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We stabilize an open cavity flow experiment to 1 % of its original fluctuation level. For the
first time, a multi-modal feedback control is automatically learned for this configuration.
The key enabler is automatic in situ optimization of control laws with machine learning
augmented by a gradient descent algorithm, named gradient-enriched machine learning
control (Cornejo Maceda et al., J. Fluid Mech., vol. 917, 2021, A42, gMLC). The physical
interpretation of the feedback mechanism is assisted by a novel cluster-based control
law visualization for the flow dynamics and corresponding actuation commands. Starting
points of the control experiment are two unforced open cavity benchmark configurations:
a narrow-bandwidth regime with a single dominant frequency and a mode-switching
regime where two frequencies compete. The flow is forced by a dielectric barrier discharge
actuator located at the leading edge and is monitored by a downstream hot-wire sensor over
the trailing edge. The feedback law is optimized with respect to the monitored fluctuation
level. As reference, the self-oscillations of the mixing layer are mitigated with steady
actuation. Then, a feedback controller is optimized with gMLC. As expected, feedback
control outperforms steady actuation by achieving a better amplitude reduction with
approximately 1 % of the actuation energy required for similarly effective steady forcing.
Intriguingly, optimized laws learned for one regime perform well for the other untested
regime as well. The proposed control strategy can be expected to be applicable for many
other shear flow experiments.
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1. Introduction

Open cavity oscillations occur in many ground and airborne transport vehicles, like
wheel casings or bogeys, and significantly contribute to aerodynamic drag and noise.
Active model-based control has been applied with large success to the stabilization of
these oscillations (Rowley & Williams 2006; Sipp et al. 2010). In this study, we aim
at fast self-learning feedback which simplifies the development of control and extends
the applicability to nonlinear dynamics. Encouraged by results for wake stabilization
(Cornejo Maceda et al. 2021), we apply gradient-enriched machine learning control to
an experiment.

Open cavity flows typically feature mono-mode and multi-frequency regimes depending
on the configuration. The oscillatory dynamics gathers most of the mechanisms
responsible for nonlinear turbulence interactions. Yet, the self-organization of the spatial
structures is still highly coherent and driven by global instability (Huerre & Rossi 1998).
Our configuration has a moderate Reynolds number (ReL ≈ 104). The length-to-depth
ratio is approximately 1.7 and thus between a shallow and deep cavity. With increasing
incoming velocity an open cavity successively features, first an intra-cavitary centrifugal
instability then self-sustained oscillation of the mixing layer (Rowley & Williams 2006;
Basley et al. 2014; Feger, Lusseyran & Pastur 2019). The dynamics of the interaction
between an incoming boundary layer and a rectangular cavity depends on six parameters:
the ratios of the three spatial dimensions of the cavity (in particular the length L and depth
D of the cavity), the momentum boundary layer thickness θ0 at the upstream edge, the
incoming velocity U∞ and the Mach number for compressible flows. By focussing on the
two main characteristic numbers, L/D and ReL = U∞L/ν it is possible to scan a wide
range of dynamics, from a single mode regime to spectra with rich dynamics including
coupled modes (Kegerise et al. 2004). This, in addition to the practical implications, is the
reason for the repeated interest in this flow pattern from pioneering work (Rossiter 1964;
Gharib & Roshko 1987) to the present day.

Current studies of the cavity focus on a wide range of industry applications. In
the transport field, due to engineering and manufacturing constraints, most ground
and airborne transport vehicles include cavities, e.g. wheel casings and bogeys, whose
interaction with low- or high-speed flows is responsible for parasitic drag and flow-induced
noise. For German high-speed trains, the underbody with cavities account for 61 % of the
aerodynamic drag and the gaps between the wagons for another 5 % (Hucho 2002). At
high speeds such as 300 km h−1, noise is increased by more than 14 dB due to cavity
fluctuations (Wang et al. 2014). Landing gear bays on passenger airplanes produce strong
noise and represent up to 30 % of the total noise (Li et al. 2020). For low-speed transports
such as cars, the airflow can excite flow oscillations in the cavity to form resonance and
noise sources, resulting in body resistance and noise nuisance for the passengers (Kook
et al. 1997). Hence, cavity flow control is of large engineering interest.

The control of the cavity relies on the mitigation of the mixing layer by suppressing
the feedback mechanism between the vortex formation and the impinging vortex
recirculation flow. The control can be achieved in a passive manner by modifying the
geometry of the configuration or in an active manner by injection energy to the flow.
Passive devices for control include fences, spoilers, ramps, cylinders, rods (Stanek et al.
2003; Ukeiley et al. 2004; Keirsbulck et al. 2008; Panickar & Raman 2008; El Hassan &
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Stabilization of a multi-frequency open cavity flow

Keirsbulck 2017). Modifications of the cavity leading edge affect the shear-layer formation
(Ahuja & Mendoza 1995) and also the trailing edge to reduce the sound wave generation
at the impinging point (Pereira & Sousa 1994). Porous walls have also been employed to
reduce the feedback excitation near the leading and trailing edges (Wilcox 1988; Stallings
et al. 1994). However, most passive devices imply parasitic drag during cruise.

On the other hand, active control may improve performance with low intrusion into the
flow, a large frequency bandwidth and the ability to adapt to the flow response. Noteworthy
examples of model-free open-loop control include the stabilization of the laminar flow
with high-frequency forcing (Sipp 2012; Kreth & Alvi 2020) and pressure fluctuation
mitigation for supersonic flows based on resolvent analysis (Liu et al. 2021). In contrast,
most closed-loop controls rely on models as a simple representation of the dynamics. For
instance, Barbagallo, Sipp & Schmid (2009) develop a Galerkin model with global modes
of the flow that preserves the input–output behaviour. As a further example, Nagarajan
et al. (2018) achieved noise reduction with a reduced-order model including the control
effect. For quasi-periodic dynamics, an iterative method for weakly nonlinear modelling
was able to completely stabilize the flow (Leclercq et al. 2019).

Feedback controllers based on linear models have also been successfully employed to
mitigate the oscillations of the flow (Illingworth, Morgans & Rowley 2012) and noise
suppression (Rowley et al. 2006). Finally, we note one of the very first and remarkable
closed-loop control studies by Gharib, Roshko & Sarohia (1985) on an open cavity in a
water canal. We refer to Cattafesta et al. (2008) for a review of past successes of active flow
control on the cavity. A well-known effect of linear control is the shift of the oscillations
of the cavity to other Rossiter modes (Williams et al. 2000; Cabell et al. 2002) resulting in
multi-frequency regimes. Mode-switching regimes present a challenge for control design
as it needs to include large bandwidths and an adequate time response (Samimy et al.
2007b). Linear closed-loop control on an experimental cavity for multi-frequency control
has been achieved by augmenting the controller with well-placed zeros (Yan et al. 2006).
Samimy et al. (2007b) manage to control multiple frequencies by incorporating several
models in linear–quadratic optimal controllers.

Building a control-oriented model is often limited due to the nonlinearities of the
flow including frequency cross-talk and time delays between the actuation and sensing.
Therefore, we choose model-free approaches based on machine learning to achieve
multi-modal control. Machine learning control (Duriez, Brunton & Noack 2017; Cornejo
Maceda, Lusseyran & Noack 2022, MLC) based on genetic programming (Dracopoulos
1997) is employed to build feedback control laws mapping the outputs of the system
(sensor signals) to its inputs (actuation commands). The MLC is a function optimizer able
to optimize both the structure of the control law and its parameters. In an evolutionary
process, new mechanisms (exploration) are found and are improved (exploitation). The
MLC has been successfully applied in dozens of experiments, each time outperforming
optimized control methods often by exploiting unexpected nonlinear mechanisms (Noack
2019). The MLC achievements include drag reduction of the Ahmed body with and
without yaw angle (Li et al. 2018, 2019), jet mixing enhancement (Zhou et al. 2020) and
mixing layer control (Parezanović et al. 2016), separation control of a turbulent boundary
layer (Debien et al. 2016), recirculation zone reduction behind a backward facing step
(Gautier et al. 2015), reduction of vortex-induced vibration of a cylinder (Ren, Wang &
Tang 2019; Ren, Hu & Tang 2020) and pitch control for floating offshore wind turbines
(Kane 2020). Recently, MLC has been augmented with intermediate gradient descent steps
for a fast descent into minima (Cornejo Maceda et al. 2021, gMLC).
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gMLC Gradient-enriched Machine Learning Control
LDV Laser Doppler Velocimetry
LGP Linear Genetic Programming
MCS Monte Carlo sampling
MDS Multidimensional Scaling
MIMO Multiple-Input Multiple-Output
MLC Machine Learning Control
PSD Power Spectral Density

Table 1. Table of acronyms.

