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Raphaël Pile1,2, Guillaume Parent3, Emile Devillers1,2, Thomas Henneron2,

Yvonnick Le Menach2, Jean Le Besnerais1 and Jean-Philippe Lecointe3

1EOMYS ENGINEERING, Lille-Hellemmes 59260, France
2Univ. Lille, Arts et Metiers ParisTech, Centrale Lille, HEI, EA 2697 - L2EP
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Abstract—In an electrical machine, the Maxwell Tensor is
widely used to compute global forces or local pressure along a
surface in the air. This communication proposes to highlight the
limits of the method with an academic case of slotless stator and
rotor. In particular an analytic demonstration shows the existence
of coefficients depending on the geometry and the wavenumber
between the application of the Maxwell Tensor in the air-gap and
the stator magnetic pressure.

Index Terms—Maxwell Tensor, Magnetic pressure, Electrical
machines, Magneto-mechanical, Vibration.

I. INTRODUCTION

The Maxwell Tensor (MT) is widely used to compute
local surface pressure and integrated forces on a given
surface surrounding a body. Nonetheless the location of
this surface in the studied domain has an important impact
on the results [1]. In the vibro-acoustic study of electrical
machines, such phenomenon can have an important impact
on high wave-number’s amplitude. The theoretic magnetic
pressure is exactly the application of the MT at the
air-ferromagnetic interface for linear isotropic media [2].
However the application of the MT at the interface is source of
numerical errors [3] such that the application of the MT in the
air-gap is of great interest. Then this communication proposes
to highlight the limits of the application of MT in the air-gap
compared to the theoretic one. The deviation between the
applications of Maxwell Tensor are quantified with coefficients
depending on the geometry and the wavenumber. To this
purpose, the magnetic problem and the main application
of MT will be presented. Then the analytical magnetic
potential will be solve leading to an analytic expression of
the MT in the air-gap. The last steps will be to compare the
air-gap expression with theoretic magnetic pressure in order
to conclude on the limits of the airgap MT.

II. PROBLEM DEFINITION

A. Magnetic problem

Understanding the sources of MT pressure variations is
a difficult task because of numerous artifacts that can be
produced by the numerical simulation of electrical machines
such as slotting effect, sharp geometries, interference between
the wave-numbers, etc. To avoid these artifacts, an academic
slotless machine in Fig.1 is studied. In order to have only one
magnetic wave-number, the magnetic potential z-component
Az is imposed at radius Rag such that ∀θ ∈ [0, 2π]:

Az(Rag, θ) = β sin(nθ), n ∈ N∗ (1)
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Fig. 1. Slotless electrical machine used to compare magnetic pressure on the
stator and in the air-gap

The second boundary condition on the stator external yoke Re
is imposed as:

Az(Re, θ) = 0 (2)

Finally, the conservation of normal magnetic flux and
tangential magnetic field comes directly from Maxwell
equations and can be expressed with the magnetic potential
at the interface between the air (permeability µ0) and
ferromagnetic media (relative permeability µr):

∀θ ∈ [0, 2π]

{
Az(R−

s , θ) = Az(R+
s , θ)

1
µ0

∂Az
∂r (R−

s , θ) = 1
µrµ0

∂Az
∂r (R+

s , θ)
(3)

Then the 2D linear potential vector is solved.

1

r

∂

∂r

(
1

r

∂Az

∂r

)
+

∂2Az

∂θ2
= 0 , ∀θ ∈ [0, 2π] , ∀r ∈ [0,Re] (4)

This partial derivative problem can be solved analytically
according to [4]. Thus the magnetic potential, flux and field
can be analytically computed in the studied domain and it
leads to the expression (19) in linear isotropic ferromagnetic
media. The next section provides the calculation steps which
leads to the analytical expression of magnetic potential, flux
and field.

B. Maxwell-Tensor

The theoretic application of the MT for the 2D linear
computation of magnetic pressure P requires to apply (5) on
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a surface which exactly corresponds to the interface between
the air and a ferromagnetic: media [2][5].

