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Abstract

Concerns have been raised about possible cancer risks after exposure to computed tomography (CT)
scans in childhood. The health effects of ionizing radiation are then estimated from the absorbed dose
to the organs of interest which is calculated, for each CT scan, from dosimetric numerical models, like
the one proposed in the NCICT software. Given that a dosimetric model depends on input parameters
which are most often uncertain, the calculation of absorbed doses is inherently uncertain. A current
methodological challenge in radiation epidemiology is thus to be able to account for dose uncertainty in
risk estimation. A preliminary important step can be to identify the most influential input parameters
implied in dose estimation, before modelling and accounting for their related uncertainty in radiation-
induced health risks estimates. In this work, a variance-based global sensitivity analysis was performed
to rank by influence the uncertain input parameters of the NCICT software implied in brain and red
bone marrow doses estimation, for four classes of CT examinations. Two recent sensitivity indices,
especially adapted to the case of dependent input parameters, were estimated, namely: the Shapley
effects and the Proportional Marginal Effects (PME). This provides a first comparison of the respective
behavior and usefulness of these two indices on a real medical application case. The conclusion is that
Shapley effects and PME are intrinsically different, but complementary. Interestingly, we also observed
that the proportional redistribution property of the PME allowed for a clearer importance hierarchy
between the input parameters.

Keywords: Simulation, Shapley effects, Proportional marginal effects, Radiation dose, Epidemiology.

1. Introduction

In radiation epidemiology, one is commonly interested in the potential association between health
risks and cumulative exposure to ionizing radiation (IR) (NRC, 2006; UNSCEAR, 2012). Particularly,
concerns have been raised about possible cancer risks after exposure to computed tomography (CT)
scans in childhood (UNSCEAR, 2013). In this specific context, individual exposure conditions to IR
cannot be controlled experimentally: they are thus inherently uncertain. Additionally, the health
effects of IR are associated with the absorbed dose to the organs of interest, rather than with radiation
exposure. The absorbed dose does not only depend on the exposure to radioactive material but also
on individual exposure conditions parameters. An absorbed dose is not directly measurable. It is
calculated, for each CT scan, from numerical models, like the one proposed in the NCICT software
(Lee et al., 2015). Given that a dosimetric model depends on input parameters which are most often
uncertain (e.g. individual exposure conditions to IR), the calculation of absorbed doses is uncertain
when estimating radiation-induced health risks after CT scans. However, when it is not or only poorly



accounted for, dose uncertainty can lead to biased risk estimates, a loss in statistical power and to
a distortion of the dose-response relationship (Thomas et al., 1993; Kim et al., 2006; Physick et al.,
2007). Therefore, a current methodological challenge in radiation epidemiology is to be able to account
for dose uncertainty in risk estimation (Dauer, 2014). In this context, a preliminary important step
can be to identify the most influential input parameters implied in dose estimation, before modelling
and accounting for their related uncertainty in radiation-induced health risks estimates.

For that purpose, global sensitivity analysis (GSA) provides tools to quantify the influence of
uncertain inputs of a numerical model (often assumed to be black-box) (Saltelli et al., 2008; Borgonovo
and Plischke, 2016; Borgonovo and Rabitti, 2023). It is one of the key steps in uncertainty quantification
of numerical models, especially in the context of scientific and industrial practices (De Rocquigny
et al., 2008), and in particular in operation research and managerial problems (Borgonovo, 2017).
Da Veiga et al. (2021) distinguish four major settings addressed by GSA: (i.) model exploration, i.e.,
investigating the input-output relationship; (ii.) factor fixing, i.e., identifying non-influential inputs;
(iii.) factor prioritization, i.e., quantifying the most important inputs using quantitative importance
measures; (iv.) robustness analysis, i.e., quantifying the sensitivity of the quantity of interest with
respect to probabilistic model uncertainty of the input distributions. In the present work, the third
setting is of interest (i.e., factor prioritization), given that our aim is to identify and rank the most
influential input parameters of the NCICT software for organ dose estimation.

Among the large panel of GSA indices, the well-known Sobol’ indices (Sobol, 1993) are derived
from the functional analysis of variance (FANOVA) decomposition (Efron and Stein, 1981). This
decomposition relies on the assumption of mutual independence between the inputs and attributes
percentages of the model output variance to every possible subset of inputs. These indices sum to one,
are non-negative, and can be interpreted as individual/interaction effects on the output. However, the
mutual independence assumption can, in some cases, be unrealistic. In many applications, inputs have
an inherent statistical dependence structure, either imposed in their probabilistic modeling or induced
by physical constraints upon the input or the output space. This is particularly the case for some of
the input parameters of the NCICT software. When the inputs are dependent, the Sobol’ indices lose
their intrinsic interpretation as individual/interaction effects, (see, e.g., Da Veiga et al. (2021) for an
overview on the different works dealing with this subject).

Among the different approaches proposed to circumvent this issue, the Shapley effects have been
shown to provide synthetic and relevant information about the part of the model output variance that
is due to each input in many practical cases (see, e.g., Iooss and Prieur (2019); Radaideh et al. (2019)),
and especially in epidemiological modeling (see, e.g., Da Veiga et al. (2021); Il Idrissi et al. (2021);
Davila-Pena et al. (2022)). Based on the Shapley value (Shapley, 1953) and inspired from cooperative
game theory (Osborne and Rubinstein, 1994), the Shapley effects have been introduced by Owen (2014)
in GSA. The underlying idea is to consider the inputs as players of a cooperative game, to which the
variance of the model output must be redistributed. This method attributes non-negative shares of
variance to every input, and they always sum to one, despite the potential dependence structure.
Hence, their interpretation is always guaranteed. These indices and their estimation methods have
been largely studied in the GSA literature (Owen and Prieur, 2017; Benoumechiara and Elie-Dit-
Cosaque, 2019; Plischke et al., 2021; Rabitti and Borgonovo, 2019; Song et al., 2016; Broto et al.,
2020).