This study constitutes, to the best of the authors’ knowledge, the first self-learning
model-free control for the stabilization of open cavity flows. We employ our
fastest optimizer, gradient-enriched MLC (gMLC), to address the challenge of robust
multi-frequency stabilization. For this, feedback control laws are learned in two regimes:
a narrow-bandwidth one and a mode-switching one. The second regime constitutes a
challenging problem as gMLC needs to learn a control law able to control two modes
simultaneously. The robustness of the laws is tested by cross-evaluating each law in the
other regime.

The article is organized as follows. Section 2 introduces the cavity experiment set-up
including the wind tunnel, sensing, actuation and details the characteristics of the unforced
dynamics. Section 3 describes the control problem, including the cost function and
the ansatz for the control law and outlines gMLC. Moreover, two methods to interpret
the control mechanisms are presented: an analytical approximation based on an affine
regression and a cluster-based visualization method based on representative flow states.
In § 4, the results of the control of the open cavity are described, from steady forcing as
a benchmark to gMLC feedback. Section 5 discusses the robustness of the gMLC laws,
highlights the necessity for feedback and comments on the global nature of the achieved
stabilization. Section 6 summarizes the results and indicates directions for future research.
Table 1 lists all the acronyms used in the article.

2. The open cavity experiment

This section details the characteristics of the wind tunnel, the means of sensing and
actuation, the control unit and finally the unforced dynamics for the two regimes studied
in this article: the narrow-bandwidth regime and the mode-switching regime.

2.1. Wind tunnel set-up
The cavity is inserted into the rectangular cross-section duct of a 0.075 m high and
0.30 m wide wind tunnel. The cavity, inserted as a depression to the floor, is D = 0.05 m
deep, S = 0.30 m wide and L = 0.075 m or L = 0.0875 m long following the studied
regime. The resulting aspect ratios are R = L/D = 1.5 for the narrow-bandwidth regime
and R = L/D = 1.75 for the mode-switching regime. A schematic of the wind tunnel is
depicted in figure 1. The walls are made of anti-reflection treated glass. A Blasius-type
boundary layer develops from an elliptical edge located 0.30 m upstream. Laser Doppler
velocimetry (LDV) measurements of the velocity upstream of the cavity show that the
standard deviation of the incoming flow is less than 1 %.
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Stabilization of a multi-frequency open cavity flow
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Figure 1. Diagram of the cavity with the position of the DBD actuator (in red) and the velocity sensor (in
green). The magnified region depicts the velocity profiles of the incoming velocity (U( y) in blue) and the ionic
wind produced by the DBD actuator (Up( y) in red).

An anemometer is located at the exit of the open wind tunnel vein. Measurements
show that the free-stream velocity U∞ and the velocity measured at the exit of the tunnel
vein are linearly related to the rotation speed of the wind tunnel fan motor. Thus, in this
study, U∞ is estimated from the anemometer measurements. For the narrow-bandwidth
regime, the incoming velocity is set to U∞ = 2.13 m s−1, resulting in a Reynolds number
equal to ReL = 1.04 × 104. The momentum boundary layer thickness is estimated at
θ0/L = 1.17 × 10−2. Great care has been taken to calibrate and regulate the incoming
velocity regarding LDV measurements. However, we have observed a 2 % variation of the
incoming velocity for the narrow-bandwidth regime over the 24 hours necessary for the
longest learning sessions. The velocity variations are caused by the temperature variation,
T ≈ 23.14 ± 2 ◦C and very low cycle frequencies in the wind tunnel at this low-velocity
operating point. The incoming velocity variations reach 5 % for the mode-switching
regime. Finally, the flow is in the incompressible range with a Mach number less than 10−2.
A more detailed description of the set-up can be found in Lusseyran, Pastur & Letellier
(2008) and Basley et al. (2013).

2.2. Hot-wire sensor
For sensing, we use a constant temperature anemometer (DANTEC hot-wire probe 55P16
and miniCTA54T30 converter) with a single one-dimensional (1-D) hot-wire sensor, 5 μm
in diameter and 1 mm length. The hot-wire is located at 6 mm above the cavity and 6 mm
upstream of the trailing edge, as sketched in green in figures 1 and 2(b). The position of
the hot-wire sensor has also been chosen to limit the velocity drops in the mode-switching
regime, see § 2.5. The hot-wire output signal Ew(t) is converted into streamwise velocity
information u according to King’s law

E2
w = A + Bun, (2.1)

where A = 1.28, B = 0.70 and n = 0.48 are determined by calibration of the hot-wire
using an LDV anemometer. Before conversion, the signal Ew is temperature corrected by
the multiplicative factor (Tw − T0)/(Tw − T), where T is the room temperature, T0 is the
calibration temperature and Tw is the wire temperature (Jørgensen 2005); T and T0 are
both measured with a Pt100 platinum sensor with 0.02 ◦C accuracy. The velocity measured
u is then employed in three ways: first, it serves to compute the performance of the tested
controllers (§ 3.1); second, it closes the feedback control loop (§ 3.2); third, it is used to
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U∞ U∞

9 mm

6 mm

6 mm

Trailing edge

2 mm

4 mm9 mm

Epoxy resin 4.5 mm 4.5 mm

PMMA

Copper ribbon (0.2 mm)

(a) (b)

Figure 2. The actuation is performed with a DBD actuator placed upstream (a) and the current state of the
flow is given by a hot-wire probe downstream (b).

analyse the control mechanisms (§ 3.4). All the following spectra and spectrograms are
computed from this velocity measurement.

2.3. Plasma actuator
The actuation is carried out with a dielectric barrier discharge (DBD) actuator to locally
force the boundary layer at the entrance of the cavity, near the separation edge where
the receptivity of the shear layer is maximum (Cattafesta et al. 1997) (see figure 1). The
DBD consists of two conductive blades placed on either side of an insulating plate and
is subjected to a high alternating voltage. The streamwise shift between the two blades
(see figure 2a) creates an electric field parallel to the plate and is responsible for an ionic
wind in the streamwise direction. The principle and the adjustment of the parameters for
an application as a fluid actuator are thoroughly detailed in Moreau (2007), Forte et al.
(2007) and Benard et al. (2010). In our experimental set-up, the dielectric is made of
2 mm-thick acrylic glass or poly(methyl methacrylate) (PMMA) and the electrodes are
made of 9 mm-wide, 26 cm-long and 200 μm-thick copper ribbons. The downstream edge
of the lower electrode is placed at x = 4 mm upstream to the leading edge, see figure 2(a).

To produce an ionic wind, a carrying signal E(t) at high frequency fp (≈3 kHz) is sent
to the active electrode. The signal E(t) is produced by an Agilent Function Generator and
amplified (×3000) by a Trek high-voltage amplifier. The expression of the carrying signal
is

E(t) = A(t) sin(2πfpt), (2.2)

with A being the amplitude of the carrying signal. The control is then achieved by
modulation of the amplitude A through the actuation command b ∈ [−1, 1]. In practice, A
is an affine function of b such as A|b=−1 = Amin and A|b=1 = Amax; Amin is the ionization
voltage, the threshold above which an ionic wind is produced. The generated wind acts
then as a localized body force whose intensity increases with the voltage and thus with
b. The increasing level of the body force results in the reduction of the main peak of the
power spectrum until the dynamics is completely modified. A steady actuation forcing
study of the open cavity flow is reported in § 4.1; Amax is defined as the maximum voltage
that ensures that the main resonance of the cavity is present in the power spectrum.

In practice, Amin and Amax are measured before each experiment as they are sensible
to the atmospheric pressure, room temperature, moisture and number of hours of use of
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Stabilization of a multi-frequency open cavity flow

the electrode. To make the control robust against these variations, the range of the actuation
command b is set independent of Amin and Amax.

Forte et al. (2007) and Moreau (2007) describe the typical velocity profile generated
by a DBD actuator with LDV measurements. In particular, Forte et al. (2007) show that
for a voltage of 20 kV and a carrying frequency of 1 kHz applied between 0.1 mm-thick,
20 cm-long aluminium electrodes, the velocity profile displays a maximum at y = 0.5 mm
from the wall. As the velocity profile moves downstream, the value of the maximum
velocity decreases, and its height increases up to ∼1 mm. For our experiment, Pitot
measurements indicate that, for a tension equal to 6 kV, the maximum velocity is around
0.8 m s−1 and is reached at y = 1.25 mm of the wall. Unfortunately, the tension value is
not significant as Amin and Amax have changed between two experiments.

