 1

2πσuσv

exp

(
− u2

2σ 2
u

− v2

2σ 2
v

)
. (5)

Applying the usual transformation fromCartesian to polar coordinates (M ,φ), and integrating
over the angle φ (Chew and Boyce 1962), the joint PDF for the wind speed M is

PELL(M; σ 2
u , σ 2

v ) = M

σuσv

exp
(−a M2) I0

(
b M2) . (6)

with a = (σ 2
u + σ 2

v )/(2σuσv)
2, b = (σ 2

u − σ 2
v )/(2σuσv)

2, and I0(x) is the modified Bessel
function of the first kind and zero order. This particular bivariate normal distribution will be
called elliptical hereafter.
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Fig. 5 Probability density functions for the wind components at three stations: a Nantes, b Pau and c Orange.
Plain curves observed distributions for u (red) and v (blue). Dashed curves their fits using a Gaussian distri-
bution

4.2 Non-Gaussian Distribution

With the previous elliptical distribution, we assumed the wind components to follow a
Gaussian distribution. However, this assumption is not always valid, since Gaussian curves
sometimes fail to describe the histograms—see Fig. 5. We can evaluate the departure of each
component u and v from a Gaussian shape by computing the ADR score for the two compo-
nents, i.e. A2

n(u) and A2
n(v); Fig. 6b shows the sum A2

n(u) + A2
n(v). Theoretically, the strict

Gaussianity is reached when the sum equals zero, however, from visual inspection, a value
around 20 can still be considered as reasonably Gaussian. In the flat terrain of north-western
France, the scores are not too high, indicating a good fit to a Gaussian. This is however not
the case in southern and eastern France. In the following, we use super-statistics defined by
Beck and Cohen (2003) to address such a deviation fromGaussianity. This approach consists
in representing the long-term stationary state by a superposition of different states that are
weighted with a certain probability density.

For the sake of brevity, we focus on one component, u, throughout the following. The
large tails of the wind-component distributions originate from the transient nature of the wind
field. Meteorological conditions indeed change on a range of time scales (day, anticyclonic
duration, season). For instance, the strongest winds are typically recorded in winter, whereas
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Fig. 6 a Measurement of the wind anisotropy at each station: ratio of the wind-component variances σ 2
u /σ 2

v
(or the inverse ratio in the case σv > σu ). b Measurement of departure from a Gaussian shape at each station:
sum of the Anderson–Darling statistics for a Gaussian distribution of each wind component: A2n(u) + A2n(v)

in summer, long-lasting anticyclonic conditions relate to lower wind speeds near the surface.
This induces a change in the statistical properties (e.g. wind-component variance) at several
time scales. Here, we model this by assuming a Gaussian shape to the wind-component
distribution, but with a fluctuating standard deviation σ . The super-statistics of the wind
component u can be derived as follows (see similar methods in Beck and Cohen 2003; Rizzo
and Rapisarda 2005),

p(u) =
∫

f (β) p(u;β) dβ, (7)

where f is the probability distribution of the fluctuating variable β = 1/(2σ 2), and p(u;β) is
the probability distribution of the wind component u, depending on β. Assuming a Gaussian
shape for the wind component at short time scales gives,

p(u;β) =
√

β

π
exp

(−βu2
)
. (8)

We observe that the distribution of β is often consistent with a Gamma distribution (see
Fig. 7), which gives,

f (β) = 1

bΓ (c)

(
β

b

)c−1

exp

(
−β

b

)
, (9)

where Γ is the Gamma function, c is the shape parameter, and b is the scale parameter of
the distribution. Combining Eqs. 8 and 9 into Eq. 7 (see “Distribution of Wind Components”
section in Appendix 2 for computational details), we obtain,

p(u) =
√

b

π

Γ (c + 1
2 )

Γ (c)

(
1 + b u2

)−(c+ 1
2 )

. (10)

This distribution, a generalized Boltzmann factor, has been obtained when attempting to
generalize the entropy definition (Tsallis 1988; Beck and Cohen 2003). Interestingly, it turns
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out that the distribution in Eq. 10 is also the stationary solution of a first-order stochastic
differential equation with multiplicative noise and additive noise terms. These noise terms,
whose strengths are related to parameters b and c, can be physically interpreted as an interplay
between turbulence, chaotic atmospheric variability and themeanwind speed (Sura and Gille
2003; Bernardin et al. 2009).

