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Abstract Seedling root traits impact plant establishment under challenging environments. Pearl 
millet is one of the most heat and drought tolerant cereal crops that provides a vital food source 
across the sub- Saharan Sahel region. Pearl millet’s early root system features a single fast- growing 
primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, 
we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel 
where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary 
root growth is correlated with increased early water stress tolerance in field conditions. Genetics 
including genome- wide association study and quantitative trait loci (QTL) approaches identify 
genomic regions controlling this key root trait. Combining gene expression data, re- sequencing and 
re- annotation of one of these genomic regions identified a glutaredoxin- encoding gene PgGRXC9 
as the candidate stress resilience root growth regulator. Functional characterization of its closest 
Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in 
regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in 
conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.

eLife assessment
This is an important paper that combines methods ranging from agronomy and plant breeding to 
Arabidopsis functional genetics, to argue that polymorphism in a single gene affects crop yield in 
pearl millet by affecting root cell elongation and drought stress resilience in a poorly studied crop. 
The overall argument is plausible but whether the solid evidence generated with Arabidopsis exper-
iments can be extended to pearl millet itself is unclear.
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Introduction
Pearl millet was domesticated about 4500 years ago in the Sahelian part of West Africa (Burgarella 
et al., 2018) and is one of the most heat and drought tolerant cereal crops (Debieu et al., 2017; 
Varshney et al., 2017). Today, it is the sixth cereal in terms of world production, and it is mostly culti-
vated in arid regions of sub- Saharan Africa and India where it plays an important role for food secu-
rity. However, in Africa, pearl millet yield remains low compared to its genetic potential because it is 
mostly cultivated in marginal lands in low- input and rainfed agricultural systems and the development 
and adoption of improved varieties is still limited (Olodo et al., 2020).

The plant root system is responsible for water and nutrient acquisition from the soil. Breeding 
for root traits that could improve the crop root system efficiency has been proposed as one of the 
pillars of a second green revolution (Den Herder et al., 2010; Lynch, 2007; Lynch, 2019). Improved 
crops with optimized soil resources acquisition might be particularly relevant in low- input and rainfed 
agrosystems found in the Sahelian region of Africa (Ndoye et al., 2022). This strategy relies on the 
selection of root traits suitable for the specific characteristics of the target environment such as soil 
and climate but also agricultural practices (Lynch, 2019; Ndoye et al., 2022; van der Bom et al., 
2020). It requires a better understanding of stress patterns and the performance of individual root 
traits in real conditions and in response to different constraints. However, only a few studies have 
addressed the importance of individual root traits in field conditions.

Primary root development is an important contributor to seedling vigor and greatly influences 
plant establishment (Peter et al., 2009). Pearl millet embryonic root system development is charac-
terized by the formation of a fast- growing primary root that is the only architectural component of 
the root system for the first 6 days after germination (DAG) (Passot et al., 2016). No seminal roots 
are present in pearl millet and crown and lateral roots were only observed 6 DAG (Passot et al., 
2016). We hypothesized that the fast- growing primary root might be an adaptation to the Sahelian 
environment (Passot et al., 2016). Here, we show that early drought stress after germination is a 
major constraint in Sahelian environments and that primary root growth is correlated with increased 
tolerance to this stress under field conditions in pearl millet. Differences in root growth seem to be 
mainly regulated by changes in cell elongation. A combination of genome- wide association study 
(GWAS) and bulk segregant analysis (BSA) on a bi- parental population identified one genomic region 
controlling this trait. Combining RNAseq, re- sequencing, and re- annotation of this region, we identi-
fied a glutaredoxin- encoding gene, PgGRXC9 as a potential candidate regulator. Functional charac-
terization of the closest homolog in Arabidopsis reveals a new role for GRX in the regulation of root 
growth through cell elongation in the root apical meristem.

eLife digest Pearl millet is a staple food for over 90 million people living in regions of Africa and 
India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 
years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal 
crops worldwide.

In most plants, organs known as roots absorb water and essential nutrients from the soil. Young 
pearl millet plants develop a fast- growing primary root, but it is unclear how this unique feature helps 
the crop to grow in hot and dry conditions.

Using weather data collected from the Sahel over a 20- year period, Fuente, Grondin et al. predicted 
by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this 
region. Field experiments found that plants with primary roots that grow faster within soil were better 
at tolerating early drought than those with slower growing roots.

Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the 
growth of the primary root. To better understand how this gene works, the team examined a very 
similar gene in a well- studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps 
the primary root to grow by stimulating cell elongation within the root.

Since it is well adapted to dry conditions, pearl millet is expected to play an important role in 
helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by 
plant breeders to create more resilient and productive varieties of pearl millet.

https://doi.org/10.7554/eLife.86169
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Results
Early drought stress episodes are an important constraint in Sahelian 
agrosystems
We previously hypothesized that the fast- growing primary root might be an adaptation to the Sahe-
lian environment and, in particular, to early cycle drought stress episodes (Passot et al., 2016). To 
analyze the frequency and impact of such early drought stress, we first studied meteorological data 
collected for the past 21 years (2000–2020) at the CNRA Bambey station, located at the center of the 
pearl millet growing region of Senegal and highly representative of the climate found in Sahelian West 
Africa. Crops such as pearl millet are traditionally sown before or shortly after the first rain event of the 
rainy season. Moisture from the first rain event is used by seed to germinate and initiate their growth. 
We observed frequent intervals between the first and the second significant rainfall event (>10 mm) 
that could last up to 40 days (Figure 1—figure supplement 1). These periods were unrelated to the 
timing of the first rain event.

A crop model was parameterized using soil and meteorological data (2000–2020) from the 
Bambey experimental station to determine when pearl millet faced drought stress and predict its 
impact on crop yield. Using a widely cultivated variety of pearl millet (Souna3) for modeling, we 
simulated the daily fraction of transpirable soil water (FTSW) profiles in different years to identify 
periods of the growth cycle when access to water was limiting. FTSW below 0.3 was considered 
a stressful condition as it is the value below which transpiration rate in pearl millet starts to drop 
due to insufficient water supply from the root to support transpiration (Kholová et  al., 2010). 
Clustering the trend of FTSW in the 21 years studied (based on the methodology of Charrad et al., 
2014) revealed three stress patterns: early- stress, late- stress, and no- stress (blue, red, and green 
lines in Figure 1A). The crop faced early stress at a frequency of 24% over the 21 years, which 
resulted in an average 43% grain yield penalty compared to years without stress. Biomass produc-
tion (an important source of fodder for livestock) was also reduced by 44% on average. Late- stress 
occurred in 19% of the years and resulted in 25% and 12% of yield and biomass penalty, respec-
tively. No- stress was observed in 57% of the years. Hence, our analysis confirms that early drought 
episodes are a major constraint in Sahelian agrosystems of West Africa affecting crops during the 
vegetative stage.