2.4. Control unit
In our experiment, the signal acquisitions and actuation command are carried out by a
dSPACE real-time controller, including a DS1600 4 core processor board and a DS2201
input/output (I/O) board with 12 bits on a ±10 V range analogue-to-digital converter. Only
two inputs of the I/O board are exploited, one for the hot-wire signal and one for the
voltage delivered by the Pt100 platinum sensor. The hot-wire signal Ew is translated and
amplified (×40) before analogue-to-digital conversion. All signals are sampled at 250 Hz
such that the Nyquist–Shannon sampling theorem is respected up to three times the highest
frequency of interest f + ≈ 40 Hz, also avoiding aliasing of the second harmonics. One
output of the I/O board is employed to send the command signal to the Agilent Function
Generator.

The control optimization process includes two loops: a fast evaluation loop and a slow
learning loop, see figure 9. The fast evaluation loop is managed by the ControlDesk
software and Simulink. For our study, the evaluation loop operates at the sampling
frequency (250 Hz). For each control law tested, the time series of the actuation command
and the hot-wire signal are recorded and post-processed with MATLAB. The slow learning
loop includes the post-processing of the control and the control law update; it is automated
with Python and MATLAB scripts. Finally, the whole control unit is supervised by a
PowerShell script that automates all the steps of the control optimization.

2.5. Unforced dynamics
As described in § 1, the cavity allows a wide range of complex intra-cavity dynamics by
tuning the two remaining cavity flow parameters, namely the upstream speed U∞ and the
width L. We recall that the width S and the depth D of the cavity are fixed throughout
this study and that the flow is incompressible (Mach number <10−2). In this article, we
aim to stabilize two different flow regimes of different dynamical complexity. For both
regimes, the power spectrum is mainly organized within five frequency bands: the very
low frequencies, not considered here, a low frequency fb and the three peaks directly
reflecting the resonance of the mixing layer f −, fa and f +, see figure 3. These frequencies
are nonlinearly coupled and satisfy the relationships f − = fa − fb and f + = fa + fb. The
two regimes studied differs by the power ratios of the frequencies fa and f +.

The first regime is referred to as the narrow-bandwidth regime and corresponds to a
flow dynamics mainly centred on a single frequency fa and its harmonics. This regime is
achieved with L = 7.50 cm and with an incoming velocity of U∞ = 2.13 m s−1. For this
case, the ratio of the powers associated with f + and fa is close to 10−3, see figure 3(a).
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Figure 3. Time series (top) and spectral content (bottom) of the velocity measured downstream for the two
unforced regimes. The main frequencies of the flow are depicted in red: fb, f −, fa, f + and fa harmonics. The
vertical axis of the spectral plots are in log10 scale. The cost function (see § 3.2) detects the maximum peak in
the green-shaded window St ∈ [0.5, 1.75]. (a) Narrow-bandwidth regime and (b) mode-switching regime.

Regime Units Narrow bandwidth Mode switching

U∞ [m s−1] 2.13 2.23
L [cm] 7.50 8.75
R = L/D 1.5 1.75
ReL 1.04 × 104 1.28 × 104

L/θ0 85.83 102.90
T [◦C] 22.60 22.14
ν [m2 s−1] 1.53 × 10−5 1.52 × 10−5

Table 2. Cavity flow parameters and experimental conditions for the two studied regimes. The temperature T
and kinematic viscosity ν values are averaged over the learning session.

The coupling between fa and fb is then insignificant. In contrast, for the second regime,
referred to as the mode-switching regime, the power ratio between f + and fa is greater
than 0.22, see figure 3(b). In this case, the nonlinear couplings between frequencies are
strong and lead to a chaotic intermittency between fa and f + (Lusseyran et al. 2008). In
the mode-switching regime, two modes compete in the flow leading to a switch of the
dominant frequency. Such intermittency has been mentioned for the first time by Kegerise
et al. (2004) for a compressible cavity flow. In this study, the mode-switching regime is
obtained for incompressible conditions (Ma < 0.01) for L = 8.75 cm and a slightly higher
incoming velocity U∞ = 2.23 m s−1, corresponding to a Reynolds number ReL = 1.28 ×
10−4. The momentum boundary layer thickness is estimated at θ0/L = 9.72 × 10−3. All
the cavity flow parameters and experimental conditions are grouped in table 2.

The episodic velocity drops, observed in the time series of the mode-switching regime
(figure 3b), are due to slow vertical undulations of the mixing layer which bring the low
velocities of the lower part of the mixing layer to the level of the measurement point. The
position of the hot-wire sensor has been chosen to minimize these low-velocity incursions
while limiting the damping of the oscillations to be controlled. The undulations of the
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Figure 4. Spectrograms of the downstream velocity for the two studied regimes. The colour code corresponds
to the power level in log10scale. The ticks of the colour bar are the exponent values. (a) Narrow-bandwidth
regime and (b) mode-switching regime.

mixing layer are stronger for the mode-switching regime, and the incursions could not be
avoided. The presence of these incursions suggests a strong interaction between the mixing
layer and the slower intra-cavitary flow for the mode-switching regime.

The temporal evolution of the frequency content for the two regimes is depicted in
figure 4. In particular, figure 4(a) shows a clear line for the frequency fa and less intense
lines for its harmonics, whereas figure 4(b) displays a switching between frequencies fa and
f + and their harmonics over time. The time between two switches is estimated between 15
and 20 s; Exceptionally, this time may exceed 40 s.

To understand the difference in dynamics between the two regimes, we locate them in
the Strouhal vs L/θ0 map (figure 5). Similar maps have been plotted for different impinging
shear flows revealing jumps between the modes and linear-like relationships between the
Strouhal number and the dimensionless cavity length L/θ0 or L/δ0, δ0 being the boundary
layer thickness (Sarohia 1977; Rockwell & Naudascher 1978; Knisely & Rockwell 1982).
Indeed, Basley et al. (2013) shows that, in such incompressible flow, most main frequencies
measured in the downstream shear layer align with lines of locked-on modes such that the
Strouhal number based on L is given by

StLn(L/θ0) = fnL
U∞

= n − γn(L/θ0)

2
, (2.3)

where the parameter n = 1, 2, 3 can be seen as the number of cycles within the cavity
length, and the corrective term, γn, can be interpreted as a wave adaptation to the effective
resonance length. The authors also propose a model for γn, linear with respect to the
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Variation of Strouhal number with dimensionless

impingement distance L/θ0
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Figure 5. Strouhal number (StL) – dimensionless cavity length (L/θ0) map, θ0 being the momentum boundary
layer thickness and L the cavity length. Black lines represent the locus of (2.3) for locked-on modes n = 1, 2, 3.
Black dashed lines represent the locus of (2.3) without the corrective term γn: StLn = n/2. The left green band
corresponds to the operating point for the narrow-bandwidth regime (L/θ0 = 85.83). The right green band
corresponds to the operating point for the mode-switching regime (L/θ0 = 102.90). The red dots symbolize
the three main oscillation modes of the mixing layer. For more details see Appendix B).

dimensionless cavity length L/θ0

γn(L/θ0) = 41n − L/θ0

10(17 − n)
. (2.4)

On the other hand, (2.3) presents a resemblance with Rossiter’s formula for compressible
flows in Rossiter (1964) where the corrective term is associated with the propagation time
of the acoustic waves.

The Strouhal distribution is well described by Basley et al. (2013), however, it is worth
noting that there is still no consensual overview of the origin of the incommensurable
frequencies in incompressible open cavity flows. As a first interpretation, the peaks in
the spectrum are the result of nonlinear interactions inside the mixing layer dynamics.
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Stabilization of a multi-frequency open cavity flow

Indeed, the resonance of the cavity occurs for regimes beyond a critical Reynolds number
Rec in contrast to the Kelvin–Helmholtz instability of the mixing layer that is unstable
for all Reynolds numbers. Beyond Rec, self-sustained oscillations appear. This scenario
originating from a two-dimensional (2-D) perspective is, however, a little simplistic when
considering a real 3-D cavity, especially in an incompressible regime at moderate Reynolds
number. In fact, the mixing layer develops in the streamwise direction and, the flow not
being strictly parallel, Squire’s theorem fails: it is the transverse centrifugal instabilities
that transit first, possibly several times, below Rec. With increasing Reynolds number, the
centrifugal Görtler–Taylor-type instabilities feature first several bifurcations and then a
strong nonlinear development before the cavity resonance. This transition scenario is valid
for the two studied regimes whose spectral signature has been described previously and in
Appendix A.

