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VIBRATIONS OF FLUID-STRUCTURE COUPLED SYSTEMS

h ;,i-proposed t.o invest.igate alternati\"e symmet. ric formulat.ions valid for static and modal analysis based either on the representation oft-he liquid by a pressure field and a displacement potential field, either on the representation of the structure by a displacement field and a reaction .force (or acceleration) field.

INTRODUCTION

Transient and modal analysis of fluid-st.ructure problems have been the subject of many investigations [l). For such problems. the choice of field \1uiables for the \"8.riational statements is of prime importance. The description of the fluid, in the compressible case, by a stres-1!-(pressure) scalar \lUia.ble p, or by a displacement potential y> introducf'l! non symmetric mat.rices after a finite element discret.ization, we refer t.o t,he pioneering work of [32, 33, 34J followed then by [2, 7, 12, 22, 28, 29]. An attempt to symmetrize the non symmetric matrix syst.em by using matrix manipulation algebra, has been im,estigat. ed in [START_REF] Daniel | finite <• lr nu n.t ffu1d-str11dun rigu, l'a h, r prohl, m[END_REF][START_REF] Ller | Simpltfi td a1,Cal y . , rs of lrn f.ar ftu1d-. ,lr1,Dr/r!r; 111tr1•[END_REF]. In this respect, let, us also mention the BJ1a.lysis of [9, 10] based 011 matrix scaling concepts.

Another idea lies in the utilization of the velocity potential inst.ea.cl of the displacement pot,entia.l or instead of t.he pressure. The result.ing symmetric matrix system invokes a complex jw term, if.,; denotes the circular frequency [START_REF] Ever | � ymmctrzral 1w trntrnl . fonnulatrnn fo r . ff 1 1ul-. ,t!'lld11rc intaaclions[END_REF]. The corresponding formulation ha.� been improved in [27] in order to take into account the st.a.tic case. The analysis leads to a numerical procedure which involves a special purpose eigem-alue solver.

In reference [START_REF] Morand | fnt•tsftg1,@trn11 of l'a1'iatzonal[END_REF] and in the subsequent references [START_REF] Morand | 2bstr11 ct urt rarratio11al 1,Bnal y s1. , fo r thr n brations of cott.p le.d ff oid-. ,truct 11re .,y. 'lt,-m[END_REF]25], a three-field symmetric variat.ional formulation has been introduced using p and ;p a.s fluid unknowns, while t.he displacement field u is used to describe t.he stn1ct.11re. The formulat, ion involves coupling p -'f and u -,.p terms in the mass matrix. Its utilization in nuclear engineering problems is described in [3]. A complete re-investigation of this formulation in order to get rid of the "spurious zero-frequency fluid modes" generally encountered, is the subject of reference [START_REF] Morand | Fi 1,=itf. dt mriit mrthod applz i1,Ã to thr pnd1r tio1[END_REF]. Some at.tempt. in order to eliminat.e those spurious modes has also been analyzed in {11).

Let us also recall that a descript.ion of the fluid t.hrough a displll("ement \-ariable. introduces difficulties related to t . he appropriate discret.ization of the 1rrot1,4tionality ,•ottlfitton I. or t. hP fluid. A rlii;pl1,Ucement fonm1l1,Vtion hn" h1,Õen preseute1,Ø in an appendix uf [START_REF] Morand | fnt•tsftg1,@trn11 of l'a1'iatzonal[END_REF], the currespondin!!; finit"' 1,3le111i>11I a. na. lysii-j., prei:;ented in [13j. ln references (23, 26J, a three-field ( 11; p, 1,Ô) variational r;ymmetri<' for mulation haM been int. roduced. It involvl:'s ,�oupling terms in the stiffness ma trix. Applications. with . aıffe.reu.t. interpolation functions for p and ,;• <:an be found in reference [START_REF] Sandberg | A symm.drir finite dtme11l tlemrnt fo rm ula ti"n for acousti,: fs11id-str11clun interodio11 a)/(tl y sis[END_REF].

Two three-field ( "• R; p) aud ( u, R; ,-,) 8ymmPtric formulations, havf' been introduced in referen.-:es [24, 26). Bot. h inrnlve an additional unknown in the st. ructure, namely t. be d_vnamic react.ion force R or the aA,celera. t.ion •,. \.\'e t.hen obt.ain either a "mass-coupling" matrix Pigenv11 lue system, eithn a "stiffness-coupling" matrix s�•stO?m, Th• ose formulations have bet>n used through particular modal synthesis procedures in [6] and [START_REF] Fî | pnnc1plo a11 d modal methods in flit id-, qtru.ctm•e interaction problt: m. q[END_REF]. Finally, let. us ment. ion t.he introduct-ion of sloshing simple model in [25,[START_REF] Kehr-Candille | Elasto-aco1,1$f1c v1brat1on. � of' a strucf l trr contai1ii11g a ga. s[END_REF].

