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ELASTO-ACOUSTIC DAMPED VIBRATIONS
FINITE ELEMENT AND MODAL REDUCTION METHODS

V. KEHR-CANDILLE and R. OHAYON
ONERA, 92320 Chétillon(France)

1-INTRODUCTION

Within the framework of vibroacoustic studies of aeronautical structures,we present
various aspects of the mechanical and numerical modelling of internal “low frequency” -
elasto-acoustic responses taking into account a linear damping model on the fluid-:
structure interface . We suppose that the ezternal environment is known (prescribed.
forces or displacement).

We consider the linear oscillations of an elastic structure containing an inviscid
fluid,submitted to a prescribed harmonic excitation.

The structure is described by a displacement field.

Concerning the fluid,various symmetric variational formulations have been anilybed "
for conservative systems of mass-coupling and stiffness-coupling types.The fluid is
described by scalar unknown fields,namely the pressure and the displacement potential
fields,followed by a rigourous condensation of one of those variables,depending on the
considered variational formulation.

The purpose of this paper is to introduce into the preceding formulations,a frequency-
dependent damping on the fluid-structure interface. The originality of the paper lies in
the substructuring method used for forced responses of dissipative systems.

We compare a direct finite element approach with a modal reduction approach
using appropriate generalized coordinates for the fluid through a Ritz projection
procedure.Due to the frequency-dependent impedance model,the choice of the basic
conservative system delivering the Ritz vectors is carefully analysed (truncation
effects). Numerical results are presented .



2-ELASTO-ACOUSTIC FORMULATION
2.1-Notations

g domain occupied by the structure

Op domain occupied by the gas

P gas-structure interface

Yeat external surface of the structure

PF density of the gas

Ps density of the pressure

P pressure field

© potential displacement of the gas

uS structural displacement field

uf gas displacement field

Ois structural stress tensor

n(s ) external normal unit vector,relative to Q1s
n external normal unit vector,relative to Qp
w circular frequency

Vr volume of Qp

S area of T

c celerity of sound in the gas

F; external prescribed force

Z(w) - acoustical impedance

2.2-Formulation without wall damping [1,2,3 references included|
o Structyre :

The variational formulation of a structure submitted to :
- an external prescribed force F' on Z..;
- the action of an internal gas pressure p on T , writes :

/ ag,-(us)eq(éus)—wzf psu’.6u’ -—[ puSn= Fi.6u’ (1)
{is Qs b Dest

e Gas :
The gas is inviscid,compressible.
We have two equations :
. p = —prwidiv(uF) (2a)

Vp = prwup (2b)
(The first equation is the constitutive law for a barotropic fluid.)
* We decompose p as : p= P + ps

-P is a dynamic pressure and satisfies the equation : P=0

ar
-ps is a static pressure , constant over Qg



On one side we have :[ p=[ P+[ ps = VFrps
Qp Op Qp

and on the other side ,we have : p= —prc? div(ur) = —ppczf uFn
Qp Qp ]
So we have :

2
FC
o=t [ e e
VF b3}

* We introduce the potential displacement field ¢ : ur = V¢ with the uniqueness
condition : [, o =10

* We use for the gas the variables P, p, ps which are related through :

P +ps=—ppctAp (4)
P = prup (5)
2
pFC dp
= _Pr¢ [ 9p 6
ps 7l W (6)

P and ¢ verify : fn’P=0a.nd fn,tp=0
Remark : For aztsymmetric structures , for all the circular wave numbers n > 1,
ps =0 and therefore does not appear in the equations.

