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Probabilistic Sufficient Conditions for Prediction-based Stabilization

of Linear Systems with Random Input Delay

SiJia Kong1 and Delphine Bresch-Pietri1

Abstract—This paper focuses on the prediction-based stabi-
lization of a linear system subject to a random input delay.
Modeling the delay as a finite-state Markov process, it proves that
a constant time-horizon prediction enables robust compensation
of the delay, provided the horizon prediction is sufficiently close
to the delay values in average. Simulation results emphasize the
practical relevance of this condition.

Keywords—Delay systems, prediction-based controller, dis-
tributed parameter systems.

I. INTRODUCTION

Delays are among the most common phenomena in engi-

neering practice [15] as they range from control or sensing

processing time, to transport delays. Lately, with the rise of

communication and information technologies, communication

delays have become a major concern for multiple research

areas, such as multi-agent systems coordination or traffic esti-

mation and control based on Vehicle-to-Vehicle transmissions.

In such network controlled systems, transmitted information

often suffers from lag, data reordering, packets dropouts or

quantization [19]. These phenomena can be accounted for by

a random delay model.

This paper considers the case where such a random delay

affects the input of a dynamical system and investigates the

design of a prediction-based controller to compensate for

this delay. This control technique is well-known for constant

delays [11], [13], [20], and has since then been extended to

various contexts including time-varying delays [1], uncertain

input delays or disturbances [14], and nonlinear systems [2],

[5]. It consists in computing a state prediction over a time

window of the length of the (current or future) delay, and using

this prediction in the feedback loop to eliminate or mitigate the

effect of the delay in the closed-loop dynamics. Yet, while this

technique has been recently applied to linear random Delay

Differential Equations in [3] and for a deterministic delay term

multiplied by a random variable in [12], its extension to the

case where the delay itself is a random variable remained to

be carried out.

Recently, in our preliminary work [8], we studied for the

first time the problem of prediction-based control of dynamical

systems subject to random input delays and proposed to use

a constant time-horizon prediction. The present paper pursues

this study and extends significantly its scope of application.

Modeling the delay as a Markov process with a finite number

of states as in [7], we reformulate the dynamics as a Partial
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Differential Equation-Ordinary Differential Equation (PDE-

ODE) system as in the now standard methodology for sta-

bility analysis of input-delay systems proposed by Krstic and

coworkers [2], [10], but applied to our random context. Using

the so-called technique of probabilistic delay averaging [7]

to a new Lyapunov functional, we prove that mean-square

exponential stabilization of the closed-loop system is obtained

provided the prediction horizon is sufficiently close to the

delay values in average, in the sense of the expected value.

This considerably generalizes the condition of [8] which was

deterministic and thus quite restrictive, and constitutes the

main contribution of the paper.

The paper is organized as follows. In Section II, we for-

mulate the problem under consideration, design a constant-

horizon prediction-based controller and formulate our stabi-

lization result. In Section III, we propose a backstepping

reformulation of the system, which then enables us to analyze

the stability of the closed-loop system in Section IV and prove

the paper main result. Simulation results are then provided in

Section V to illustrate the practical relevance of the proposed

sufficient condition for stabilization.

Notations. In the following sections, for a signal v : (x, t) ∈
[0, 1]×R → v(x, t) ∈ R, we denote ‖v(t)‖ its spatial L2-norm

with respect to x.

λ(A) denotes the spectrum of a square matrix A, while

min(λ(A)) and max(λ(A)) are its minimum and maximum

eigenvalues, respectively. Additionally, |A| denotes its Eu-

clidean norm |A| =
√

max(λ(ATA)) in which AT denotes

the transpose of A.

E(x) denotes the expectation of a random variable x. For a

random signal x(t) (t ∈ T ⊂ R), the conditional expectation

of x(t) at the instant t knowing that x(s) = x0 at the instant

s ≤ t is denoted E[s,x0](x(t)). Finally, ei denotes the ith
standard basis vector of Rr (r ∈ N+ and i ∈ {1, ..., r}).

II. PROBLEM STATEMENT AND MAIN RESULT

We consider a controllable linear system with random input

delay of the form

Ẋ(t) = AX(t) +BU(t−D(t)) , (1)

in which X ∈ R
n and U ∈ R are the state and control input,

respectively. The random delay D is a Markov process with

the following properties:

(P1) D(t) ∈ {Di, i ∈ {1, . . . , r}}, r ∈ N with 0 < D ≤ D1 <
D2 < · · · < Dr ≤ D.