A complet. e modal interaction scheme talcing into a r c01mt. both comprer;s ibility and gravit.y effects is a.naJyzed in [17] . .'.\lodal synt. hesis procedurP. haw already been im,estigated for elai,toacoustic vibrations using strnd ural modes in [START_REF] Morand | fnt•tsftg1,@trn11 of l'a1'iatzonal[END_REF], and hydroelatltic incomprei.sible modes in [START_REF] Morand | 2bstr11 ct urt rarratio11al 1,Bnal y s1. , fo r thr n brations of cott.p le.d ff oid-. ,truct 11re .,y. 'lt,-m[END_REF], to g ethf'T with arous.tie modes as Rit. z vPct.ors, in order t.o study the vibrat.ions of a structure con taining a. ga.s [START_REF] Morand | fnt•tsftg1,@trn11 of l'a1'iatzonal[END_REF] or a. compressible liquiJ with a free surface while neglectiug g ravity effects [START_REF] Morand | 2bstr11 ct urt rarratio11al 1,Bnal y s1. , fo r thr n brations of cott.p le.d ff oid-. ,truct 11re .,y. 'lt,-m[END_REF]. Fluid-structure interface damping effects may be found iu

(1 5].
The subject of the ptesen1. paper is t. o reinvestigate somP of the pr,,.,•iou.i formulations in order t.o take into a<•count static cases. This meam; that the formulat.ions should not contain. in t,he modal situations. non ph _v -,ical zpro eigenvalues.

The variat. ional methodology is based on a direct ut.ili1,Äation oft. he lm�al equat. ions of the c�upled syst. em. Let. us mention a. n asrmptotit• mathema. ticaJ approach to coupled problems in [START_REF] Sanche | t 0[END_REF].

In a first. step, we shall recall the basic local equations of the coupled system [START_REF] Morand | Fi 1,=itf. dt mriit mrthod applz i1,Ã to thr pnd1r tio1[END_REF].

In a second step, we shall extend thP three-field ( 11; p, • ;) symmetric ,-ariat. iona. 1 formulat. ion. of lltiffness-coupling type, whid1 has hPen estahlisht>d for a compressible liquid with a 1,Å�ro pressure fsee smface condition [23,[START_REF] Nicolas-Vnllierme | Fl1,Gid-. �ir11 durr intcror/101,H fo r bo u nded and infinite medium vibratio11 proble m[END_REF], to the caQ of a structure completely filled with a compressible gas. We shall show t. ha. t the static case can he PaNily handled.

Finally. in a third step, we shall investiga. te. for a. partially damped struct. ure cont.aining either a compressible gas, either 1,5. com pr,.. ,ssi hie liqn id with a free-surface (neglecting gravity effects), a three-fidd symmetric variational formulation of "ma1,è'!-.-:ouplin g " type [24] extended in or1,×er lo take into a1,Ócouut static caOes. -�p + >.po �,:; = 0 tJp 8, p
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The system (�), ( 9) is equivale-nt t.o ( l). The ne-w loc:il hounrla. met.hfţ f5J as follows:

\Ve multiply ( 8) by a ( reg11lar) tPSt function hp E I : , and WP 11:-te I hP Green fomuila to take into account the boundary cond ition j 9).

We multiply equation (2) by a ( regul:u) test funrtion ,\ ; E 1• ., and WP use the Green fprmula to take into account ( : n.

At la8t, we multiply E>qHation (S) by a (r,.g11liu) tP.st fo rwtion , � 11 <:: l� and we use t.he Green fqrmula to t11.ke into an�ount the houudary ,•onditions (4) and (6).

14, ; V ., .afít t_;, arf'--admissihle-<'la�-of r�11 lnr function" \WN hen obtain the frllowing vatiational fsrmn lat ion.