However, for certain purposes, the Shapley effects can be criticized for one of its side effects: they
may attribute a non-zero share of the output variance to an exogenous input (i.e., an input that does
not appear in the deterministic model) that is correlated with an influential one (Iooss and Prieur,
2019). This phenomenon, which is synonym to the violation of the so-called “exclusion property” of
an importance measure (Grömping, 2007; Iooss et al., 2022; Clouvel et al., 2023), is sometimes called
the Shapley’s joke (Iooss et al., 2022) or the correlation distorsion (Verdinelli and Wasserman, 2023).
In order to prevent this phenomenon, Herin et al. (2022) have recently defined sensitivity indices
using another allocation system, namely the proportional values (Ortmann, 2000; Feldman, 2005). In
the context of variance-based GSA, it leads to the definition of novel indices called the proportional
marginal effects (PME). Like the Shapley effects, they always remain interpretable even with a potential

2



dependence structure between input parameters, but they also allow to detect exogenous inputs by
granting them zero allocation, despite their eventual correlation with non-exogenous inputs.

Although Shapley effects and PME are promising variance-based GSA indices for forthcoming appli-
cations in many research areas, they have not yet been widely used in health studies and have not been
used together to highlight their potential complementary. Thus, as pointed out by Lu and Borgonovo
(2023), in the particular context of pandemic models like the susceptible-infectious-recovered (SIR)
models, sensitivity analysis and uncertainty quantification are rarely performed. Moreover, the most
widely employed methods are one-at-a-time sensitivity analysis omitting the potential interactions be-
tween input parameters. As an example, Wang et al. (2018) focused on Sobol’ indices to evaluate the
relative importance of multiple input parameters when developing a mathematical model to replace
invasive and time-consuming biological measures in the management of patients with chronic liver
diseases. Likewise, Rapadamnaba et al. (2021) evaluated a cardiovascular model of patient-specific
arterial network. Roder et al. (2021) highlighted the usefulness of the Shapley values for assessing the
relative importance of the input features of a cohort of patients in the context of a machine learning
(ML) algorithm trained to predict the result of a molecular diagnostic test at the sample or patient
level. In the same way, Smith and Alvarez (2021) used Shapley values to interpret ML models and
identify mortality factors for COVID-19.

In this work, a variance-based GSA is performed with both Shapley effects and PME and, for the
first time, in radiation dosimetry, to rank by influence the input parameters of the NCICT software
classically used to estimate the organ doses arising from CT scan exposure. Their respective behavior
and usefulness are highlighted through this medical application.

The structure of the paper is as follows. Section 2 describes the case-study. Section 3 briefly
presents Shapley effects and PME for variance-based GSA and their practical implementation. These
two indices are first compared in Section 4 in the context of a use-case example based on a COVID-19
SIR model. In Section 5, they are applied to the CT organ dose estimation model. Finally, our results
are discussed in Section 6.

2. Case study: CT scan organ dose estimation from the NCICT software

To estimate the organ doses associated to a CT scan, the NCICT computer program (Lee et al.,
2015) is classically used (Lee et al., 2019; Thierry-Chef et al., 2021; Foucault et al., 2022). NCICT
uses a library of phantoms, developed by the University of Florida/National Cancer Institute and
the International Commission on Radiological Protection (ICRP). These phantoms represent realistic
human anatomy (Menzel et al., 2009; Bolch et al., 2020). In this work, we focus on the version 1.0 of
the NCICT software for which the organ dose estimation following CT scan is possible for 12 phantoms
(females and males, six ages: newborn, 1, 5, 10, 15 years old and adult). The (deterministic) numerical
model implemented in NCICT to estimate organ doses is defined by the following input parameters:
age and gender of the patient, scanned body region (identified by the scan start and stop landmarks
measured in cm from the top of the head), CT machine model and technical parameters used for each
image acquisition including tube current-time product (mAs), tube potential (kVp), pitch and bowtie
filter (16 cm - head or 32 cm - body). Head filter is systematically assigned to head scans whereas body
filter is considered for the other types of examinations. Table 1 describes the eight input parameters
of the NCICT dosimetric model that we consider in this work; the GSA problem is then of dimension
d = 8.

In NCICT version 1.0, the absorbed dose (in mGy) related to an organ of interest and following a
CT scan received by a patient with a given age and gender is defined by the following equation:

D(organ, age, gender,model, kV p, filter, start, end,mAs, pitch)

=

end∑
z=start

CTDIvol(model, kV p, filter,mAs, pitch)×DC(organ, age, gender, kV p, filter, z).
(1)

where:
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Input Description Type of variable Range of values
Age Age of the patient Discrete {0, . . . , 18}

Gender Gender of the patient Categorical {F,M}
Start Start of the scanned body area (in cm) Discrete {1, . . . , 165}
End End of the scanned body area (in cm) Discrete {1, . . . , 165}
mAs Tube current-time product Discrete {4, . . . , 505}
kVp Tube potential Discrete {80, 100, 120, 140}
pitch Pitch Continuous [0.2, . . . , 1.75]
Model CT model Categorical {1, . . . , 12}

Table 1: Description of the input parameters of the NCICT (version 1.0) dosimetric model used for CT scan dose
estimation.

• z is a 1 cm axial slice between start and end from the top of the head.

• CTDIvol(model, kV p, filter,mAs, pitch) is the CT Dose Index per unit volumetric, obtained for
the particular scanner model studied and the technical parameters used for image acquisition.
It is derived from the following equation:

CTDIvol(model, kV p, filter,mAs, pitch) =
nCTDIw(model, kV p, filter)

pitch
× mAs

100
, (2)

where nCTDIw(model, kV p, filter) is the CTDIw normalised to 100 mAs and selected from the
CTDI library (Lee et al., 2014).