We now turn to the wind-speed distribution, which is at stake in this study.We assume that
the components u and v are statistically independent (we recall that there is no correlation
between u and v). For the sake of simplicity, and in order to compute the joint distribution, we
also assume that u and v have similar statistics, i.e. both components are described by the same
b and c. This is a debatable assumption, which is not generically true, but allows considerable
simplifications for the derivation of the analytic distribution. Therefore the wind-speed dis-
tribution is obtained by computing the joint distribution in radial coordinates and integrating
over the wind direction (see “Distribution of Wind Speed” section in Appendix 2 for com-
putational details). We obtain the wind-speed PDF for this non-Gaussian (NG) distribution,

PNG(M; b, c) = 2 b
Γ 2(c + 1

2 )

Γ 2(c)
M

(
1 + b M2)−(c+ 1

2 )

×F

(
c + 1

2
,
1

2
; 1;− b2 M4

4(1 + b M2)

)
(11)
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where F is the ordinary hypergeometric function. To our knowledge, such a wind-speed
distribution has never been proposed in the literature.

4.3 The Rayleigh–Rice Distribution

Another simpler way of using super-statistics is to superpose only two different local dynam-
ics. For one wind component, u (idem for v),

p(u) =
∫

αu(μ)p(u, μ)dμ, (12)

where p(u, μ) is the probability distribution of the wind component u for a mean wind speed
μ and αu(μ) is a weighting function depending onμ. In the case of the two regimes scenario,
αu(μ) is bimodal,

αu(μ) = (1 − α) δ(μ) + αδ(μ − μu), (13)

where δ is the Dirac function. Such a method has been used to include the contribution of
zero wind speed in wind statistics modelling (Takle and Brown 1978; Tuller and Brett 1984).

We introduce here the Rayleigh–Rice distribution, based on the observations that, in the
valleys in southern France, there are two wind regimes, both of which can be described by a
particular bivariate normal distribution:

(i) random flow: the wind components have zero means and similar variances. This wind-
speed statistic is well described by a Rayleigh distribution: equal variances σ 2

u = σ 2
v =

σ 2
1 and zero means μu = μv = 0. The Rayleigh distribution is a particular case of a

Weibull distributionwith shape parameter k = 2, and is a particular case of the previously
introduced elliptical distribution (Eq. 6 with equal variances: b = 0 so I0(b M2) = 1),

PRayleigh(M; σ 2
1 ) = M

σ 2
1

exp

(
− M2

2σ 2
1

)
(14)

(ii) channelled flow: the wind components have different means. The Rice distribution
describes well this wind-speed statistic: equal variances σ 2

u = σ 2
v = σ 2

2 and non zero
means μu �= μv ,

PRice(M;μ, σ 2
2 ) = M

σ 2
2

exp

(
−M2 + μ2

2σ 2
2

)
I0

(
Mμ

σ 2
2

)
, (15)

where μ = √
μ2
u + μ2

v and I0 is the modified Bessel function of the first kind of order
zero.

The resulting distribution is a sum of the distributions (i) and (ii) conditioned to the absence
and presence of the channelled-flow occurrence, α is here the weight corresponding to the
occurrence of channelled-flow events. We obtain the Rayleigh–Rice distribution for the wind
speed,

PRR(M;α, σ 2
1 , μ, σ 2

2 ) = α
M

σ 2
2

exp

(
−M2 + μ2

2σ 2
2

)
I0

(
Mμ

σ 2
2

)

+ (1 − α)
M

σ 2
1

exp

(
− M2

2σ 2
1

)
. (16)
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This model can be applied also to the combination of a weak isotropic wind regime and a
sustained prevailing flow, as is the case in northern France with prevailing strong westerlies.
It can also be seen as an extension of the model proposed by McWilliams et al. (1979) and
McWilliams and Sprevak (1980), as it allows consideration of two types of flow regimes with
different probabilities of occurrence.

5 Performance of the Alternative Distributions

The three distributions introduced in the previous section are fitted to the observations, using
a minimization algorithm on the ADR statistic, such as decided with the Weibull distribution
in Sect. 3. Thismeans that the two or four parameters of each distribution are adjusted in order
to minimize the R2

n distance between the CDF and the observed empirical distribution. For
the elliptical distribution, the fit determines the best parameters σ 2

u and σ 2
v of Eq. 6. For the

non-Gaussian distribution the PDF ismore complex due to the hypergeometric term in Eq. 11,
making it more difficult to fit than a Weibull distribution. The Rayleigh–Rice distribution
for wind speed in Eq. 16 is more difficult to fit because it has four parameters, especially
because of the non-linear effect of the α parameter that modulates the respective weights of
the Rayleigh and Rice distributions. To overcome this difficulty, we first fit the distribution
for only three parameters and a fixed value of α, repeat this for a series of different α values,
and choose the best of all fits. This best fit is then used as a first estimate to fit with four
parameters and it rapidly converges.

