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The coupling constant between two nearby waveguides is usually predicted using formulas derived
from the perturbative theory applied to the electromagnetic Maxwell’s equations. These formulas
however fail to provide any reliable estimate when the index contrast between the core of the
waveguide and its cladding becomes large. We demonstrate in this paper that a good accuracy
can be retrieved if the Local Field Effect is taken into account. Moreover, we show that in case of
structured and inhomogeneous cladding, an Effective Background Index must be taken into account
so that the Local Field Effect correction remains accurate. This theoretical study is the occasion for
physics oriented discussions regarding the impact of the substrate on the inter-waveguides coupling
constant.
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I. INTRODUCTION

The fine control of the coupling strength between two
nearby optical waveguides is a critical feature in pho-
tonics. Regarding applications, optical couplers are, for
instance, an essential building block for photonic inte-
grated chips [1–3]. If they can be considered as the sim-
plest system of coupled waveguides, yet their thorough
comprehension is a first essential step toward the control
of much complex systems like nonlinear waveguide arrays
[4–7], the realization of optical analogue to quantum ef-
fects [8–11], and topological systems [12–14]. Moreover
mode coupling can also be invoked in order to explain
mode dispersion [15] and can serve as a strategy for dis-
persion engineering [16, 17]. Consequently, this topic has
been at the center of numerous theoretical and experi-
mental investigations. These studies focused either on
the effective parameters equations that can be used to
describe coupled waveguides [18, 19], or on the link be-
tween the effective parameters and the waveguides geo-
metry [20, 21].
A modern approach consists in describing the dynamics
of waveguides arrays in terms of optical supermodes
rather than individual waveguides. Because the super-
modes are shaped by the inter-modes coupling constants,
their chromatic dispersion will also be related to the lat-
ter. In particular, dispersion engineering through mode
coupling has already been proved a successful strategy
for double-ring resonators [22]. More recently, theoreti-
cal works proposed to combine this type of dispersion-
engineering with the multimodal nature of waveguides
arrays in order to facilitate the phase-matching during
parametric processes [16, 17].These new applications re-
quire an acute knowledge of coupled waveguides systems,
in particular regarding the chromatic dispersion of the
coupling constants, and how the latter could be tuned.
Moreover, technology has greatly evolved since the first
theory about waveguides arrays: slab waveguides have

been replaced gradually by more compact ridge wave-
guides which exhibit much higher optical confinement.
As a result, current formulas developed according to per-
turbative models now fail when they are applied to these
new nanophotonics systems. We will detail throughout
this paper how these formulas fail; and how some simple
modifications allow retrieving an acceptable accuracy.

II. PERTURBATIVE ELECTROMAGNETIC
METHOD IN GUIDED OPTICS

A. Hamiltonian formulation of problems in
perturbative photonics

Let us first recall the basis equations, and hypothe-
sis, that lead to the coupling formula usually found in
literature [18, 19, 23, 24].

▽ · ε0εE = 0 ▽×E = −µ0
∂H

∂t

▽ · µ0H = 0 ▽×H = εε0
∂E

∂t

(1)

We can first deduce from the translation invariance along
the waveguide direction x that the optical mode can be
decomposed as:[

E(x, y, z, t)
H(x, y, z, t)

]
=

[
E(y, z)
H(y, z)

]
eiβx−iωt (2)

Moreover, the longitudinal components of the field
{Ex, Hx} can be expressed from its transverse compo-
nents {E⊥,H⊥}, so that the Maxwell’s equations Eq.(1)
can be expressed using only the latter. After some
math, and following the guidelines in [25], we can de-
fine a generalized propagation equation where |ψ⟩ =



2

[E⊥(y, z);H⊥(y, z)]

∂

∂x
B̂ |ψ⟩ = ı

ω

c
Â |ψ⟩ (3)

The corresponding eigenvalue problem with value β0

and eigenvector |ψ0⟩ = [E⊥0(y, z);H⊥0(y, z)] is then:

β0B̂ |ψ0⟩ =
ω

c
Â |ψ0⟩ (4)

The hermitian operators Â and B̂ are

B̂ =

 0 −x⃗×

x⃗× 0



Â =


√

ε0
µ0

[
ε− c2

ω2 ▽t ×
{
x⃗ ·

[
1
µ x⃗ · (▽t×)

]}]
0

0
√

µ0

ε0

[
µ− c2

ω2 ▽t ×
{
x⃗ ·

[
1
ε x⃗ · (▽t×)

]}]


(5)

Knowing an eigen-solution |ψ0⟩, the corresponding
propagation constant β0 is simply the Rayleigh quotient:

β0 =
ω

c

⟨ψ0| Â |ψ0⟩
⟨ψ0| B̂ |ψ0⟩

(6)

These equations are the starting point to construct a
perturbative theory [24–26]. We now consider a system of
coupled waveguides, where the second one is considered
as a perturbation which modifies the field of the first
(and vice versa), resulting in new optical modes

∣∣ψ(t)
〉
.

Using the Hamiltonian formulation developed previously
we separate the parts corresponding to the isolated single
waveguides equations Â0 and its corrections ∆Â:

βB̂
∣∣∣ψ(t)

〉
=
ω

c

(
Â0 +∆Â

) ∣∣∣ψ(t)
〉

(7)

By projecting Eq.(7) on the eigen modes of the isolated
basis, the equation can be further simplified, namely by
exploiting the hermitian property of Â and B̂. In this
case the eigenvalue propagation equation becomes:(

β − β(i)
0

)〈
ψ
(i)
0

∣∣∣ B̂ ∣∣∣ψ(t)
〉
=
ω

c

〈
ψ
(i)
0

∣∣∣∆Â(i)
∣∣∣ψ(t)

〉
(8)

The index i = {1, 2} indicates whether the first or
second isolated waveguide is considered. Following the
conventional coupled-mode theory [3, 18] the eigenmode
supported by the waveguides array (with the respective
propagation constant β) is then approximated as a com-
bination of the isolated waveguides’ modes, hence:∣∣∣Ψ(t)

〉
=

(
a1

∣∣∣ψ(1)
〉
+ a2

∣∣∣ψ(2)
〉)

eiβx (9)

After substituting
∣∣Ψ(t)

〉
to Eq.(8) and rearranging the

terms we obtain the two-unknown set of equations:

B−1

[
β − β(1)

0 0

0 β − β(2)
0

]
B

[
a1
a2

]
=
ω

c
B−1∆A

[
a1
a2

]
(10)

where ∆A,B are matrices with elements expressed as:

