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Abstract. We are interested in electricity price forecasting at the Euro-
pean scale. The electricity market is ruled by price regulation mechanisms
that make it possible to adjust production to demand, as electricity is
difficult to store. These mechanisms ensure the highest price for producers,
the lowest price for consumers and a zero energy balance by setting day-
ahead prices, i.e. prices for the next 24 hours. Most studies have focused
on learning increasingly sophisticated models to predict the next day’s 24
hourly prices for a given zone. However, the zones are interdependent and
this last point has hitherto been largely underestimated. In the following,
we show that estimating the energy cross-border transfer by solving an
optimization problem and integrating it as input of a model improves the
performance of the price forecasting for several zones together.

Keywords: Electricity Price Forecasting · Optimization-based data
augmentation · Machine learning

1 Introduction

Energy challenges are even more important as our societies have become extremely
dependent on it. However, the production of energy, and in particular electricity,
is linked to many intricate factors, based on different estimates such as weather
forecasts (influencing both production and consumption) or production capacities
for various means. Added to this complexity is a tariff regulation mechanism
[13] used to balance production and consumption, as electricity is hard to store.
This algorithm maximizes social welfare defined as the sum of consumer surplus,
supplier surplus and congestion rents from cross-border exchanges. It ensures the
highest price for producers, the lowest price for suppliers and a constant energy
balance by setting day-ahead prices, i.e., 24-hourly prices for the next day.

Being able to forecast day-ahead energy prices is crucial to control energy
production and for a successful energy transition. Thus, many works [5,16,9,15]
have sought to produce the most accurate price prediction models possible. In
[14], we have shown that approaches based on machine learning models are
superior to benchmark auto-regressive models. They provide much more accurate
predictions and are fast enough to be used operationally. We also strove for
predicting the prices of different zones jointly. Although we did not obtain a
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significant improvement in the forecasts, the analysis of the contributions of the
variables highlighted the importance of integrating data from foreign countries
for the price forecast. For example, we have shown that Swiss prices contribute
significantly to increasing the accuracy of French, Belgian and German price
forecasts. We concluded that we had not used enough information to correctly
model the European network, in particular that we had not sufficiently taken
into account transfer capacities and cross-border energy flows in our models.

We propose to overcome these limitations by putting forward different ways
to integrate cross-border flows into predictive models. Cross-border flows are
constrained by the Available Transfer Capacity (ATC) between two countries that
share a border. However, this maximum capacity is not fully used continuously and
knowing the flows between countries would undoubtedly improve the prediction
models. For this, we propose to take advantage of domain knowledge to estimate
cross-border flows by a combinatorial optimization model.

The proposed approach is reversed from the predict-then-optimize approaches
[3,11] used to solve many decision-making problems by combining machine
learning and combinatorial optimization. In this framework, some parameters of
a combinatorial optimization problem are estimated from other features based on
historical data. Our approach use a combinatorial optimization model to estimate
features that are then used to train a machine learning model.

In this paper, we introduce the problem of electricity price forecasting on the
European market (Section 2). Our research hypothesis is that we can improve
the model prediction by enriching the input data thanks to domain knowledge.
Especially, we introduce the problem of estimating the cross-border flows (Sec-
tion 3). We design two distinct combinatorial optimization problems and their
combination. Then, we use the results of these optimization problems in a multi-
zone forecasting model that predicts prices for 35 distinct zones of the European
market (Section 4). The experimental evaluation (Section 5) confirms that the
cross-border flows estimation makes it possible to improve the model performance.
We then conclude with a broader discussion and a forward look (Section 6).

2 Electricity price forecasting problem on the European
market

Unlike other commodities (e.g., cereals, oil), electricity cannot be efficiently stored.
To prevent failures on the electricity network, balancing algorithms are used.
On the European market, the euphemia [13] algorithm fixes hourly prices by
matching demand, production and exchanges across Europe in a way to maximize
the social welfare while taking into account the market and network constraints:
(1) The energy balance must be zero for all zones at all times. (2) The flow
of energy between two zones must not exceed the maximum transfer capacity
between these two zones. (3) Where possible, the energy flow between two areas
is maximized to generate more profit from congestion rents. This algorithm runs
daily at noon and determines the day-ahead prices, matched demand and supply
and energy flows of the 46 European zones (see Figure 1). The electricity price



Forecasting Electricity Prices: an Optimize then Predict-based approach 3

Fig. 1. European electricity market map: Some countries are divided into several zones
(e.g., Italy, Norway). Prices are established for each zone. Energy can flow between
connected zones. Areas or connections colored in red are excluded from our dataset due
to lack of data.

forecasting problem (EPF) consists in predicting the prices over 24 hours before
their settlement. Electricity prices are constrained by fundamentals variables:
consumption, generation, transfer capacities. More precisely, pricing algorithms
use a forecast of those variables for the next day.