Primary root growth is correlated with increased tolerance to early 
drought stress
In order to test if a fast- growing primary root after germination might be an adaptive trait to early 
drought stress, we first phenotyped a diversity panel of pearl millet inbred lines representative of the 
genetic diversity of the crop (Debieu et al., 2018). As primary root growth is linear in the first days 
of growth (Passot et al., 2016), root length was measured as a proxy of growth on a paper- based 
hydroponic system 6 DAG in 122 pearl millet inbred lines (5 plants/line in average for a total of 853 
plants). Primary root length ranged from 21.1 to 193.2 mm with an average of 94.4 mm and a standard 
deviation of 32.5 mm, thus showing that a large diversity was available for this trait (Figure 1B).

The importance of early root growth for plant tolerance to early drought stress was then evaluated 
in field trials in 2 independent years using nine inbred lines with contrasted root growth (slow, interme-
diate, and fast primary root growth). Field trials were set up during the hot dry season (March–June) in 
2018 and 2020. Seeds were sown and irrigation equivalent to a 30- mm rainfall was applied. Irrigation 
was then stopped to mimic an early drought stress episode and plant growth and ecophysiolog-
ical parameters were analyzed for the following 6 weeks (Supplementary file 1, Table S1). We then 
analyzed the correlations between primary root length, measured in the lab, and plant performance 
measured in field conditions. Principal component analyses revealed a covariation of early primary 
root growth and stay- green (the % of leaves that remained green) as well as the performance index of 
photosynthesis (PI) measured both in 2018 and 2020 (Figure 1—figure supplement 2). Correlations 
between variables adjusted means across the two field trials showed a strong and significant relation-
ship between early primary root growth and stay- green at the vegetative stage, an indicator of plant 
tolerance to drought stress (R = 0.95, p <0.01; Figure 1C, D). Hence, our field experiments support 
the hypothesis that rapid growth of the primary root is beneficial for pearl millet plants to cope with 
early drought stress episodes after germination.

https://doi.org/10.7554/eLife.86169
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Identification of genomic regions in pearl millet controlling early 
primary root growth
We next studied the genetic determinants of primary root growth in pearl millet. First, the heritability 
of early primary root growth was analyzed using our paper- based phenotyping data on the panel 
of inbred lines. Heritability of 0.53 was computed indicating that early primary root growth is under 
strong genetic control in pearl millet. We therefore conducted a GWAS. Genotyping by sequencing 
of the panel of pearl millet inbred lines provided 392,493 single nucleotide polymorphisms (SNPs) for 
association, after filtering on quality, with an average density of 2.5 SNPs per 10 kb (Debieu et al., 
2018). For the current study, a set of 392,216 SNPs polymorphic for the 122 inbred lines with a 

Figure 1. Early primary root growth and its correlation to drought tolerance related traits measured in field conditions. (A) Stress patterns identified 
by clustering of simulated fraction of transpirable soil water (FTSW) trend during crop growth in 2000–2021 in Bambey. FTSW = 0.3 (horizontal red line) 
was considered as the onset of water stress. Each point is the average of a few daily FTSW based on the biological day which was used instead of daily 
FTSW to highlight the critical stages (panicle initiation and flowering, black lines). Thick lines and shaded areas show the mean and two times standard 
error (SE), respectively. Blue, red, and green lines correspond to early- stress, late- stress, and no- stress, respectively. (B) Root length in 122 pearl millet 
inbred lines derived from West and Central African landraces. Root length was measured at 6 days after germination in a paper- based hydroponic 
system installed in a growth chamber. Points represent mean ± SE. (C) Correlation between root length and the field measured traits using adjusted 
lsmeans across both years. The Pearson correlation coefficients are indicated for each pair of traits. (D) Linear regression between root length and stay- 
green. Red points represent the lsmean for the six inbred lines that were common between the two field trials.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Lapse between the first and the second significant rainfall.

Figure supplement 2. Covariation of root length, plant height, and drought related traits including maximum quantum efficiency of photosystem II 
(FvFm) and performance index of photosynthesis (PI) measured at 32 days after sowing, stay- green and plant survival measured at 42 days after sowing.

https://doi.org/10.7554/eLife.86169
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phenotype was selected to conduct GWAS (de la Fuente Cantó et al., 2022). GWAS was performed 
using the ridge latent factor mixed model (LFMM) algorithm (Caye et  al., 2019). In addition, we 
considered other GWAS methods to contrast the results (analysis of variance [ANOVA], efficient mixed 
model association [EMMA], or mixed linear model [MLM]; Figure 2—figure supplement 1). Our anal-
ysis revealed a total of 447 significant SNPs across the pearl millet genome associated with primary 
root growth from which, 109 SNPs were found highly significant with at least two other methods for 
association analysis at p- value <10−4 (Supplementary file 1, Table S2). Only two of these markers, 
located on chromosomes 1 and 3, were above the 0.05 false discovery rate significance threshold 
(Figure 2A).

To validate our GWAS analysis, we generated a bi- parental population from two inbred lines with 
contrasting early primary root growth. The two lines, ICML- IS 11155 (low primary root growth) and 
SL2 (high primary root growth), were selected based on our initial paper- based root phenotyping 
experiment. The difference in primary root growth between these two lines was confirmed 7 DAG in 
a paper roll phenotyping system (p <0.001; Figure 2—figure supplement 2), as well as in soil using 
X- ray microCT 10 DAG (p = 0.058 but with a low number of samples analyzed; Figure 2—figure 
supplement 2), thus demonstrating their contrasting primary root phenotypes were robust and inde-
pendent of the experimental system.