Bij =

∫∫
S

x · (E(i)∗ ×H(j) −H(i)∗ ×E(j)) (11)

∆Aij =

√
ε0
µ0

∫∫
S

[
E(i)∗

x E(j)
x

εi∆εi
εt

+D(i)∗
y D(j)

y

∆εi
εiε j

+E(i)∗
z E(j)

z ∆εi
]

(12)

Here E(y, z)(i) is the eigen-field of the ith waveguide,
and εi its dielectric constant. Correspondingly ∆εi is a
perturbation introduced to the ith waveguide by the other
one; εt = εi +∆εi is then the total dielectric portrait of
the system, varying in the transverse (y, z) plane. If we

assume β
(1)
0 = β0+

∆β
2 and β

(2)
0 = β0− ∆β

2 , then Eq.(10)
turns into:

(β − β0)
[
a1
a2

]
= B−1

(
∆β

2

[
−1 0
0 1

]
B +

ω

c
∆A

)[
a1
a2

]
(13)

For identical waveguides ∆β = 0, Eq.(13) can be fur-
ther simplified as:

(β − β0)
[
a1
a2

]
=
ω

c
B−1∆A

[
a1
a2

]
(14)

The case of different waveguides, namely how the mis-
match between the waveguides impacts their effective
coupling [27, 28], will be discussed further in another
article. The {i, j} off-diagonal elements correspond to
the coupling κij between the ith and the jth waveguides.
Note that the propagation equation is constructed such
that the flux of the Poynting vector (hence ⟨Ψ| B̂ |Ψ⟩)
is preserved throughout propagation. If applied to the
case of moderate modifications of an isolated waveguide,
Eq.(8) produces a good quantitative estimate. It can
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cope in particular with moving boundaries and polariza-
tion issues in high index problems [24, 26]. More de-
tails regarding the underlying mathematics and the cor-
responding electromagnetic Hamiltonian formulation of
such theory can be found in [24].
The coupling between two adjacent waveguides is as-
cribed to the evanescent tail of the optical mode which
extends far away from the core region of the waveguide
and interacts with the neighboring waveguides. For ne-
gligibly overlapping waveguides modes (Bij = δij) [19],
and neglecting both the longitudinal component of the
electric field (Ex = 0) and the polarization effects caused
by the dielectric interface, Eq.(14) admits a simple ana-
lytical form, that is [29]:

κij =
ωε0

∫∫
S
∆εiE

(i)∗ ·E(j)∫∫
S
x · (E(i)∗ ×H(j) −H(i)∗ ×E(j))

(15)

Equation 15 is identical to the formulation derived in
seminal works [19, 23, 29]. The relative impacts of the
polarization of the electromagnetic field, including the
impact of the longitudinal Ex component [24, 30], or the
non-orthogonality of the isolated waveguide basis [19, 23]
(hence Bij ̸= 0 for i ̸= j) result in about minor changes
(for a proper comparison please refer to Appendix A).
Therefore for sake of clarity, only one of these curves
will be for the figures, and simply labeled as “previous
works”. As seen in Fig.A1, Eq.(15), or any other similar
derivations, actually fails to provide an accurate estimate
of the coupling constant (for the high index contrast sys-
tems, as the ones considered in this paper).

B. Coupled waveguide configuration

In order to help the discussion, and provide quantita-
tive information regarding the accuracy of perturbative
theory applied to systems of coupled waveguides, we in-
vestigate in this article two types of systems that may
represent typical situations found in integrated photon-
ics.
First we consider a silicon on insulator coupler [31] com-
posed of two 220 nm-high and 803 nm-wide waveguides
(Fig.1-(a)). This geometry can be considered as a stan-
dard in current integrated photonics industry. It exhibits
one of the largest confinement between the core of the
waveguide and its cladding. As such, nearly all the light
remains confined within the core of the waveguide, and
the evanescent tail decays very sharply. This system
presents one of the largest index contrast in dielectric
photonics.
The second system under investigation is composed of
two silicon-nitride (SiN) rib waveguides [32, 33] that
are partially etched, leaving out a 260 nm silicon-nitride
membrane on insulator (Fig.1-(b)). The index contrast
provided by SiN (n = 1.6 up to 2.2) is quite similar to
what is found for emerging material like TiO2 (n = 2.5)
[34, 35] and Ta2O5 [36]. To provide indicative numbers,

the contrast between the core of the waveguide and its
silica substrate is about ∆ε = 2.4, hence nearly 50%
smaller than the contrast with the air cladding ∆ε = 3.5.
Moreover, the presence of a high-index thin SiN layer on
top of the silica substrate helps extending the evanescent
tail of the optical mode farther away from the waveguide.
Therefore, despite the index contrast being formally large
∆ε > 1, the optical mode is actually weakly confined in
the core of the waveguide, like this is the case for low
contrast systems. Furthermore, we can also expect that
the properties of this system also depend strongly on the
exact structure of the air-SiN-Silica stack. This study is
thus the occasion to explore the fundamental differences
between fully etched and rib-waveguides. These systems
would constitute a good benchmark to test the robust-
ness and accuracy of perturbative theory in photonics.

FIG. 1. . (a) Dielectric map of the silicon ridge waveguide
considered in this work. (W1 = 803 nm , h1 = 220 nm).
(b) Dielectric map of the silicon-nitride rib-waveguide (W2 =
715 nm , h2 = 455 nm , h3 = 260 nm). (c) Coupling constant
κ for two silicon waveguides separated by G1 = 330 nm, as
a function of the wavelength. Squares: previous works [18,
19, 23, 24]. Red circles: Numerical simulation [37]. Green
stars: theory including the Local Field Effect (LFE). Cyan
diamonds: Theory including the LFE complemented by the
concept of the effective background (εbg). (d) Same as (c),
but for the SiN rib waveguides, considering an inter-waveguide
spacing of G2 = 260 nm.

In this article the results of Eq.(14) and Eq.(15) are
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compared against direct simulation of the coupled wave-
guide system. The electromagnetic field distribution of
the isolated waveguides is obtained by simulation us-
ing the same plane wave expansion simulation method,
namely the MIT Photonics Band package (MPB) [37].
Waveguides’ widths and separations are chosen to match
precisely the discretisation grid, as to minimize smooth-
ing errors. Exact parameters used for the MPB simu-
lations, and the relative accuracy of the numerical com-
putation, are presented in Appendix B. Since the chro-
matic dispersion is mostly dominated in nanophotonics
waveguides by the geometry, dispersionless material is
assumed.