Now we discuss the performances of the three distributions, first at stations Nantes, Pau
and Orange and afterwards in a more systematic fashion at all 89 stations.

5.1 Examples of Fits at Three Stations

Figure 8 shows the fits for the four distributions at three example stations, and additionally
we give the values of the W 2

n and r2n scores for these fits in Table 2.
At Nantes (Fig. 8a), in a flat area, the four distributions give very good results, all very

close except on the tail where they differ a little. For the centre of the distribution indeed all
distributions haveW 2

n < 2.Wecan see that the non-Gaussian andRayleigh–Rice distributions
give better fits on the tail, in accordancewith r2n scores<100 inTable 2. In contrast, theWeibull
and elliptical distributions that underestimate the tail have higher r2n scores. At Pau (Fig. 8b),
the wind distribution is very peaked and this peak is largely missed by the Weibull. We see
that the other distributions are closer to the actual peak with, in order, elliptical, non-Gaussian
and Rayleigh–Rice, but never perfectly modelling it. This is seen in Table 2 with W 2

n = 44
(Weibull) versus 22 (elliptical), 12 (non-Gaussian) and 7 (Rayleigh–Rice), but still above 2.
On the tail the Rayleigh–Rice is the only distribution that fits well to the observations, and
the only one with r2n < 100. At Orange (Fig. 8c), we have a shouldered histogram where the
Weibull is not well-suited; neither are the elliptical and non-Gaussian distributions. Only the
Rayleigh–Rice distribution is capable of fitting the two peaks. It is the only distribution with
low scores at Orange in Table 2: 1 for W 2

n and 60 for r2n .

5.2 Diurnal and Seasonal Variability

Several studies have pointed out that the deviation of the Weibull distribution from the
observed wind-speed distribution displays diurnal to seasonal variations (e.g. Erickson and
Taylor 1989; He et al. 2010). Table 3 gives the values of the W 2

n and r2n scores for the fits of
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Fig. 8 Wind-speed distributions at three stations: a Nantes, b Pau, c Orange. Black observed distributions.
Colours fit for Weibull (red), elliptical (blue), Rayleigh–Rice (green) and non-Gaussian (brown) distributions

Table 2 Goodness-of-fit scores of the distributions in Fig. 8. The quantities W 2
n (Cramer–von Mises) and r2n

(right-tail ADR of second degree) measure the distance between the empirical and fitted distributions with
focus on the centre and right tail of the distribution, respectively. A lower value indicates a better fit

Nantes Pau Orange

W 2
n r2n W 2

n r2n W 2
n r2n

Weibull 2.0 839 43.9 1563 24.2 1458

Elliptical 1.0 392 21.9 4067 43.6 486

Non-Gaussian 0.9 82 11.5 292 91.0 3076

Rayleigh–Rice 0.9 57 7.4 89 1.1 61

the Weibull, elliptical, non-Gaussian and Rayleigh–Rice distributions at the three stations,
Nantes, Pau and Orange, and at night (0000 UTC) and day (1200 UTC). Consistently with
He et al. (2010), the two-parameter Weibull distribution fits better daytime than nighttime
wind-speed distributions at the three stations for both the centre and tail of the distribution.
Quantitatively, the number of data in each fit is divided by 24 so the scores are much lower
than previously. In practice, they should be multiplied by 24 to be comparable to the scores of
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Table 3 Same as Table 2 for daytime (observations only at 1200 UTC) and nighttime (observations only at
0000 UTC)

NIGHT (0000 UTC) DAY (1200 UTC)

Nantes Pau Orange Nantes Pau Orange

W 2
n r2n W 2

n r2n W 2
n r2n W 2

n r2n W 2
n r2n W 2

n r2n

Weibull 0.4 156 1.9 320 2.0 75 0.1 60 1.5 47 0.8 62

Elliptical 0.2 171 1.1 713 5.8 31 2.0 29 0.7 62 0.8 35

Non-Gaussian 0.1 16 0.9 15 3.0 156 2.0 30 0.5 12 2.8 119

Rayleigh–Rice 0.1 49 0.5 3 0.1 25 0.1 3 0.3 11 0.1 10

The number of data in each fit is divided by 24 so the scores are much lower than previously