Lines SL2 and ICML- IS 11155 were crossed and 737 F2 plants were phenotyped for early root 
growth together with their parents (33 ICML- IS 11155 and 30 SL2 plants). The phenotypes of F2 
plants showed a normal distribution encompassing the range of phenotypes from the two parents 
(Figure 2—figure supplement 3). 75 F2 plants were selected for each extreme phenotype (75 highest 
and 75 lowest growth) and were used for bulk DNA extraction. The corresponding DNA was then 
used for genotyping by sequencing. Mean average sequencing depth in the bulks corresponded 
to 1028X (high growth) and 814X (low growth). After filtering, a group of 33,582 SNP variants (2.1 
SNP per 100 kb in average) identified between the bulks was used to assess the differences in allele 
frequency linked to the root length phenotype. BSA revealed differences in allele frequency for 1285 
SNPs (Figure 2B; Supplementary file 1, Table S3). Six regions consisting of clusters of neighboring 
markers with overlapping region of significance defined by simulations (de la Fuente Cantó and 
Vigouroux, 2022) and equivalent to ±8 Mbp around each significant marker were identified on chro-
mosome 1 (RL1.1, RL1.2, and RL1.3) and chromosome 6 (RL6.1, RL6.2, and RL6.3; Figure 2B). Eigh-
teen marker–trait associations identified by GWAS co- localized with these BSA regions of significance 
(Supplementary file 1, Table S4) including the most significant GWAS SNP on chromosome 1 at 
position 231264526 (Figure 2A).

Root growth is dependent on cell division and cell elongation activities occurring at the root tip. To 
identify the cellular process responsible for changes in root growth between the two parental lines, 
ICML- IS 11155 and SL2, we used confocal microscopy to image and measure cell elongation in the 
root tip starting from the quiescent center (Figure 2C, Figure 2—figure supplement 4). While cell 
production rates were similar in both lines (Figure 2D), SL2 (fast growth line) exhibited a significantly 
higher cell elongation rate than ICML- IS 11155 (Figure 2E). Hence, the significant difference in root 
growth between inbred lines SL2 (fast growth) and ICML- IS 11155 (slow growth) was mainly driven by 
changes in root cell elongation.

As differences in root growth between the two parent lines were mainly driven by cell elongation, we 
hypothesized that it might be linked to genes that are expressed in the root tip. We therefore profiled 
gene expression using RNAseq in the primary root tip (2 cm apex) of inbred lines ICML- IS 11155 (slow 
growth) and SL2 (fast growth). Reads were mapped to the coding DNA sequences (CDSs) predicted 
in the reference genome (Varshney et al., 2017) for expression analyses. 1778 genes showed signifi-
cant differences in gene expression between the two contrasted lines using three combined statistical 
tests (EdgeR, DESeq, and DESeq2, p- value <0.01). Unexpectedly, a large proportion of the reads 
(31.48% in average in the six RNAseq experiments) did not map to predicted genes on the refer-
ence genome. When further analyzed, 15.15% of the unmapped reads (with no correspondence to 
predicted CDS) were found not to match the reference genome. These might correspond either to 
unsequenced regions or to genotype- specific genomic regions that are not present in the reference 
line. The remaining unmapped reads corresponded to either rRNA and tRNA genes (40.28% of the 
unmapped reads) or to non- annotated genes or non- coding RNAs (44.57% of the unmapped reads). 
Hence, our transcriptomics analysis identified genes that are differentially expressed in the root tip 

https://doi.org/10.7554/eLife.86169
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Figure 2. Genetic dissection of primary root length in pearl millet and analysis of root apical meristem and primary root growth of contrasted pearl 
millet lines. (A) Manhattan plot of the genome- wide association study (GWAS) by lfmm ridge method (Caye et al., 2019). The horizontal axes 
correspond to the map position of each of the 392,216 SNPs identified by GBS in a group of 122 inbred lines. The vertical axis indicates the −log10 
p- value of the statistic. The dash line delimits the threshold for highly significant SNPs (p- value <10−4). Significant SNP markers above the 0.05 false 
discovery rate (FDR) significance threshold are highlighted in red. (B) Bulk segregant analysis (BSA) identification of significant regions associated with 
primary root length using bulks of contrasted F2 lines from a bi- parental cross. The plot shows the Euclidean distance statistic profile (y- axis) across 
the seven pearl millet chromosomes (x- axis). The dash line indicates the 95% confidence interval threshold for the localization of significant regions. In 
both plots, the shaded area delimits the extent of the six significant regions identified by BSA and therefore the overlap with significant SNPs identified 
by GWAS (A) and the correspondence with the BSA peaks found (B). (C) Confocal image of the root tip of the contrasted inbred lines for primary root 
growth (ICML- IS- 1115 and SL2 with slow and fast growth, respectively). (D) Estimation of cell production rate for ICML- IS- 1115 (N = 25) and SL2 (N = 22) 
according to Beemster et al., 2002. (E) Maximum cell length reached in the root elongation zone for ICML- IS- 1115 (N = 25) and SL2 (N = 22). ***p- 
value ≤0.0001, ns: not significant.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Genome- wide association study (GWAS) Manhattan plot and p- values QQ plots obtained with five methods.

Figure supplement 2. Contrasted primary root length of lines ICML- IS 11155 and SL2.

Figure supplement 3. Distribution of root growth phenotypes in the F2 population and the parents ICML- IS 11155 and SL2.

Figure supplement 4. Cell length profile in the root meristem of (A) SL2 and (B) ICML- IS 11155.

https://doi.org/10.7554/eLife.86169
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of inbred lines ICML- IS 11155 and SL2 but revealed that some genes expressed in root tips are not 
annotated in the current version of the pearl millet genome.

Re-sequencing of the root length QTL region reveals a new GRX-
encoding gene
We re- analyzed a 1- Mbp genomic region on chromosome 1 around the most significant GWAS marker–
trait association, corresponding to SNP chr1_231264526, that co- localizes with a BSA QTL. This region 
contained a large proportion of unknown nucleotides (16.39% N) thus making gene annotation diffi-
cult. To obtain better quality sequence information, long reads (Nanopore technology, Yuan et al., 
2017) corresponding to the target QTL regions were recovered and re- annotated using structural and 
gene expression (RNAseq) data. Re- annotation revealed one novel 465 bp CDS, 1103 bp downstream 
of the significantly associated SNP (chr1_231264526, Figure 3A, B). This new CDS encodes a protein 

Figure 3. Identification of candidate genes for primary root length in pearl millet. (A) Annotated genes in 100 kb region of chromosome 1 harboring 
significant SNPs identified by genome- wide association study (GWAS) and coincident with a bulk segregant analysis (BSA) significant region. Blue 
asterisk shows the position of the SNP with the most significant association. Gray arrows represent the predicted genes according to the reference 
genome (Varshney et al., 2017). The red arrow represents the new predicted gene, PgGRXC9, identified by re- annotation of the genomic interval using 
de novo pearl millet assembly based on contig sequences. (B) GWAS Manhattan plot in the 100 kb interval on chromosome 1. Dots represent the −log10 
(pval) of the lfmm ridge statistic (y- axis) for the SNPs identified in the region. The dashed horizontal line shows the threshold for highly significant SNPs. 
Positions and physical distance between genes and markers are displayed in bp. (C) Primary root length phenotype associated to the allelic variants of 
the two significant SNPs in the region: chr1_231264526 (NC/C = 26, NG/G = 74). (D) Expression of PgGRXC9 for the two alleles from the RNAseq data. 
*p- value ≤0.01. (E) Transversal section in the elongation zone of a primary root showing the expression profile of PgGRXC9 as indicated by RNAscope. 
The localization of this section and the expression of PgGRXC9 in other part of the root is indicated in Figure 3—figure supplement 1. Scale bar = 
50 mm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Expression pattern of PgGRXC9 in the root tip as revealed by RNAscope.

https://doi.org/10.7554/eLife.86169
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with strong homology to glutaredoxin (GRX) C9- like proteins from various cereals and was named 
PgGRXC9.