To solve the EPF problem, we represent the European market on day d
using a graph. Each zone is represented by a node z for which day-ahead prices
Dz ∈ R24 must be predicted. For some problems, the required amount of energy
to be produced Ez ∈ R24 also has to be predicted. Connected zones on the
market are linked in the graph by edges (z, z′), associated with day-ahead flows
Fz,z′ ∈ R24. The features used by the pricing algorithm are (1) Consumption
forecast for the next day Cz ∈ R24 (2) Renewable generation forecast for the next
day Rz ∈ R24, (3) Programmable generation forecast for the next day Gz ∈ R24,
(4) Maximal generation capacity for the next day Vz ∈ R24, (5) Current Prices
Pz ∈ R24, (6) Available Transfer Capacities for the next day Az,z′ ∈ R24 which
is the maximum amount of energy that can be sent from z to z′. Since renewable
energy production is subject to external factors that are not controllable (wind
speed, solar radiation, etc...), we distinguished the two types of source by Rz

and Gz.
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Hence, C, R, G, P, V and A are known at prediction time, while D, E and
F are unknown. In what follows, we propose to take advantage of knowledge
from the field of electricity pricing to estimate the flows F between zones by
combinatorial optimization, before using those results to forecast the day-ahead
prices D.

3 Estimate cross-border flows by combinatorial
optimization

The euphemia algorithm sets electricity prices on the European market by satis-
fying the constraints listed in Section 2. These constraints lead to sophisticated
and counter-intuitive flows between zones, some zones playing the role of transit
zones to make possible energy exchanges between two other zones. To better
model these dynamics, we use domain knowledge to approximate day-ahead flows
F and use them as predictive variables into EPF models. In this section, we
describe four different methods for predicting F.

3.1 A formalization by linear programming

The most natural way to formulate the flow optimization problem is to write the
euphemia algorithm as a linear programming problem. In doing so, the network
constraints are explicitly enforced, and the Day-Ahead Flow F and required
energy generation E are computed:

Flin = arg max
Fz,z′ and Ez

∑
z,z′

Fz,z′(Pz′ − Pz)

under const.


Cz − Rz − Ez +

∑
z′

Fz,z′ −
∑
z′

Fz′,z = 0 ∀z

Ez ≤ Vz ∀z

Fz,z′ ≤ Az,z′ ∀z, z′

Flow-related profit is maximized under three constraints. The first constraint
ensures a zero energy balance, the second stipulates that the planned production
must not exceed its maximum capacity, and the third imposes that the flows do
not exceed the capacities of the lines. The cost aims to maximize congestion rents
by maximizing potentially valuable flows: flows from a zone with lower prices
to a zone with higher prices. In this set-up, we consider the consumption Cz

and renewable generation forecasts Rz as fixed. The required generation Ez is
determined to match Cz − Rz.

3.2 Formalizing the problem by a least-squares loss

The formulation of the problem by linear programming has a major drawback.
We allow the generation of zone to expand to its maximum capacity Ez ≤ Vz

without penalty to the cost. In practice, switching power plants on or off has a
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Problem CC MAE (MWh SMAPE (%)
Flin 0.153 944.63 120.32
Flsq 0.389 418.05 105.93

Table 1. CC, MAE and SMAPE metrics between Flin and Flsq optimized flows and
actual day-ahead flow values F on the train dataset.

cost that is not linear with respect to the generated volume. We thus propose to
rewrite the problem by transforming the energy balance constraint into a cost to
be minimized.

Flsq = arg min
Fz,z′

∑
z

(∑
z′

Fz,z′ −
∑
z′

Fz′,z + Cz − (Rz + Gz)
)2

under constraint 0 ≤ Fz,z′ ≤ Az,z′ ∀z,z′

The squared loss ensures that unbalanced zones are heavily penalized. Thus, we
do not have to penalize the objective by the price difference and, we can also
remove the determination of Ez from the problem and we use the programmable
generation forecast Gz instead.

