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FEM-BEM modeling of nonlinear magnetoelectric effects in
heterogeneous composite structures
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This paper proposes a mathematical model for 3D nonlinear magnetoelectric effects in heterogeneous composite structures. Through
the coupling of the Finite Element Method (FEM) with the Boundary Element Method (BEM), only the active material is explicitly
considered, and thus a single mesh is used to support all phenomena. A mixed formulation is used to model the magnetic phenomena,
a vector potential formulation in the volume and a scalar potential formulation in the free space domain. Material laws for the
magnetostrictive composite phase are derived from partial derivatives of a scalar invariant’s formulation of the Helmholtz free energy.
The coupled problem is solved by iteratively solving single-physics problems, and the full algorithm is applied to the modeling of a
test case.

Index Terms—Boundary-element methods, Finite element analysis, Helmholtz free energy, Magnetoelectric effects, Magnetostriction.

I. INTRODUCTION

ELECTROMAGNETIC coupling in the form of induction
takes place for non-static fields. Devices whose purpose is

to exchange electric to magnetic energy or vice-versa, usually
rely on this phenomenon. Electromagnetic interaction can
otherwise be achieved by magnetoelectric composites, which
is based on mechanical exchanges through the combination
of piezoelectric and magnetostrictive materials which have,
respectively, strong electromechanical and magnetomechanical
couplings. [1]. Numerical modeling of these phenomena is
usually performed through the FEM. Nevertheless, to correctly
account for the decay of magnetic fields at infinity, the FEM
needs a big enough free space domain to be explicitly consid-
ered and meshed. This implies a large number of degrees of
freedom, notably with regard to the quantity of active materials
and their distance from the sources. This can be avoided by
setting up a coupling between the BEM and the FEM for the
magnetic part, and FEM for the electric and mechanical parts.

Contrary to piezoelectricity, which in most situations can
be accurately described by linear relations, magnetostriction
is strongly nonlinear. Many approaches have been taken to
take account of this non-linearity. We implemented the de-
scription of magnetostriction in terms of scalar invariants of
the Helmholtz free energy [2].

We first present the considered material laws, then the used
formulations and finally some results for the chosen test case.

II. CONSTITUTIVE LAWS

The considered behavioral law for the piezoelectric phase is
given by the two linear coupled relationships (1),

T (S,E) = CE : S − et ·E
D(S,E) = e : S + εS ·E

(1)

with D the electric displacement field, E the electric field, T
the Cauchy stress tensor and S the linear strain tensor.

Inside the magnetostrictive phase, the Helmholtz free energy
ψ can be expressed in the case of isotropic materials as a
polynomial expression on its invariants [2]:
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where:

I1 = tr(S), I2 = tr(S2), I4 = B ·B

I5 = B · S̃B, I6 = B · S̃2
B,

(3)

with B the magnetic induction, H the magnetic field, S̃ the
deviatoric part of the strain, λ and µ the Lamé coefficients of
the material. The magnetic and mechanical behavioral laws can
then be obtained by the analytical differentiation of the energy
ψ:

T (B,S) =
∂ψ

∂S
, H(B,S) =

∂ψ

∂B
. (4)

with H the magnetic field. The behavior of magnetoelectric
composite structures can be obtained through the combination
of (1) and (4).

III. FORMULATIONS AND RESOLUTION METHOD

The electrical and mechanical problems are limited to the
active material’s domain Ωm. Considering static behaviour,
relation (1) and appropriate boundary conditions, the electric
weak form in terms of electric potential reads, find ϕ such that:∫

Ωm

∇δϕ ·D(S,E) dΩ = 0 ∀δϕ. (5)

From (1), (4) and the balance of linear momentum, the
mechanical displacement weak form reads, find u such that:∫

Ωm

∇Sδu : T (S,E,B) dΩ = 0 ∀δu, (6)

where∇Su = 1
2 (∇u+(∇u)t). Both (5) and (6) are discretized

using first order FEM and nodal shape functions. Similarly
to [3], the weak form of the magnetic problem is obtained
by testing Maxwell-Ampere’s equation keeping the boundary
term. It reads, find (a, φred) such that:



∫
Ωm

∇× δa ·H(B,S) dΩ +

∫
∂Ωm

∇× δa · n φred d∂Ω

=

∫
∂Ωm

(δa× n) ·H0 d∂Ω ∀δa,
(7)

with a the magnetic vector potential, φred the magnetic re-
duced scalar potential, H0 the field created by the currents
external to the domain calculated by the Biot-Savart law and
n the outwards normal vector to ∂Ωm. The previous equation
is discretized using edge elements for a and 0-order surface
elements for φred. To describe the behavior of the magnetic
field at the boundary, we add to our system of equations
a discretized form of Green’s third identity applied to the
reduced magnetic scalar potential φred, with G the kernel of
the Laplacian operator.
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G H0 · n d∂Ω.

(8)

The previous equation is then projected onto surface test
functions ω0 constant by surface cell element, φred is dis-
cretized with the same constant by facet element shape func-
tions. The magnetic induction leaks, Bn, are linked to the
magnetic vector potential in edge elements via an incidence
matrix through a local Stockes theorem applied to the facet
element, and its 1-form boundary. The BEM matrices are full
and are compressed using the Fast Multipole Method (FMM) to
reduce storage space. The magnetostatic and magnetomechan-
ical formulations were validated against an analytical formula
and the experimental H(B) curves.

Similarly to [3], the different physics are solved iteratively
using partial solutions until all single-physics solutions con-
verge to the desired relative tolerance (10−5). MUMPS direct
solver is used to solve for the discretized electric equation,
Newton-Raphson schemes are used to solve for the nonlin-
ear mechanical and magnetic problems, they are based on
a preconditioned BiCGSTAB for the discretized mechanical
equation (no Dirichlet boundary conditions are imposed) and a
preconditioned GMRES for the discretized magnetic problem.

IV. TEST CASE

As a test case we selected a low torque motor made of a
magnetoelectric composite and a rotating magnet. It works as
follows: a magnetostrictive disk (Galfenol) is positioned on
top of, and perfectly bonded to, a piezoelectric phase (PZT-
5A). As the piezoelectric phase is exited by a voltage (1 kV)
applied to the electrodes, the piezoelectric phase drives the
deformation of the magnetostrictive phase. The piezoelectric
layer is considered poled by the previous electrodes, so, it
creates traction and the deformation of the magnetostrictive
phase in the direction of the applied electric field, seen in
Figure (2a). This deformation causes the magnetic properties
of the magnetostrictive phase to change, in particular, as shown
in Figure (2b), a preferred magnetization direction appears.

The piezoelectric material tensors C, e and ε are usually
available with materials poled along the (z) direction. If the
configuration of the poling electrodes and the tensors are

known in their poled state, then, to take account of the poling
pattern, an electrostatic resolution can be performed and then
the coupling tensors rotated in the direction of the electric field.

Fig. 1. Test device, the arrow corresponds to the direction of the remnant field
in the magnet

A magnet is placed above the composite structure. By the
shifting of the magnetization direction of the magnetostrictive
layer, a mechanical torque appears in the magnet and the
magnetostrictive layer due to their magnetic interaction, it is
calculated by the equivalent charge method. The coefficients
for the invariant approach are obtained by the fitting of the
H(B) curves of Galfenol at 0 MPa presented in [2].

V. CONCLUSION

In this paper we used a FEM-BEM coupling strategy to the
modeling of magnetoelectric effects in composite structures.
This allowed us not to mesh the free space region. We used an
invariant description of the Helmholtz free energy to derive
the nonlinear expressions of the Cauchy stress tensor and
the magnetic field in order to model the magneto-mechanical
behavior of Galfenol. We solved for the complete mutli-physics
problem by solving iteratively the three derived single-physics
problems, and the full algorithm was successfully tested on the
modeling of a low torque magnetic motor.
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(a) Electrical solution

(b) Preferred magneti-
zation direction in the
Galfenol layer, seen from
bellow

Fig. 2. Coupled solution to the multiphysics problem. Figure (2b) is given
by the direction of the eigenvector corresponding to the spectral radius of the
susceptibility matrix χ by element, the color corresponds to the value of the
spectral radius of χ.
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