III. LOCAL FIELD EFFECT

We ascribe the discrepancy in Fig.1-(c,d) between the
numerical simulations and the result of Eq.(11) to the
fact that the first order corrective theory assumes no
modifications in the nominal mode field distribution, de-
spite the introduction of a dielectric perturbation. For
large index contrast systems (hence ∆ε > 1), this as-
sumption however does not hold because the resulting
dipole ∆εiE

(i) created by the dielectric perturbation
would then become much larger than the nominal elec-
tric field E(i) itself. Therefore the correction must not
be considered as perturbative. Under the influence of the
dielectric perturbation ∆ε(r), the nominal electric field
E0 of an optical mode is modified [38, 39]:

E = E0 +

∫∫
r ̸=r′

(←→
G 0(r, r

′)k20∆ε(r
′)E(r′)dr′

)
−L∆ε

εbg
E (16)

←→
G 0 is the Green function (GF) of the unperturbed

system [38], and E0 the unperturbed optical mode. The
second term in the right hand side of Eq.(16) is the well-
known contribution of the Green function. The convo-
lution has two major consequences. Firstly, it impacts
the electromagnetic fields distribution even outside the
region where the dielectric permittivity is modified. Sec-
ondly, the convolution can result in multiple scattering:
the resulting optical field does not then solely depend
on the dielectric perturbation, but also on the presence
of nearby dielectric interfaces. The specificity of the
problem considered here is that the optical field prop-
agates in the x direction with a phasor factor (i.e. neff )
that is greater than the nominal dielectric permittivity
of the cladding. Consequently the Green function is of
evanescent nature, hence tightly localized. As a rule
of thumb, the decay rate of the GF is of the order of

α = 2π/λ
√
n2eff − ε; which results into α = 9.7 µm−1

and α = 6.2 µm−1 for the silicon and the silicon ni-
tride waveguides, respectively. Comparing α−1 to the
characteristic waveguides’ widthsW and inter-waveguide
separations G, we can infer that multiple scattering will

be a second order correction in Eq.(16). Therefore, ex-
cept in the close vicinity of the interface of the dielectric
perturbation, the resulting changes in the electric field
∆E = E − E0 are to a good approximation somewhat
proportional to the local averaging of E.
The third term in Eq.(16) is called the Local Field Effect.
The origin of the LFE is deeply rooted to the divergence
of the Green function in the source region: at this spe-
cific location the order of the convolution and of the curl
operators cannot be interchanged [40]. When the dielec-
tric background (εbg) differs from vacuum, it is indeed
proved that a correct mathematical derivation results in
the correction of the defect polarization δε(r⃗) by a dyadic

factor L∆εE⃗(r⃗)/εbg (L = 1/3) [40–42]. As we will dis-
cuss it in more details later, the L factor depends on the
geometry of the problem, namely the shape of the prin-
cipal volume, hence the symmetry of the discretization
grid. For a general problem computed on a square grid:
L = 1/3. For other problems, the value of L may change.
In the absence of multiple scattering, and for small scale
perturbations, the LFE contribution dominates. For an
homogeneous perturbation over a zone where the electric
field varies slowly, a formulation very similar to the LFE
can also be derived [41]. The resulting electromagnetic
field can then be reasonably approximated as [39]:

E =
E0

1 + L∆ε
εbg

(17)

εbg is the background permittivity at the source point.
The initial defect polarizability is screened, resulting in a
final formula close to the Clausius-Mossotti’s one [43–45].
However the physical origins greatly differ. In the case
of the Clausisus-Mossotti theory, the reduced apparent
polarizability comes from the screening effect that origi-
nates from the neighboring dipoles that form an homoge-
neous polarizable background which counters the initial
perturbation. For the LFE, it can be interpreted as the
feedback action of a single and isolated dipole on itself,
more akin an impedance mismatch for an antenna: only
a small fraction of the polarization defect actually con-
tributes to the modification of the electric field. Even
though the resulting effects have similar formulations,
and therefore they can be all included in the same for-
mula, LFE and screening effects must still be considered
as distinct phenomena. Note that the screening action
of Eq.(17) would also apply to estimate the defect po-
larization induced by a dielectric perturbation, which is
then not simply ∆εE0 anymore.
The inclusion of the LFE in Eq.(2), is shown in green-

stars line in Fig.1-(c,d). In brief, the coupled wave-
guide problem is determined in Eq.(10)-(14) following the
Petrov-Galerkin approach that consists in reducing the
dimensionality of the problem by using carefully selected
test-functions. In particular the hermiticity of Â simpli-
fies greatly the resulting problem through the choice of〈
ψ
(i)
0

∣∣∣ as test-functions basis. This extreme simplifica-
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tion comes at the cost of accuracy. Some precision can
then be retrieved through a different choice of the solu-
tion functions basis : here Eq.(17) is then injected into
Eq.(9). We see that it improves notably the accuracy
regarding the silicon waveguide (Fig.1-(c)). The results
are more mitigated for the silicon nitride waveguide on a
SiN/SiO2 substrate (Fig.1-(d)). The silicon waveguides
have the highest index contrast, so that the first order
perturbative theory fails more than for SiN. But in turn
the changes in the electric field distribution are much
simpler, without long range contribution of the Green
Function; and consequently they can be better approxi-
mated using the simple formula in Eq.(17).

IV. HIGH CONTRAST
INTEGRATED-PHOTONICS

Corrective models of the first order consider small
changes to the initial problem. Regarding photonic sys-
tems, this implies that the changes ∆ε to the nominal
dielectric distribution are small enough so that the cor-
responding defect dipole ∆εE remains much smaller than
the nominal optical field E. Indeed any modification of
a dielectric interface results in the creation of unphysical
free charges if one assumes that the electric field distri-
bution remains unchanged. This issue is as severe as the
index contrast is large. As illustration, two typical ex-
amples are presented and discussed in thorough details
in section II B, Fig.1-(c,d). This typical problem is not
surprising, and it can be tracked back to the issue related
to the use of an incomplete basis when performing a type
of Resonant State Expansion (RSE) [24, 26, 46]. Indeed
the perturbative and standard modes expansion methods
usually assume that it is possible to describe the modified
systems using only the solutions of the unmodified one.
However, these few modes are not enough to enforce the
divergence free of the electric field in presence of the large
index contrast dielectric perturbation (namely the pres-
ence of the second waveguide for a coupled waveguides
system).