Two alleles at this locus exist in our population (C or G) with plants carrying a homozygous C/C 
allele (21.3% of the lines in our population) having a significantly higher root growth than plants 
carrying the G/G homozygous allele (60.7% of the lines; Figure 3C). We found that PgGRXC9 expres-
sion was significantly higher in the root tip of the line carrying the allele associated with higher root 
growth (C/C) compared to the line carrying the lower growth allele (G/G; Figure 3D). In situ hybrid-
ization using the RNAscope technology revealed expression in the stele and epidermis in the root tip 
and elongation zone (Figure 3E, Figure 3—figure supplement 1). Expression was also observed in 
the columella cells of the root cap and in the stele of the differentiated part of the root (Figure 3—
figure supplement 1). We then used the RNAseq data to search for polymorphisms between the 
two contrasted parent lines used for BSA. No sequence polymorphisms were found in the predicted 
coding sequence of the gene between the two parent lines. However, two polymorphisms were 
detected in the 5′UTR region. Altogether, our results suggest that PgGRXC9 is a positive regulator of 
root growth and that a polymorphism in the promoter region of PgGRXC9 might led to changes in 
its expression level and ultimately to a quantitative difference in root growth between the two lines. 

Figure 4. The Arabidopsis homolog of PgGRXC9 regulates root growth. (A) Phylogenetic tree of ROXYs protein 
sequences. This tree has been obtained from pairwise alignments of all whole protein sequence pairs using the 
Neighbor- Joining method and Jukes–Cantor distance matrix. GRXC1 (gray), a member of Class I GRX, is used 
as the tree root. Arabidopsis ROXY18- 21 are represented in green, and PgGRXC9 is represented in purple. 
(B) Contrasted primary root phenotype in Nos0 and roxy19 in 12- day- old seedlings grown in agar plates. Scale bar: 
1 cm. (C) Primary root length, (D) cell elongation rate, and (E) estimation of the cell production rate assuming a 
steady root growth rate of Nos0 (N = 27) and roxy19 (N = 25) plants. *p- value ≤0.01, ns: not significant.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. ROXY19 and EF1a (control gene) expression detected by reverse transcription PCR in different 
Arabidopsis lines.

Figure supplement 1. Protein alignment of PgGRXC9 and Arabidopsis ROXY members.
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However, the effect of the polymorphisms in the promoter on gene expression needs to be tested to 
validate this hypothesis.

PgGRXC9 Arabidopsis ortholog ROXY19 also regulates root cell 
elongation
To test the hypothesis that changes in PgGRXC9 expression level are responsible for a change in root 
growth, we studied its ortholog in the model plant Arabidopsis thaliana (as functional genomic studies 
are not possible in pearl millet). The closest homolog in Arabidopsis was ROXY19 (AT1G28480) with 
56% identity at the protein level (Figure 4A; Figure 4—figure supplement 1). The ROXY family is 
a land plant- specific family of GRX, with 21 members in Arabidopsis (Meyer et al., 2009). They all 
harbor a Cys- Cys (CC) putative active site and bind to TGA type transcription factors via the C- ter-
minal domain (Meyer et al., 2012). Several of them contain a final ALWL C- terminal motif responsible 
for binding to TOPLESS and TOPLESS- related transcriptional co- repressors (Uhrig et al., 2017). All 
these important amino acids were conserved in PgGRXC9 (Figure 4—figure supplement 1). ROXY19 
belongs to a subgroup of four ROXYs (ROXY18- 21) that contain a specific N- terminal domain of 
unknown function, that was also present in PgGRXC9 (Figure 4—figure supplement 1).

Transcriptomic data indicate that ROXY19 is expressed in root tissues, with the strongest expres-
sion detected in the columella and stele of the elongation and maturation zone and some expression 
in the ground tissue and epidermis (Belin et al., 2015). Given this expression profile was similar to 
PgGRXC9 in pearl millet, we exploited a roxy19 null mutant available in the Nossen (No- 0) background 
(Huang et al., 2016) to study its function. Strikingly, we observed that roxy19 had reduced primary 
root growth compared to its wild- type ecotype (No- 0; Figure 4B, C). Closer examination revealed that 
the defect in roxy19 root growth was due to a reduction in cell elongation (Figure 4D), whereas cell 
production rate was similar in the mutant and wild type (Figure 4E), thus mimicking the phenotype 
observed in pearl millet. Hence, our functional studies reveal that ROXY19, the closest homolog of 
PgGRXC9 in A. thaliana, is a positive regulator of root growth through modulation of cell elongation.

Discussion
Drylands, defined as regions where precipitation is lower than atmospheric water demand, cover 
around 40% of the land surface and host about 2 billion people (Wang et al., 2022). They are key 
regions for global food security as it is estimated that they are responsible for about 60% of global 
food production (Wang et al., 2022). They also play an important role for the global carbon budget 
(Wang et al., 2022). Climate change is expected to have a negative impact on agriculture in drylands 
with direct consequences for the livelihood of about 178  million people by 2050 under a 1.5°C 
temperature increase scenario (Wang et al., 2022). There is therefore an urgent need to devise new 
agricultural practices and crop varieties to address this challenge. This is particularly critical in the 
Sahel, the dryland region stretching across Africa and delimited by the Sahara to the North and the 
Sudanian savanna to the South, where agriculture is mainly rainfed with limited access to fertilizers and 
irrigation (Ndoye et al., 2022).

