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ELASTO-ACOUSTIC DAMPED VIBRATIONS FINITE ELEMENT AND MODAL REDUCTION METHODS

Within the framework of vibroacoustic studies of aeronautical structtepes,we present various aspects of the mechanical and numerical modelling of internal "low frequency• • elasto-acoustic responses taking into account a linear damping model on the fluid-•\ structure interface . We suppose that the external environment is known (prescribed. forces or displacement).

We consider the linear oscillations of an elastic structure containing an inviscid fl uid,submitted to a prescribed harmonic excitation.

The structure is described by a displacement field.

Concerning the fluid,various symmetric variational formulations have been analJlled' for conservative systems of mass -coupling and stiffness-coupling types.The fluid is described by scalar unknown fields,namely the pressure and the displacement potential fields,followed by a rigourous condensation of one of those teqables,depending on the

considered variational formulation.

The purpose of this paper is to introduce into the preceding formulations,a /requencv dependent damping on the fluid-structure interface. The originality of the paper lies in the substructuring method used for forced responses of dissipative systems.

We compare a direct finite element approach with a modal reduction approach using appropriate generalized coordinates for the fluid through a Ritz •projection procedure.Due to the frequency-dependent impedance model,the choice of the basic conservative system delivering the Ritz vectors is carefully analysed (truncation effects).Numerical results are presented . Tbe �ia.tional .formulation of a structure submitted to :

2-ELASTO-ACOUSTIC FORMULATION

, ,, .

-•&ll external prescribed force F on E.,zt -th4' aciion of an internal gas pressure p on E , writes :

•�:

The gas• is inviscid,compress ible.

We have two equations : p = -pF w:;idiv(u F )

Vp= P FW2UF

(The first equation is the constitutive law for a barotropic fluid.)

* We decompose p as : p = P + Ps -P is a dynamic pressure and satisfies the equation :

f P = 0 lo,
-ps is a static pressure , constant over OF

(2a) (2b)

On one side we have: { p = { P + { Ps = VFPS lo, Jn, lo,

and on the other side ,we have: r p = -pFc2 1 div(u F } = -pFc2 r U F .n

Jo,

Or 1:1:

So we have:

PFC2

h F Ps = --u .n (3} VF E * We introduce the potential displacement field cp : UF = Vcp with the uniqueness cond ition: J0 , cp = 0 * We use for the gas the variables P, cp , Ps which are related through :

P + Ps = -p F c2 t::.cp (4}

P="�cp 00

PS = _ PFC2 { acp (6)
VF Ji: an P and cp verify : J o, P = 0 and f 0, rp = 0 Remark : For axisymmetric structures , /or all the circular wave number• n ;:::: 1 , Ps = 0 and therefore does not appear in the equations.

* At the interface E :

We have the fluid-structure interaction relations : These relations write :

• Variational formulation :

s arp i aP u .n=-=--- on PFW2 on
From these equations , we obtain two symmetrical variational formulations :

V { c5u s ,c5P,c5rp,c5ps) with 6<p E {cp/ fo, 'P = O}, and c5P E {P/ f o, P = O},

• Stiffness coupling

(7) ( 8 ) (9) 
(10)

• 1 u1;(u8)E1;(c5u5} -f P6u5.n -Ps f c5u.9.n -w2 f p s u s . c5u8 = f F.6us

Os . Ji: Ji: las Jr; ... 

f PFW f PFW On = P F W iJn = PFW u . n -Z (w) PS -Z (w) p
• tertes formulations The ten variational formulations a.re modified by the introduction :

-of the wall damping -of Rayleigh damping for the structure at the discretized level

(11) {12) (13) • f a0;(u8) E0;(6u8) -f P6u8.n-ps f 6u8.n -w2 f psu8.6u8 = f F.6u8 las J.E J'E los J'E.at /, s 1 1 1 i /, j 1 •- 6Pu .n- -- 2 P.6P+ Vi.p.VoP+-z ( ) P.6P+ - Z( ) PS 6P = 0 'E Or PFC Or W W I: W W 'E 1 s VF j /, jS'E •-6ps u .n ---2 ps.6ps+ - Z( ) 6ps P+ -z ( )6Ps•Ps = O I: PFC W W I: W W • M488 coupling • 1 0'1;(u 8 }E1;(6u 8)-p s f 6u8.n-w2{ f psu8.6u9+ f p,.i.p6u8.n} = f F. 6u8
Os J.n 108 }.,; Ji: ...

• { �6P.P-w2 { 1 2 i.p.6P = 0 Jo, PFC lo, c 2 

.4-Matrix system

The discretization of the preceeding formulations lead to the following matrices which are used in the matrix equation : (with a damping matrix D,where Ds denotes the usual Rayleigh structural damping )

(K + jD(w) -w2M) X = F
.xt = (u 8 I P i.p Ps) F = (F I 0 0 0)

• Stiffness coupling K s -C 2 -C 2 t _llAF PF 0 K ro t -C it 0 • Mass coupling Ks 0 0 0 1 1..4 • F 0 PF 0 0 0 -Cit 0 0 with: K p -+ f a, Vip.V(c5ip)
Mr -+ -! f 0 rp.oip This condensation is not possible for the dissipative system .

2.5-Modal projection (Ritz-Galerkin method)

The gas variables P and rp are expressed in term of a linear combination of the eingenmodes 'Pa , (acoustic modes in a rigid enclosure). In this conservative system , we can note that the effects of modal troncature are negligible. (we gave the results with two digits after the• decimal for pure numerical comparison purposes)

4-DISSIPATIVE SYSTEM

4.1-Gas in a rigid structure

4.1.a-Description

In order to study the effect of the wall damping under forced responses, we study the case of a rigid structure filled with a gas, submitted to a prescribed displacement. The variational formulation writes :

Its discretized form is: (KF + j z f w) D" -w2Mr)'P = U -add ed stiffness due to the imaginary part of Z(w) We note •� = {ip�}a=l,• with ip� eigenvector of (K� -w2MI' ) ip ' = 0 We project the system on the truncated base •�.