Several strategies can be employed to solve this is-
sue. First, it can be solved by completing the ersatz
modes basis with a few “unphysical” modes that are
pure mathematical non-divergence-free solutions of the
Helmholtz’s equation [47, 48]. Albeit this technique re-
sults in a better numerical accuracy, it does not provide
much insight about the actual physics governing the cou-
pled integrated waveguides systems. Another approach
would rely on Quasi-Normal Modes (QNMs) [49, 50]. For
resonant (open) systems, QNMs expansion proves to be
quite powerful providing enough modes are accounted
for. Hopefully these systems are mostly governed by the
resonances with the highest quality factor so only a few
QNMs, which can be easily identified, are sufficient [51].
For non-resonant systems such as waveguides the choice
of the right QNMs might not be however straightforward.
The possibility offered by this technique will still be inves-

tigated and discussed in later study. Finally the coupling
constants could also be retrieved following the analysis
of brute force computations of the full system of coupled
waveguides [52]. This is usually a simple task on modern
computers, but it lacks then any insight regarding the
physics governing coupled waveguides systems, hence no
generalization could be made.The main disadvantage of
all these strategies is that they require specific knowledge
of the final system, hence the final properties cannot be
simply inferred a priori. Besides, the large number of
modes involved for these accurate modeling complicates
the description of the system, hence its design.
The standpoint we chose in this paper is to investi-

gate the first order models used thus far for describing
coupled waveguides systems [19, 23]. Indeed, the great
advantage of the formulations developed in this context
is that they remain simple. All the properties are de-
rived from analytical integral formula that only require
the prior knowledge of general properties of the isolated
waveguides. And therefore a large variety of configu-
ration can then be tested without requiring additional
nor complex computations. The objective is to extend
the current theories past its first order approximation,
in order to improve its accuracy, while preserving their
intrinsic simplicity.
The solution we developed here consists in modifying the
nominal optical modes so that the mode expansion be-
comes more accurate, while keeping the required num-
ber of modes minimal. This could be achieved by the
inclusion of the Local Field Effect (LFE) [40–42] comple-
mented by an effective background theory (Fig.1-(c,d)).
We rely in particular on the developments that have been
recently made regarding disorder in photonics (small per-
turbations, but high-index contrast) [42, 53, 54], and
demonstrate that they can be extended then to the gen-
eral case.

V. LFE ON EFFECTIVE BACKGROUND

For better comparison with previous theories, we con-
sider in this article that the individual waveguides only
support one single mode, whereas higher order modes
with different polarization actually do exist in integrated
waveguides. These restrictions impact the accuracy of
the results which we present here; but we believe it al-
lows for a fairer comparison, and also clearer subsequent
physics oriented discussions. Based on the results pre-
sented in Fig.1, taking the LFE into account improves
notably the results, but some discrepancies still remain,
mostly visible for the silicon nitride waveguides. The
remaining error could be partly attributed to an inad-
equate choice of εair, resulting in an over-estimation of
the impact of the LFE. Indeed the seminal theory of the
LFE considers only the case of homogeneous dielectric
backgrounds; and in the situation where the perturba-
tion occurs at a dielectric interface, the correct value
of the background permittivity is uncertain [42]. Here,



6

while the second waveguide occupies a zone previously
filled with air only (hence εair = 1), it is still only a
few hundreds of nanometers away from a higher index
(εSiN = 4.4, εSiO2 = 2.3) substrate. Therefore it can
be expected that the presence of a high index dielectric
interface in the near field of the source region has an
impact on its radiation properties [55, 56]. Indeed we
checked that, for the case of a waveguide immersed in
an homogenous background, the LFE correction results
into a more reliable estimation of the coupling constant
(Fig.C1). Note that for the silicon waveguides, the in-
dex contrasts between the waveguide’s core and either
the Silica substrate or the air cladding are - compara-
tively - about the same, so that the exact value taken
for background permittivity has a lesser influence on the
final result.
In its seminal derivation, the LFE is computed for an iso-
lated dielectric perturbation in an infinite and homoge-
neous background. The dielectric permittivity εbg stated
in the LFE effect is intrinsically linked to the Green
function, which is simply related to the homogeneous
medium’s permittivity. The main difficulty in a practical
situation is to adapt the LFE when the presence of ei-
ther a dielectric inhomogeneity or a structuration notably
alters the features of the Green function [57]; hence the
effective value of Lεbg [58]. Considering that the LFE de-
pends on both the local geometry of the problem (for the
L value) and the dielectric contrast, this effect can be gen-
eralized to the concept of defect polarizability [42] where
its impact can be calibrated for a given class of defect. In
brief, it consists in fitting the prefactor that would correct
the first order perturbative theory versus the dielectric
change ∆ε, for a given class of problems. The resulting
calibration function holds some universality and can be
then re-used for other perturbative problems of the same

class, hence without requiring complementary ab-initio
simulations. Indeed the impact of both the geometry,
namely the value of L, and the dielectric structuration,
namely εbg, are then intrinsically accounted for. This ap-
proach has been successfully applied to the investigation
of the impact of random imperfections in high index con-
trast micro-photonics systems such as photonic crystals
[42, 59]. We demonstrate here that this approach, which
has been first developed for small perturbations, remains
valid even in the case of an extended perturbation (i.e.
waveguides). Furthermore, we focus the discussion on
the impact of the local dielectric structuration, and show
that it has a major impact on the inter-waveguide cou-
pling; and that the correct LFE factor can be estimated
quite simply [60].
Considering that electromagnetic problems are solved nu-
merically over a finite grid, and that dielectric perturba-
tions are themselves of finite size, the numerical solution
of Eq.(16) in the limit of an ultra-small volume around
the source region δV → 0 provides actually the correct
solution for the local self-screened response for a dielec-
tric perturbation, including the LFE and other GF in-
duced scattering [61, 62]. At this point, both the LFE
and the local screening effect cannot be distinguished
anymore from each other[41]. In order to get a better
understanding of the role of the substrate, we therefore
solved the Green Function response to a dielectric pertur-
bation ∆ε. For generality we consider an {x,y} invariant
medium where there exists along z an air-dielectric inter-
face, namely a single air-Silica interface for the case of the
silicon waveguides, and an air/silicon-nitride/silica inter-
face for the case of the silicon-nitride waveguides. Con-
sidering Eq.(2) that the electromagnetic field propagates
with an effective propagation phasor along x β = ω

c neff
the equation to solve is:

▽×▽×
←→
G 0 + 2ı

ω

c
neff x⃗× (▽×

←→
G 0) +

(ω
c

)2

n2eff x⃗ · (x⃗.
←→
G 0) +

(ω
c

)2

(ϵ(y, z)− n2eff )
←→
G 0 =

←→
δ (y − y0, z − z0)(18)

The important point about the problem considered
here is that (ε(y, z) − n2eff ) < 0 at the position of the

perturbation. Therefore GF solution of Eq.(18) is not
a propagating wave but an evanescent-decaying, hence
tightly localized, function. This behaviour limits strongly
multiple-scattering. It also strongly alleviates the prob-
lems related to the finite size of the simulation domain.
We solved Eq.(18) using the Fourier modal expansion
(grid size of 10 nm) assuming an unperturbed uniform
electric field purely y-polarized E0 = 1y⃗. Indeed the
mode field distributions of the waveguides modes con-
sidered here are y-polarized to about 90%. Thus these
simplifications are still retaining the important features
of the initial problem, while allowing a simpler discussion
and computation [61, 62]. The result for the case of the
silicon waveguide is shown in Fig.2(a,d).

In contrast to the approximation of the first order per-
turbation theory which assumes no modifications in the
electric field (Fig.2(c,f)), the new displacement field Dy

that is obtained by changing the mode basis in Eq.(9)
is now divergence-free, as seen in (Fig.2(h)). A strong
modification (∆ε > 1) results in Fig.2(a) into a corre-
sponding decrease of the total electric field in order to
minimize discontinuity of the displacement field. This
retro-action effect is therefore as severe as ∆ε is large.
Looking into more details, we observe that the residual
discontinuity is compensated by a gradient located at the
edges of the dieletric perturbation. The restriction of the
changes of the electric field to a generalized LFE can-
not take into account these gradients. The LFE comple-
mented by the concept of effective background appears
in Fig.2(b,e) as a crude approximation of the exact field.
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FIG. 2. Case of silicon waveguides. (a-c) y-component of
the Electric Field resulting from the perturbation of an ini-
tial homogeneousE = 1y field by a dielectric perturbation ∆ε
which corresponds to the presence of the second waveguide.
(a) is the solution of Eq.(16) restricted to the y-component
of the field. (b) the result of the Local Field Effect assum-
ing an effective background εbg = 1.7. (c) Initial Coupled
mode formulation where no changes of the Electric field are
assumed (i.e. 0th order theory). Black-dashed lines indicate
the position of the dielectric perturbation and the limit be-
tween the air-cladding and the underneath silica substrate.
(d-f) y-component of the displacement field. (g-h) Variation
of the electric Field (resp. Displacement Field) along y, for
an altitude of 110 nm (Half the waveguide’s height). Dark
blue: zeroth order theory (no changes in the nominal electric
field). Red: LFE theory assuming an effective background.
Light Blue: Solution of Eq.(18).

Note that the accuracy of the LFE approximation might
be directly related to the evanescent nature of the per-
turbation problem outside the waveguide’s core region:
multi-scattering can be neglected providing the wave-
guides are not too close from each other. Regarding the
silicon-nitride waveguides, the corresponding comparison
is shown in Fig.3.

Whereas solving Eq.(16) assuming a purely y-polarized
field worked well for the silicon case, this approximation
is a bit worse for the SiN configuration. Its accuracy
actually directly depends on the strength of the longi-
tudinal electric field [30]. It illustrates the complexity
introduced by the structured substrate, namely the pres-
ence of a thin SiN layer, compared to a cladding of low
refractive index.
The critical approximation that is made about the eval-
uation of Eq.(16) is the absence of standing waves be-
tween the dielectric perturbation and the initial wave-
guide [18]. The conclusions we draw out are then very
general: it involves only the structure of the substrate;
but disregards subtle effects that would occur at precise
inter-waveguides separations. In particular, this approx-

FIG. 3. Case of silicon nitride waveguides. (a-c) y-
component of the Electric Field resulting from the pertur-
bation of an initial homogeneous E = 1y field by a dielectric
perturbation ∆ε which corresponds to the presence of the sec-
ond waveguide. (a) is the solution of Eq.(16) restricted to the
y-component of the field. (b) the result of the Local Field
Effect assuming an effective background εbg = 2.7. (c) Ini-
tial Coupled mode formulation where no changes of the Elec-
tric field are assumed (i.e. 0th order theory). Black-dashed
lines indicate the position of the dielectric perturbation and
the limit between the air-cladding and the underneath sub-
strate, which is composed of a thin 260 nm SiN layer on top
of a Silica substrate. (d-f) y-component of the displacement
field. (g-h) Variation of the electric Field (resp. Displacement
Field) along y, for an altitude of 230 nm (Half the waveguide’s
height). Dark blue: zeroth order theory (no changes in the
nominal electric field). Red: LFE theory assuming an effec-
tive background. Light Blue: Solution of Eq.(18).

imation does not hold for ultra small gap separations
where the system becomes then a slotted photonic struc-
ture which localizes a large portion of its electric field pre-
cisely inside the gap. Regarding the subsequent deriva-
tion of the LFE (Eq.(17)), the main simplification resides
in the absence of a field gradient close to the dielectric
interface. That said, the resulting improvement can still
be clearly observed in Fig.1.

VI. EFFECTIVE BACKGROUND

As a result, the key point of the LFE concerns the
evaluation of the effective background permittivity εbg.
The value of εbg in Eq.(17) can be chosen as the fit-
ting parameter that matches best the result of Eq.(16).
It only depends on the dielectric configuration of the
cladding/substrate. Thus it can be calibrated for a given
technology. Note that for an uniform dielectric cladding,
then εbg is simply the latter permittivity, as stated by
the nominal LFE derivation (this is illustrated further
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in Fig.C1). Same-wise, the value of εbg does not de-
pend on the size of the dielectric perturbation; the gra-
dient features set aside. Interestingly, this value can ac-
tually be well approximated as the average permittivity
felt by the optical mode away from the waveguide’s core:
εbg =

∫
ε(r)|E|2/

∫
|E|2. Consequently, if the concept of

the effective background permittivity can appear so far as
a mathematical fitting parameter, we demonstrate next
that it is uniquely defined, and that it is deeply rooted
to the optical mode features.
Indeed, let consider how the coupling constant evolves
with increasing inter-waveguide spacing. It evolves sim-
ilarly as the evanescent tail of the optical mode decays
away from the waveguide. Therefore, if the mode propa-
gates according to the effective index neff, then the cou-
pling constant must decay with a rate α = k0

√
n2eff − εbg

where k0 is the vacuum wave-vector. Thus, knowing the
coupling constant for one inter-waveguide spacing, its
values at other separations distances can be easily ex-
trapolated.