Table 4 Same as Table 2 for extended winter (October–March) and summer (April–September)

Winter Summer

Nantes Pau Orange Nantes Pau Orange

W 2
n r2n W 2

n r2n W 2
n r2n W 2

n r2n W 2
n r2n W 2

n r2n

Weibull 1.0 974 30.7 1508 20.9 953 1.5 49 15.7 251 7.3 604

Elliptical 0.5 498 15.9 6234 40.6 355 0.9 16 6.9 344 8.9 270

Non-Gaussian 0.5 132 8.5 144 64.1 1854 0.9 16 6.8 180 32.4 1272

Rayleigh–Rice 0.2 25 1.6 141 0.4 29 0.9 79 3.2 21 0.7 94

Table 2. So for a “perfect fit” the values of W 2
n and r2n scores should be lower than about 0.1

and 4, respectively. As also shown by He et al. (2010), Table 3 shows that the daytime scores
for theWeibull fit are systematically lower than those for nighttime, with values of 0.1 against
0.4 at Nantes, 1.5 against 1.9 at Pau and 0.8 against 2.0 at Orange; this behaviour occurs for
all stations (not shown). The higher ability of the other distributions to fit the observations
during daytime remains for the Rayleigh–Rice distribution but it is not systematically the
case for the elliptical and non-Gaussian distributions. Table 3 shows that at Nantes, W 2

n and
r2n scores for the elliptical and non-Gaussian distributions are 2.0 during daytime against
0.2 and 0.1 at night, respectively. Indeed, the main peak is narrower at night than during
the daytime (lower near-surface wind speed) whereas the tail is not significantly different.
This creates a longer tail at night that cannot be captured by the elliptical and non-Gaussian
distributions.

The impact of the seasonal cycle on the wind-speed statistics has also been investigated.
Erickson and Taylor (1989) showed that overland 35% of the wind-speed distributions are
judged to be non-Weibull in January versus 30% in July. Table 4 gives the values of the
W 2

n and r2n scores for the fits of the Weibull, elliptical, non-Gaussian and Rayleigh–Rice
distributions at the three stations, Nantes, Pau and Orange in winter (October–March) and
summer (April to September) (the scores should be multiplied by 2 to be comparable to
the scores of Table 2. For “perfect fit” the values of W 2

n and r2n scores should be lower than
about 1 and 50, respectively). Table 4 shows a less clear behaviour. At Nantes, all distribution
fits give larger W 2

n score in summer than in winter suggesting a better fit of the centre of
the distribution in summer. It is however the reverse for the tail of the distribution, except
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for the Rayleigh–Rice distribution. At the other stations, the Weibull distribution, as well
as the elliptical and non-Gaussian distributions, better fit the observations in summer for
both the centre and the tail. The Rayleigh–Rice distribution displays in general the opposite
behaviour, generally performing better during winter. This can easily be explained by the
higher probability of persistent strong winds over France, which produce the secondary peak
or shoulder at higher wind speeds, enabling a more accurate and reliable fit of the Rayleigh–
Rice distribution. However, in any case, in absolute value the Rayleigh–Rice distribution
generally outperforms the other distributions.

5.3 Systematic Quantification of Performances

We now generalize the findings from the three example stations and make a systematic
comparison of the performances of each distribution against the Weibull. At each station, we
compute the W 2

n and r2n scores of each distribution, such as we did for the Weibull (Fig. 4).
Then the comparison of theW 2

n (respectively r2n ) scores indicates which distribution performs
best on the centre (respectively the tail) of the distribution. We consider that two distributions
are similar when the difference in W 2

n scores is <2 (<100 for the r2n scores).
The performances of the elliptical distribution are summarized in Fig. 9. The W 2

n and
r2n scores at each station are given in Fig. 9a and their comparisons to the Weibull scores
are given in Fig. 9b. In the north-western region the fits are in general good and similar
to those of the Weibull (white dots in Fig. 9b). Elsewhere the elliptical distribution is in
general better at describing the centre of the distribution (blue foreground dots in Fig. 9b).
But even if the distribution performs better than the Weibull, Fig. 9a shows that the fits are
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Fig. 9 a Elliptical distribution fit by minimizing the ADR score. At each station, the foreground circle gives
the W 2