In addition, Sipp & Lebedev (2007) and Meliga (2017) have shown, using a linearization
around the average flow in 2-D simulations, that the occurrence of self-sustaining
instabilities in shear-driven cavities is due to a supercritical Hopf bifurcation. Following
a similar method, Bengana et al. (2019) and Tuerke et al. (2015) manage to predict
two incommensurable frequencies in simulations and experiments, respectively. Another
approach based on the identification of two characteristic delay times can predict the
two frequencies of the flow (Tuerke et al. 2020). The authors show that the nonlinear
interactions between these two frequencies can be captured by the resolution of a
Stuart–Landau-type amplitude equation, whose quadratic damping term consists of
two delayed amplitude terms. In this equation, the first delay time characterizes the
upstream travelling hydrodynamic instability wave and hence the feedback of the reflected
shear-layer instability (Tuerke et al. 2015). The second delay time is motivated by the
hydrodynamic feedback of the recirculating vortices, also referred to as ‘vortex carousel’
and corresponds to an intra-cavity overturning time (Tuerke et al. 2017). In the following,
the description of Basley et al. (2013) that leads to figure 5 is sufficient to guide the choice
of parameters leading to the two regimes we have chosen to control.

Figure 5 plots the values of the measured frequencies in Strouhal number vs the
dimensionless cavity length, for the two regimes and their relation to the resonance points.
The computation details of the momentum boundary layer thickness θ0 are detailed below.
For the first regime, fa is close to a Strouhal number equal to n/2|n=2, i.e. at the intersection
between the black line and the dashed line, while f + is clearly below the resonance at
n = 3. As for the second regime, the Strouhal number corresponding to fa is above the
resonant mode n = 2 (γ2 = −0.14), and the one corresponding to f + is below the resonant
mode n = 3 (γ3 = +0.14). In practice, U∞ has been chosen such that the average presence
rate of the two frequencies fa and f + is equalized. The fact that |γ2| ≈ |γ3| only appears
after calculation shows clearly that the parameter guiding the relative intensity of the two
main modes is indeed |γn|. The values of Strouhal number and γn for each frequency are
grouped in table 3.

In fact, we observe a slight discrepancy between the natural frequencies measured
and the predictions of Basley et al. (2013), which we attribute to a change in the free
development of the boundary layer and especially a reduction of the boundary layer
thickness. This reduction of the boundary layer thickness can be attributed to the planing
effect of the 200 μm thick upper electrode, glued just before the leading edge. Therefore,
in this work, L/θ0 was not obtained from the Blasius law (θ0 = κ

√
2νlx/U∞ with κ =

0.4696, lx = 0.3 m) and ν the kinematic viscosity, nor by a direct measurement of θ0, for
lack of optical access, but deduced from (2.3) and (2.4), using the observed frequency
(figure 3) and the regime parameters (table 2) for the two considered regimes. First, the
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Peaks fb ≈ f + − fa ≈ fa − f − fa f +

n — 2 3

Narrow-bandwidth regime
Freq. [Hz] 9.91 28.81 38.72
StLn 0.348 1.01 1.37
γn — −0.0255 0.266

Mode-switching regime
Freq. [Hz] 9.60 27.31 36.91
StLn 0.376 1.07 1.43
γn — −0.140 0.143

Table 3. Characteristics of the regimes dynamics. Values of the measured frequencies fb, fa and f + and their
corresponding Strouhal numbers StLn . The corrective term γn is then computed from (2.3).

value of γn is computed from fn, n, L and U∞ and (2.3), then L/θ0 is deduced from (2.4).
The resulting dimensionless cavity lengths are L/θ0 = 85.83 for the narrow-bandwidth
regime and L/θ0 = 102.90 for the mode-switching regime.

Finally, we have investigated the deviation obtained with the Blasius law. From
the values of L/θ0 and assuming the same expression as the Blasius law, we fit the
corresponding kappa for our cases: κ = 0.4209 for the narrow-bandwidth regime and
κ = 0.4205 for the mode-switching regime. Both values are close to the one of the Blasius
law (κ = 0.4696) but slightly lower, which supports the hypothesis of boundary layer
thinning by the presence of the DBD electrode.

The low ( fb) and very low frequencies ( f < 1 Hz) constitute a challenge for automatic
learning as their rare occurrences require longer time windows for converged statistics
and thus slow down the overall learning process. First, we have chosen to alleviate this
difficulty by controlling the narrow-bandwidth regime where the very low frequencies
( f < 1 Hz) are around two orders of magnitude lower than fa in terms of power. Then,
we fully embrace the effect of the low frequencies with the mode-switching regime
where the nonlinear interactions between fa and f + give rise to fb and especially the
very low frequencies f < 1 Hz: fb is caused by the triadic interaction between fa and
f + and the low frequencies ( f < 1 Hz) are responsible for the frequency switches in
the mode-switching regime. Indeed, the power associated with the very low frequencies
(< 1 Hz) is more than one order of magnitude greater for the mode-switching regime
than for the narrow-bandwidth regime, see figures 3(a) and 3(b). The control of the
low frequencies is then performed indirectly by controlling the two other frequencies fa
and f +. Moreover, following Basley et al. (2014), the energetic contribution of the very
low frequencies is also due to the coupling between the mixing layer instability and the
centrifugal instabilities originating in the spanwise direction within the cavity.

To conclude this description of the cavity dynamics, we recall that the goal we set for
the control is to reduce the oscillation of the mixing layer by penalizing the peaks of power
in the frequency range that includes f −, fa and f +, as indicated by the green shaded area
of the figure 3.

3. Control problem formulation and methodology

In this section, the control problem is defined, and the methodology to solve it and
analyse the solutions is described. In § 3.1, the control problem is reformulated as an
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Stabilization of a multi-frequency open cavity flow

optimization problem. In the most general case, such a problem is non-convex and contains
several minima a priori. To solve such an intricate problem, we employ a powerful
machine learning algorithm § 3.3, the gMLC (Cornejo Maceda et al. 2021), that combines
exploration to discover new minima and exploitation for fast convergence. Finally, two
methods for describing the control mechanisms involved are presented: one based on linear
regression and the second on the reconstruction of the phase space with clustering (§ 3.4).

3.1. Cost function and optimization problem
The aim of this study is to stabilize the open cavity flow in two regimes of different
complexity, in particular, the mitigation of the self-sustaining oscillations of the mixing
layer. For this, a cost function is built based on the velocity data provided by the hot-wire
downstream. The oscillations of the mixing layer are reflected in the oscillations of the
velocity signal, thus the goal translates into the reduction of the highest peak of the
associated power spectrum. Moreover, the power invested and the power saved by the
control must be balanced. In that respect, two terms are considered in the cost function

J = Ja + γ Jb. (3.1)

The term Ja accounts for the peak reduction and Jb for the actuation power invested.
Here, Ja is defined as the value of the power spectral density maximum in a given
frequency window. The value is normalized by the value for the unforced case. Hence,
the performance of control law K is given by

Ja(K) =
max

St∈[0.5,1.75]
PSD(u)

max
St∈[0.5,1.75]

PSD(u0)
, (3.2)

where PSD(u) is the power spectral density of the velocity u measured by the hot-wire for
the flow forced with the control law K and u0 is the velocity measured for the unforced
flow. A steady actuation forcing study (§ 4.1) shows that the actuation affects both fa and
f + so the detection window for the maximum of the PSD is set such that it comprises both
fa and f +: St ∈ [0.5, 1.75]. Only the frequencies fa and f + are take into account as they
are the leading modes of the dynamics; the remaining high-power frequencies (2fa, 3fa
in figure 3) are harmonics of the fundamental, i.e. slaved to fa. The detection window is
set in Strouhal such that it is independent of the studied regime. The normalization of the
cost function Ja by the value of the peak for the unforced flow allows us to have a direct
measure of the reduction of the peak.

The PSD is computed over Tev = 40 s. This choice is motivated for three reasons: first,
it allows a good convergence of the statistics; second, the time is short enough to evaluate
1000 individuals in a few hours of experiment, limiting potential drifts and staying close
to real-life applications with limited testing budget; third, the mode-switching regime
may include one or two switches during this period of time, which is enough to have a
record of both frequencies fa and f + in the spectrum. Hence, the evaluation time balances
practicality and good characterization of the flow dynamics. Anticipating on the results,
the value chosen for Tev happened to be enough for the control of the two main frequencies
in the mode-switching regime. The control of the mode switching is realized indirectly by
the control of the two frequencies involved fa and f +. It is worth noting that a direct control
of the intermittency requires a much longer evaluation time due to its very low frequencies.