(P2) The transition probabilities Pij(t1, t2), which quantify the

probability to switch from Di at time t1 to Dj at time t2
((i, j) ∈ {1, . . . , r}2, t2 ≥ t1 ≥ 0) satisfy

a) Pij : R
2 → [0, 1] with

∑r
j=1 Pij(t1, t2) = 1.



b) Pij is a differentiable function which, for s < t,
follows the Kolmogorov equation

∂Pij(s, t)

∂t
=− cj(t)Pij(s, t) +

r
∑

k=1

Pik(s, t)τkj(t) ,

Pii(s, s) =1 and Pij(s, s) = 0 for i 6= j , (2)

in which τij and cj =
∑r

k=1 τjk are positive-

valued functions such that τii(t) = 0. In addition,

we assume that the functions τij are bounded by a

constant τ⋆ > 0.

(P3) The realizations of D are right-continuous.

Considering a finite number of delay values in (P1) is a

common assumption considered, e.g., in [7], [18]. In the case

of network systems, these discrete values can be seen as a

measure of the congestion state of the network. Likewise,

Property (P3) is standard for the modeling of continuous-time

Markov Chain and to assess the system well-posedness.

Furthermore, it is important to emphasize that the two

properties (P1) and (P3), along with the Markov property,

guarantee that Pij satisfies the Kolmogorov Equation (2) for

certain positive-valued functions τij , cj (see [16], [17]). In that

sense, Property (P2) is only requiring the functions τij to be

bounded, which constitutes a mild modeling assumption.

Finally, its is worth observing that the parameter τij∆t is

approximately the probability of transition from Di to Dj on

the interval [t, t + ∆t). Similarly, 1 − cj(t)∆t represents the

probability of staying at Dj during the time interval [t, t+∆t).
We aim at controlling the random-delay system (1) with a

prediction-based controller. As the delay may not be known1

and, in any case, varies abruptly, using the current delay value

as prediction horizon would in all likelihood result into a

chattering control law and an inaccurate prediction2. Thus, we

propose to use the following prediction-based controller with

constant time horizon D0 (D0 ∈ [D,D])

U(t) = K

[

eAD0X(t) +

∫ t

t−D0

eA(t−s)BU(s)ds

]

, (3)

in which K is a feedback gain such that A+BK is Hurwitz.

Obviously, contrary to the deterministic case [1], such a

predictor can only robustly compensate for the random input

delay. We now provide the main result of the paper: a sufficient

condition for such a robust compensation.

Theorem 1: Consider the closed-loop system consisting of

the system (1) and the control law (3). There exists a positive

constant ǫ⋆(K), such that if, for all time t ≥ 0,

E[0,D(0)](|D0 −D(t)|) ≤ ǫ⋆(K) , (4)

then, the closed-loop system is mean-square exponentially

stable, that is,

E[0,(Υ(0),D(0))](Υ(t)) ≤ RΥ(0)e−γt , (5)

1Time stamping of the exchange data can be used, but requires the controller
internal clock and the system one to be synchronized, which could be difficult
to guarantee in practice.

2For instance, if the current delay value is much larger than its average,
leading to an over-estimation of the prediction horizon.

for certain positive constants R and γ and with

Υ(t) = |X(t)|2 +

∫ t

t−3D

U(s)2ds . (6)

Theorem 1 requires the prediction horizon to be sufficiently

close in average to the delay values. This is in accordance with

the constant-horizon feature of the prediction used in (3) and

generalizes the restrictive deterministic condition obtained in

our previous work [8] and bearing on |D0 − Dl| for all l ∈
{1, . . . , r}. Indeed, requiring |D0 −D(t)| to be small enough

for all time implies that the delay values are themselves close

enough, otherwise such a choice of D0 cannot be achieved. In

that sense, Condition (4) represents a considerable relaxation,

by distinguishing among the delay distributions.

Besides, it is worth mentioning that an expression for the

positive constant ǫ⋆ is provided3 in the proof of Theorem 1

detailed in the sequel. However, this value is likely to be

of very little practical use, due to the conservativeness of

the Lyapunov analysis carried out. Nevertheless, thanks to

this expression, one can observe that the positive constant ǫ⋆

depends on the feedback gain and that this dependence is likely

to be considerable. Providing a quantitatively meaningful

bound and studying its relation with K in view of increasing

the closed-loop robustness is out of the scope of the present

paper, but should be the focus of future works.