• DC(organ, age, gender, kV p, filter, z) is an organ dose coefficient for z, depending on patient
characteristics and technical acquisition parameters. NCICT includes Monte Carlo simulations
(MCNPX2.7) of the x-ray in a reference CT scanner (Siemens Sensation 16) to estimate or-
gan doses coefficients (DC). In this work, DC were assumed to be known for each possible
configuration of input parameters.

Note that, in this work, we only used a ”restricted” version of the dosimetric model implemented
in the NCICT software (version 1.0) (called ”restricted” NCICT model hereafter). Indeed, the black-
box Monte Carlo simulations model included in NCICT to calculate the organ doses coefficients DC
was ignored since only a library of DC values was available. To perform a variance-based GSA
from the NCICT dosimetric model, we used an input-output sample of PACS (Picture Archiving
and Communication System) data, available for some French university hospitals and some pediatric
patients. PACS records and archives all images and machine settings of CT examinations. For each
CT image recorded in PACS, information on the patient (gender, date of birth) and on the examination
(scan date, scanned body region, CT machine model and machine settings) were collected.

3. Variance-based GSA with dependent inputs: Shapley effects and PME

This section presents the formal framework of variance-based GSA, with a special focus on the
Shapley effects and the PME. Let X = (X1, . . . , Xd) be a random vector, where each Xi, i ∈ D :=
{1, . . . , d} represents an uncertain input of a real-valued deterministic model, denoted f hereafter.
Denote P(D) the power-set of D, i.e., the set of subsets of D. For any A ∈ P(D), let XA := (Xi)i∈A
denotes the subset of the inputs defined in X and whose indices are in A. Moreover, the complementary
of a subset A ∈ P(D) in D is denoted −A := D \A. | . | denotes the number of elements in a subset.
The real-valued output random variable of f is denoted Y = f(X). Let E(·) and V(·) denote the
expectation and variance operators, respectively. In the following, when a function is referred to as
being non-negative (resp. positive), it entails that it is valued in [0,∞) (resp. (0,∞)).
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3.1. Hoeffding’s functional ANOVA and the Sobol’ indices

If the random vector of inputs X is assumed to be composed of mutually independent random
variables, and if E(Y 2) is assumed to be finite, one can write (Da Veiga et al., 2021):

V(Y ) =
∑

A∈P(D)

VA,

where, ∀A ∈ P(D),

VA =
∑

B∈P(A)

(−1)|A|−|B|V (E (Y | XB)) .

This result is due to a unique additive orthogonal decomposition of f in the (Hilbert) space of square-
integrable functions (Hoeffding, 1948; Efron and Stein, 1981). The (classical) Sobol’ indices have then
been defined, ∀A ∈ P(D) as (Sobol, 1993):

SA :=
VA

V(Y )
. (3)

Related to this decomposition, other indices have also been proposed: the total Sobol’ indices. They
are defined, ∀A ∈ P(D), as:

STA =
E[V(Y |X−A)]

V(Y )
=

∑
B∈P(A)

SB . (4)

Whenever the inputs are mutually independent, the Sobol’ indices of each input quantify their in-
dividual influence, and for each subset of several inputs, their related Sobol’ index quantifies their
interaction due to the model f . The total Sobol’ indices of a subset of inputs can thus be interpreted
as the sum of individual/interaction influences (i.e., the Sobol’ indices) of every subset of this subset.
Figure 1 illustrates the variance decomposition in the case of three mutually independent inputs. The
overall area of this Venn diagram represents V(Y ), each colored areas represent the Sobol’ indices, and
each colored circle represents the total Sobol’ indices of each input.

ST
2ST

1

ST
3

S3

S1 S2

S13 S23

S12

S123

Figure 1: Illustration of the classical and total Sobol’ indices of three mutually independent inputs.

It is important to note that, even if the Sobol’ indices in Eq. (3) and total Sobol’ indices in Eq. (4)
remain well-defined (i.e., finite) as long as Y has a finite variance, their interpretation changes whenever
the input mutual independence is no longer assumed. As stated in Da Veiga et al. (2021), whenever
the inputs are correlated, the Sobol’ indices as defined in Eq. (3) can become negative, and their
interpretation as percentages of variance (and hence as influence) can be challenged.
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3.2. Allocations and random order models

Cooperative (or coalitional) game theory is a field coming from economics, which primarily deals
with the redistribution of wealth (Osborne and Rubinstein, 1994). Formally, the game is composed of
a set D = {1, . . . , d} whose elements represent players, and a user-chosen value function v : P(D)→ R,
whose purpose is to quantify the value of a coalition (i.e., subset) of players A ∈ P(D). The total
quantity to be redistributed among all players is the value of the grand coalition: v(D).

To that extent, allocations (or solution concepts) have been proposed, resulting in a redistribution
of v(D), where each player i ∈ D receives a share φi. The main way different allocations can be
compared is through their properties (i.e., axioms). One famous example of allocation is the Shapley
values (Shapley, 1953). They can be defined, ∀i ∈ D, as:

Shapi =
∑

A∈P(D);i∈A

∑
B∈P(A)(−1)|A|−|B|v(B)

|A|
(5)

=
1

d!

∑
π∈SD

[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]
(6)

where SD is the set of all permutations of D, and for a particular permutation π = (π1, . . . , πd) ∈ SD,
π(i) = π−1i denotes the position of the player i in π (i.e., ππ(i) = i), and finally Ci(π) denotes the set of
the i-th first inputs in the ordering π such as Ci(π) = {πj : j ≤ i} with the convention that C0(π) = ∅.
Eq. (5) is due to Harsanyi (1963), whereas Eq. (6) is an equivalent expression of the Shapley values as
a random order model allocation (Weber, 1988).