n score (value <2 for a good fit on the centre of the distribution). The background circle gives the r2n
score (value<100 for a good fit on the tail of the distribution) multiplied by 0.1 to have a common colour axis.
b Best distribution between Weibull (red) and elliptical (blue). At each station, the foreground circle gives the
best distribution for the centre of the distribution according toW 2

n scores. The background circle gives the best
distribution for the tail of the distribution according to r2n scores.White dots corresponds to stations where the
scores are equal or almost, i.e. W 2

n (respectively r2n ) scores differing by less than 2 (respectively 100)
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Fig. 10 Same as Fig. 9 for the non-Gaussian distribution (in orange) compared to the Weibull distribution
(in red)

not very good: we still have highW 2
n values in the southern region. Concerning the tail of the

distribution (background dots), we can see that the elliptical distribution is often not better
than the Weibull. This is due to the Gaussian assumption and the reason why we introduced
the non-Gaussian distribution.

The performances of the non-Gaussian distribution are summarized in Fig. 10. In general
in the north-western region this distribution gives similar results as the Weibull for the centre
of the distribution but it improves the representation of the tail, where the non-Gaussian
character of the wind components is better taken into account. In the southern region, this
distribution performs better than theWeibull, except in the most complex regions (see the red
dots in the south-eastern region in Fig. 10b). These stations correspond to high anisotropy of
the wind components, the variance ratio σ 2

u /σ 2
v > 3 (see Fig. 6a), which explains why the

non-Gaussian distribution is not appropriate. Indeed we assumed similar parameters b and c
for both components even if it is rarely the case (see Fig. 7). This hypothesis is necessary in
order to compute an analytic expression for the wind-speed distribution, but it is sometimes
too strong, especially in those very complex orographic environments.

Figure 11 summarizes the performances of the Rayleigh–Rice distribution. Figure 11b
shows that it is doing similar or better than the Weibull on the centre of distribution at
all stations, and better or similar on the tail at 73 over 89 stations. It does not only out-
perform the Weibull but Fig. 11a also shows that the fits are very good: W 2

n ≈ 0 at
almost all stations. The Pau site, where the peak is not well fitted by the Rayleigh–Rice,
is actually an exception since it is among the five worst W 2

n scores. The Rayleigh–Rice
distribution is designed for regions of flows channelled in valleys, or where sustained
wind field prevails. Indeed, it performs very well in the southern region at stations where
channelled flows create shouldered distributions, such as at Orange. The Rayleigh–Rice
is capable of fitting the two peaks, so it improves the representation of the wind-speed
statistics in these complex areas. Surprisingly, even in other areas without bimodal distribu-
tion, the Rayleigh–Rice distribution brings some improvement, so superposing two regimes
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Fig. 11 Same as Fig. 9 for the Rayleigh–Rice distribution (in green) compared to the Weibull distribution (in
red)

enables to better represent the shape of the wind speed statistics. This is consistent with the
review of Carta et al. (2009) regarding mixture distributions involving the Weibull distribu-
tion.

The Rayleigh–Rice distribution is not easily fitted because it has four parameters and its
PDF expression is quite complex. Under the assumption σ1 = σ2 = σ , we reduce to three
parameters and Eq. 16 reduces to the following simpler form,

PRR(M;μ, σ 2, α) = M

σ 2 exp

(
− M2

2σ 2

) [
(1 − α) + α exp

(
− μ2

2σ 2

)
I0

(
Mμ

σ 2

)]
. (17)

This three-parameter equation performs well in the flat areas but not in the valleys where it is
important to assume different variances for the channelled and isotropic wind field in order
to have a good fit on both peaks.

For the purpose of completeness, let usmention that a similar study comparesRice-like and
Weibull distributions without accounting for the superposition of different weather regimes
(Baïle et al. 2011). They also report a better description of the tails of the distributions by the
Rice-like distribution, although it is less determinant in flat regions. This is one reason for
which a Rayleigh–Rice distribution is proposed instead of a mixture of Weibull distributions
(Carta and Ramírez 2007; Carta et al. 2009). Thus, taking into account the existence of
persistent wind regimes is a good approach to quantify wind-speed statistics.