The actuation penalization term Jb is estimated from the actuation command b ∈
[−1, 1], as the effective power supplied is not directly accessible in the experiment. Here Jb
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is based on the square of the actuation command averaged over Tev so that it is an analogue
to energy. To simplify the interpretation, Jb is normalized by the range of the actuation so
that Jb = 0 when there is no actuation (A = Amin) and Jb = 1 when the controller acts
steadily at maximum level (A = Amax). Therefore

Jb = 〈(A − Amin)
2〉

(Amax − Amin)2 = 〈(b + 1)2〉
4

, (3.3)

with 〈·〉 denoting the mean value over Tev = 40 s. The choice of the penalization parameter
γ is based on the open-loop steady forcing study presented in § 4.1. We show, in particular,
that a high level of steady actuation is enough to reduce the cost Ja by at least 90 %. The
penalization parameter γ is chosen such that the cost for the unforced flow (J0 = 1) is
similar to the cost of the high-level steady actuation (b = 1), thus the optimal solution
aimed needs to efficiently reduce Ja with minimal actuation power. As both cost function
components Ja and Jb are normalized, we choose then the penalization parameter to be
γ = 1. This choice results in setting the cost of the high-level steady actuation (b = 1) to
J(b = 1) = Ja + Jb ≈ 1.1 ≈ J0.

Finally, the normalized standard deviation σ̃ of the velocity signal is computed for
the best control laws, a posteriori, to characterize the controlled flow. Indeed, effective
mitigation of the self-sustained oscillations of the mixing layer results in a reduction of
the standard deviation defined as

σ̃ (K) = σ(u)

σ (u0)
, (3.4)

with σ(u) being the standard deviation of the velocity u computed over Tev = 40 s; Tev
is also chosen such that the standard deviation is sufficiently converged. The standard
deviation is normalized by the standard deviation of the natural unforced flow so as to
have a direct measure of the gain.

3.2. Control problem
As stated previously, the control objective is to stabilize the cavity flow by mitigating the
oscillations of the mixing layer downstream. To achieve this goal, the flow is forced with
a DBD actuator located at the cavity leading edge. The result of the action is an unsteady
body force whose intensity is commanded by the signal b sent to the terminals of the
DBD actuator; b, also referred as the actuation command, is determined by the control
law K. The control may operate in an open-loop or closed-loop manner. In this study, the
considered open-loop actuations are only steady forcing, and closed-loop control includes
the unique velocity sensor and time-delayed records. Thus, the control law reads

b = K(a), (3.5)

with a being the feature vector comprising flow state information. Then, the control
problem to solve can be reformulated as an optimization problem where the goal is to
derive the optimal control law K∗ that minimizes the cost function J

K∗ = arg min
K∈K

J(K), (3.6)

with K : A �→ B being the space of all possible control laws, A is the control input domain
and B is the range of the actuation command. Deriving the optimal control law K∗ without
any a priori information on the cost function J is a challenging non-convex optimization
problem presenting presumably several minima.
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3.3. Gradient-enriched machine learning control
In this section, we present the gMLC algorithm (Cornejo Maceda et al. 2021) employed
to solve the optimization problem (3.6). Gradient-enriched MLC is an iterative function
optimizer to derive control laws directly from the plant. The method is based on machine
learning control (Duriez et al. 2017, MLC) and is augmented with downhill simplex
steps to accelerate the learning; MLC has already been employed to control dozens of
experiments outperforming previous control laws with unexpected frequency cross-talk
(Noack 2019). The choice of downhill simplex algorithm relies on its fast convergence and
its easy implementation as it does not require an analytical expression of the cost function
but only its evaluation. In the past, downhill simplex has been successful in deriving an
adaptive closed-loop control for lift-to-drag ratio optimization over a NACA 0025 airfoil
(Tian, Cattafesta & Mittal 2006; Cattafesta, Tian & Mittal 2009) and reducing the net
drag power of the fluidic pinball and a slanted Ahmed body (Li et al. 2022). In Cornejo
Maceda et al. (2021), the gMLC is introduced and employed to stabilize the fluidic pinball.
The authors show, in particular, that gMLC outperforms MLC, managing to derive better
performing control laws with greater learning speed. It is now applied for the first time in
an experiment. Anticipating the results (see Appendix A), the superiority of gMLC over
MLC is also verified for the control of the cavity in experimental conditions. The benefits
of gMLC compared with MLC comes from the combination of stochastic optimization
for exploration of the search space and deterministic optimization for a fast convergence
towards the minimum. The method consists of the generation of candidate solutions to
(3.6), evaluation of them and systematic recombining of the best ones to improve their
performances.

The starting point of gMLC is MLC based on linear genetic programming (Brameier
& Banzhaf 2006, LGP). Following the genetic programming terminology, the candidate
solutions are also referred to as individuals. Like the MLC method, gMLC makes no
assumptions on the structure of the relationship between the inputs and the outputs of
the controller. The optimal solution needs, however, to be computable, meaning it can be
expressed by a finite number of mathematical operations with finite memory. Indeed, the
candidate solutions are internally represented by matrices inherited from linear genetic
programming. Each matrix resembles a computer program that unequivocally codes a
control law. Each line of the matrix is an instruction pointing to basic operations (+, −,
×, ÷, cos, sin, tanh, etc.) and registers containing constant random numbers and variables
(a1, a2, a3, etc.). The Ninst lines of the matrix are then read linearly yielding the control
commands as outputs of the first registers. We refer to Li et al. (2019) for more information
on the internal representation of the control laws.

The gMLC algorithm starts with a broad exploration of the control law space with a
Monte Carlo sampling (MCS) phase. The MCS generates NMCS random matrices that
represent the first set of individuals. The individuals are evaluated and added to the
database of all individuals. Then, the algorithm alternates between exploration phases
carried out by genetic programming and exploitation phases performed by downhill
simplex iterations until a stopping criterion is reached. The role of exploration is to locate
new and better minima in the space of control laws with stochastic recombination of the
best-performing individuals. The stochastic recombination is achieved with the genetic
operations crossover and mutation. This exploration is much like the evolution phase in
the LGP method, however, in the case of gMLC, the concept of population that evolves
through generations is generalized by considering all the individuals evaluated so far and
stored in the database. Thus, during the exploration phase new individuals are generated by
recombining the best among all the previously evaluated individuals. This ensures that no
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crucial information is irretrievably lost. The best individuals to recombine are selected
following their cost function. The selection is carried out by the tournament method
with a tournament size equal to 7 for 100 individuals, following the Duriez et al. (2017)
recommendation. The tournament size is scaled with the number of individuals in the
database in order to keep a 7/100 ratio; Np new individuals are built at each exploration
phase by recombining the best individuals of the database.

Each exploration phase is followed by an exploitation phase. This step exploits the
local gradient information to slide down towards the neighbouring minimum. This is
carried out with a variant of downhill simplex for infinite-dimensional spaces introduced
by Rowan (1990) and referred to as downhill subplex. In the following, we do not
differentiate between the downhill simplex and subplex as the algorithm steps are similar
and only applied to different spaces. The principle of downhill simplex is to linearly
combine the Nsub best-performing control laws following the gradient of the cost space
to derive more performing individuals. In contrast to the exploration phase, the new
individuals are built in a deterministic way. First, the Nsub best individuals are selected
to describe a simplex that lives in the subspace generated by the Nsub best individuals.
The simplex then crawls in the subspace according to geometric operations (reflection,
expansion, contraction and shrink) following the local gradients. Each geometric operation
yields one or several new individuals that are linear combinations of the original Nsub
individuals. After each downhill simplex iteration, the simplex is updated by replacing
the least-performing individuals. The downhill simplex steps are iterated until at least Np
individuals are generated. The newly generated individuals are then added to the database
of all individuals. We emphasize that all the new individuals belong to the subspace
defined by the original Nsub individuals. The algorithm returns the best-performing control
law once the stopping criterion is reached. Otherwise, a new iteration of exploration and
exploitation is carried out. The stopping criterion may be a performance threshold or a
total number of evaluations when the testing budget is limited.