3.3 Combining the two formalizations

To study the estimation quality of these two models, we solved the two opti-
mization problems for each hour of our train dataset (see Section 4.1) using
scipy4. As flow values are known a posteriori, we can evaluate the quality of
the estimation on the train set using standard measures (see description in
Section 5). The metrics obtained are reported in Table 1. It is obvious that Flsq
outperforms Flin on the dataset. However, by analyzing the estimations with
a lower granularity, we observe that the performances vary according to graph
edges. For example, the flow on the edge between Norway-5 and Norway-1 is
well handled by problem Flsq as shown in Figure 2 (left) while the flow on edge
between France and Germany is better handled by problem Flin (see Figure 2
right). To take advantage of these two models, we sought to identify the market
conditions allowing to differentiate these two scenarios. For this, we first define
the loss difference between the results of the two problems as

L(t)(z, z′) = |F(t)
z,z′ − Flsq(t)

z,z′ | − |F(t)
z,z′ − Flin(t)

z,z′ |

where t = (d, h) is one of the N possible time-steps. We analyze the relationship
between L(t)(z, z′) and the characteristics of the market

x ∈ (Cz, Cz′ , Rz, Rz′ , Pz, Pz′).
4 https://scipy.org/

https://scipy.org/
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Fig. 2. Optimized flows Flin (blue), Flsq (green) and the actual Day-Ahead flows F
(red) between the Norway-5 and Norway-1 zones (left) and the France and Germany
zones (right). On the left, we observe that Flsq comes close enough to the Day-Ahead
flow F, while Flin does not. On the right, we observe the opposite.

We break down x into 100 quantiles xq and compute the average loss for each
(x, q):

L(z, z′, x, q) = 1
N

∑
t∈T (x,q)

L(t)(z, z′)

with T (x, q) = {t | x(t) ∈ [xq, xq+1]}. Market conditions where L(z, z′, x, q) > 0
correspond to situations where it is preferable to use Flin instead of Flsq. We
name the results of this combination Fcmb. To generate Fcmb on the test
dataset, we keep the same market conditions (z, z′, x, q) as found on the train
dataset. This prevents data leaks related to the use of posterior data for a
prediction.

3.4 One-sided flows

In the above formalization, we enable bilateral flows between two zones, i.e.
Fz,z′ > 0 and Fz′,z > 0 can both occur, which matches the logic of euphemia.
However, in practice most connections never have two-sided flows. To further
improve our flow modeling, we identify one-sided connections and apply one-
sideness in our flow estimations. For each link (z, z′), we count the number of
times on the train dataset when the flow is one-sided i.e. when we have Fz,z′ ≥ 0
and Fz′,z = 0. If this occurs more than 75% of the time, we consider the edge
(z, z′) as always one-sided. For this, we keep the most important predicted flow
from which we subtract the least important flow. We set the latter to 0. In
this way, the energy balance in the two zones remains the same. We apply this
transformation to Fcmb and call the result Fos.
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4 Electricity price forecasting models

4.1 The dataset

In this section, we tackle the EPF problem on the European market. The data
is available free of charge5 and we collected 35 out of 46 zones, linked by 63
connections. For each zone z, the attributes are Xz = (Cz, Rz, Gz, Pz) ∈ R96.
Hence, each day is described by 35 × 96 predictive features and the targets
to be predicted are the 24 hourly prices for each zone. We exclude the Swiss
and Great-Britain prices from the prediction task. Although they are part of
the network, their prices are determined prior to the closing of euphemia and
we prefer to use them as predictive variables. We predict the 24 prices of the
remaining 33 zones every day: Y ∈ R792. Our dataset spans from 01/01/2016
to 31/12/2021. We use the last two years (2020, 2021) as test set. Two years is
a good duration because the prices show a strong seasonality. The year 2019 is
kept as a validation set for hyper-parameter search.

In addition to the 35 × 96 predictive features cited above, we consider the
Available Transfer Capacities for each connection A or instead one of the flow
estimates Flin, Flsq, Fcmb, or Fos for each link, leading to 126 × 24 additional
predictive variables. Each line of our dataset corresponds to a day and has 6384
values.