Pearl millet was domesticated in the Sahel about 4500 years ago (Burgarella et al., 2018) and it is 
a key crop for food security in that region (Debieu et al., 2017; Varshney et al., 2017). In the Sahel, 
drought stress is a major factor limiting crop yield. The semi- arid tropical climate is characterized by a 
long dry season and a short rainy season where most of the agriculture occurs. Pearl millet is tradition-
ally sowed before or right after the first rain so that the water from this first rain is used for germination 
and seedling establishment. However, the precipitation pattern is irregular and varies from season to 
season and these intra- and interannual variability are expected to increase with future climate (Sultan 
and Gaetani, 2016). To devise strategies to adapt agriculture to future climate, it is important to 
identify the stress patterns faced by crops. In this study, we used meteorological data together with a 
crop model to estimate the water stress patterns faced by pearl millet in the 2000–2020 period. This 
revealed three main types of patterns, early drought stress, terminal drought stress, and no stress. 
Early drought stress, corresponding to rain pause during crop establishment, was found to occur 
roughly one fourth of the years and to have a large impact on both grain and biomass (an important 
source of fodder) production. Indeed, we found that lapse between the first rain and subsequent 
significant rain were occurring frequently, and current models predict that such gaps are going to be 
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more frequent in future climate (Sultan and Gaetani, 2016). This indicates that early drought stress 
after germination is a major constraint for crop growth in the Sahelian agrosystems.

The embryonic root system makes most of the root system for the first weeks of the seedlings life 
and is therefore important for crop establishment. Interestingly, we previously reported that early root 
system development in pearl millet is characterized by a unique fast- growing primary root (Passot 
et al., 2016). There are no seminal roots, and post- embryonic root system branching (formation of 
lateral and crown roots) only starts 6 DAG (Passot et al., 2016). We hypothesized that this could be 
beneficial for early establishment and access to deep resources (water and nutrients) as an adaptation 
to the Sahelian climate and, in particular, to face early drought stress events. We used the natural 
variability for primary root growth in pearl millet to test this hypothesis in 2 years of field trials set up 
to mimic early rain pause episodes after germination. We observed that pearl millet lines with faster 
primary root growth had better tolerance to this stress thus indicating that indeed fast primary root 
growth was beneficial to cope with post- germination drought stress.

Early primary root growth showed a high heritability. We therefore studied the genetic bases of this 
useful trait using a combination of association genetics (GWAS) and QTL analysis (BSA). We are confi-
dent our genetic analysis targeted specifically early primary root growth rather than seed reserves 
or seedling vigor because (1) we previously showed that primary root growth was not correlated to 
seed weight in our experimental setup (Passot et al., 2016) and (2) we selected parents with very 
contrasted root growth but similar shoot biomass to generate the bi- parental population used for 
QTL analysis. Moreover, the lines used for QTL analyses showed significant differences in primary root 
growth in different root phenotyping systems (including soil columns) thus suggesting that the loci we 
identified are robust and relevant for primary root growth in naturae. Our genetic analysis revealed a 
limited number of loci controlling early primary root growth.

We focused our analysis on the most significant marker–trait association for GWAS that was co- lo-
calizing with a BSA QTL on chromosome 1. Re- sequencing and re- annotation of the corresponding 
genomic region revealed a new gene close to the most significant SNP. This gene, PgGRXC9, encodes 
a potential glutaredoxin protein. The gene is more expressed in the root tip of the line with the allele 
associated with higher root growth. We found no polymorphism in the PgGRXC9 coding region in the 
two parents of the QTL population. We showed that the closest homolog in A. thaliana, AtROXY19, 
has a similar expression pattern and that it regulates primary root growth. Interestingly, the root 
growth phenotypes observed in contrasted pearl millet lines and in the roxy19 mutant indicate that, 
in both cases, regulation of root growth occurs at the cell elongation level. Although the link between 
PgGRXC9/AtROXY19 and root growth elongation is novel, previous studies have revealed connec-
tions between root redox status and growth. In Arabidopsis, other members of the ROXY family have 
been shown to regulate root growth elongation in response to nitrate (Ota et al., 2020; Patterson 
et al., 2016). More generally, redox homeostasis has been previously reported to regulate root meri-
stem organization and functioning in Arabidopsis (e.g., Bashandy et al., 2010; Tsukagoshi, 2016; 
Tsukagoshi et al., 2010; Vernoux et al., 2000) including regulation of cell elongation (Mabuchi et al., 
2018; Tsukagoshi, 2016). However, the regulatory role of ROXY19 on root cell elongation (currently 
based on the analysis of a single mutant allele) needs to be confirmed and the mechanism and the 
actors of the regulation of root elongation by ROXY19 will need further investigation.

Based on our results, we propose that redox regulation in the root meristem might be responsible 
for a root growth QTL in pearl millet. Indeed, our data suggest that changes in PgGRXC9 expression 
level due to polymorphisms in the promoter or 5′UTR region of the gene level might cause differences 
in root cell elongation and ultimately root growth that are important for adaptation to post- embryonic 
drought stress. However, the function of PgGRXC9 in cell elongation, its site of action and its molec-
ular targets still need to be demonstrated. Furthermore, the implication of the redox is only suggested 
by indirect evidence and needs to be explored more directly. Further work will therefore be needed to 
validate this hypothesis. Pearl millet is an orphan crop and no efficient functional genomics tools are 
currently available. Future work will first target the development of an efficient gene editing protocol 
in this species.

Ideas and speculation
Pearl millet evolved and was domesticated in the Sahel. Its seeds are small (8 mg on average, about 
5 and 20 times lighter than wheat or maize seeds, respectively, for example) with limited reserves 
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available for early seedling growth. It invests the available seed reserves toward the growth of a 
unique primary root to rapidly colonize deeper soil layers rather than forming more root axes (seminal 
roots for example) as seen in other cereals. Based on our results, we speculate that this specific 
early root development strategy was selected during evolution to cope with the specific rain pattern 
encountered in the Sahel.

Materials and methods
Plant materials
The panel of pearl millet inbred lines derived from West and Central African landraces (open- pollinated 
varieties) used in this study has been previously described (Debieu et al., 2018). Nine lines from this 
panel that were contrasting for root length were selected for field trials (Supplementary file 1, Table 
S5).