Finally, note that the interval of definition of the integral

in (6) is [t−3D, t] for a technical reason, namely, for Lemma 3

used in the stability analysis to hold. We now provide the proof

of this theorem in the following sections.

III. BACKSTEPPING TRANSFORMATION

In order to prove Theorem 1, we follow the now standard

stability analysis methodology for input-delay systems of [2],

[10]. Consequently, we reformulate (1) as a PDE-ODE cascade

and introduce additional distributed variables to better account

for the effect of the prediction-based control law (3).

We denote v(x, t) =
(

v1(x, t) . . . vk(x, t) . . . vr(x, t)
)T

the

vector of distributed actuators vk(x, t) = U(t +Dk(x − 1)).
Then, one can rewrite the linear system (1) as the following

PDE-ODE cascade with random parameter δ










Ẋ(t) = AX(t) +Bδ(t)Tv(0, t)

ΛDvt(x, t) = vx(x, t)

v(1, t) = 1U(t) ,

(7)

in which ΛD = diag(D1, . . . , Dr), 1 is a r-by-1 all-ones

vector and δ(t) ∈ R
r is such that, if D(t) = Dj , δ(t) = ej ,

the jth vector of the standard basis of R
r. Hence, δ(t) is a

Markov process with the same transition probabilities as the

process D(t), but with the finite number of states (ei) instead

of (Di).

Now, we introduce several distributed variables

v̂(x, t) = U(t+D0(x− 1)) , (8)

ṽ(x, t) = v(x, t)− 1v̂(x, t) , (9)

µ(x, t) = U(t−D0 + (3D −D0)(x− 1)) . (10)

3Namely, in Equation (31), involving itself various other parameters such
as the intermediate constants chosen in (a)–(e) or introduced in Lemmas 3
and 4.



In details, v̂ represents the control input U(t) within the inter-

val [t−D0, t], ṽ the corresponding input estimation error while

µ represents the controller within the interval [t−3D, t−D0].
The extended state (X(t), v̂(x, t), ṽ(x, t), µ(x, t)) then satis-

fies


















































Ẋ(t) = AX(t) +Bv̂(0, t) +Bδ(t)T ṽ(0, t)

D0v̂t(x, t) = v̂x(x, t)

v̂(1, t) = U(t)

ΛDṽt(x, t) = ṽx(x, t)− ΣDv̂x(x, t)

ṽ(1, t) = 0

(3D −D0)µt(x, t) = µx(x, t)

µ(1, t) = v̂(0, t) , (11)

in which ΣD = (D1−D0

D0
, . . . , Dr−D0

D0
)T and 0 is a r-by-1

all-zeros vector.

Finally, in view of stability analysis, we introduce the

backstepping transformation (see [2], [10])

w(x, t) = v̂(x, t) (12)

−K

[

eAD0xX(t) +D0

∫ x

0

eAD0(x−y)Bv̂(y, t)dy

]

.

Lemma 1: The backstepping transformation (12), jointly

with the control law (3), transform the plant (11) into the

target system (X,w, ṽ, µ)


























































Ẋ(t) = (A+BK)X(t) +B
[

δ(t)T ṽ(0, t) + w(0, t)
]

D0wt(x, t) = wx(x, t)−D0Ke
AD0xBδ(t)T ṽ(0, t)

w(1, t) = 0

ΛDṽt(x, t) = ṽx(x, t)− ΣDh(t+D0(x− 1))

ṽ(1, t) = 0

µt(x, t) =
1

(3D −D0)
µx(x, t)

µ(1, t) = KX(t) + w(0, t) , (13)

in which, h is defined for t ≥ 0 as

h(t) = D0K
[

(A+BK)eAD0X(t) + eAD0Bδ(t)T ṽ(0, t)

+D0(A+BK)

∫ 1

0

eAD0(1−x)B
(

w(x, t) +Ke(A+BK)D0x

×X(t) +

∫ x

0

KD0e
(A+BK)D0(x−y)Bw(y, t)dy

)

dx
]

. (14)

Proof: The proof is similar to the one of [8, Lemma 2].

With this new set of coordinates, we are now ready to analyze

the exponential stabilization of the closed-loop system.