We note the critical intermediate phase of reconstruction between each exploitation and
exploration occurrence. Indeed, the new individuals generated by the downhill simplex
are linear combinations of individuals without a matrix representation, which is essential
for genetic recombination during the exploration phase. Thus, a matrix reconstruction is
performed for each linearly combined individual by solving a secondary optimization
problem. The goal is to derive a matrix that translates into a control law that has the
same response as the linearly combined one. Such a problem is similar to a surface
fitting problem, which we solve with linear genetic programming. The reconstruction
phase builds a matrix representation for the linearly combined individuals so that genetic
operation can be performed. For more information on the gMLC algorithm, we refer the
readers to Cornejo Maceda et al. (2021). Figure 6 schematically illustrates the different
phases of the gMLC algorithm and the learning principle in the control law space. The
MATLAB implementation of gMLC employed for this study is freely available from the
website https://github.com/gycm134/gMLC.

3.4. Control law investigation
In this section, we propose two methodologies to analyse the actuation mechanisms of
optimized control laws. Firstly, an analytical approximation of the control is performed
with an affine mapping between the inputs (components of a) and the actuation
command (b). Such mapping aims to reveal the most relevant component of the
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Stabilization of a multi-frequency open cavity flow

Monte Carlo
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Figure 6. Schematic of the gMLC algorithm. On the left are depicted the three phases: MCS, exploration
and exploitation. Each one of the phases requires several experiment evaluations. On the right is depicted a
representation of the control law space and the gMLC learning process. The individuals generated during the
MCS are depicted in black. The individuals resulting from genetic operations are depicted in blue and genetic
operations by dashed blue arrows. The yellow region represents the subspace built from the best individuals.
The individuals resulting from downhill simplex are depicted in yellow, and the red arrows symbolize the
simplex sub-steps (only one sub-step is depicted). The reconstruction phase is not displayed for clarity.

feature vector. The affine approximation K̃ of the control law K reads

K̃(a) = k0 +
∑

i

kiai, (3.7)

where ki are gains determined by linear regression between the components of a and
the actuation command b. The quality of the fitting is measured by the coefficient of
determination R2, measuring the relative reduction of the residual variance. The closer
R2 is to 1, the better K̃ fits the original control law K.

Secondly, we propose a visualization of the control laws based on the clustering of
the feature vector a to reconstruct the phase portrait. Cluster-based methods have been
successful in reproducing key characteristics of fluid flow dynamics such as temporal
evolution and fluctuation levels (Fernex, Noack & Semaan 2021; Li et al. 2021). For this
analysis, all the states of the feature vector are grouped in 10 clusters to reconstruct the
dynamics. The cluster centroids, ck, are defined as the average state of all the states in a
given cluster. Clustering is performed with the k-means algorithm (Lloyd 1982), and the
metric employed is the one induced by the L2 norm. The dynamics of the feature vector is
then encapsulated in a probability transition matrix where its elements pij are the transition
probabilities from cluster i to cluster j. The probability pij is defined as pij = nij/ni with nij
being the number of states transitioning from cluster i to cluster j and ni the total number
of states in cluster i.

Then all feature vector states and centroids are projected on a 2-D space with classical
multidimensional scaling (Kaiser, Li & Noack 2017; Li et al. 2022, MDS). The MDS is a
dimensional reduction method that consists of extracting the two main features of the flow
(γ1 and γ2) by applying a proper orthogonal decomposition on the distance matrix of the
feature vector a. The vectors γ1 and γ2 spawn a 2-D space where all the data are projected.
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Figure 7. Control law investigation methodology for the cavity control. A feature vector a is built from a direct
measurement of the flow u. A feature vector of dimension three is depicted for simplicity. The elements of the
feature vector are grouped in clusters. For clarity, only three clusters and their centroids (1,2,3) are displayed.
The proximity map is defined by γ1 and γ2 the two flow features extracted with classical multidimensional
scaling. For the transition matrix, darker squares symbolize higher transition probabilities. In the control
network model, the actuation magnitudes are represented by rectangles; yellow denote the actuation range,
red (blue) for a positive (negative) actuation with respect to the mean value.

It is the optimal projection, in the L2 norm sense, that preserves the distances between the
states. Such representation is referred to as a proximity map.

Adding the probability transitions to the proximity map allows us to build a network
model reproducing the phase portrait. The centroids constitute representative states of the
flow where the system transitions ergodically, meaning that from any centroid, one can
reach any other centroid. Finally, the mean forcing level is computed for each cluster and
associated with their corresponding centroid. Such representation allows us to partition
the states of strong and low forcing level and to reveal actuation mechanisms. Figure 7
summarizes the two approximation methodologies employed.

The latter data-driven methodology for control visualization is expected to aid the
human interpretability of machine-learned controls. We study a single-input single-output
system; however, we believe that the methodology will be beneficial for the analysis of
more complex control systems, including a high number of actuators and sensors.
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Figure 8. Response of the cavity flow to increasing levels of steady actuations. Only 12 actuation levels among
the 23 tested are depicted for clarity. The vertical axes are in log10 scale, and the ticks correspond to the
exponent values. The spectra have been successively shifted upwards of 4 orders of magnitude to help the
comparison. The difference of actuation intensity between two spectra is �V = 0.6 kV. The spectrum of the
unforced flow is plotted in red and in transparency for comparison with the other levels. (a) Narrow-bandwidth
regime and (b) mode-switching regime.

4. Control results

In this section, we stabilize the open cavity flow in two regimes: the narrow-bandwidth
regime (§ 4.3) and the mode-switching one (§ 4.4) presented in § 2.5. We recall that the
control objective is to mitigate the self-sustaining oscillations of the mixing layer. First, in
(§ 4.1), we reduce the oscillations with steady forcing at increasing actuation levels. Then,
we employ gMLC to optimize feedback control laws. Section 4.2 details the parameters
employed for the control law optimization, and §§ 4.3 and 4.4 present the results for the
control of the narrow-bandwidth regime and the mode-switching regime, respectively.

4.1. Open-loop steady forcing
In this section, the response of the flow to steady actuation is described. For this study,
the amplitude of the carrying signal is set to constant values. The flow is excited with
23 levels of actuation equally distant from the ionization level (A = Amin = 6.9 kV) to
A = Amax = 12 kV. Figure 8 presents the velocity power spectra for the two regimes. For
the narrow-bandwidth regime, figure 8(a) shows that the second peak f + rises and the
first peak fa decreases as the actuation level increases. When the actuation is too strong,
the noise level increases and the two peaks are at the same level. The maximum peak
reduction is achieved for A = Amax with a cost reduction of 97 %. The associated standard
deviation slightly decreases to σ̃ = 96 %.

For the mode-switching regime, figure 8(b) shows that a strong actuation level is
needed to reduce the amplitude of the peaks associated with fa and f +, although the
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broadband noise level also increases. The maximum cost reduction is achieved for the
nearly maximum actuation level A = 11.4 kV (88 % of Amax) and the maximum peak
power decreases by 90 %. Also, the standard deviation slightly decreases to σ̃ = 95 %.
We note that for the third spectrum starting from the bottom (V = 1.2 kV), the accidental
absence of mode switching during the measurement led to a lower f + peak.

This open-loop analysis shows that a strong steady actuation is able to reduce the
fluctuations of the shear layer. However, in both cases the background noise level increases.
Therefore, in the following, in order to exclude power demanding controllers, we consider
the cost function described in § 3.1 that includes two terms: a measure of the maximum
amplitude of the spectrum and an actuation penalization term.

4.2. Implementation of gMLC
The parameters chosen for the gMLC algorithm are similar to the ones chosen in Cornejo
Maceda et al. (2021). The MCS phase generates NMCS = 100 individuals. The exploration
and exploitation phases both produce Np = 50 new individuals at each iteration. The
exploration and exploitation phases alternate until 1000 individuals are evaluated. We
recall that each individual is evaluated over Tev = 40 s. A relaxation time of 2 s is
intercalated between two consecutive control law evaluations. The experiment time needs
also to include the time needed to solve the reconstruction problem, but this constraint
can be lifted with additional computation power. The limit of 1000 individuals is then
chosen such that all the individuals are evaluated in one day. Cornejo Maceda et al. (2021)
show also that 1000 evaluations is enough to converge for a multiple-input multiple-output
problem. The subplex space is generated by Nsub = 10 control laws to balance speed and
performance, as in Cornejo Maceda et al. (2021). For the evolution during the exploration
phase, the crossover and mutation probabilities are both set to Pc = Pm = 0.5. The control
laws are built from nine mathematical operations (+, −, ×, ÷, sin, cos, tanh, exp and log),
ten flow features {ai}i...10 and Ncr = 10 random constants. As suggested by Duriez et al.
(2017), the ÷ and log operations are protected, allowing them to be defined for all the real
numbers; Nvr = 14 registers are employed to derive the control laws. Finally, the maximum
number of instructions to be coded in the matrix representation is Ninst,max = 50. The flow
features employed for feedback control laws are the velocity signal and nine time-delayed
velocity signals. Time-delayed sensor signals are introduced as control inputs to enrich
the search space and allow, in principle, autoregressive moving average with extra input
(ARMAX)-type controllers (Hervé et al. 2012), linear and nonlinear combinations of
them. The resulting feature vector a reads

a(t) = [u(t), u(t − τ), . . . , u(t − 9τ)]ᵀ, (4.1)

where the time delay is τ = 0.008 s. The choice of the delays allows reconstruction of
the phase of the main frequencies of the flow between 25 and 40 Hz (Cornejo Maceda
et al. 2021). Only half of the delays are necessary but nine have been taken into account
to enrich the phase space and get closer to full-state control. The presence of time-delayed
information in the control can play, for example, the role of an embedding process in
the new dynamical system consisting of the flow and the closed-loop control. Indeed, we
have opted for a single measurement point separated from the actuator by a convective
time that intrinsically varies over time. Implicitly, the system under closed-loop control is
hence reduced to a purely temporal dynamical system and the spatial information can be
interpreted as an embedding of this dynamic into a larger phase space.
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Stabilization of a multi-frequency open cavity flow