Field trials
Field experiments were performed at the CNRA station (Centre National de Recherche Agronomique) 
of the Institut Sénégalais des Recherches Agricoles (ISRA) in Bambey, Senegal (14.42°N, 16.28°W), 
during the dry season of 2018 and 2020 to fully control irrigation. Fields are composed of deep sandy 
soil with low levels of clay and silt (12%) and organic matter (0.4%). Clay and silt content increase with 
soil depth from 10.2% in the 0–0.2 m layer to 13.3% in the 0.8–1.2 m layer. Experiments were set up 
using a complete randomized block design with 4 plots per variety, each composed of 6 rows of 6.3 m 
long with 0.9 m between plants and 0.9 m between rows (42 plants/plot). Irrigation was provided 
after sowing (30 mm of water) to allow seeds to germinate and was followed by a period of 42 days of 
water withholding to impose seedling drought stress. Thinning was performed 15 days after sowing 
to conserve a single plant per planting hole. Fertilization (NPK) following standard recommendation 
of 150 kg ha−1 NPK (15- 15- 15) was applied to the entire trial after sowing and before irrigation. Fields 
were maintained free of weeds. Plant height was measured at 42 days after sowing. Stay- green trait 
expressed as the percentage of green leaves compared to the total number of leaves was estimated 
on 3 plants per plot at 42 days after sowing. Survival rate was measured as the percentage of surviving 
plants at 42 days after sowing in each plot compared to the initial number of plants that had emerged. 
Photosynthesis parameters (FvFm: maximum quantum efficiency of photosystem II and PI: perfor-
mance index of photosynthesis) were measured on three plants per plot at 32 days after sowing in 
both 2018 and 2020 using a Handy Pea chlorophyll fluorometer (Hansatech Instruments Ltd).

Identification of water stress pattern
Long- term weather data (2000–2021) in CNRA (Bambey, Senegal) were gathered and analyzed to 
evaluate how the rainfall gap affects crop growth. An adapted version of the Simple Simulation Model 
(SSM- iCrop, Soltani et al., 2013; Soltani and Sinclair, 2012) was used to simulate the crop growth of 
a common West African pearl millet genotype (Souna3) and dynamic of water in the soil. To test the 
effect of water limitation alone, the model was run in water- limited potential mode with 3.7 plants per 
m−2 density and no fertilizer limitation. From April 10, the model began simulating soil water balance 
with a quarter- saturated profile. Sowing date was defined by the first significant rain of the year (actual 
transpirable soil water superior or equal to 10 mm). Clustering was done based on the trend of the 
FTSW from sowing date to maturity in different years to group years into different stress patterns 
and the effect on the yield and biomass. The NbClust Package ( Charrad et al., 2014) was used to 
determine the optimal number of clusters and the dynamic time warping method to cluster the daily 
simulated FTSW in different years.

Root growth phenotyping
For high- throughput experiments (association genetics and BSA), plants were phenotyped for primary 
root growth with a paper- based hydroponic system as previously described (Passot et al., 2016). 
Seeds were surface sterilized and pre- germinated in Petri dishes, transferred into pouches 24 hr after 
germination at a density of 3 seeds per paper and then maintained in a growth room with a 14- hr 
photoperiod (28°C during day and 24°C during night). Pictures of the root systems were taken 6 DAG 
with a D5100 DSLR camera (Nikon) at a resolution of 16 M pixels. The camera was fixed on a holder 
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to maintain the same distance between the lens and each root system. Primary root lengths were 
measured using RootNav (Pound et al., 2013). Rhizotron experiments were performed as previously 
described (Passot et al., 2018). For X- ray tomography, seeds were sterilized with 20% bleach for 
5 min, then washed with sterilized water five times. Sterilized seeds were pre- germinated on moist 
sterilized filter paper for 36 hr at 28°C in a plant growth chamber (12- hr photoperiod and 300 µmol/
m2/s light with 70% relative humidity). Equally germinated pearl millet seedlings (1 cm radicle length) 
were gently placed in loamy sand soil in CT columns (30 cm height × 5 cm diameter). Loamy sand soil 
collected from the University of Nottingham farm at Bunny, Nottinghamshire, UK (52·52°N, 1·07°W) 
was crushed thoroughly and sieved through 2- mm mesh size. These columns were saturated with 
water and then drained to field capacity. Five replicates of each SL2 and ICML- IS 11155 pearl millet 
seedlings were grown for 10 days for the CT experiment in a growth chamber maintained at a 12- hr 
photoperiod at 25°C and 250 µmol/m2/s light with 60% relative humidity. The root systems of 10- day- 
old pearl millet lines (ICML- IS 11155 and SL2) were imaged non- destructively using a GE Phoenix 
v|tome|x M 240 kV X- ray tomography system (GE Inspection Technologies, Wunstorf, Germany). Scans 
were acquired by collecting 3433 projection images at 140 kV X- ray energy, 200 µA current and 131ms 
detector exposure time at scan resolution of 45 µm in FAST mode (8- min total scan time). Three- 
dimensional image reconstruction was performed using Datos|REC software (GE Inspection Technol-
ogies, Wunstorf, Germany) and root length was measured using the polyline tool in VGStudioMax 
(Volume Graphics GmbH, Germany).

For Arabidopsis experiments, seeds were surface sterilized and placed on plates containing half- 
strength Murashige and Skoog (1/2 MS) medium with 0.5 g l−1 2- morpholineethanesulfonic acid (MES) 
and 0.8% (wt/vol) plant agar without sucrose. All plates were incubated vertically at 20°C with 160 µE 
m−2 s−1 light intensity and a 16- hr light/8- hr dark regime. The primary root elongation rate was quan-
tified between days 8 and 17. Lengths were quantified from pictures using the public domain image 
analysis program ImageJ 1.52i (https://imagej.nih.gov/ij/) and its NeuronJ plugin.

Heritability
Broad sense heritability was computed with the following formula:

 

H2 = Var(line)

Var(line) + Var(res)
nplant/line

,

  

where

nplant/line is the average number of plants measured per line,
Var(line) is the variance associated with lines,
Var(res) is the residual variance.

Both variances are parameters of the following linear mixed model:

 Length = µ + αline + εres,  

where μ is the overall mean length, αline is the random effect attached to the lines with αline ∼ N(0, 
Var(line)), and εres is the error term with εres ∼ N(0, Var(res)).