IV. STABILITY ANALYSIS

A. Definition of the infinitesimal generator

Let us define the state of the target system (13) as

Ψ = (X,w, ṽ, µ) ∈ R
n × L2([0, 1],R) × L2([0, 1],R

r) ×
L2([0, 1],R) , DΨ. As the solution to (13) is unique (see [8]

for further details), (Ψ, δ) defines a continuous-time Markov

process and we can therefore introduce the following elements

for stability analysis.

Define the infinitesimal generator L (see [6] and [7]) acting

on a functional V : DΨ × {e1, . . . , er} → R as

LV (Ψ, δ) = (15)

lim sup
∆t→0+

1

∆t

(

E[t,(Ψ,δ)](V (Ψ(t+∆t), δ(t+∆t))− V (Ψ, δ)
)

.

We also define Lj , the infinitesimal generator of the Markov

process (Ψ, δ) obtained from the target system (13) by fixing

δ(t) = ej , as

LjV (Ψ) =
dV

dΨ
(Ψ, ej)fj(Ψ) +

r
∑

l=1

(Vl(Ψ)− Vj(Ψ)) τjl(t) ,

(16)

in which Vl(Ψ) = V (ψ, el) and fj denotes the operator

corresponding to the dynamics of the target system (13) with

the fixed value δ(t) = ej , that is, for Ψ = (X,w, ṽ, µ),

fj(Ψ)(x) =









(A+BK)X +BeTj ṽ(0) +Bw(0)
1
D0

[

wx(x)−D0Ke
AD0xBeTj ṽ(0)

]

Λ−1
D

[

ṽx(x)− ΣDh(·+D0(x− 1))
]

µx(x)/D









. (17)

For the sake of conciseness, in the sequel, we denote V (t),
LV (t), Vj(t) and LjV (t), for short, instead of V (Ψ(t), δ(t)),
LV (Ψ(t), δ(t)), V (Ψ(t), ej) and LjV (Ψ(t)), respectively.

Due to the dynamics (2) of the transition probabilities, the

infinitesimal generators (15) and (16) are related as follows

r
∑

j=1

Pij(0, t)
dVj
dΨ

(Ψ(t))fj(Ψ(t)) +
r
∑

j=1

∂Pij

∂t
(0, t)Vj(t)

=

r
∑

j=1

Pij(0, t)LjV (t) = LV (t) . (18)

Therefore, for stability analysis, one can first focus on the

constant delay functional LjV . This is the probabilistic delay

averaging approach [7], which we follow in the sequel.

B. Lyapunov analysis

Consider the following Lyapunov functional candidate

V (Ψ, δ) = XTPX + c

∫ 1

0

(1 + x)(δ ·D)T ṽ(x)2dx (19)

+ bD0

∫ 1

0

(1 + x)w(x)2dx+ d(3D −D0)

∫ 1

0

(1 + x)µ(x)2dx ,

with b, c, d > 0, P the symmetric positive definite solution of

the equation P (A+BK)+ (A+BK)TP = −Q, for a given

symmetric positive definite matrix Q, and D = (D1 . . . Dr)
T

and where · denotes the Hadamard multiplication and the

square in ṽ(x)2 should be understood component-wise. Note

that, contrary to [8], the functional (19) explicitly depends on

δ. We can then get the following result.

Lemma 2: There exist (b, c, d) ∈ (R∗
+)

3 such that the

Lyapunov functional V defined in (19) satisfies, for t ≥ 2D,

LV (t) ≤ −
(

η −ME[0,D(0)](|D0 −D(t)|)−Ng(t)
)

V (t) ,
(20)

with η,M,N > 0 positive constants and the function g defined

as g(t) ,
∑r

j=1 |Dj −D0|
2
(

∂Pij(0,t)
∂t + cj(t)Pij(0, t)

)

.



Proof: According to (18), we first consider LjV defined

in (16). For the first term in (16), from (17), applying integra-

tion by parts and Young’s inequality, one obtains

dVj
dΨ

(Ψ)fj(Ψ) ≤ −

(

min(λ(Q))

2
− 4d|K|2

)

|X(t)|2 (21)

− b(1− 2D0|K||B|e|A|D0γ1)‖w(t)‖
2

− c

(

1−
2

D0
|D0 −Dj |γ2

)

‖ṽj(t)‖
2 − d‖µ(t)‖2

−

(

b− 4d−
4|PB|2

min(λ(Q))

)

w(0, t)2

−
(

c−
4|PB|2

min(λ(Q))
− 2bD0|K||B|e|A|D0

1

γ1

)