Random order model allocations are a set of allocations that can be written generally as:

φi =
∑
π∈SD

p(π)
[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]
(7)

where p is a probability mass function over the orderings of D. In this framework, the Shapley values
can be understood as a (discrete) uniform choice for p. Two remarkable properties arise from random
order model allocations (whatever the choice of p is) (Weber, 1988):

• They are efficient:
∑d
i=1 φi = v(D);

• If v is chosen to be monotonic (i.e., if B ⊆ A ∈ P(D) then v(B) ≤ v(A)), then they are
non-negative: φi ≥ 0.

Different choices of probability mass function p lead to different allocations. In particular, the
proportional values (Ortmann, 2000) result from the choice:

p(π) =
L(π)∑

σ∈SD
L(σ)

, where L(π) =

∏
j∈D

v(Cj(π))

−1 .
Cooperative games can be endowed with a dual (Feldman, 2005, 2007). Instead of focusing on the

value brought in by a coalition, the dual formulation instead defines a cooperative game based on their
worth. It implies defining the function, ∀A ∈ P(D), as:

w(A) = v(D)− v(−A),

and computing the allocations by substituting the value function v by w. In the context of random
order models, as pointed out in Grömping (2007) and Herin et al. (2022), this different point of view
can be interpreted as quantifying the sequential costs of removing players from coalitions (for the dual
game) instead of quantifying the sequential gains of adding them (for the initial game). It is interesting
to note that the Shapley values of a cooperative game are equivalent to the Shapley values of its dual
(Funaki, 1996). However, this behavior is not respected for the proportional values (Feldman, 2007).
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3.3. Variance-based GSA indices inspired by allocations

By analogy between players in a cooperative game and inputs of a deterministic numerical model,
Owen (2014) proposed the Shapley effects as measures of influence whenever the inputs are correlated.
These indices are none other than the Shapley values of the cooperative game defined with the value
function:

v(A) =
V(E(Y | XA))

V(Y )
.

The Shapley effects can thus be written, coming from Eq. (5), ∀i ∈ D, as:

Shi =
∑

A∈P(D);i∈A

∑
B∈P(A)(−1)|A|−|B|V(E(Y | XB))

V(Y )|A|

=
∑

A∈P(D);i∈A

SA
|A|

, (8)

where SA are the Sobol’ indices as defined in Eq (3), but potentially computed with dependent inputs.
These indices have been extensively studied both empirically and theoretically in the literature (Owen
and Prieur, 2017; Benoumechiara and Elie-Dit-Cosaque, 2019; Plischke et al., 2021; Song et al., 2016;
Broto et al., 2020; Iooss and Prieur, 2019; Il Idrissi et al., 2021). One can notice that the dual of this
game leads, ∀A ∈ P(D), to:

w(A) = STA ,

and, since the Shapley values of a game are equal to the Shapley values of its dual, it leads to the
same indices. This fact has also been noticed by Song et al. (2016) in the field of sensitivity analysis.
Hence, another equivalent rewriting of the Shapley effects, for any i ∈ D, is:

Shi =
∑

A∈P(D);i∈A

∑
B∈P(A)(−1)|A|−|B|STB

|A|
.

The Shapley effects have two remarkable properties, making them particularly attractive for influ-
ence quantification with dependent inputs:

• They sum to 1;

• They are always non-negative.

Hence, they can be interpreted as percentages of variance attributed to each input.
However, the Shapley effects suffer from one main drawback: if exogenous inputs (i.e., not in the

deterministic model) are sufficiently correlated with endogenous inputs, their share of influence can be
non-zero. This phenomenon is better known as “Shapley’s joke” (Iooss et al., 2022; Herin et al., 2022)
(or “violation of the exclusion property” (Grömping, 2007; Iooss et al., 2022; Clouvel et al., 2023) or
“correlation distorsion” (Verdinelli and Wasserman, 2023)), and can be counter-productive for factor-
fixing. Therefore, Herin et al. (2022) proposed to adapt the proportional values to the variance-based
GSA paradigm, via the definition of the proportional marginal effects (PME) which are none other
than the proportional effects of the dual. These indices also sum to 1 and are always non-negative, but
they bear an additional property: if, for a particular A ∈ P(D), XA is the largest subset of exogenous
inputs (in the sense that for any B ∈ P(D) such that A ( B contains endogenous inputs), then:

PMEi = 0,∀i ∈ A.

Hence, if used in conjunction with the Shapley effects, the PME allow to not fall under the Shapley’s
joke, and hence strengthen the confidence in the resulting influence ranking. The PME differ from the
Shapley effects, in the sense that the redistribution is not based on the same principles. From Eq. (8),

7



one can see that the Shapley effects provide an egalitarian redistribution of the Sobol’ indices towards
the involved subsets of inputs. The PME provide a proportional redistribution of the Sobol’ indices:
the more a player is worth in every coalition, the more wealth it receives (Ortmann, 2000; Feldman,
2007; Grömping, 2007). This behavior is particularly obvious when dealing with two inputs, as pointed
out in Grömping (2007); Herin et al. (2022).

3.4. Estimation procedure, software and reproducibility

As presented in Broto et al. (2020), a plug-in estimator of both Shapley effects and PME can be
built using estimators of the total Sobol’ indices STA , for any A ∈ P(D). Many estimation procedures
have been proposed in the literature (e.g., based on Monte-Carlo sampling-based estimation (Song
et al., 2016)). However, in our case study (see section 2), the input distributions are not known:
only a single i.i.d input-output sample of PACS data is available. We therefore focus on ’given-data’
estimators, that do not require additional simulation. More specifically, the method proposed by
Broto et al. (2020) is used, which allows for consistent estimators of the total Sobol’ indices using a
nearest-neighbor procedure (see also Il Idrissi et al. (2021) for an overview of the method).