Genome-wide association mapping
Genotyping by sequencing of the panel of inbred lines was reported in previous work (Debieu et al., 
2018). In order to conduct association mapping, we first estimated population structure based on the 
ancestry coefficients estimated with the R package LEA v2.0. Then, GWAS was performed using LFMM 
2.0 which corrects for unobserved population confounders and considers ridge estimates (Caye et al., 
2019). Given the reduced number of lines, GWAS was performed using four other methods for asso-
ciation analysis: ANOVA, EMMA (Kang et al., 2008), MLM (Yu et al., 2006), and a previous version 
of LFMM (Frichot et al., 2013). The median heterozygosity for the inbred lines was low at 5.6%. Each 
heterozygous site was randomly fixed for the reference or the alternate allele.
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Bulk segregant analysis
Root growth in F2 seedlings derived from the cross between ICML- IS 11155 and SL- 2 (low and high 
primary root growth, respectively) was characterized in the paper phenotyping system as described 
above. The 10% extreme lines in the tails of the distribution were selected to form the bulks of 
contrasted lines. Leaf discs (1.5 mm diameter) were sampled for each line during the phenotyping 
experiment and stored at −80°C. Leaf discs from selected lines were pooled together to make the 
high root growth (H) and low root growth (L) bulks for DNA extraction. Genomic DNA was isolated for 
each bulk using the MATAB method as previously described (Mariac et al., 2006). DNA libraries were 
constructed from genomic DNA fragmented by acoustic shearing (Bioruptor) with a peak fragment 
target size of 200–300 bp. Sheared DNA was end- repaired using a T4 polymerase (End Repair NEB) 
and bound with the P5 and PE- P7 sequencing adaptors (Rohland and Reich, 2012). A combination of 
unique oligonucleotides barcode sequences was ligated to the P5 adaptor to index the DNA libraries 
derived from each bulk (H and L) and from the parental lines of the cross. Then, equimolar amounts 
of each DNA library were combined in the genomic DNA bank for the cross. Subsequently, the DNA 
bank library was hybridized with biotinylated RNA probes or ‘baits’ (myBaits) targeting the first 500 bp 
of the 32,100 pearl millet predicted genes. Finally, high- throughput sequencing of the enriched DNA 
library was performed on an Illumina HiSeq sequencer by Novogene Company Limited (HK). Initial 
sequencing quality checks using FastQC version 0.11.5 (Andrews, 2010) were followed by trimming 
and quality filter steps on which adaptors, barcode sequences, and low- quality reads (<35 bp) were 
removed. Filtered reads were aligned to the pearl millet reference genome (Varshney et al., 2017) 
using the Burrows- Wheeler Alignmen tool (BWA version 0.7.17 r1188; Li and Durbin, 2009). Reads 
mapping at the target enriched regions were used for SNP calling using the UnifiedGenotyper algo-
rithm from GATK 3.7 (McKenna et al., 2010) with the parameter down- sampling limit (dcov) set at 
9000. Multi- allelic sites and those with low total allele frequency (AF <0.25) were removed. In addi-
tion, sites with either low or high total sequencing depth (below the 25th and above the 95th percen-
tiles, respectively) were removed. Finally, SNPs with more than 50% missing data and minor allele 
frequency under 5% were excluded.

For bulk segregant study, only biallelic SNP variants of the bulks that were present in the parental 
lines of the cross were kept. The line ICML- IS 11155 (low primary root growth) was used as the refer-
ence genome for the cross to designate the alternate and reference SNP variants in the bulks. Out of 
the range of statistical approaches for measuring the differences in allele frequency in BSA, Euclidean 
distance- based statistics as suggested by Hill et al., 2013 was selected based on a preliminary study 
on which we tested the efficiency of the methods for QTL detection using simulations (de la Fuente 
Cantó and Vigouroux, 2022). The Euclidean distance between allele frequencies of the bulks at each 
marker position (EDm) was calculated as follows:

 EDm =
√(

faL − fAL
)2 +

(
faH − fAH

)2
  

where fa and fA correspond to the allele frequency of the alternate and reference allele in the low bulk 
(L) and the high bulk (H), respectively. Then, to reduce the effect of sequencing noise and increase 
the signal of the differences in allele frequency we calculated the fourth power of the cumulative EDm 
value in windows of 100 consecutive markers (Omboki et al., 2018; Zhang et al., 2019). The confi-
dence interval of the statistic was determined using simulations as described in de la Fuente Cantó 
and Vigouroux, 2022.

RNAseq
Seeds were surface sterilized and germinated in Petri dishes containing wet filter paper for 24 hr in 
the dark at 27°C. After 2 days, plants were transferred to hydroponic tanks containing 1/4 Hoagland 
solution and grown for 15 days at 27°C. RNA was extracted from the root tip (2 cm apex) of the 
primary root using the RNeasy Plant Mini Kit (QIAGEN). RNAseq was performed by the Montpellier 
GenomiX Platform (MGX, https://www.mgx.cnrs.fr/). Sequencing was performed on an Illumina HiSeq 
2500. Analyses were performed as previously described (de la Fuente Cantó and Vigouroux, 2022). 
Three different statistical tests were used to identify differentially expressed genes: EdgeR (McCarthy 
et al., 2012; Robinson et al., 2010), DESeq (Anders and Huber, 2010), and DESeq2 (Love et al., 
2014). GO terms enrichment was performed in the 1778 genes that were significantly differentially 
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expressed between the slow and fast growth lines according to the three statistical tests using the 
TopGO package in R. Briefly, overrepresentation of GO terms in the list of differentially expressed 
genes (1032 of the 1778 with GO annotations) was investigated in relation to the list of annotated 
pearl millet genes with GO annotations (16,620 genes with GO annotations and 47,234 GO terms 
in total; Varshney et al., 2017 ) using a Fisher test. Each GO category was tested independently or 
considering hierarchical links between GO terms. GO terms showing p- values below 0.01 were further 
considered for enrichment analysis.

Cellular analysis of root meristems
Root meristem phenotype of lines with contrasted primary root length was characterized using 
confocal microscopy. Lines ICML- IS 11155 and SL- 2 (low and high primary root growth, respectively) 
were grown in paper rolls under controlled conditions in a growth room. In brief, pre- germinated 
seeds were sown along the long side of germination paper (Anchor Paper Company, USA) rolled on 
itself and imbibed in ¼ strength Hoagland solution (Hoagland and Arnon, 1950). Each paper roll was 
placed in an Erlenmeyer flask containing 200 ml of nutrient solution, a volume maintained constant 
throughout the experiment. Primary root length was measured, and 2 cm length were sampled from 
the tip of 1- week- old seedlings. Root tips were fixed in FAA solution for 24 hr. Then, root tips were 
washed twice in PBS solution and moved to the ClearSee clearing (Kurihara et al., 2015) solution for 
a minimum of 48 hr. Before imaging, root tips were stained for 30 min in 0.1% Calcofluor White and 
washed in ClearSee for other 30 min (protocol adapted from Ursache et al., 2018). Root tip images 
were obtained using a Leica SP8 confocal microscope equipped with a ×20/0.70 dry objective at a 
detection range of 420–485 nm. Images were analyzed using the Broadly Applicable Routines for 
ImageJ (Ferreira et al., 2015). Cell walls from the meta- xylem vessel were used to estimate cell length 
along the axial axis of the root. The ‘find peaks’ option was used to determine the coordinates of the 
cell walls along a segmented line traced from the quiescent center to the mature zone where the first 
root hairs were observed, and maximum cell length was reached. Consecutive data points defined the 
cell length along the root axis and a logistic function was fitted to the data to characterize axial root 
growth (Morris and Silk, 1992). Elongation rate was estimated as the root length reached per day 
of experiment. This value divided by the maximum cell elongation defined per sample was used to 
approximate the cell production value or number of cells produced in the meristem per day assuming 
steady- state growth (Beemster et al., 2002).