ṽj(0, t)
2

− dµ(0, t)2 +
2c

D0γ2
|D0 −Dj |‖h(t+D0(· − 1))‖2 ,

for any γ1, γ2 ≥ 0. Observing that D0 ∈ [D,D], let us choose

(b, c, d, γ1, γ2) ∈ (R∗
+)

5 as follows

(a) d < min(λ(Q))
8|K|2 , (b) b ≥ 4d+ 4|PB|2

min(λ(Q)) ,

(c) γ1 <
1

2D|K|e|A|D|B|
, (d) γ2 <

1
4 min

{

D
D−D1

, D
Dr−D

}

,

(e) c ≥ 4|PB|2

min(λ(Q)) + 2bD|K||B|e|A|D 1
γ1

,

and define η0 = min{min(λ(Q))/2 − 4d|K|2, b(1 −
2D0|K||B|e|A|D0γ1), d} , which implies

dVj
dΨ

(Ψ)fj(Ψ) ≤ −η0
(

|X(t)|2 + ‖w(t)‖2 + ‖µ(t)‖2
)

+
2c

γ2D0
|D0 −Dj |‖h(t+D0(· − 1))‖2 . (22)

Using Lemmas 3 and 4 for the index j0 ∈ {1, . . . , r} such

that ej0 = δ(t), this finally gives

dVj
dΨ

(Ψ)fj(Ψ) ≤− ηV (t) +
2cM1

γ2D0
|D0 −Dj |V (t) , (23)

with η = η0

2max{max(λ(P )),2bD,2cDr max{NX ,Nw,Nµ},2d(3D−D)}
,

in which NX , Nw, Nµ are defined in Lemma 4.

In addition, for the second term in (16), by definition of the

Lyapunov function (19), one obtains

r
∑

l=1

(Vl(Ψ)− Vj(Ψ))τjl(t) (24)

=

r
∑

l=1

c

∫ 1

0

(1 + x)τjl(t)
(

Dlṽl(x, t)
2 −Dj ṽj(x, t)

2
)

dx ,

in which, from the definition (9) of the input estimation error,

Dlṽl(x, t)
2 −Dj ṽj(x, t)

2 (25)

=

(

√

Dl

∫ t+Dl(x−1)

t+D0(x−1)

U̇(s)ds−
√

Dj

∫ t+Dj(x−1)

t+D0(x−1)

U̇(s)ds

)

×

(

√

Dl

∫ t+Dl(x−1)

t+D0(x−1)

U̇(s)ds+
√

Dj

∫ t+Dj(x−1)

t+D0(x−1)

U̇(s)ds

)

≤ (1− x)2
(

|
√

Dl −
√

Dj ||Dj −D0|+
√

D|Dl −Dj |
)

×
√

D
(

|Dl −D0|+ |Dj −D0|
)

max
s∈[−D,0]

U̇(t+ s)2

≤M2M3

(

|Dj −D0|+ |Dl −Dj ||Dl −D0|
)

V (t) ,

in which we used Lemma 3 in the last inequality and

with M3 = max
{(

3D − 2(DD)1/2
)

|D −D|, D
}

. Therefore,

gathering (23), (24) and (25), one gets

LjV (t) ≤− ηV (t) +M4|D0 −Dj |V (t)

+N

r
∑

l=1

τjl(t)|Dl −Dj ||Dl −D0|V (t) , (26)

with M4 = 2c
(

M1

γ2D0
+M2M3rτ

⋆
)

and N = 2cM2M3.

Then, from (18) and as
∑r

j=1 Pij(0, t)|D0 − Dj | =
E[0,D(0)](|D0 −D(t)|), the following inequality holds

LV (t) ≤ −
(

η −M4E[0,D(0)](|D0 −D(t)|)
)

V (t)

+N

r
∑

j=1

Pij(0, t)

r
∑

l=1

τjl(t)|Dl −Dj ||Dl −D0|V (t) .

Hence, applying the triangle inequality and using (2), one

finally gets

LV (t) ≤ −(η −M4E[0,D(0)](|D(t)−D0|))V (t) (27)

+N
r
∑

l=1

r
∑

j=1

Pij(0, t)τjl(t)|Dl −D0|
2V (t)

+Nτ⋆E[0,D(0)](|D(t)−D0|)

r
∑

l=1

|Dl −D0|V (t)

≤−
(

η − (M4 +Nτ⋆r|D −D|)E[0,D(0)](|D(t)−D0|)
)

V (t)

+N
r
∑

j=1

|Dj −D0|
2

(

∂Pij(0, t)

∂t
+ cj(t)Pij(0, t)

)

V (t) .