P =
1

2

(
1

µ0
− 1

µr

)(
B2

n −B2
t

)
(5)

where Bn and Bt are the magnetic fluxes locally normal (resp.
tangential) to the interface. Note that this expression should
leads to the same results on both side of the interface since Bn

and Bt are continuous. The first major hypothesis is to neglect
ferromagnetic permeability contribution 1

µ0
≫ 1

µr
such that

(5) is reduced to:

P =
1

2µ0

(
B2

n −B2
t

)
(6)

The last common hypothesis is to consider Bn ≫ Bt close to
an interface between air and ferromagnetic media. It leads to
the simplified MT:

P =
1

2µ0
B2

n (7)

Supposing the two last hypothesis, the application of the MT
at the interface remains source of numerical errors [3] Since
(6) and (7) does not depend on ferromagnetic properties, it
can be observed in recent publications that the MT is nearly
always applied in the air-gap and this method can leads to
accurate results for vibro-acoustics studies. This paper aims
to identify the limits of such approximation of the MT. Since
the paper focuses on a slotless case, and for more clarity, the
previous Bn and Bt will be respectively assimilate the their
projection Br and Bθ in the polar referential.

III. ANALYTIC MAGNETIC POTENTIAL

A solution exists and is unique for the previous system [6].
Then a method consists to state a function Az and to check if
it fulfills the boundary conditions: a solution similar to [4] is
searched for the upper air-gap ∀θ ∈ [0, 2π] and ∀r ∈ [Ra, Rs]:

Az(r, θ) =

(
γn

En(r,Rs)

En(Ra, Rs)
+ αn

En(Ra, r)

En(Ra, Rs)

)
sin(nθ) (8)

with En a polynomial function defined by:

En : (x, y) ∈ R2 →
(
x

y

)n

+
(y
x

)n

(9)

In the same way, for the stator ring ∀θ ∈ [0, 2π] and
∀r ∈ [Rs, Re]:

Az(r, θ) =

(
ζn

En(r,Re)

En(Rs, Re)
+ χn

En(Rs, r)

En(Rs, Re)

)
sin(nθ) (10)

Under this form, the vector Az is satisfying the Poisson’s
equation 4. Then the coefficient γn, αn, ζn and χn have to
be determined in order to satisfy the boundary conditions. If a
correct set of these coefficients is found, then Az would be the
unique solution of the problem. First, satisfying the boundary
condition (1) in the air-gap leads to:

γn = β (11)

The second boundary condition (2) leads to:

χn = 0 (12)

Next the interface conditions (3) can be used to determine αn

and ζn:

αn = ζn (13)

(β ∂En
∂r (r=Rs,Rs)+αn

∂En
∂r (Ra,r=Rs))

En(Ra,Rs)
=

ζn
∂En
∂r (r=Rs,Ry)

µrEn(Rs,Ry)
(14)

The partial derivatives of the polynomial E can be expressed
the following way:

∂En(r,R)
∂r = n

rFn(r,R)

∂En(R,r)
∂r = −n

rFn(r,R)

(15)

with Fn a polynomial function defined by:

Fn : (x, y) =

(
x

y

)n

+
(y
x

)n

(16)

Then (14) leads to:

αn =
2β

Fn(Ra,Rs) +
Fn(Rs,Re)En(Ra,Rs)

µrEn(Rs,Re)

(17)

Thus, the unique solution of the system is entirely defined with
the geometry constant and excitation’s wavenumber. Note that
considering infinite permeability in the ferromagnetic media
leads to αn ≈ 2

Fn(Ra,Rs)
such that the solution in the air-gap

becomes independent of the stator’s thickness. The magnetic
flux is derived from the magnetic potential:

B = curl(A) =
1

r

∂Az

∂θ
er −

∂Az

∂r
eθ = Brer +Bθeθ (18)

With (18) and (8) radial magnetic flux and tangential magnetic
flux can be analytically expressed:Br(r, θ) =

n
r

(
β En(r,Rs)

En(Ra,Rs)
+ αn

En(Ra,r)
En(Ra,Rs)

)
cos(nθ)

Bθ(r, θ) =
n
r

(
β Fn(r,Rs)

En(Ra,Rs)
− αn

Fn(Ra,r)
En(Ra,Rs)

)
sin(nθ)

(19)