FIG. 4. (a-b) Evolution of the coupling constant κ as func-
tion of the inter-waveguide spacing (Gap). The results ob-
tained from perturbation theories for a Gap of 300 nm are
assumed to vary with a decay rate α = k0

√
n2
eff − εbg. Red

circles: results from direct simulations. Blue squares: previ-
ous perturbative theory where εbg is assumed to be equal to
the cladding permittivity, namely εbg = εair = 1. Cyan dia-
monds: New formulation considering an effective background.
(a) Case of silicon waveguides, εbg = 1.7. (b) Case of silicon
nitride waveguides, εbg = 2.7

We see that assuming the nominal vacuum’s permitti-
vity (εbg = 1, blue squares in Fig.4-(b)) results in a large
overestimation of the decay rate. This is no surprise be-
cause the optical mode decays both in the cladding and
in the substrate; and energy can be exchanged between
these two media. As a result the actual decay rate is
somehow a mixture of the cladding’s and the substrate’s
ones. However, if one considers now the effective per-
mittivity as the one just defined previously (εbg = 2.7,
cyan diamonds in Fig.4-(b)), the nominal decay factor
now matches the numerical simulation. Regarding the
silicon ridge waveguide (Fig.4-(a)), the effective index is
much larger than the background permittivity so that

small changes in the value of εbg have a much lesser im-
pact than for SiN - and lower indices - waveguides.
From this analysis, we can conclude that the effective
background that we introduced is both involved in the
LFE and in the natural decay of the optical mode away
from the waveguide’s core. This is actually no surprise
that the optical mode and its associated Green Function
share some properties. Indeed according to the Kirch-
hoff theory, the decaying tail of the optical mode can
be interpreted as the propagation -hence controlled by
the Green Function- of light from the waveguide’s core,
which serves as source. The value of εbg is then uniquely
defined; and therefore must also be considered as a fun-
damental property of the optical mode, like for instance
its effective index neff .
If the complex numerical developments made in section
V are essential in order to demonstrate formally that the
concept of effective background permittivity is fully jus-
tified, hence is not an arbitrary and convenient fitting
parameters, we would like to insist on the fact that re-
liable estimate of εbg can be accessed by looking simply
at the field decay of the optical mode. In this prospect,
even though the coupling for one specific inter-waveguide
spacing can be estimated more accurately using direct
simulation than the current analytical approach, we be-
lieve it is also equally important to have a reliable model
to extrapolate the coupling at different spacing, hence be-
ing aware that εbg might not equals the nominal cladding
index. This is in particular essential for large waveguides
separations where the coupling may be too small for be-
ing computed accurately, and therefore is often extrapo-
lated from values measured at smaller separations.

VII. LIMITS AND PERSPECTIVES OF THE
PERTURBATIVE APPROACH FOR COUPLED

WAVEGUIDES

Compared to the models used previously, the Local
Field Effect, complemented by the concept of effective
background, improves the estimation of the coupling con-
stant by nearly an order of magnitude. That said, as
seen in Fig.1-(c,d), some errors still remain. If usually
the discrepancy is blamed indistinctively on the high in-
dex contrast, we can be a bit more specific here. Note
that the specificity of the SiN waveguides systems comes
from its index contrast which is of intermediate value.
Indeed the index contrast is strong enough (∆ε = 3.29)
to result in a strong confinement, but it is still weak
enough so that the exponential tail extends over a very
long range (k0

√
n2eff − εbg = 3.4 µm−1). This sensibility

would make SiN a platform of choice for coupled wave-
guides and sensing applications. However the final prop-
erties of this type of system are then much harder to infer
using simple analytical formula.
Regarding the rib and ridges waveguides investigated

in this paper, the main source of errors for previous an-
alytical formulations clearly comes from the local field
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effect, which was never considered. Next comes the
definition of the effective background, which helps fur-
ther to improve the accuracy in case of complex sub-
strate/cladding. Other limitations may mainly come
from the presence of higher order modes. For the sake of
simplicity, and to allow a fairer comparison with previ-
ous works, the waveguides are supposed here to possess
only a single guided mode. Actually, integrated wave-
guides support higher order modes, and modes of differ-
ent polarization. These modes are orthogonal by con-
struction but the presence of a second waveguide, act-
ing as a perturbation, can couple them. This effect is
as strong as the modes have a similar propagation con-
stant, so it has a great impact on systems with either
rotational symmetry (polarization degeneracy), or very
large waveguide (small inter-mode spacing). In princi-
ple, Eq.(9) and Eq.(8) can be extended to include the
impact of other modes. Note that the presence of an-
gled dielectric interfaces results into further mixing be-
tween TE and TM polarized modes. Our choice of square
waveguides with high form factor minimizes the impact
of other modes and polarization effects, so that the LFE
is singled-out. In the most general case, the relative im-
pact of the LFE might be partly screened by multimodal
and polarization effects.

In any case, the LFE is always present. Eventually its
magnitude may vary depending on the local geometry,
as it has been demonstrated previously [42]. Its magni-
tude is directly related to the ratio between the index
contrast and the initial permittivity at the position of
the perturbation, according to Eq.(17). Consequently, a
change of the permittivity by ∆ε ≈ 0.3εbg would result
into a correction of the coupling coefficient by about 10%.
Considering the others effects at play in coupled wave-
guide systems (higher order modes, polarization, multi-
scattering properties of the GF, etc.), this could be con-
sidered as about the limit where LFE must be taken into
account. An important point is that the LFE is dissym-
metric depending if the perturbation consists in a dielec-
tric addition on a low index background, or a dielectric
subtraction on a high index material. Conversely, we see
that the modification of the core of a waveguide would
have a reduced LFE contribution, compared to a modifi-
cation of its cladding. When it comes to ultra-small wave-
guides separations, or the design of slotted waveguides,
the right strategy would be then to consider a large initial
waveguide whose center has been etched, rather than to
use the two-coupled-waveguide description. As practical
design rules, especially regarding perturbative - or even
mode expansion- theories, the key point is to start with
the initial structure which is the closest to the final one.