The following results have been gathered using the sensitivity R package, and in particular
the shapleysobol knn and pme knn to estimate the Shapley effects and the PME respectively. This
implementation allows categorical inputs, which are one-hot-encoded and normalized in order for
the Euclidean distance to be sensible in the computation of the nearest-neighbors. To alleviate the
computational burden of the nearest-neighbors procedure with many observations, they are computed
using the approximation scheme proposed by Arya et al. (1998).

Results and figures presented in the COVID-19 application can be reproduced with the codes
available in a GitLab repository1.

4. Comparison between PME and Shapley effects on a COVID-19 epidemic model

The year 2020 raised important questions about the usefulness of epidemic modeling, especially
in terms of producing relevant insights for public policy decision-makers, in light of the COVID-19
pandemic. Saltelli et al. (2020) have used this example to emphasize the essential need for GSA
in such models, which aim to predict the potential consequences of intervention policies. Moreover,
Lu and Borgonovo (2023) highlighted that sensitivity analysis and uncertainty quantification were
rarely performed in this context and that input interactions were often omitted. In the context of
COVID-19 in Italy, Borgonovo and Lu (2020) proposed a first study to evaluate the sensitivity of key
epidemiological model outputs, such as the number of individuals quarantined, recovered, or deceased
due to COVID-19. Additionally, another GSA was conducted in the French context of the initial
COVID-19 outbreak by Da Veiga et al. (2021). By using data coming from this last analysis, Da Veiga
et al. (2021) demonstrated how Shapley effects could be used to characterize the influence of uncertain
input parameters on some outputs of this epidemic model. Using the same data, we highlight the
differences between the PME and Shapley effects in this use-case example.

The deterministic compartmental model has been developed and described in Da Veiga et al.
(2021) to represent the COVID-19 French epidemic (from March to May) by taking into account the
asymptomatic individuals, the testing strategies, the hospitalized individuals and people admitted to
Intensive Care Unit (ICU). Using several assumptions, it is based on a system of 10 ordinary differential
equations. Each equation models path of individuals between different compartments (corresponding to
their infectious and illness states). These equations involve 20 continuous input parameters X assumed
to be independent between each other and model the dynamic between the different compartments. In
Da Veiga et al. (2021), after a first screening step which allows for suppressing non-influential inputs,

1See https://gitlab.com/milidris/shapley-effects-and-pme-for-ct-scans
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the model is calibrated on real data by using a Bayesian calibration technique. After the analysis of
this step, the selected remaining inputs are:

Xsel = (pa, Na, Ns, NIH , brn, t0,Mu, N, Im0)T

Their joint probability distribution is approximated from a posterior sample derived from the Bayesian
calibration process and the non-influential inputs are fixed to their nominal values. Table 2 presents
the 9 selected input parameters. For the present study, we considered three output variables of interest:
(i) the maximum value of U, with U the number of hospitalized patients in ICU; (ii) the total reported
cases; (iii) the cumulative time where the maximum value of U is reached.

Input Description
pa Conditioned on being infected, the probability of having mild symptoms or non symptoms
Na If asymptomatic, number of days until recovery
Ns If symptomatic, number of days until recovery without hospitalization
NIH If severe symptomatic, number of days until hospitalization
brn Basic reproducing number
t0 Starting date of epidemics (in 2020)
Mu Decaying rate for transmission (after social distancing and lockdown)
N Date of effect of social distanciation and lockdown
ImO Number of infected undetected at the start of epidemic

Table 2: Description of the uncertain input parameters of the COVID-19 epidemic model.

Figure 2 displays estimated (Pearson’s) the linear correlation coefficients between the input pa-
rameters selected after calibration. One can notice that some of these parameters can display strong
correlations, and thus mutual independence is not satisfied. It comforts the choice of Shapley effects
and PME in order to assess their influence.

Shapley effects and PME have been computed from the methodology presented in Section 3.4. The
dataset consists in 5000 rows, and thus, the approximated nearest-neighbor search algorithm has been
used with a number of neighbors set fixed at 3. The intervals around the estimated values are the
empirical 2.5% and 97.5% quantiles, which have been computed by means of 100 repetitions, where,
for each repetition, the indices have been estimated on a random selection of 80% of the initial data.

We observed that Na and pa were the most influential parameters of the COVID-19 epidemic model
of interest. Shapley effects and PME estimated for the maximum value of U and the time where the
maximum value of U is reached were similar (Table 4). However, according to Shapley effects, pa
explained 30% of the total reported cases variance whereas this parameter was granted more than
80% of the variance share by PME, others parameters becoming non-influential (Figure 3). pa was
highly correlated with t0, N and ImO whereas Na was only moderately correlated with Ns and Mu.
For the total reported cases output, PME allowed for a better redistribution of pa interaction effects,
proportionally to his marginal contribution and independently of his correlation structure.

5. Application to CT scan dose estimation from the ”restricted” NCICT model

Figure 4 displays the estimated (Pearson’s) linear correlation coefficients between the 8 input
parameters of the ”restricted” NCICT model used for CT scan dose estimation (see Table 1). We
observed relatively high correlation coefficients between scan start and scan end (ρ̂ = 0.79), between
pitch and scan start (ρ̂ = 0.43), between pitch and scan end (ρ̂ = 0.47) or between pitch and kVp
(ρ̂ = −0.37). These four parameters, kVp, pitch, scan start and end are those with the higher values of
variance inflation factor (VIF) (Table 4) which is a metric of multicollinearity (see, e.g. Clouvel et al.
(2023)). However, the two qualitative input parameters, gender and CT model, were not correlated
with the quantitative variables as depicted by the correlation ratio in Table 5. This correlation structure
does not allow for interpretable Sobol’ indices, which motivates the use of Shapley effects and PME.
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Figure 2: Scatter-plots and estimated (Pearson’s) linear correlation coefficients of the input parameters of the COVID-19
epidemic model, derived from a posterior sample.