* At the interface I :
We have the fluid-structure interaction relations :

0.';'735-5} =png (7)
wWn=un (8)
These relations write :
0&:‘“}3} = Pni + ps.ng = prw’p.n; + ps-n; (9)
us.n= a—(p= 1 22 (10)
on  prw?dn

e Variational formulation :
From these equations , we obtain two symmetrical variational formulations :

V (6u,6P,6p,6ps) with 6¢ € {#/ [g, v =0}, and 6P € {P/ [, P =0},
o Stiffness coupling

*/ o;,'(ug)f;,-(ﬁus)—f P5us.n—p3f 6uS.n —w? [ psu’.6us = [ F.6u’
ns 3 b - b Jﬁa nctﬁ

* —[ 6Pus.n—f —1-§P.§P+/ Vo V6P =0
b iy PFC Or



| Vép.VP—u? [ prVp.Vép =0
Qry Qp

V
* — 6ps] - -'-szs.&ps =0
T PFC

e Mass coupling
*f o.-,-(us)5¢_,-(6us)—psf sun—w?{| psuS.6u’ +[ prpbu’.n} = F.6u’
s E b ]

Qs Dent

1
*/ 1,6P.P—w’j 08P =0
Qp PFC Qp €

* — wﬂ{f prslpus'n + f -E,—P.Jp - / pFV(p,VStp} =0
b3 Qp ¢ Qr

V
x - Epsf uon— —%ps.é‘ps =0
£ pFe

2.3-Formulation with wall damping

The originality of the paper lies in the analysis of fluid-structure systems , using a
wall-damping model , through direct finite element methods or through substructuring
analyzis (as done for conservative systems in [1,3]).

oWall damping
The following fluid-structure interface modelling is introduced : between the fluid and

the structure,we consider a third medium,without thickness. We relax the continuity
constraint at the interface ug.n = up.n through a regularization/penalization proce-

dure.
The equation (8) is replaced by the equation (11) :
P = jwZ(w)(uS.n — uF ) (11)

(the pressure is proportionnal to the jump of normal velocity at the interface)
The equation (10) is replaced by the equation (12) :

dp g J JPFw
s T2R n — = 12
an =t T Gz T Zw) ¥ (12)
oP 20p 2.8 Jprw Jprw
=l = e PEEE = JEEX 13
=2 on TV Bp TPV T Gy PS Z(w)P (13)

The two variational formulations are modified by the introduction :
-of the wall damping

-of Rayleigh damping for the structure at the discretized level



Y (6uS,6P,6p,6ps) with 6p € {p/ fn' @ =0}, and 6P € {P/ fn, P =0},
o Stiffness coupling

*[ 0:5(u’)€;;(6u%) —f P6us.n—ps/ 6us.n-w2f psu’ b6u’ = F.6u®
Qs ] Qs

Dest

#-—/ 6Pus.n—/ 12P.6P+ Vo.V6P+—— /P P+ Ps/5p 0
b2} Qp PFC Qp Z( )

* Vép VP — wg‘/- prVe Nép =0
Qp QO

Vr ) S
= Sp— DEE =
* 6psLu .n - 2ps bps + oZ@ )5ps/ P+UZ(U)6ps.ps 0

o Mass coupling

*/ 0i5(uS)esi(6u )—psf 6u’ n—w?{ sus.6us+[ prpbu’.n} = F.bu’
Qs 03 T

Ealf-
1
*/ ——6PP w/ —p.6P =0
inFC Qp C

- a .
Jprw
*lﬁﬁ- o JEEN
- fz*p sa+z(w]ps[n6«p

1
—w?{pp f bpu’im+ < f Pép — pF f V.Vép} =0
B ¢ Jap Qr

Vr JSs
*—6p j uS.n— By R j + =0
S 5 chgps Ps Z( ) Ps 1~ Z( ] Ps.Pps =

2.4-Matrix system

The discretization of the preceeding formulations lead to the following matrices which
are used in the matrix equation : (with a damping matrix D,where Dg denotes the
usual Rayleigh structural damping )