If the present article focuses on the Local Field Effect,
the approach we followed in order to develop the coupled
equations may differ from what is usually found in liter-
ature (which usually relies on the Helmholtz equation).
If all these methods result in about the same analytical
expression for the coupling constant Eq.(15) (assuming
weak contrast, and identical waveguides), they rely on

different approximations. Therefore it could also be in-
teresting to assess how our approach may remain suitable
for systems other than the one presented here. First, we
demonstrate in Appendix D that Eq.(13) remains valid
also for periodic waveguide, like for example Photonic
Crystal waveguides. The matrix elements keep the same
expression as defined in Eq.(12), the integral over the
surface simply becoming an integral over the volume of
the unit-cell. Note that considering the specific charac-
teristic of the periodic systems, where the frequency ω
is usually expressed as function of the wave-vector βb,
the formulation of the eigen-problem in term of ω rather
than β could be more appropriate.
Secondly, the derivation of any coupled modes equation
involves a few assumptions at some point. In this re-
gard we warn the reader to be cautious when apply-
ing ready-made formula, like Eq.(15), to other systems.
In particular, the formula presented in this article as-
sumes an hermitian evolution of a well defined, hence
normalized, hence non-leaky, optical mode. Future work
shall focus on leaky and non-hermitian systems. This is
where numerous new applications and innovative strate-
gies are developed; and therefore where having an analyt-
ical model to understand these systems could be of great
interest. As a typical example, we discuss the strategy
that consists in the use of gratings (hence leaky modes)
as multiplexer to couple distant plasmonics (hence non-
hermitian) waveguides [63]. If a complete case-study ex-
ceeds the scope of the present article, we can still provide
some indications about how such a system must be taken
into account by the coupled mode theory. The passage

from Eq.(7) to Eq.(8) requires that
〈
ψ
(i)
0

∣∣∣ is eigen-mode

of Â∗. Therefore in case Â is not hermitian,
〈
ψ
(i)
0

∣∣∣ must

be replaced by
〈
ψ
(i)†
0

∣∣∣, which is solution of the adjoint op-

erator. Throughout this article, the operator B̂ serves as
normalization factor: it can be interpreted as a direct ap-
plication of the Lorentz’s reciprocity theorem. For leaky
modes, likes found on gratings, modes are then Quasi
Normal Modes [64], and the ortho-normalization proce-
dure must then be changed accordingly [65, 66]. This
usually consists using the non-conjugated form of the
Lorentz reciprocity theorem.

VIII. CONCLUSION

We demonstrated that the Local Field Effect (LFE) is
an important feature in semiconductor integrated pho-
tonics, where contrast indices are large. We also showed
the importance of the concept of the effective dielectric
background εbg which is involved both in the descrip-
tion of the field decay and the LFE contribution. We
hence managed to derive simple analytical formula an
order of magnitude more accurate than previous devel-
opments found in literature. This study was also the
occasion to draw the limits of this analytical approach to
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describe coupled waveguides systems. These limitations
are particularly stringent for high contrast (∆ε > 1) but

low decay (
√
n2eff − εbg ≤ 1) systems, which include pre-

cisely a class of emerging materials (e.g. TiO2, Ta2O5)
for photonic integrated chips. If one can argue that with
modern computing capability, the exact coupling con-
stants can be computed in a timely manner, our study
has nevertheless some profound implications. First it
demonstrates the impact of the interplay between the
cladding and the (structured) substrate on the optical
mode properties. This reinforces our vision that a struc-
tured substrate forming a metamaterial [67] can be of
great importance to tune further the optical properties
of integrated photonic circuits. Secondly, if the current
development would require some small adjustments of its
parameters in order to match exactly the numerical sim-
ulation, it nevertheless takes into account the physics of
the systems as precisely as possible. In particular the ef-
fective background provides the correct model for the de-
cay of the coupling with increasing inter-waveguide sep-
aration. Moreover the chromatic dispersion due to the
waveguide’s geometry is also now much better described.
Therefore it is possible to infer more precisely how the
coupling features are a priori impacted by any change in
the nominal parameters like, for instance, deriving the
wavelength dependence of the coupling constant. The
key advantage of the development that we propose here
is that it allows to construct at minimal computational
cost a test-function basis (or projection basis - Eq.(8)) as
complete -or realistic- as possible. Such a strategy has
been already permitted to accelerate RCWA algorithms
[68]. Finally, by proving the suitability of the LFE con-
cept even in the case of extended defects, this study is
also of importance for, and can be extended to, any other
systems requiring approximate solutions in photonics at
minimal computation cost. Indeed the LFE allows a first
estimation of the modification induced by a dielectric
perturbation on the electric field. In particular optimiza-
tion methods based on gradient computation [69] could
greatly benefit from the LFE.
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Appendix A: Previous works

The data in Fig.1 (c,d) labeled as ”Previous works” can
be separated to three methods: data obtained from a sim-
plified approach Eq.(15) [18, 19]; perturbative method
Eq.(10) with longitudinal field included [23]; perturba-

tive method with Ex and Ey → Dy

ε (black line, yellow

diamonds and blue circles in Fig.A1, respectively) [24].
The presented methods result in approximately the same

FIG. A1. Coupling constant κ for two silicon waveguides
separated by G1 = 220 nm, as a function of the wavelength.
Red line: numerical simulation. Black line: simplified ana-
lytical, from Eq.(15). Yellow diamonds: coupling constant
resulting from the perturbative method (Eq.(10)) with longi-
tudinal field Ex included. Dark blue circles: same as previous
but continuity of y-field is preserved. Cyan circles: theory in-
cluding the Local Field Effect (LFE). Red squares: theory
including the LFE complemented by the concept of the effec-
tive background (εbg)

results; and they deviate substantially from the results of
direct simulations.