Parameter Description Value

Function library +, −, ×, ÷, sin, cos, tanh, exp, log
Nb Number of controllers 1
a Control law inputs u(t), . . . , u(t − 9τ)

Nvr Number of variable registers 14
Ncr Number of constant registers 10
Ninst,max Max number of instructions 50
NMCS Number of Monte Carlo individuals 100
Nsub Subspace size 10
Pc Crossover probability 0.5
Pm Mutation probability 0.5
Np Number of individuals per phase 50

Table 4. Gradient-enriched MLC parameters to control the open cavity.

Cost function
J

Gradient-

enriched

machine

learning

control

Open cavityU∞

1-D hot-wire

Sensor

u (t)

J (K)

Slow

learning loop
Fast evaluation loop

Control law

a = (u(t), u(t – kTs))
T

      b(t) = K (a(t))

K

A
ct

u
at
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n
 b

(t)

Figure 9. Diagram of the machine learning control process. The evaluation of one individual constitutes the
fast evaluation loop, operating at 250 Hz. The slow learning loop updates the control laws following the gMLC
algorithm; it operates at ∼ O(10−2 Hz).

Table 4 summarizes the parameters for the gMLC optimization process. Figure 9
displays the experiment set-up to control the open cavity with machine learning control
and specifically with gMLC.

4.3. Closed-loop control of the narrow-bandwidth regime
In this section, we describe the best control law derived by gMLC that mitigates the
self-sustaining oscillations of the mixing layer for the narrow-bandwidth regime. In the
following, the notations for the control law, cost and standard deviation associated with
the learning on the narrow-bandwidth regime are marked by the superscript I.

Figure 10 depicts the cost for the 1000 evaluated individuals during the optimization
process. The individuals from the MCS and exploration phases are sorted following
their cost, as there is no direct causal relationship between two successive individuals,
while the individuals generated during the exploitation phase are depicted in the order
of their evaluation as each individual depends on the previous one. We recall that the
cost function is defined such that the cost of the unforced flow is J0 = 1. We note that
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gMLC learning curve for the narrow-bandwidth regime
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Figure 10. Distribution of the costs for the 1000 evaluated individuals during the gMLC optimization process
for the narrow-bandwidth regime. Each dot represents the cost J of one individual. The colour of the dots
symbolizes how the individuals are generated: black dots for randomly generated individuals (MCS phase),
blue dots for individuals generated by a genetic operator (exploration phase) and yellow dots for the individuals
arising from the subplex method (exploitation phase). The individuals from the MCS and exploration phases
are sorted following their costs. The red line follows the evolution of the best cost. The vertical axis is in log
scale.

a random sampling of 100 control laws already reduces the cost function to J = 0.2410.
Then, the first exploration phase (individuals i = 101, . . . , 150) slightly reduces the cost
function to J = 0.2276. In the following exploitation phase (individuals i = 151, . . . , 206),
the downhill subplex individuals gradually reduce the cost function to J = 0.1882. We
note that, at first, the individuals are scattered along the vertical axis and then go down,
close to the lowest cost so far. This behaviour shows that the individuals progress towards
a minimum in the control law space. However, this descent is interrupted by the next
exploration phase (individuals i = 207, . . . , 257), where a better-performing individual is
found; its cost is J = 0.1329. This new individual replaces the worst-performing individual
in the simplex, allowing the algorithm to explore beyond the initial subspace. It is worth
noting that the dimension of the subspace remains the same as new individuals replace the
worst-performing ones. From there on and until individual i = 512, only the exploitation
phases built better individuals. The cost of the best individual after 512 individuals is
J = 0.0402. Interestingly, we note that downhill simplex can build worse-performing
individuals. Indeed, we notice that all exploitation phases starting from the 4th one include
individuals whose costs are scattered, up to J = 1. The next exploration phase (individuals
i = 513, . . . , 563) finds a better control, whose cost is J = 0.0311. As the simplex includes
now poor performing individuals, four better-performing individuals generated by the
exploration phase are introduced in the simplex. From there on, progress is made only with
exploitation steps: the cost of the best individual reaches a plateau after 707 evaluations
and slightly improves after 913 evaluations. After 1000 evaluations, the cost of the final
control law KI is JI = 0.0192. The corresponding peak reduction is Ja

I = 0.0129, i.e. 99 %
of the fluctuation level In other terms, the amplitude of the oscillations is reduced by a
factor of 9 or by 19 dB. The structure and components of KI is thoroughly described in
Appendix C.

The learned control law KI is re-evaluated 20 times afterwards to test its efficiency
outside the learning loop. We note that the performances slightly dropped as the averaged
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Figure 11. Characteristics of the best control law KI controlling the narrow-bandwidth regime. (a) Time series
of the velocity measured downstream and voltage level at the terminals of the DBD actuator. (b) Power spectra
of the velocity measured downstream. Black is for the unforced flow, red for the flow controlled with KI and
blue for the flow controlled with the recorded actuation command AI(t) employed as an open-loop control. The
spectra for the unforced flow (black) and the closed-loop controlled flow (red) are averaged over 20 realizations.
The horizontal dashed lines denote the maximum of the spectra in the observation window (green background).
The vertical axis is in log10 scale.

cost reduction of JI went from −98 % to −94 % and the standard deviation increased from
σ̃ I = 61 % to σ̃ = 65 %. Such discrepancy is expected as the experimental conditions are
always evolving. Indeed, the temperature in the room, the evolution over time of the DBD
actuator and the incoming velocity variation are all possible sources of fluctuations on the
measured velocity. However, the discrepancies are small, and the overall performance of
the control law is retained.

Figure 11 depicts the flow response controlled by the best control law KI derived by
gMLC for the narrow-bandwidth regime. We observe that the control law KI effectively
answers to the control objective as the oscillation amplitude is reduced compared with the
unforced flow, see figure 11(a). This goes along with the decrease of the standard deviation
to σ̃ I = 61 %. Such a feature was consistently observed in several learning realizations.
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Term 1 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Gain k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10
Value −1.50 0.51 −0.06 −0.07 0.01 −0.06 0.02 −0.04 0 0 0

Table 5. Gains for the affine reconstruction of KI controlling the narrow-bandwidth regime.

The power spectra in figure 11(b) show that KI effectively reduces the highest peak of the
spectrum at frequency fa by almost two orders of magnitude. The effect of the control is
also observed beyond the observation window between St ∈ [0.5, 1.75] as the harmonics
of fa are also mitigated. Note that the peak f + associated with the mode n = 3 increases
with the control. This behaviour is not surprising as the frequency is associated with a
quasi-stable mode of the flow, which then grows when energy is supplied to the system.
Moreover, the frequency f + is split into two peaks. This peak-splitting phenomenon,
referred as spillover, is well known when building closed-loop transfer functions with
unstable zeros and poles (Rowley & Williams 2006; Rowley et al. 2006). Despite being
beyond a linear framework, one can suspect that a similar mechanism is behind the
observed peak splitting. The learned law KI fails to control f + as its power level is around
one order of magnitude lower than fa under control.