(K+jD(w) —w?M)X =F

X=@w | P ops)y F=(F |0 o0



o Stiffness coupling

Ks —C’ 0 —C1 MS 0 0 0
t =Mpg
-C,3 PF Krpo 0 3 0 o o 8
0 Kro! O 0 0 prKp 0
) Pyr 0 0o 0 0
wDs (] 0 0
_Dp D
+] 0 wprZ(w 0 wZlw
0 0 0 0
Dt S,
g wZiwi 0 m
o Mass coupling
My )
0 PF 0 0 —w? 0 0 Mro 0
¢ o 9 9 prCs’* Mpo' —prKrp 0
-C; o o -Yr . 0 o« @
PFC
wDs | 0 0 0
0 0 0 0
+i WD wD
a a Z(w) Z(w)
wDeat S
g 0 Ziwi wZiwi
with : L. L
Kr — Jo, Ve.V(6p) Kro— [y, Vo.V(5P)
MF - ;lffn’ P.ap MFO — -Eli'fn’ <p.6P
DF_’przﬁa'&P Dc—ffzga
Ci—ps /s 6u.n Cs — fp PéuS:
Ks — fn, 0i5(u5) €5 (5u) Mg — fﬂs pstuS.6u’

Dg = aKg+ fMg

Remark : Concerning the conservative system,we can proceed to a rigourous conden-
sation of one of the two scalar fiels (the pressure P or the displacement potential ).
This condensation is not possible for the dissipative system .
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2.5-Modal projection (Ritz-Galerkin method)

The gas variables P and ¢ are expressed in term of a linear combination of the
eingenmodes p, , (acoustic modes in a rigid enclosure).

P =% papa © =1L ¢aPa

©Pa Vverifies the identity :

wﬂ
VoV — '_g"/ Pa-Pa =0
{p c Qp

(o satisfies the condition f 0a=0)
Qr

Mo i8 the generalized mass : po = %‘ <pf,

o]
®,, is the matrix of the n first eigenmod’es {pa}
Matrices K¢ and Ko are replaced by the diagonal matrix [w2u,] il
Matrices My and Mpo are replaced by the diagonal matrix [#q)4=1n
Matrix C, (resp. D¢, Dy) is replaced by the matrix C3 = C3®,
(resp. D% = ®:Dp®,,D% = D)
So ,the “stiffness” matrix,the “mass” matrix,and the “damping” matrix for the matrix
equation become , in the (u¥ ; pg,©a, ps) coordinates :
o Stiffness coupling

Ks -C3 0 —Cy Mg | O 0 0

—cyt :‘%ﬁi [aw 0 i 0 0 0

0 [Bawl] O 0 0 prlpaw?] O

-C,t 0 0 —;Ef, o |o o o
wDg 0 0

i

o
£

3y
:l“ N
£

o o o |lo

£ £

chmq
€ G




e Mass coupling

Ks 0 0 -C, Mg 0 prCh O
[i]
0 22l 0 2 0 0 [ba] 0O
0 0 o ?, prCst | [Hal —pr[Bawd] 0O
-C,¢ o 0 -
; o °c 19 0 0
wDs 0 0
0 0 0 0
+3 >

w'Dy  prwDE
9 0 Ziwi c Ziwi
wD% S
0 Q %iwi wd(w

3-CONSERVATIVE SYSTEM

System (8) : (K + jD(w) -w?M)X = F

Conservative system : (K —w?M)X =0

‘We compare eigenvalues and eigenmodes obtained by :

- structure and gas are described by finite elements (cf 92.2)

- the structure is described by finite elements and gas by generalized
coordinates (cf 92.5)

We present the frequencies of the coupled fluid-structure system for a cylinder :




Structure : finite elements Structure : finite elements
Fluid : finite elements Fluid : generalized coord.
f 113.05 113.35
fa 177.01 177.09
fs 342.70 342.73
fa 445.28 446.53
fs 451.12 452.27
fe 517.93 517.99
fr 692.61 692.63
n=1
Structure : finite elements Structure : finite elements
Fluid : finite elements Fluid : generalized coord.
f 239.52 240.33
Sfa 275.45 275.81
fs 500.69 501.06
fa 528.02 528.40
fs 603.83 604.27
fe 694.17 695.59
fr 723.56 724.36
fa 855.63 856.24
fo 1008.13 1008.84
fio 1072.96 1075.17
fu 1176.60 1174.43