4.2 The machine learning models

We use Deep Neural Network and Convolutional Neural Network to predict
the electricity prices. Deep Neural Networks (DNN) [6,7,8,12] are the most
commonly used models in EPF. Its training samples are vectors s ∈ R6384.
Convolutional Neural Networks (CNN) have also seen a growing interest in EPF
over the past years [7,4,1]. We compute the convolutions along time and each
sample is a vector s ∈ R(35+126)×24. Finally, we propose to use a Graph Neural
Network (GNN), which is new for the EPF domain. GNNs make it possible
to exploit data structured as graphs as described in Section 2. We train our
GNN for the node prediction problem by stacking graph convolution layers that
update the node embeddings. This is followed by linear layers that map node
embeddings to their predicted values. We use tensorflow and pytorch-geometric
libraries 6. Each model (DNN, CNN, GNN) is trained on 5 different versions
of our dataset according to the method use to estimate F: A, Flin, Flsq, Fcmb,
Fos. To be fair in our experiments, we set a time limit for the hyper-parameter
search. More precisely, we let our program explore the hyper-parameter grid
for 24 hours for each model with F = A on a 20cpus computer and use the
same configuration for all variants of F. This introduces a slight bias as the
resulting best configuration is chosen for its performance on the A dataset. After
finding the optimal configuration, we calculate forecasts on the test dataset using
5 https://transparency.entsoe.eu
6 https://www.tensorflow.org/, https://pytorch-geometric.readthedocs.io

https://transparency.entsoe.eu
https://www.tensorflow.org/
https://pytorch-geometric.readthedocs.io
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Problem CC MAE (MWh) SMAPE (%)
A 0.14 917.59 111.43
Flin 0.116 876.51 111.12
Flsq 0.380 388.95 105.35
Fcmb 0.367 396.46 102.52
Fos 0.375 314.5 81.19

Table 2. Metrics for flow estimation on the test dataset for the different methods. The
Flsq method outperforms the Flin methods. The Fcmb method does not improves
the metrics, while the Fos method improves performances.

recalibration. It consists in re-training the model using the most recent data
before making forecasts. Once a test set sample is predicted, we can integrate its
predictions into the training dataset and retrain the model. We recalibrate our
models every 30 days.

5 Experiments

We compare the values between the predicted Ŷz,h and the real Yz,h target
variables for the different zones z and hours h. We use standard measures as
MAE(Y, Ŷ ) (the average of the absolute difference between the values over the
target variables), SMAPE(Y, Ŷ ) (the symmetric mean absolute percentage error
over the target variables), and CC (the average correlation coefficient over the
target variables). To check the statistical significance of the results, we use the
Diebold & Mariano (DM) test [2] that compares two models M1 and M2. The null
hypothesis H0 is that Loss(M1) > Loss(M2), i.e.the first model is less efficient
than the second. We can reject H0 and conclude that M1 outperforms M2 if
the resulting P-value is lower than a fixed threshold of 0.05. We use SMAP E as
Loss to better account for the different price scales. To make the experiments
reproducible, the source code and the data are made available7.

5.1 Results

Flow estimate The results of the flow estimation problems on the test set are
first presented in Table 2. For comparison, we also calculated the error between
the network constraints A and the actual flows. We make the same observation
as for the train set: Flin barely improves the quality of the flows while Flsq
dramatically reduces the error. Then, their combination Fcmb does not shows
notable metric improvement while setting up one-sided flows Fos does. We
perform DM tests that confirms that the flow estimate quality increases with the
complexity of the estimation method i.e. Fos outperforms every method, Fcmb
outperforms every method except Fos and Flsq is better than Flin.

7 https://github.com/Leonardbcm/OPALE.git

https://github.com/Leonardbcm/OPALE.git
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Price forecast The results of the EPF problem on the test period are presented
in Table 3. The left part display the metrics, while the right part of details
the P-values of the DM tests. On each line, we first compare the model on the
line with the same model using other flow estimates (first 5 columns), then we
compare it to other models using the same flow estimate (last 3 columns). We
can for instance confirm that the DNN model using the network constraints A
is significantly more efficient than the CNN using A (first line).

The CNN models are less competitive. They obtain the worst metrics and
the DM test confirms that they are significantly less efficient than other models
using the same flows (penultimate column). The GNN models are the most
adequate models for this problem. Their metrics are better and the DM test
statistically confirms that they outperform other models using the same flows
(last column). The DNN models thus stand in between. We now analyse the
performance variations with respect to the flow estimation method. We compare
results obtained using the network constraints A and those using estimation
methods F (4th column). We notice that, except for Flin, estimating the flows
significantly improves performances for all models. Moreover, the Flin method is
significantly less efficient than every other (5th column). However, which flow
estimation method is better for all models remains unclear. The best flow estimate
for the DNN model is the Flsq (3rd row), Fcmb (9th row) for the CNN, while
for the GNN, it is impossible to statistically decide between Fos and Flsq,
despite metric differences.