Figure 12 gives a visual summary of the comparison of the four distributions. In the
left panel (Fig. 12a), we compare only the Weibull, elliptical and non-Gaussian distributions
which all depend on two parameters only, whereas the right panel (Fig. 12b) also includes the
Rayleigh–Rice four-parameter distribution. The white dots in Fig. 12a correspond to stations
in north-western France where the wind components are close to Gaussian shape and without
too much anisotropy (see Fig. 6), such as Nantes. The fits of all four distributions are quite
accurate and very close, except on the tail where the Weibull and elliptical distributions
tend to underestimate the probability of strong winds. In the other areas, we saw that the
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Fig. 12 a Best distribution between Weibull (red), elliptical (blue) and non-Gaussian (orange). White dots
when all three distributions give similar results; b Best distribution between the same three and Rayleigh–Rice
(green). At each station, the foreground (respectively background) circle gives the best distribution for the
centre (respectively tail) of the distribution, based on CvM statistic W 2

n (resp. the AD2R statistic r2n )

distributions are less accurate and either one of the three is the best fit, depending on the wind
characteristics.

Finally, Fig. 12b shows the benefit of a mixed distribution such as the Rayleigh–Rice to
model wind-speed statistics for a wide range of environments. This new distribution outper-
forms the other three almost everywhere. One can note that the Rayleigh–Rice distribution
performs best even where the anisotropy ratio is much larger than 1 and/or where the wind
components are not Gaussian. This could be seen as contradictory with the fact that the
Rayleigh–Rice distribution is the mixture of two normal distributions. This suggests that the
non-Gaussianity of the observed wind-speed distribution, which can be partly reproduced by
our non-Gaussian distribution, is probably dominated by the bimodal nature of the distrib-
ution. Regarding anisotropy, the good behavior of the Rayleigh–Rice distribution suggests
that the anisotropic nature of the wind-speed distribution is most probably carried by the
existence of a sustained prevailing flow rather than different wind-component variances as
proposed in McWilliams et al. (1979), McWilliams and Sprevak (1980) and Weber (1997).
It also explains why the elliptical distribution performs worse than the Rayleigh–Rice distri-
bution.

Other quantitative comprehensive evaluations could be used. A global performance index
could be for instance the power of the distribution, namely the third moment of the distribu-
tion, which is maybe of more practical importance and allows comparisons between stations.
We did not use this indicator since it does not ensure the best good fit of the distributions to
the observations, which is a key aspect of this study. However the analysis of such index (not
shown) confirms the analysis using the CvM and AD2R scores. The Rayleigh–Rice outper-
forms the other distributions with on average less than 2% relative error with respect to the
observations. The non-Gaussian is the less efficient with relative error often exceeding 20%
(half of the stations). The Weibull and elliptical distributions display similar performance
(slightly better for the elliptical distribution) with relative errors ranging between 5 and 20%
in most stations.
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6 Conclusion

The use of theWeibull distribution for wind statistics modelling is a convenient and powerful
approach. It is however based on empirical rather than physical justification andmight display
at times strong limitations for its application. Based on wind measurements collected at
89 locations throughout France, for a wide range of environments, from flat to complex
orography with different weather regimes, we compared the Weibull distribution and two
other two-parameter probability density functions for the wind speed, here called elliptical
and non-Gaussian. We therefore provide greater physical insight into the validity domain of
the Weibull distribution, depending on the wind characteristics, mainly the fluctuations and
anisotropy. The elliptical distribution assumes a Gaussian shape for the wind components
but takes into account the anisotropy by assuming different variances for each component.
The non-Gaussian distribution is based on the recently developed super-statistics theory. It
assumes fluctuating variances of the two wind components, which are eventually modelled
by a Gaussian distribution over a short time interval. But for analytic calculation purpose,
the proposed wind-speed distribution does not take into account the anisotropy. Where the
wind components are close to Gaussian shape and without too much anisotropy, such as at
most stations in north-western France, all fits are quite close and rather accurate, except on
the tail of the distribution where only the non-Gaussian distribution does not underestimate
the strong wind probability. In more complex regions, close to the mountains, in southern
and eastern France, the wind field can present anisotropy and/or departure from Gaussian
shape, and either the elliptical or the non-Gaussian distribution can be better suited than the
Weibull to represent the wind statistics. We also introduced a Rayleigh–Rice four-parameter
distribution as a combination of a Rayleigh distribution tomodel the isotropicwind field and a
Rice distribution tomodel persistent wind regimes. This gives excellent results, especially for
the weather stations located in the Rhône or Aude valleys (where the mistral and tramontane
channelled flows accur, respectively) where theWeibull or other two-parameter distributions,
are not able to reproduce the observed shouldered distributions. Combining Rayleigh and
Rice distributions is another way of applying the super-statistics theory, which models the
wind system as the superposition of local dynamics at different intervals with different mean
wind speeds.