In this conservative system , we can note that the effects of modal troncature are
negligible. (we gave the results with two digits after the decimal for pure numerical
comparison purposes)



4-DISSIPATIVE SYSTEM
4.1- Gas in a rigid structure
4.1.a- Description

In order to study the effect of the wall damping under forced responses, we study the
case of a rigid structure filled with a gas, submitted to a prescribed displacement.

The variational formulation writes :

2
Vo.Vée +J'prLf p.bp — w—2f ©.5p :[ u®.nbp
Z(w) Jp ¢* Jay £

Its discretized form is : (Kg + jzift)-Dp —wMp)p =U

4.1.b- Forced response

4.1.b.a- PROJECTION BASES (Ritz-Galerkin method)

*We can solve the finite element system directly,which is expensive

*We can project the system on the modal truncated base &,, (eigenvectors of
Kr — w3Mp)

Qp

Z(w) is complex; we note ?f;)- = R(w) — I(w) where R(w)and I(w) are real (and
positive in our case). We give values of the acoustic impedance Z(w) figure 1.
So,we can write this system : (Ky + wI(w)Dy + jwR(w)Dyp — w?Mg)p =U

We can note : K§ = K§ + wI(w)Dy with wl(w) = constant for a range of w
The wall damping has two effects :

-equivalent damping due to the real part of Z(w)
-added stiffness due to the imaginary part of Z(w)
We note @, = {p/,}a=1,» With !, eigenvector of (K} — w?Mpg)p' =0
We project the system on the truncated base ®J,.
4.1.b.0- RESULTS
We present numerical results figure 2.
* We can observe a gap (around 10%) between resonant frequencies and eigenfrequen-
cies of ®,. These resonant frequencies are closed to eigenfrequencies of &’ .This means
that the effect of added stiffness,due to the imaginary part of 7(1;)-, is not negligible.

*We obtain satisfactory results with the projection on ®, if we take enough eigen-
vectors. The effect of modal projection is not negligible in this case. We obtain better

results with the projection on @/, ,but this base is less convenient from computational
point of view .

4.2- Gas in an elastic structure

The system can be solved in two different ways :
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-the system is projected on a truncated base of elasto-acoustic modes.

-the gas variables P and ¢ are projected on the acoustic eigenmodes , like in
92.5 . The structural displacement field us is projected on structural eigenmodes (this
point will not be discussed here ). These projections lead to a smaller system which
can be solved directely .

We use this second method (numerical results are presented figure 3) :

The same gap between resonant frequencies and eigenfrequencies can be observed
(effect of added stiffness of wall damping).

The number of acoustic eigenmodes should be carefully examined .

5-CONCLUSION

We have presented numerical experiments of modal truncation, which prove the
efficiency and the precision of the methodoly used.

For elasto-acoustic modes,modal projection for the fluid leads to a smaller system ,
easier to compute , and does not modify the results.

Concerning forced responses,because of the effect of added stiffness of the wall dam-
ping,the modal projection base must be carefully chosen. The effects of modal trunca-
tion are not negligible. In spite of this, this method gives good results.

Mathematical analysis in order to evaluate the error could be interesting.

Among the open problems,let us mention the proof of the convergence of modal
reduction and also adaptative mesh refinement for such problems.
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FORCED RESPONSE -

GAS IN A RIGID STRUCTURE
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Fig. 2 - FORCED RESPONSE - GAS IN A RIGID STRUCTURE
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FORCED RESPONSE - 6AS IN ELASTIC STRUCTURE
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Fig. 3 - FORCED RESPONSE - GAS IN AN ELASTIC STRUCTURE
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