Lemma 2 is then proved with M =M4 +Nτ⋆r|D −D|.

C. Conclusion of the stability analysis

With Lemma 2, we are now ready to conclude the

proof of Theorem 1. Let us denote γ0(t) = η −
ME[0,D(0)](|D(t) − D0|) − Ng(t), in which η,M,N and

g are defined in Lemma 2 and introduce the functional Z
as Z(t) = exp (

∫ t

0
γ0(s)ds)V (t). Applying Lemma 2, we

obtain LZ(t) = γ0(t)Z(t) + exp
(

∫ t

0
γ0(s)ds

)

LV (t) ≤ 0 .

Therefore, for t ≥ 3D, according to Dynkin’s formula [4,

Theorem 5.1, p. 133],

E[3D,(Ψ,D)(3D)](Z(t))− Z(3D)

= E[3D,(Ψ,D)(3D)]

(∫ t

3D

LZ(s)ds

)

≤ 0 ,

(28)

from which, using standard conditional expectation properties,

one deduces E[0,(Ψ,D)(0)](Z(t)) ≤ E[0,(Ψ,D)(0)](Z(3D)) . In

addition, observe that
∫ t

0

g(s)ds ≤(D −D)

(

E[0,D(0)](|D0 −D(t)|) (29)

+ c⋆
∫ t

0

E[0,D(0)](|D0 −D(s)|)ds

)

,

as cj =
∑r

k=1 τjk ≤ rτ⋆ , c⋆. Hence, it follows that

E[0,(Ψ,D)(0)](Z(t)) ≥ E[0,(Ψ,D)(0)]

(

V (t) (30)



× exp(−N(D −D)E[0,D(0)](|D0 −D(t)|)

+

∫ t

0

(η − (M +Nc⋆(D −D))E[0,D(0)](|D0 −D(s)|))ds)
)

.

Thus, if (4) holds with

ǫ
⋆ ∆
=

η

2(M +Nc⋆(D −D))
, (31)

one obtains from (28) and (30)

E[0,(Ψ,D)(0)]

(

e−N(D−D)ǫ⋆+ η
2
tV (t)

)

≤ E[0,(Ψ,D)(0)](Z(t))

≤ E[0,(Ψ,D)(0)](Z(3D)) ≤ e2Dη
E[0,(Ψ,D)(0)](V (3D)) , (32)

which implies, with γ = η
2 ,

E[0,(Ψ,D)(0)](V (t)) ≤ E[0,(Ψ,D)(0)](V (3D))e3Dη+N(D−D)ǫ⋆−γt .
(33)

Notice that V and Υ are equivalent, that is, there exist

positive constants q1 and q2 such that for ∀t ≥ 0, q1V (t) ≤
Υ(t) ≤ q2V (t) (see [9, Lemma 4] for a proof of this fact in

a similar case). It thus follows that E[0,(Υ(0),D(0))](Υ(t)) ≤
q2
q1
e3Dη+N(D−D)ǫ⋆e−γt. In addition, as the dynamics (1) is

linear, there exists a constant R0 > 0 (see [8, Lemma 5])

such that Υ(t) ≤ R0Υ(0), t ∈ [0, 3D]. Consequently, (5)

follows with R = R0e
3Dη+N(D−D)ǫ⋆q2/q1.

V. SIMULATIONS

To illustrate Theorem 1 and in particular the role played by

the condition (4), we consider the following toy example

Ẋ(t) =

[

0 1
−1 1

]

X(t) +

[

0
1

]

U(t−D(t)) . (34)

The control law (3) is applied with the feedback gain

K = −
[

1 2
]

resulting in conjugate closed-loop eigenvalues

λ(A+BK) = {−0.5000+1.3229i,−0.5000−1.3229i}. The

initial conditions are chosen as X(0) = [1 0]T and U(t) = 0,

for t ≤ 0. Simulations are carried out with a fixed-step solver

in Matlab-Simulink and a sampling time ∆t = 0.01 s. Finally,

the integral in (3) is discretized using its zero-order hold

approximation, in line with a suggestion in [13].