Appendix B: Simulation parameters (MPB)

Simulation are carried out using the MPB package [37].
For Si waveguides we have used the following parame-
ters : Global scaling factor of a = 440 nm, Pixelsize 11
nm pixel−1, Meshsize 12, Resolution 40, Tolerance 10−9,
Range of eigenvalues k = [0.57 : 1.1334] (normalized in
2π a−1 unit), Simulation geometry width = 24, height
= 12 (in a-units).
For SiN waveguides we have used the following param-
eters : Global scaling factor of a = 650 nm, Pixelsize 65
nm pixel−1, Meshsize 12, Resolution 40, Tolerance 10−9,
Range of eigenvalues k = [0.5871 : 0.8890] (normalized
in 2π a−1 unit), Simulation geometry width = 18, height
= 10 (in a-units).
Convergence is shown in Fig.B1 for the silicon wave-

guide (inter-waveguide spacing G1 = 330 nm): the cou-
pling coefficient κ is computed with a relative precision of
about 2.6%. The accuracy is absolute, so it impacts less
the SiN waveguides which have strong evanescent field,
and more situations with large inter-waveguide distance.
In this regards, this shows that it is also equally impor-
tant to have a reliable model to describe the evolution
of the coupling constant with the inter-waveguide spac-
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FIG. B1. (log-scale) Absolute error on the coupling constant
κ, for silicon waveguides separated by G1 = 330 nm, depend-
ing on the grid resolution used for the simulation. Dark blue
diamonds: situation when the grid in not properly aligned on
the waveguides, which creates some smoothing of the dielec-
tric interface. Red square : resolution chosen for this article
(40 pixel µm−1).

ing. Indeed weak coupling situations may not be com-
puted accurately, or at huge computational cost. The
simulation parameters and the waveguides’ dimensions
are selected to match exactly a discretization grid. In-
deed, the MPB package assumes square pixels, there-
fore the features that do not match the grid exactly
would be smoothed leading to a deviation from the as-
sumed dielectric profile as shown on the blue diamonds in
Fig.B1 where an increase of the inaccuracy by 25% is re-
ported. These discrepancies will impact the eigenvalues
and hence the accuracy regarding the coupling constant.
To minimize the impact of the discretization, rectangular
waveguides must be considered.

Appendix C: LFE: case of homogeneous background

We present in Fig.C1 the analogue of Fig.2 in a case of
an homogeneous air-cladding medium. This shows that
when the cladding surrounding of the waveguide is com-
posed of an uniform material, then εbg indeed matches
the nominal permittivity of the cladding.

Appendix D: Periodic systems : Bloch-Floquet Modes Formulation

We show here that the formulas expressed in Eq.(13) and Eq.(14), and Eq.(15) remain valid for periodic waveguides
subject that the integral over the surface being substituted by a volume integral over the single periodic cell.
The Bloch-Floquet theorem states that the a-periodic systems support eigen-modes that are a-periodic, to a phasor
called the Bloch wave-vector; hence:

[
E(x, y, z, t)
H(x, y, z, t)

]
=

[
uE(x, y, z)
uH(x, y, z)

]
eiβbx−iωt (D1)

where uE(x, y, z) and uH(x, y, z) are a-periodic, hence u(x + a, y, z) = u(x, y, z). As a consequence, the optical
modes are not invariant by ∂x derivation.

∂

∂x
|ψ⟩ = ıβb |ψ⟩+

[
∂xuE(x, y, z)
∂xuH(x, y, z)

]
eıβbx−ıωt (D2)

Let now compute the {i, j} matrix elements associated to Eq.(3), corresponding to the equivalent of Eq.(8) for
periodic structures.
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FIG. C1. Case of silicon nitride waveguides in air cladding,
hence εbg = 1. (a-c) y-component of the Electric Field result-
ing from the perturbation of an initial homogeneous Ey = 1
field by a dielectric perturbation ∆ε which corresponds to
the presence of the second waveguide. (a) is the solution of
Eq.(16) restricted to the y-component of the field. (b) the
result of the Local Field Effect assuming an effective back-
ground εbg = εair = 1.00. (c) Initial Coupled mode formula-
tion where no changes of the Electric field are assumed (i.e.
0th order theory). Black-dashed lines indicate the position of
the dielectric perturbation and the limit with the air cladding.
(d-f) y-component of the displacement field. (g-h) Variation
of the electric Field (resp. Displacement Field) along y, for
an altitude of 230 nm (Half the waveguide’s height). Dark
blue: zeroth order theory (no changes in the nominal electric
field). Red: LFE theory assuming an effective background.
Light Blue: Solution of Eq.(18).

〈
ψ
(i)
0

∣∣∣ ∂
∂x
B̂
∣∣∣ψ(j)

〉
=

∫∫
S

(
ıβb

[
u
(i)∗
E ,u

(i)∗
H

]
B̂

[
u
(j)
E

u
(j)
H

]
+

[
u
(i)∗
E ,u

(i)∗
H

]
B̂

[
∂xu

(j)
E

∂xu
(j)
H

])
eı(βb−β

(i)
b )x (D3)

ı
ω

c

〈
ψ
(i)
0

∣∣∣ Â ∣∣∣ψ(j)
〉

= ı
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(j)
E
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eı(βb−β

(i)
b )x (D4)

=

∫∫
S

(
ıβ

(i)
b

[
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(j)
H

]
−
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(j)
E

u
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+ ı
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u
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E ,u

(i)∗
H

]
ˆ∆A(i)∗

[
u
(j)
E

u
(j)
H

])
eı(βb−β

(i)
b )x (D5)

The Operator Â has been decomposed into Â = Â(i)+∆Â(i). Transforming Eq.(D4) into Eq.(D5) relies on the fact
that

∣∣ψ(i)
〉
is solution of the adjoint equation to Eq.(3), hence:

∂

∂x
B̂ |ψ⟩ = ı

ω

c
Â(i)∗ |ψ⟩ (D6)

The periodic nature of u can be put to use by integrating Eq.(D4) and Eq.(D5) along x over a periodic unit-cell.
In such case, we have indeed the identity:
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∫ a

x=0

[
∂xu

(i)∗
E , ∂xu

(i)∗
H

]
B̂
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u
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E

u
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]
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H
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(D7)

Dropping the common phasor term exp ı(βb − β(i)
b )x in Eq.(D3) and Eq.(D5), and integrating these two equation

over a unit-cell along x results finally after some simplifications in:

ıβb

∫∫∫
V
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u
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(j)
H
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(D8)

Consequently, if we redefine the scalar product between two term as the integral over the unit-cell of their respective
periodic parts (hence {uE ,uH} instead of {E,H}), Eq.(D8) can be re-written as :(

βb − β(i)
b

)〈
ψ
(i)
0

∣∣∣ B̂ ∣∣∣ψ(j)
〉
=
ω

c

〈
ψ
(i)
0

∣∣∣∆Â(i)
∣∣∣ψ(j)

〉
(D9)

Which is exactly the matrix elements associated to Eq.(8). If the Bloch-Floquet modes are not strictly eigen-
solutions of the Eq.(3), the perturbative problem can still be put into a set of equations that has exactly the same
formulation as Eq.(13).
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