Detailing the DM tests by zone, we observe that replacing A by Flsq, Fcmb
or Fos leads to overall improvements, even though local decrease can occur
(FR, HU, CZ, SK, SI, NO-5, DE, AT). Using Flin improves performances less
often than other methods and can degrade forecasts on multiple neighboring
areas (Italy for the CNN). Fcmb shows the biggest improvements and the lowest
decrease for all models. Using Fcmb in a EPF model seems to be a reasonable
default choice. Lastly, almost all zones profit from using F for the DNN.

5.2 SHAP Values

It is possible to further analyze our models and determine the impact of the
different groups of features on the predictions. To that end, we consider the SHAP
value approach [10], a feature attribution method that assigns to each feature
a value that reflects its contribution in the prediction process. We denote the
contribution of a column c to the target o on day d as Φd,o

c . A column c = (f, h, z)
refers to the feature f at hour h for zone z or pair of zones (z, z′) if f is an edge
attribute. Hence, the contribution tensor Φ ∈ R731×792×6385 is made of 3.7 billion
values. For computational issues, we only compute 500 SHAP values on the first
30 days of the test dataset. We normalize the results so that the sum of each
contribution equals 1 for each target of a given day to obtain Φ̄d,o

c , and the sum
of the contributions for each feature f is denoted Φ̄f .

We compute Φ̄f for each f ∈ (C, G, R, P, F) and display them in Table 4.
First, we observe that the GNN’s top contributing features are the prices that
explain 30% of the forecasts, against approximately 20% for the other models.
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Models CC MAE SMAPE
(e/MWh) (%)

DNN_A 0.893 13.97 29.76
DNN_Flin 0.903 13.44 28.51
DNN_Flsq 0.904 12.96 28.26
DNN_Fcmb 0.906 13.07 28.38
DNN_Fos 0.909 13.2 28.84
CNN_A 0.866 14.41 32.17
CNN_Flin 0.865 14.54 32.23
CNN_Flsq 0.875 14.19 32.01
CNN_Fcmb 0.867 14.04 31.81
CNN_Fos 0.872 14.26 31.87
GNN_A 0.925 10.23 24.59
GNN_Flin 0.926 10.22 24.6
GNN_Flsq 0.925 10.17 24.6
GNN_Fcmb 0.926 10.18 24.46
GNN_Fos 0.926 10.14 24.52

A Flin Flsq Fcmb Fos DNN CNN GNN

- 1.0 1.0 1.0 1.0 - 0.008 1.0
0.0 - 1.0 1.0 0.998 - 0.0 1.0
0.0 0.0 - 0.001 0.0 - 0.0 1.0
0.0 0.0 0.999 - 0.001 - 0.0 1.0
0.0 0.002 1.0 0.999 - - 0.0 1.0

- 0.035 0.992 1.0 0.958 0.992 - 1.0
0.965 - 1.0 1.0 0.998 1.0 - 1.0
0.008 0.0 - 0.996 0.175 1.0 - 1.0

0.0 0.0 0.004 - 0.002 1.0 - 1.0
0.042 0.002 0.825 0.998 - 1.0 - 1.0

- 0.819 0.981 0.928 1.0 0.0 0.0 -
0.181 - 0.957 0.884 0.996 0.0 0.0 -
0.019 0.043 - 0.31 0.942 0.0 0.0 -
0.072 0.116 0.69 - 0.937 0.0 0.0 -
0.0 0.004 0.058 0.063 - 0.0 0.0 -

Table 3. (Left) Metrics on the test period. (Right) DM test’s P-values. For each trained
model (line), the P-value is computed against the same model with other flows (first
5 columns) and against other models with the same flows (last 3 columns). The null
hypothesis states that the column model outperforms the row model. With a threshold
of 0.05, the bold values indicate that the row model outperform the column model.