We consider 3 different delay values (D1, D2, D3) =
(0.1, 2.0, 2.1). The initial transition probabilities are taken as4

P1(0, 0
+) = 0.02, P2(0, 0

+) = 0.69 and P3(0, 0
+) = 0.29,

which means that the delay values are initially concentrated in

D2, and D3. We pick the prediction horizon as D0 = 2. Notice

that the delay margin of the closed-loop system (34) and (3)

with constant delay D0 is ∆D = 0.096 (see [9] for details

on the computation of this quantity). Thus, the realizations of

both D1 and D3 lead to a delay difference which is beyond

the robustness margin of the closed-loop system, resulting in

a challenging set-up as prediction-based controllers are well-

known to be sensitive to delay mismatch [14].

Simulations performed for constant transition probabilities

equal to the above initial conditions (i.e., τij = 0) resulted

4The subscript i is omitted in this section, as the probability transitions do
not depend on the initial delay value. This is consistent with the fact that the
expectation in (5) is conditioned by the initial delay value. Besides, to avoid a
conflict between the initial condition in (2) and their discretized version used
in simulation, we denote their initial conditions as Pj(0, 0

+).

0 5 10 15 20 25 30

0

1

2

0

0.2

0.4

0.6



0 5 10 15 20 25 30

0

1

2

0

0.2

0.4

0.6

(a) Example of a realization of the random delay D

0 5 10 15 20 25 30

0

0.2

0.4

0.6

(b) Dynamic of transition probabilities P1, P2 and P3.

(c) Monte Carlo simulation of log ‖X‖ and the closed-loop input U (100
trials), in which the means and the standard deviations are highlighted by the
colored lines.

Fig. 2: Simulation results of the closed-loop system (34) and

(3) for D = (0.1, 2.0, 2.1)T , X(0) = [1 0]T and U(t) = 0
for t ≤ 0. The prediction horizon is D0 = 2.0. The transition

probabilities follow (2) with τ(t) = τ⋆e−kt (13×3 − I3) (τ⋆ =
0.2 and k = 0.1).

VI. CONCLUSION

In this paper, we proposed a constant horizon prediction-

based controller to compensate for a random input delay

modeled as a Markov process with a finite number of values.

We proved the exponential mean-square stability of the closed-

loop control system provided that the chosen prediction hori-

zon is in average close enough to the delay value. Simulations

illustrated the relevance of this condition and the interest of

this prediction-based control law.

Future works will focus on the adaptation of the prediction-

horizon to the current delay distribution, as it is likely to

increase the closed-loop delay robustness, and thus represents

an interesting design feature to explore.

APPENDIX

Lemma 3: Consider the control law defined in (3) and the

function h defined in (14), there exist M1,M2 > 0 such that

‖h(t+D0(· − 1))‖2 ≤M1V (t), t ≥ D0 , (36)

max
s∈[−D,0]

U̇(t+ s)2 ≤M2V (t), t ≥ 2D . (37)

Proof: (36) is proved in [8]. Observing that h(t) =
D0U̇(t), (37) is obtained with similar arguments.

Lemma 4: There exist NX , Nw, Nµ > 0 such that, for all

j ∈ {1, . . . , r} and t ≥ D,

‖ṽj(t)‖
2 ≤ NX |X(t)|2 +Nw‖w(t)‖

2 +Nµ‖µ(t)‖
2 . (38)

Proof: From the definition of the input estimation er-

ror (9), it follows that

‖ṽj(t)‖
2=

∫ 1

0

(U(t+Dj(x− 1))− U(t+D0(x− 1)))
2
dx

(39)

≤
4

D

∫ t

t−D0−D

U(s)2ds ≤ 4
D +D0

D

(

‖v̂(t)‖2 + ‖µ(t)‖2
)

.

Besides, from the inverse of the backstepping transformation

(12), which is

v̂(x, t) =w(x, t) +Ke(A+BK)D0xX(t)

+

∫ x

0

KD0e
(A+BK)D0(x−y)Bw(y, t)dy ,

(40)

it follows, using Young’s and Cauchy-Schwarz inequalities

that ‖v̂(t)‖2 ≤ N1|X(t)|2 + N2‖w(t)‖
2 with the positive

constants N1 = 3|K|2e2|A+BK|D0 and N2 = 3(1 + |K|2

D2
0e

2|A+BK|D0 |B|2). Hence, (38) follows with NX = 4N1

(D + D0)/D, Nw = 4N2(D + D0)/D and Nµ = 4(D +
D0)/D.
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