The symmetric vaiiational ftrmulation

Find (Ii; JJ and :.;) E 1;, xi � �: i• ,, and .\ � 0 sudi that: After a finite element discretizat ion. and using u. p and :.; as the vector of nodal \'alues of the continuum fields. we oblu.in the followiufÄ mat rix eq uatiou: The �q,iat,ion ( 10) t.hen lwcomes: One ran e1L. c;il y see that . t. he on ly ZPro-fr eq nency movemPnt.s are t-h"' six physical rigid hod�• motions ztR : IL = UR [START_REF] Morand | Fi 1,=itf. dt mriit mrthod applz i1,à to thr pnd1r tio1[END_REF] for wich . WP have: [START_REF] Morand | fnt•tsftg1,@trn11 of l'a1'iatzonal[END_REF] TherPfore. frn thosf' movements, WP obt.ain as f'Xpect.ed: [START_REF] Morand | 2bstr11 ct urt rarratio11al 1,Bnal y s1. , fo r thr n brations of cott.p le.d ff oid-. ,truct 11re .,y. 'lt,-m[END_REF] This pr<wes t ha. t the static r11se ra. n be Pasily handled .

From a pract ical point of view. it is only necessary to use the stiifopss mat rix of ( 14 ,l and t.o impofŪe t.o all p-nodal values t.o be equal . This is a way t.o overcome the diftc11lt.y concerning the non standa.rcl finit.e element discret.izat.ion of t.he &econd bilinear form of ( 17 ) .

2.5 Tbe "con d ensed" ( u , ,? ) symmetric variatio11al formu l at i on p can be eliminated f r om equation [START_REF] Fî | pnnc1plo a11 d modal methods in flit id-, qtru.ctm•e interaction problt: m. q[END_REF] . leading to a two-field symmet.l;c sliffne,;s-cou pling formulation .

2.6 A fonr-field ( u, : p ., P, :; ) formulation • In orrler t.o exhibit t. he const ant. ( over the domain fl ) so-calle..-1 pneumatic pre,sirn re 1'• [START_REF] Morand | fnt•tsftg1,@trn11 of l'a1'iatzonal[END_REF] . it. l"o uld be eonveuient. t.o recasi. the formulation ( 10) -( 14) through the following change of repre�ntation: with: and fl = p, + p

Pu C 2 i P• = -\'olffZ ) � u . . n. 1 P=O ( 21 ) ( 22 ) ( 23 )
For sake of brevity , we do not enter int-0 the det.a. ils of such modified formulat.ion wich will be discuSSf!d elsewhere.

(C, ,; P ) SYMMETR1C FORMULATION ( MASS-COUPLING )

Tbe local boundary valne equations

Referring to reference [ 24, 26 ) , introduciug a new unknown variable for lht:> �tructure enables us t,o obtain t.wo t-hree-fi.eld symmetric formulations involving respect ively p or 'r-" for the fluid (resp. mass-or stiftitess-coupling). (25)

(26) (2i) ( 21<) (29) (30) 
( 3 1) [START_REF] Zienkiewicz | iewton R.E., Co upled vibratio11s of 11 struct 11. 1•t s• 11 b moyul in a. comp 1•e�. ,iblc fluid[END_REF] if W<" ignorP tht> f>fjllations {:!0)-( 32 24)-( 29), onf' mrn,t add [START_REF] Zieukiewicz | Co 11. pled prohle ms 1111.d th.fir numtriw. l . w lu ti011[END_REF] in order to eliminate the constant zero-frequency mode (p = con6tant) . \Vith this respect, it is conwuient to reea�t the syst<'lll (24)-( 29) by introducing t. wo new \•a riables p_ , and I' instead p, namely tho1:-e defined by ( 21), ( 22 The lol--al equation (3r(,l fŨ <i then re<"asted as follows:

(44)

The lornl equations which lead to a rnriational formulati,m implying th., unknowns (u. •; ; P., . P) are then [START_REF] Zienkiewicz | The Finite Element ::\fothod[END_REF], (:13), 1:Hi ). (3,J. (31JJ, (-W) , (4:l) and ( 4-t) .

The variable P ( and the corr,•,-,pondin g test fn 1w t io11 /, P) must -;ati,;fr tfūe constramt: Rema. rk 3

For sake of bre\•ity, we do not enl er l11�re into the detailed analysis of (45 ) . In ( 46), for damped struct ure . . 011t nm dt m inot. ,, anrl it c::in he shown that the rf'Sult.ing three-fidd formulation ( �: p, , P) 1. , symmrtr1c and is valid for t. he static ca.se .

Remark -!

�n the case of a free surface r. one must Sf't. t. lw followin� P<JUation (rc•f erenc� [START_REF] Morand | Fi 1,=itf. dt mriit mrthod applz i1,Ã to thr pnd1r tio1[END_REF] ). p = O Ir (47 ) It ita P.tt!"Y •to•l'lee that this case does not require the ,:onst,rnint [START_REF] Zieukiewicz | Co 11. pled prohle ms 1111.d th.fir numtriw. l . w lu ti011[END_REF]. Conse qu""ntly, I he rn. riable p, doPs not. appear.