4.1.b.,8-RESULTS

We present numerical results figure 2. * We can observe a gap (around 10%) between resonant frequencies and eigenfrequen cies of •n• These resonant frequencies are closed to eigenfrequencies of •�.This means that the effect of added stiffness,due to the imaginary part of z t w) , is not negligible.

*We obtain satisfactory results with the projection on •n if we take enough eigen vectors. The effect of modal projection is not negligible in this case.We obtain better results with the projection on •�,but this base is less convenient from computational point of view .

4.2-Gas in an elastic structure

The system can be solved in two different ways :

-the system is projected on a. truncated base of elasto-acoustic modes.

-the gas va.ria.bles P a.nd tp a.re projected on the acoustic eigenmodes , like in ,2.5 . The structural displacement field us is projected on structural eigenmodes (this point will not be discussed here ) . These projections lead to a smaller system which can be solved directely .

We use this second method {numerical results a.re presented figure 3) :

The same gap between resonant frequencies and eigenfrequencies can be observed (effect of added stiffness of wa.ll damping) .

The number of acoustic eigenmodes should be carefully examined .

0-CONCLUSION

We have presented numerical experiments of modal truncation, which prove the efficiency and the precision of the methodoly used.

For elasto-acoustic modes,modal projection for the fluid leads to a smaller system , easier to compute , and does not mo dify the results.

•

Concerning forced responses,because of the effect of adtkd Btiffnua of the wall dam ping,the modal projection base must be carefully chosen. The effects of modal trunca tion a.re not negligible. In spite of this, this method gives good results. Mathematical analysis in order to evaluate the error could be interesting.

Among the open problems,let us mention the proof of the convergence of modal reduction and also adaptative mesh refinement for such problems. 
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 22 external normal unit vector,relative to Os external normal unit vector,relative to OF circular frequency c Fi Z(w) volume of OF area of E celerity of sound in the gas external prescribed force acoustical impedance Forrnulation without wall damping •&ructure: [1,2,3 references included]
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 3 Maas coupling • f u,;(u8}Ei;(6u8)-p s f 6u5.n -w 2 { f psu5.6u5+ f PF'P6 u 5 .n} = f F.Formulatlon with wall damping The originality of the paper lies in the analysis of fluid-structure systems , using a wall-damping model , through direct finite element methods or through substructuring analysis (as done for conservative systems in [1,3]}. e;)Vall d amp ing Tbe following fluid-structure interface modelling is introduced : between the fluid and the atructure,we consider a third medium, without thickness. We relax the continuity constraint at the interface us.n = UF.n through a regularization/penalization procedure. The equation (8) is replaced by the equation (11) : p = j wZ (w)(u5.n -u F .n) (the press ure is proportionnal to the jump of normal velocity at the interface) The equation (10) is replaced by the equation (12) :

Remark:

  C r n .. -+PF f E ip.oip C1-+ Pf/ fE Ou�.n + f0, Vrp.V(c5 P ) Mpo -+ :\ fio rp.oP c r D e-+ fEIP K s -+ f 0, u,; (u 8)E•; ( c5u8) Ds = aK.s + fJMs C 2 -+ JE Pou8 .n Ms -+ f 08 Psu8 .ou8 Concerning the conservative system,we can proceed to a rigourous conden• sation of one of the two scalar fiels (the pressure P or the displacement potential rp ) .

P-

  = E Pa'Pa 'Pa. verifies the identity : ('Pa. satisfies the condition r 'Pa = 0 ) lo, P.a is the generalized mass : µa = -\. r <t>! c lo, • n is the matrix of the n first eigenmodes {'Pa} Matrices Kp and Kp o are replaced by the diagonal matrix r w!µ.aJ.,.= 1,,. Matrices Mp and Mp o are replaced by the diagonal matrix r µ..,. J.,.=1,,. Matrix C 2 (resp. D0,Dp) is replaced by the matrix c; = C 2 • n (resp. Dj. = •!DFen,Dc =Deen)So ,the "stiffness" matrix,the "mass"matrix,and the "damping" matrix for the matrix equation become, in the (u8 ; p.,., rp.,.,p 8) coordinates: ) : (K + jD(w) -w2M)X = F '? � rvative system : (K -w2M)X = 0 structure and gas are described by finite elements (cf ,2.2)PF C i rµaJ -PFrJ.'a w !J 0 -tM •structure is described by finite elements and gas by generalized coordinates (d ,2.5)We present the frequencies of the coupled fluid-structure system for a cylinder :

4. 1

 1 .b-Forced response 4.1.b.a-PROJECTION BASES (Ritz-Galerkin method) *We can solve the finite element system directly,which is expensive *We can project the system on the modal truncated base •n (eigenvectors of Kr -w2Mr) Z(w) is complex; we note z [ w) = R(w) -I(w) where R(w)and I(w) are real (and positive in our case). We give values of the acoustic impedance Z(w) figure 1. So,we can write this system: (Kr+ wJ(w)DF + jwR(w)DI' -w2MF)'P = U We can note: K. = Kp + wl(w)DI' with wl{w) �constant for a range of w The tevl damping has two effects :-equivalent damping due to the real part of Z(w)

�Fig. l -Fis• 2 •Fig. 3 -

 l23 Fig. l -WALL DAMPING : ACOUSTIC IMPEDANCE