Shapley effects and PME have been computed from the methodology presented in Section 3.4. The
dataset consists in 8848 rows and the approximated nearest-neighbor search algorithm has been used
with an arbitrary number of neighbors set at N=100. The effects were forced to sum to one because of
the deterministic nature of the model (i.e., there is not a noisy coefficient). The intervals around the
estimated values are the empirical 5% and 95% percentiles, which have been computed by means of 200
repetitions, where, for each repetition, the indices have been estimated on a random selection of 90%
of the initial data, and subsequently corrected for the bias due to this sampling procedure. Figures 5,
6, 7 and 8 display the Shapley effects and PME estimates for head (Number of examinations=4681),
chest (N=2314), abdopelvis (N=823) and multiple areas (N=1025) CT scan examinations respectively.
The dotted line represents the average influence of an input in the case of similar importance (i.e. 1/8
≈ 12.5%). Shapley and PME hierarchies are presented in Table 6. The PME did not detect exogenous
input since all allocations were strictly positive. It is reassuring since every input is effectively involved
in the estimation of the organ dose.

Head examinations: Figure 5 displays Shapley effects and PME for head examinations. On
the one hand, the brain dose was mainly explained by mAs, kVp and scan end. Shapley effects and
PME depicted similar values for mAs and kVp with around 27% and 24% of the brain dose variance
respectively for these 2 parameters which are related to the quantity of delivered X-rays (Table 6).
However, scan end influence was lower with PME compared to Shapley effects, probably because of
its correlation with other input parameters such as scan start (ρ̂ = 0.79) and pitch (ρ̂ = 0.47). On
the other hand, for RBM dose, all input parameters were close to the average level, although five
parameters seemed to be a bit more influential: mAs, kVp, scan start, scan end and age. It was not
surprising that age intervened here since RBM distribution varies across the body depending on age,
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Figure 3: Shapley effects and PME of 9 input parameters for three outputs of the epidemic COVID-19 model: the
maximum value of U, the total reported cases and the time where the maximum value of U is reached

being less and less in the head as children grow up.
Chest examinations: According to both estimated Shapley effects and PME displayed in Figure

6, mAs, pitch and kVp were the most influential input parameters of brain dose delivered during chest
examinations. However, the PME allocated a lower share of the output variance to kVp than Shapley
effects (Sh=19%, PME=14%) and a higher share to pitch (Sh=18%, PME=20%) (Table 6). This could
be explained by the high level of multicollinearity of these two input parameters with the other ones
(VIF = 1.47 for kVp and 1.69 for pitch). Likewise, pitch is linearly correlated with scan start and end
(ρ̂ = 0.43 and 0.47). For RBM dose, mAs and pitch were the two influential parameters according
to both sensitivity indices. In this case, the marginal contributions of these two parameters seem to
be highly discriminated as the proportional redistribution of the interaction effects did not impact
importance values compared to the Shapley effects.

Abdopelvis examinations: Regarding the brain dose, kVp appeared to be the only input param-
eter with a significant influence, that is to say greater than the average level of influence of one input
(Figure 7). However, its effect was uncertain, especially for PME. This uncertainty could be explained
by the negligible brain dose delivered by abdopelvis CT examinations. Likewise, kVp was the most
influential input parameter of RBM dose, explaining about half of the RBM dose variance (Table 6).
Furthermore, for brain dose, mAs was the second parameter in the Shapley hierarchy and the fifth in
the PME hierarchy and for RBM dose, mAs was the third one in the Shapley hierarchy and the last
one in the PME hierarchy. This parameter was not correlated with any other input but it interacts
with other technical paramEters such as kVp and pitch to define the quantity of delivered X-rays.
Thus PME allowed for a better redistribution of their interaction on dose estimates, proportionally to
their marginal contributions (Table 6).

Multiple areas examinations: Scan start was the most influential input parameter of doses
estimates associated with multiple areas examinations (Figure 8). It was granted half of the brain
dose variance and 41% of the RBM dose variance (Table 6). This result could be explained by the
heterogeneity of the considered examinations and scanned body regions included in this class. We
observed some differences between Shapley effects and PME. For instance, according to Shapley effects,
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Influence rank Shapley effects PME
Maximum U

1 Na 26.68% Na 31.43%
2 Ns 14.98% Ns 13.50%
3 brn 13.17% brn 10.87%
4 N 12.01% N 10.36%
5 NIH 10.06% NIH 8.87%
6 pa 8.02% pa 7.76%
7 t0 5.45% t0 6.13%
8 Mu 5.41% Mu 6.10%
9 ImO 4.21% ImO 4.97%

Cumul Daily Cases
1 Pa 31.68% Pa 88.35%
2 N 12.75% NIH 4.91%
3 Ns 11.68% brn 2.61%
4 t0 10.66% t0 1.70%
5 NIH 9.75% Mu 0.83%
6 brn 7.76% Na 0.61%
7 Na 6.97% Ns 0.53%
8 ImO 6.76% N 0.46%
9 Mu 1.98% ImO 0.00005%

Date Max. U
1 Na 17.55% Na 14.78%
2 ImO 14.32% ImO 13.86%
3 N 13.62% Ns 12.35%
4 Ns 11.83% N 11.83%
5 brs 9.65% brs 10.05%
6 pa 8.81% pa 9.52%
7 t0 8.62% NIH 9.39%
8 NIH 7.89% t0 9.38%
9 Mu 7.71% Mu 8.85%

Table 3: Influence hierarchies between the inputs of the COVID-19 epidemic model according to Shapley effects and
PME.