CONCLUSIO N

\Ve have int rod11ced iwo alternative formulations va. lid for the :otatic ca .. e, which mean dutl, the only zero-freqtiency modei; are the physical six ri�id Lody strnct.urnl mot ions.

The numPri,•al 11. pplic-11 tions of s1wh fo rmu lations depends on the gPomet, ry of the fluid-stru l't ure syMem. For instaJ1,•e. for a. partiall)' damped structure of shell t�• pe which contains a hugt' amount of compr�sible fluid , the formulation whirh introduces an addit ional vari11.hle for the st.rnctnre is of interest .

  1. LOCAL EQUATIO NS OF THE BOUNDARY VA LUE PROBLEM 1.1 Notation s n, I resp. n) r " "• � structure { resp. fluid ) domain at equilibrium (bo rizout.ali eq uilibrium free surfac.e unit normal (external to the fluid boundary) unit 11 om1al (extE":-nal to the structure boundary ) fluid/st.rncture contact surface maS8 densit.y of t,he st ructure (resp. of t. he fluid ) µ, I reSJJ. /10) Ujj ("I strei;s tenwr considered M a function of the displacement u according to the following definition: u;j = Oij 1o1�1t1( u) :;1 = ½ (u 1,,1 + 11 1.k ) strain t.ensor "ii 1-1 elastic coefficients ,\ = :... ,� square of t. he circular frequency c VPlnc:ity nf sound in t. he comprPssible fluid TbP E"< fllll t iono, of tl1E" bmmdary eigE"nvaluE" problem are [18]: Remark l -\'i.1 + .\ po v;,; = 0 p + Po c 2 �:;. � = 0 iJ . .; 1/n. = u.n U;j ( u I n/ = p ll; u,;,;(u) +. \p, fl; = 0 U,j(U)flj ° = 0 /( ;,;) = 0, lnt.erpr.,tat.ion of t. hP above equations In Euler t><IUation of the inviscid compressible irrotat ionnal fluid . (2) "con8tiluti\•e law" of the linear fluid. (3) (kinE"mat kal) ,�ontact rondition. 1_4) force equilibrium condition at fluid-structure interface. (f >) (linear) dynamic equat.ion for a.n elast.ic st.ructme. ( 6) free boun<la.ry t�ondit-ion on the struct.ure. (,) uniqueness condit. ion for .p (defiued through an additi\"e constant). 2. (F; P, .,;) SYMMETRIC FO RM ULATION (STIFFNESS-COUPLING) 2.1 The local boundary value equations Let uis recast. the equat.ion (1) as follows:

  Let us set ,\= 0 in the furmulation (10)-(13). Tht> equat.ion j 12'! show, that p i� constant over the domain fl:p = p.

( 15 )

 15 Therefvre, the equation (II_ ) giv"" thP va!11P. of thfÅ con,;;taut pr,.,;;,;;11rP tif'ld ].' . • as a fwnction of the normal displacenwnt 11.ri of �: Pu <' 2 j p, = --\, 1 " 11 .fĬ '0 (H) �

  \ pl)U.TI n,, !T;j\U) 11; ' = p11; t'.Ti j , J (") +>.p, u; = 0 t'.Tj j (II) 11 j • = fJ I. I = fJ

  ), onP. must, 11.cid thP following eon straiut eqnation in order t.o obtain p = 0 in the A= 0 case: i� ohtain1cd by integrating PO) o,n S) and by taking int.o account (:lll. lf WP. consiciPr only the sy,-tem dPfined by (

  ) and (23). The local Pq11 a1 ions thPn arP as follows: . \ ,\ �P +--:-P+--:;-p, = O c 2 1'.• DP -::;--= ,\ pr,u.n (111 /Jo C � 1 1 v, +\ . l•r.• u.n=O, P=O o l i:_I i::; n lT; j ( tt ) 11 ; • = P n i + p • n, lT; j , 5 ( 11 ) + >..p, u; order to obt ain n symmPtri,• variational formulat ion, we shall use as prt>viously [24. 26] , a new stru ctural variable, namely t.he dynamic react.ion force: 141) or the w;celerahon: "; = ,\ II

3. 2

 2 The ''condensed'' symmetric variational formulation ( •: p ., P) The variational formulation corresponding to ( 11 . •1 : p., P) can be est ab lished by using st andard test function procedure. One obtains:-[ '\ P. VI! P + ,\ ;• po u . n t, P ln �. \ 1 f' /' .\ 1 p