Finally, this study points out the limits of using a unique analytic expression to model the
wind statistics, since the wind field and its statistical distribution can greatly vary spatially.
Themore sophisticated distributions obviously fitmore complexwind regimes better but with
less simple estimation of their parameters. This is the case for our Rayleigh–Rice distribution
that by far outperforms the other distributions at most stations. One use of parametric dis-
tributions, especially the Weibull distribution, is the statistical downscaling of near-surface
wind speed to produce regional wind-speed climatologies (Pryor et al. 2005). We showed
that a number of analytical distributions can represent wind speed distributions. Knowing
properties such as surrounding topography, anisotropy, existence of persistent wind regimes
can help in determining which distribution performs optimally. However, we also advocate
non-parametric statistical methods, based on the wind-speed cumulative distribution func-
tion, or percentiles that would not be sensitive to the complexity of the observed wind-speed
distribution (e.g. Michelangeli et al. 2009; Salameh et al. 2009; Lavaysse et al. 2012; Vrac
et al. 2012).
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Appendix 1: Computation of the Goodness-of-fit Statistics

The Cramer–von Mises and Anderson–Darling statistics have computing relations equiva-
lent to Eq. 4 and better suited for computing (Luceño 2006). The sample of observations
(x1, . . . , xn), of length n, is sorted so that x1 ≤ · · · ≤ xn . Here, F is the CDF of the
distribution, and we use the notation zi = F(xi ).

Cramer–von Mises relation:

W 2
n = 1

12n
+

n∑
i=1

(
zi − i − 1/2

n

)2

(18)

Anderson–Darling relation:

A2
n = −n − 1

n

n∑
i=1

(2i − 1) (ln(zi ) + ln(1 − zn+1−i )) (19)

Right-tail Anderson–Darling relation:

R2
n = n

2
+ 2

n∑
i=1

zi − 1

n

n∑
i=1

(2i − 1) ln(1 − zn+1−i ) (20)

Right-tail Anderson–Darling of second-order relation:

r2n = 2
n∑

i=1

ln(1 − zi ) + 1

n

n∑
i=1

2i − 1

1 − zn+1−i
(21)

Appendix 2: Calculations of the Non-Gaussian Distribution

The purpose here is to provide details of the analytic calculations of the non-Gaussian dis-
tribution defined in Sect. 4.2.

Distribution of Wind Components

Combining the distributions of Eqs. 8 and 9 into Eq. 7 gives:

p(u) = b−c

√
π Γ (c)

∫
βc− 1

2 exp

[
−β

(
u2 + 1

b

)]
dβ. (22)
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The change of variable t = β

(
u2 + 1

b

)
gives:

p(u) = b−c
(
u2 + 1

b

)−c+ 1
2 − 1√

π Γ (c)

∫
tc−

1
2 e−t dt. (23)

We recognize in the integral term the definition of Γ (c + 1
2 ), hence giving Eq. 10.

Distribution of Wind Speed

From Eq. 10, which gives the PDF of one wind component p(u), we derive the PDF for the
wind-speed M , under the assumption that both wind components u and v are represented by
the same parameters b and c. Under the hypothesis of independence of u and v, p(u, v) =
p(u)p(v).We perform the change of variables u = M cosφ and v = M sin φ (transformation
whose Jacobian is M), obtaining,

p(M, φ) = M

Z2

(
1 + b M2 + b2 M4

4
sin2 2φ

)−c− 1
2

. (24)

In order to obtain the distribution of M , we integrate p(M, φ) with respect to φ, between
0 and 2π . For this purpose, we use the following hypergeometric integral (see e.g. Erdélyi
et al. 1953, p. 115 (7)),

∫ π
2

0

(
1 − z sin2 t

)−a
dt = π

2
F

(
a,

1

2
; 1; z

)
. (25)

Hence, we obtain Eq. 11:

p(M) = 2π
M

Z2

(
1 + bM2)−c− 1

2 F

(
c + 1

2
,
1

2
; 1; −b2 M4

4(1 + b M2)

)
, (26)

where F is the ordinary hypergeometric function.
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