Re-annotation of QTL region using long reads data
Long reads were used to reannotate the QTL region as in Grondin et al., 2020 (Genbank acces-
sions MT474864 and MT474865). For identification of Nanopore contigs corresponding to the 
QTL region, a 1- MB sequence located around the most significant GWAS SNP was extracted from 
the reference genome and aligned to the long- read genome using the nucmer tool (MUMmer 
version 4.0.0beta2, - -mum option Marçais et al., 2018) with a minimum aligned sequence length 
of 300 bp. We pre- selected contigs alignments if at least five regions of the same contig were 
aligned successively to the QTL region in a span shorter than 20 kb and covering at least 3% of 
the QTL sequence. Contigs were considered as valid if the alignment covered at least 40% of the 
contig length and 20% of the QTL length. For annotation, a de novo transposable elements (TEs) 
library was generated from the long reads with RepeatModeler2 (version 2.0.1, options -engine 
ncbi; Flynn et  al., 2020). TEs were detected and removed using RepeatMasker (version 4.1.0; 
Tarailo- Graovac and Chen, 2009) with the de novo TEs library. Annotation of the genome was 
performed with MAKER2 (version 2.31.9; Holt and Yandell, 2011) using all ESTs sequences down-
loaded from the NCBI (organisms: P. glaucum, Oryza sativa, Zea mays, Sorghum bicolor, P. milia-
ceum, and Setaria italica), all protein sequences of P. glaucum available on the NCBI (July 2020), 
all protein sequences of annotated genes on the reference genome (http://gigadb.org/dataset/ 
100192) and the Uniprot- Swiss- Prot protein database (section viridiplantae, release- 2020_06). 
RNAseq data mapping was performed with TOGGLe v3 (Tranchant- Dubreuil et al., 2018). Reads 
were aligned to the long- read sequences with HISAT2 version 2.0.1 (Kim et  al., 2015) and an 
annotation file was produced with Stringtie version 1.3.4 (Pertea et al., 2015). This file was used 
as input of MAKER2 (default parameters, the SNAP HMM O. sativa file model). Predicted protein 
sequences were aligned to the Uniprot- Swiss- Prot protein database (section viridiplantae) using 
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blastx (Altschul et al., 1990). Genes with protein domain signatures were recovered using Pfam 
database and InterProScan version 5.19- 58.0 (- appl pfam -dp -f TSV -goterms -iprlookup -pa -t p; 
Mulder and Apweiler, 2007).

In situ hybridization
Pearl millet root tip fixation, embedding, and sectioning step were performed as described in Mounier 
et al., 2020. Briefly, 7- day- old millet primary root tip (1.5 cm) were hand- dissected and the tip were 
immediately aligned between two biopsy foam (M476- 1, Simport, Canada), and transferred in a 
cassette (1,267,796 Thermo Scientific, USA) in a 3:1 ethanol:acetic acid fixative solution. The samples 
were then placed in a fresh fixative solution and a 5- min vacuum was applied two times. The solution 
was then replaced by a fresh fixative solution and samples were stored over- night at 4°C. The samples 
were then subjected to several 5 min baths with increasing ethanol concentrations (75, 80, 85, 90, 95, 
and 100%), one bath in an ethanol/butanol (1:1) solution and one bath in absolute butanol on ice. The 
samples were transferred to a water bath at 54°C inside of a histology microwave oven (Histos 5 Rapid 
Tissue Processor, Milestone, Italy). The samples were then subjected to a bath in butanol/paraffin (1:1) 
solution at 54°C and 300 W and then two baths in paraffin at 54°C and 250 W. Prior to the embedding 
step, the root bundles were rapidly removed from the cassettes while the paraffin was still liquid and 
transferred to a cold RNase- free surface. The bundles were subsequently transferred vertically and 
placed upside down in a molding tray (E70182, EMS, USA). The paraffin blocks were maintained at 
4°C and protected from light. Transversal sections with a thickness of 8 μm were cut on an RNase- free 
microtome (RM2255, Leica, Germany) and mounted on a cut edge frosted glass slide (VWR, 631- 1551) 
prewarmed at 45°C with drops of RNase- free water. Slides were then baked at 60°C until the section 
was well fixed on the slide (around 20 min) prior to RNAscope.

The RNAscope assay was performed by Be More Specific. Probes against PgGRXC9 were custom 
designed by ACD and are available in the ACD catalogue as Came- GRXC9- C1 (Ref. 1187801- C1). 
The probes were designed based on the PgGRXC9 re- annotated sequence and were complemen-
tary to nucleotides at positions 71–671, excluding the 398–510 positions. The negative probe was 
provided by ACD (Accession # EF191515). The in situ hybridization assay was performed using the 
ACD RNAscope 2.5 HD Detection Reagent- RED kit (cat. no. 322360) using the provided protocol 
(http://www.acdbio.com/technical-support/user-manuals). Imaging of tissue sections was performed 
using a Nikon Eclipse NI- E (Nikon Corporation, Tokyo, Japan) with a 40X Plan Apo λ 0.95 NA objec-
tives. Images were processed using imageJ contrast enhancement tool to 0.001% of saturated pixel.

Statistical methods
Statistical analyses were performed using R version 4.0.2 5 (R Development Core Team, 2018). Prin-
cipal component analyses were performed using the prcomp() function. Pearson’s correlation analyses 
were performed using the corr() function within the ggcorrplot package. The variance of each variable 
was partitioned into components attributable to the genotypic (line) and year in interaction with block 
as additional factor using an ANOVA (aov() function in the agricolae package). Adjusted means of the 
variables for the different lines across the two experiments were further calculated using the least- 
squares means lsmeans() function (lsmeans package).
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