Age Gender Model mAs kVp pitch Start End
VIF 1.46 1.01 1.43 1.14 1.47 1.69 2.80 3.25

Table 4: Variance inflation factor for the input parameters of the restricted NCICT model.

Age mAs kVp pitch Start End
Gender 0.002 0.001 0.0002 0.002 0.009 0.005
Model 0.02 0.07 0.03 0.05 0.05 0.07

Table 5: Correlation ratio between the quantitative input parameters and the two qualitative variables ”Gender” and
CT ”Model” of the restricted NCICT model.

pitch explained 14% of the brain dose variance and mAs explained 17% of the RBM dose variance but
these two parameters were allocated a lower influence by PME (Table 6). Scan start was correlated
with scan end and pitch. Compared to Shapley effects, PME was less influenced by inputs correlation
and allocated a share of interaction effects to scan start proportionally to his marginal effect. This
trend was also observed for the total reported cases of COVID-19 (Section 4). Finally, with Shapley
effects, gender was granted a negative share of the doses variances which is due to the approximation
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Figure 4: Pairwise plots of the quantitative inputs of the restricted NCICT model including the histogram of the empirical
distribution of each input (diagonal) and the estimated (Pearson’s) linear correlation coefficients (upper part).

error of the nearest-neighbors procedure.

6. Discussion and conclusion

This paper provides a first comparison on a real medical application case, based on CT scan organ
dose estimation, of the two recent variance-based GSA indices especially adapted to the dependent
input parameters context: the Shapley effects (Owen, 2014) and the Proportional Marginal Effects
(PME) (Herin et al., 2022). Shapley effects were first defined to allocate a share of the output vari-
ance of the model to each input parameter, in the context of dependent inputs. Then, PME have
been recently proposed to detect exogenous inputs. While Shapley allocation is egalitarian, the PME
allocation tends to favor each input proportionally to its marginal contribution.

The aim of our case study in radiation dosimetry was to rank by influence the input parameters
of the restricted NCICT model classically used to estimate the organ doses arising from CT scan
exposure. A GSA, based on the estimation of both Shapley effects and PME, allowed us to identify
the most influential input parameters implied in brain and RBM doses estimation. Analyses were
performed for four classes of examinations classified according to the scanned body region: head, chest,
abdopelvis and multiple areas examinations. Among the eight uncertain input parameters implied in
dose estimation, different influential parameters were highlighted depending on the studied scan type.
For head examinations, mAs, kVp and the end of the scanned body contributed to about 70% of the
variance of the brain dose estimate while RBM dose was influenced by mAs, kVp, start, end and age.
Brain and RBM doses delivered during chest examinations were mainly influenced by mAs, pitch and
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Figure 5: Estimated Shapley effects (top) and PME (bottom) for brain (left) and RBM (right) dose estimates associated
with head examinations.
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Figure 6: Estimated Shapley effects (top) and PME (bottom) for brain (left) and RBM (right) doses associated with
chest examinations.

kVp. kVp was granted more than 30% of the variance of the organ doses associated to abdopelvis
examinations. Finally, the start of the scanned body was the only influential input parameter of brain
and RBM doses related to multiple areas examinations. Thus, we identified two classes of influential
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Figure 7: Estimated Shapley effects (top) and PME (bottom) for brain (left) and RBM (right) doses associated with
abdopelvis examinations.
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Figure 8: Estimated Shapley effects (top) and PME (bottom) for brain (left) and RBM (right) doses associated with
multiple areas examinations.

parameters: (i) mAs, kVp and pitch, which represent the technical image acquisition parameters; (ii)
the bounds of the scanned body region (scan start and end).

Additionally to the case study in radiation dosimetry that motivated this work, Shapley effects and
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Influence rank Brain dose RBM dose
Shapley effects PME Shapley effects PME

Head examinations
1 mAs 27.6% mAs 27.0% mAs 18.7% mAs 17.8%
2 kVp 23.9% kVp 23.7% End 17.0% Start 16.8%
3 End 21.2% End 15.4% Start 16.6% End 16.3%
4 Age 10.1% Start 11.2% kVp 16.1% kVp 16.0%
5 Start 9.6% Pitch 7.2% Age 16.0% Age 14.1%
6 Pitch 7.5% Model 6.1% Model 7.5% Model 8.3%
7 Model 0.3% Age 5.8% Pitch 6.1% Pitch 6.6%
8 Gender -0.2% Gender 3.7% Gender 2.1% Gender 4.2%

Chest examinations
1 mAs 29.9% mAs 31,1% mAs 30.6% mAs 32.9%
2 kVp 18.9% Pitch 20,4% Pitch 18.1% Pitch 19.5%
3 Pitch 17.7% kVp 14,2% Model 12.8% kVp 11,0%
4 Model 12.2% Model 10,2% kVp 12.3% Model 10.6%
5 End 8.0% End 8.9% End 9.0% End 9.6%
6 Start 6.7% Start 6.1% Start 8.5% Start 6.8%
7 Age 4.6% Age 5.2% Age 5.2% Age 5.4%
8 Gender 2.0% Gender 3,9% Gender 3.4% Gender 4.2%

Abdopelvis examinations
1 kVp 29.4% kVp 27,8% kVp 41.0% kVp 53,9%
2 mAs 15.9% Model 12,1% Pitch 15.1% Pitch 13.7%
3 Pitch 11,6% Start 11.3% mAs 13.8% Gender 7,3%
4 Model 11.2% Pitch 11,2% Gender 10.3% Age 6.8%
5 Start 8.6% mAs 10,1% Age 9.7% End 6,1%
6 Gender 8.5% End 9,8% End 7,0% Start 6,0%
7 Age 7.5% Age 9,0% Start 5.5% Model 3.7%
8 End 7.3% Gender 8.8% Model -2.6% mAs 2.6%