IV. ANALYTIC MAXWELL TENSOR STUDY

A. Simplified Maxwell Tensor with infinite permeability

In this first section, the simplified MT (7) is considered such
that an air-gap magnetic pressure function is defined:

P :

{
[Ra, Rs]× [0, 2π] → R+

(r, θ) → 1
2µ0

B2
r (r, θ)

(20)

As previously discussed, the magnetic pressure computed with
this function is only rigorous when r = Rs. Then the rigorous
application is compared with the air-gap one by defining a
ratio function between both:

R :

{
[Ra, Rs]× [0, 2π] → R+

(r, θ) → P (r,θ)
P (Rs,θ)

(21)

Using (19), (21) can be written as:

R(r, θ) =

(
Rs

r

)2 (
2En(r,Rs)Fn(Ra, Rs) + En(Ra, r)

En(Ra, Rs)

)2

(22)

The advantage of comparing ratio is that the results do
not depend on the angular position θ nor the excitation
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amplitude β. This first result is plotted on the the Fig. 2
for several excitation wavenumber n. It can be observed that
both location in the air-gap r and considered wavenumber n
have a combined impact on the computed magnetic pressure.
The phenomenon has an important impact for high magnetic
wavenumbers. At this point, it is possible to suspect that
the Bθ contribution is not negligible for high magnetic
wavenumber n. The next section take up this possibility.

Fig. 2. Ratio between the air-gap MT and theoretic magnetic pressure as
function of radius for several wavenumbers

B. Maxwell Tensor with infinite permeability

Now the MT with tangential magnetic contribution (6) is
considered such that a new air-gap magnetic pressure function
is defined:

P :

{
[Ra, Rs]× [0, 2π] → R+

(r, θ) → 1
2µ0

(
B2

r (r, θ)−B2
θ (r, θ)

)
(23)

The definition of R (21) stay the same, but the comparison
is not straightforward. Indeed, since Br depends on cos(nθ)
and Bθ depends on sin(nθ), the ratio R depends on θ too. In
order to better understand the air-gap evolution of the MT, a
Fourier decomposition must be performed:

P (r, θ) = P0(r) + P2n(r) cos(2nθ) (24)

Introducing the amplitude of magnetic flux as follow:{
Br(r, θ) = Br(r) cos(nθ)
Bθ(r, θ) = Bθ(r) sin(nθ)

(25)

Then the MT magnetic pressure can be decomposed under the
form:

P (r, θ) =
Br

2(r)−Bθ
2(r)

2
+

Br
2(r) +Bθ

2(r)

2
cos(2nθ)

(26)

This is a classical result: a magnetic wavenumber n in the
air-gap is recomposed into pressure wavenumbers 0 and 2n. In
order to avoid θ dependency, the amplitude of each harmonics

are going to be compared independently. It means two new
ratio functions can be defined:

R0 :

{
[Ra, Rs] → R

r → Br
2(r)−Bθ

2(r)

Br
2(Rs)−Bθ

2(Rs)

(27)

R2n :

{
[Ra, Rs] → R

r → Br
2(r)+Bθ

2(r)

Br
2(Rs)+Bθ

2(Rs)

(28)

The next step is to introduce (19) into (27) in order to get
the analytic expression of each function R0 and R2n. After a
some calculations which are left to the reader, the expressions
of these two functions simplify remarkably well as follows:

R0(r) =
R2

s

r2
(29)

R2n =
R2

s

r2
F2n(r,Rs

2
(30)

Then combining (24) with (29) and (30), the relation between
the air-gap MT and the theoretic application at position r = Rs
can be established:

P (r, θ) =
R2

s

r2

(
P0(Rs) + P2n(Rs)

F2n(r,Rs)

2
cos(2nθ)

)
(31)

The differences between theoretic pressure and air-gap
pressure lie in the two coefficients of (31). It depends on
the geometry, the radius of application and the wavenumber.
Note that it does not depend on θ and β. Fig. 3 shows how
these coefficients can affect magnetic pressure harmonics for
r ∈ [Rag,Rs].

Fig. 3. Comparing stator and air-gap Maxwell Tensor magnetic pressure for
the harmonic 2n
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