Model DNN CNN GNN
FA Flin Flsq Fcmb Fos FA Flin Flsq Fcmb Fos FA Flin Flsq Fcmb Fos

C 19.4 19.2 19.3 19.3 18.8 19.3 19.2 18.9 18.8 18.6 16.7 17.0 16.7 16.7 17.0
G 20.4 20.5 20.0 20.0 19.5 20.1 20.6 10.7 20.5 20.0 18.1 18.0 18.0 18.0 18.3
R 21.5 21.6 20.7 20.7 20.1 22.1 21.5 21.0 20.9 22.3 19.4 19.1 19.5 19.6 19.5
P 20.5 20.5 20.7 20.5 20.3 20.1 20.5 21.3 21.7 20.4 31.6 31.5 31.0 30.9 30.6
F 18.5 18.2 19.3 19.4 21.2 18.4 18.1 18.1 18.2 18.7 14.2 14.4 14.8 14.8 14.5

Table 4. Average contribution (%) for the predictions grouped by feature. For the
DNN and CNN models, we observe that the average contribution of the flows F
increases as we use more sophisticated estimation methods.

The GNN also uses F the less (14% against 18-20%). Next, we observe that
the DNN model favors the use of F at the expense of C, G and R as we use
more sophisticated flow estimate (Flsq, Fcmb, Fos). In contrast, the average
contribution of F in the CNN and GNN does not show a clear pattern. To detail
these observations, we display in Figure 3 the differences of contribution between
A and the used estimate F. Green squares on coordinate (i, j) indicate that the
contribution of F is more important than the contribution of A for predicting
the zone i for model j. We observe that the Flin contribution differences are
mostly negative i.e. models rely less on Flin than on A for forecasting prices.
Next, we see that the DNN increases the contribution of F for almost all zones.
Finally, the CNN always lowers the contribution of Spain (ES), Portugal (PT),
and Italy (CNOR, CSUD and SARD). These zones are characterized by having
few (1 or 2) connections. Latvia (LT) has a similar behavior for the GNN model.
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Fig. 3. Difference in contribution made by the flow estimates F compared to the
available transfer capacity A for the different models and zones. The green (resp. red)
squares indicate that F contributes more (resp. less) than A.

5.3 Discussion

The joint analysis of the model’s performances and SHAP values of Flin shows
us significant degradation of the forecasts and less contribution for the forecast
than A. This leads us to conclude that the Flin method is not a good flow
estimation method. Apart from Flin, other flow estimation methods are all
beneficial for the EPF task, without being able to select the best one overall. The
DNN is the less sophisticated model and cannot model the network. However,
observing both a significant performance improvement and an increase of the
average contribution of F over A for almost all zones, we infer that the DNN
model takes benefit from using flow estimation methods. Next, the CNN use a
matrix of arbitrary-arranged input features and a convolution kernel and dilation
rate inconsistent with the European network. Consequently, zones and flows are
not associated. Hence, CNN is the less tailored model for EPF. Lastly, the GNN
model uses the graph representation of the network, with connections modeled
as edges. This ability lowers the contribution of A or F in the forecast: node
embeddings are already updated using their neighbors even with no flows. This
is even more the case for isolated zones as their relationships with other zones
are simpler. Another consequence is that GNN is the best model for EPF at the
European scale.

6 Conclusion

In this paper, we introduce the problem of day-ahead electricity price forecasting
considering many zones together and their interdependence due to price regulation
mechanisms. While many works have focused on the construction of increasingly



12 L. Tschora et al.

sophisticated models for specific regions of the European market, we propose
new ways of estimating features based on domain knowledge, and this upstream
of learning. We show that an optimize then predict strategy makes it possible
to improve the learned models by fully considering cross-border energy flows
estimated by several optimization problems. A SHAP-value analysis confirms that
the estimated flows contribute more to the prediction than the Available Transfer
Capacities, especially when the model is simple (DNN). For more sophisticated
models such GNN, flows better influence predictions at the center of the European
market while being less important for the zones at the periphery of the market.

Two main directions can be considered as future work. First, we could replace
the generation forecast used in our models by a start-up/shut-down cost model for
power plants. It would better capture dynamics between generation and day-ahead
prices. Going further, we could also model part of the EUPHEMIA algorithm.
Then, our work brings forward the question of mixing optimization problems and
Machine Learning. Integrating the optimization problem as a layer in our Neural
Network to achieve a Optimize and Predict framework would directly link the
task loss (day-ahead price forecast) to the sub-task (flow estimation).
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National Association for Research and Technology).
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