Multiple areas examinations
1 Start 53,1% Start 59.6% Start 40.8% Start 40.8%
2 Pitch 14.3% Pitch 9.5% mAs 16.5% mAs 11.5%
3 End 10.4% Model 7.3% Pitch 12.8% Pitch 10.6%
4 mAs 9.4% kVp 7.3% kVp 11,9% kVp 10,6%
5 Model 6.8% End 4,9% End 8.9% End 8,3%
6 kVp 6.5% Age 4.1% Model 6.5% Model 7.6%
7 Age 4.4% mAs 3.8% Age 5.5% Age 6.1%
8 Gender -4.8% Gender 3.6% Gender -3.0% Gender 4.4%

Table 6: Influence hierarchies between the inputs of the restricted NCICT model according to Shapley effects and PME.

PME have been applied to a use-case example (a COVID-19 epidemic model) in this paper. The goal
was to better understand the behavior and usefulness of these two GSA indices. The conclusion is
that Shapley effects and PME are intrinsically different, but complementary. Shapley effects provide
a tool for model exploration to identify the inputs that might have an impact on the output variance,
even if it is due to correlation or interaction with other inputs. Initially, PME is rather focused on
screening and factor fixing. In our case study in radiation dosimetry, all uncertain input parameters
were endogenous and included in the NCICT equations. However, interestingly, we observed that the
proportional redistribution property of the PME allowed for a clearer importance hierarchy: the PME
are less sensitive to correlations and redistribute interaction effects proportionally to marginal effects.
Note also that this paper focused on the total contribution of each input but it does not provide

16



information on the marginal contribution and the interactions between inputs. In a future work,
the application of the Shapley-Owen indices (Rabitti and Borgonovo, 2019) may provide information
about the interaction effects between inputs. Moreover, the present work focused on GSA relative to
the variance of organ dose estimates. Inputs influence could also be studied from a different perspective
and with other quantities of interest, such another statistical dispersion metrics or reliability-related
quantities (e.g., a quantile), see Da Veiga et al. (2021) for an overview.

These two variance-based GSA indices, Shapley effects and PME, represent promising tools for
forthcoming applications in epidemiology and, more generally, in operation research studies based
on decision-support models. Indeed, mathematical models, which depend on many uncertain and
dependent input parameters, are omnipresent in health studies, as in engineering, finance, management
science, etc. (Borgonovo, 2017; Razavi et al., 2020). We have shown that, while Shapley effects allow
to identify the most influential parameters, PME allow for a more pronounced hierarchy. Thus, the
comparison of these two allocations offer the possibility to understand marginal and correlation effects
of the uncertain input parameters in a large variety of application domains of GSA. Beyond GSA, these
sensitivity indices are also promising in the context of interpretability of machine learning techniques
(Lepore et al., 2022), as recently shown in Iooss et al. (2022). The Shapley effects and PME are
fully complementary in this context, depending if the aim is to perform an efficient screening (with
PME) or to measure the effect of each considered potential input (of the machine learning model) fully
accounting for their correlation induced effects (with Shapley effects).

References

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm for
approximate nearest neighbor searching fixed dimensions. J. ACM, 45(6):891–923, nov 1998. ISSN
0004-5411. doi: 10.1145/293347.293348. URL https://doi.org/10.1145/293347.293348.

N. Benoumechiara and K. Elie-Dit-Cosaque. Shapley effects for sensitivity analysis with dependent
inputs: bootstrap and kriging-based algorithms. ESAIM: Proceedings and Surveys, 65:266–293,
2019.

W. E. Bolch, K. Eckerman, A. Endo, J.G.S. Hunt, D. W. Jokisch, C. H. Kim, K. P. Kim, C. Lee,
J. Li, N. Petoussi-Henss, T. Sato, , H. Schlattl, Y. S. Yeom, and M. Zankl. ICRP Publication 143:
paediatric reference computational phantoms. Annals of the ICRP, 49(1):5–297, 2020.

E. Borgonovo. Sensitivity Analysis - An Introduction for the Management Scientist. Springer, 2017.

E. Borgonovo and X. Lu. Is time to intervention in the covid-19 outbreak really important? a global
sensitivity analysis approach. Preprint, arXiv:2005.01833, 2020.

E. Borgonovo and E. Plischke. Sensitivity analysis: A review of recent advances. European Journal of
Operational Research, 248:869–887, 2016.

E. Borgonovo and G. Rabitti. Screening: From tornado diagrams to effective dimensions. European
Journal of Operational Research, 304(3):1200–1211, 2023.

B. Broto, F. Bachoc, and M. Depecker. Variance reduction for estimation of Shapley effects and
adaptation to unknown input distribution. SIAM/ASA Journal on Uncertainty Quantification,
8(2):693–716, 2020.

L. Clouvel, B. Iooss, V. Chabridon, M. Il Idrissi, and F. Robin. Variance-based importance
measures in the linear regression context: Review, new insights and applications. Preprint,
https://hal.science/hal-04102053v1, 2023. URL https://hal.science/hal-04102053v1.

S. Da Veiga, F. Gamboa, B. Iooss, and C. Prieur. Basics and trends in sensitivity analysis: Theory
and practice in R. SIAM, 2021.

17

https://doi.org/10.1145/293347.293348
https://hal.science/hal-04102053v1


L. T. Dauer. Uncertainties in the estimation of radiation risks and probability of disease causation,
ncrp report no. 171., 2014.
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