In addition, such control has been achieved with a minimum actuation power. Indeed
the associated cost is Jb

I = 0.0063, less than 1 % of the maximum actuation power. The
actuation command, plotted in figure 11(a), shows that the control combines low-level
steady actuation and low-amplitude feedback control. To demonstrate the effectiveness
of the low-amplitude level, we use the closed-loop actuation command as an open-loop
control. The closed-loop actuation command recorded during the learning process has
been employed as open-loop control signal to force the flow. The spectrum of the resulting
flow (blue spectrum in figure 11b) shows that that the main frequency of the flow fa
resurfaces and also that the mode n = 3 associated with the frequency f + is also excited.
This open-loop test reveals that despite the low-amplitude level, feedback plays a crucial
role in stabilizing the flow. Moreover, when we compare the results of the open-loop
control with a steady actuation of equivalent level (∼ 10 %Amax) in figure 8(a), we note
that both frequencies fb and f + are excited, indicating the effect of the unsteady component
of the command.

Now we describe the learned law KI with an analytical approximation and a
cluster-based visualization. For the analytical approximation, the determination coefficient
for the affine reconstruction R2 = 0.87 indicates an acceptable reconstruction. The gains
associated with each feature component are presented in table 5. We note that, aside the
mean component, the dominant term is a1 = u, as its gain (k1 = 0.51) is more than 7 times
higher than the second highest gain. The strong correlation between KI and a1 reveals that
phasor control or direct feedback of the system’s state plays a fundamental role for this
control. However, figure 12 shows that the relationship between b and a1 is not fully affine
as two regions of significant width are displayed. This analysis is in agreement with the
cluster-based investigation of the control law.

The control visualization, following the method described in § 3.4, allows us to interpret
the dynamics of the control achieved by KI. The proximity map (figure 13a) shows that
the centroids are arranged in a circular manner around the origin where centroid 1 is
located. The transition probability matrix (figure 13b) gives the probability transition
from one cluster to the other for each time step dt = 0.004 s. The transition probability
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Figure 12. Actuation command b vs a1 for the case: KI controlling the narrow-bandwidth regime.

matrix also shows one fixed point and 2 cycles: a small cycle including centroids 2, 3,
4 and 5 and a large one including centroids 6, 7, 8, 9 and 10. Combining the proximity
map and the transition probability matrix, we can reconstruct the phase space of the
dynamics by deriving a control network model (figure 13c). The identified cycles in
the transition probability matrix are represented by limit cycles in the phase space.
A frequency analysis based on a Poincaré section and angular first return map of the
dynamics similar to Lusseyran et al. (2008) reveals that the frequencies associated with
the large limit and small limit cycles are around 28.48 Hz and 41.14 Hz, respectively.
We can then assume that the large limit cycle is associated with the dynamics of mode
n = 2 (frequency fa = 28.81) and the small limit cycle is associated with mode n = 3
(frequency f + = 38.72). Following Lusseyran et al. (2008), such organization frequencies
in the phase space shows that the dynamics may be structured around a fixed point of
the stable spiral type where the oscillation period increases with the distance to the fixed
point, here represented by cluster 1. Figure 13(c) also depicts the actuation regions in
the phase space, revealing two mains regions of opposite actuation sign separated by a
straight line. Interestingly, the sign of the actuation changes when approaching the fixed
point. Such actuation map shows that the main stabilization mechanism exploited by KI is
phasor control. The change of actuation sign when approaching the fixed point is explained
by a phase shift due to the frequency change. The resulting control is similar to the one
obtained with linear control by Yan et al. (2006) where there is a rapid switching between
two modes competing for the available energy, thus mitigating any resonance. Moreover,
a spectral analysis of the actuation command b and a1 = u shows that they share the same
frequency peaks supporting the phase relation between the control and the state of the
system, see figure 26(a) in Appendix D.

Finally, a comparison between MLC and gMLC has been performed (see Appendix B)
and reveals that gMLC outperforms MLC in terms of speed and final solution. In total, the
learning has been accelerated by one order of magnitude.

Gradient-enriched MLC has been successfully applied to the stabilization of the
open-cavity flow experiment. Exploration and exploitation phases both participated in
the fast learning of a feedback control law. The evolution phases managed to discover
new minima in the search space, and the simplex steps succeeded in converging towards
a new minimum. A feedback control law is built, outperforming the steady actuation
and allowing a similar reduction of the level of the maximum peak of the spectrum
but with small actuation power. Both the analytical approximation and the cluster-based
analysis hint at a control combining phasor control and nonlinear interactions. Hence, the
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Figure 13. Investigation of the law KI controlling the narrow-bandwidth regime. Clusters are painted in
different colours. The centroids are marked with numbers from 1 to 10. Panel (c) represents the control network
model. The actuation amplitudes are denoted with bars, red (blue) for positive (negative) amplitude with respect
to the mean actuation. The yellow boxes underneath indicate 25 % of the maximum amplitude. The black
arrows serve as the most probable transition from one cluster to the other (p > 0.40). The grey arrows are for
less probable transitions (0.40 ≥ p ≥ 0.05). Lower probability transitions and self-transitions are omitted for
clarity. The red (blue) background denotes the supposed regions of positive (negative) amplitude. The dotted
black lines are the supposed limits that separate the regions. (a) Proximity map of the feature vector a, (b)
transition probability matrix and (c) control network.

control achieved is close to an ideal stabilization scenario, where some base state
or fixed point is stabilized with a vanishing cost. This interpretation is certainly to
be considered heuristically, given the complexity of the real dynamics of the 3-D
intra-cavity flow and its nonlinear temporal and spatial interactions with the mixing layer.
However, it aims at capturing the remarkable properties of the control law learned by the
gMLC, whose mode of action is radically opposed to that of a control by steady forcing.
In this section, the learning has been realized for a single-frequency regime; in the next
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Figure 14. Distribution of the costs for the 1000 evaluated individuals during the gMLC optimization process
for the mode-switching regime. Each dot represents the cost J of one individual. The colour of the dots
symbolize how the individuals have been generated: black dots for randomly generated individuals (MCS
phase), blue dots for individuals generated from a genetic operator (exploration phase) and yellow dots for
the individuals arising from the subplex method (exploitation phase). The individuals from the MCS and
exploration phases are sorted following their costs. The red line follows the evolution of the best cost. The
vertical axis is in log10 scale.

section, a more challenging regime is controlled where two modes compete, strengthening
nonlinear coupling.

4.4. Closed-loop control of the mode-switching regime
In this section, gMLC is employed to control a flow regime with strong nonlinear coupling,
which leads, in particular, to intermittency between the two main instability modes of the
mixing layer. The dynamics of intermittency is chaotic (Lusseyran et al. 2008) with the
appearance of long time scales that are demanding from the point of view of machine
learning. The goal is again to stabilize the flow by reducing the oscillations of the mixing
layer, but this time in the case where two modes compete, as described in § 2.5. This
constitutes a challenging problem as gMLC needs to learn a control law able to control
two modes simultaneously. For the gMLC optimization, the same parameters as for the
narrow-bandwidth regime have been employed, see § 4.2. In the following, the notations
for the control law, cost and standard deviation associated with the learning on the
mode-switching regime are marked by the superscript II.

Figure 14 depicts the cost of the individuals evaluated along the learning process. For
this specific experiment, most of the learning is realized during the MCS phase, reducing
the cost function to J = 0.0713. From there on, the only improvements are carried out with
the simplex steps, bringing the cost function to the final value JII = 0.0565. Nonetheless,
the second exploration phase introduced a new control law (#11) in the simplex (see table 8
of Appendix C). As the gMLC algorithm is partially stochastic, it is possible to fall close
to the global minimum by pure luck; however, it usually takes several iterations of the
learning phases to converge, as in § 4.3. Such a learning process has been observed in other
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Figure 15. Characteristics of the best control law KII controlling the mode-switching regime. (a) Time series
of the velocity measured downstream and voltage level at the terminals of the DBD actuator. A short window is
enlarged to display the behaviour close to Amin (the proportions are not kept). (b) Power spectra of the velocity
measured downstream. Black is for the unforced flow, red for the flow controlled with KII and blue for the
flow controlled with the recorded actuation command AII(t) employed as an open-loop control. The spectra
for the unforced flow (black) and the closed-loop controlled flow (red) are averaged over 20 realizations. The
horizontal dashed lines denote the maximum of the spectra in the observation window (green background).
The vertical axis is in log10 scale.

realizations of the same experiment where a combination of exploration and exploitation
have been necessary to reach similar levels of performance.

After 1000 evaluations, the final control KII is a feedback control law, thoroughly
described in Appendix C. The spectra of the flow under control (figure 15b) reveal
a drastic decrease in the level of the maximum peak at frequency fa. The dominant
frequency is then close to the one associated with the second main mode ( f +). The
relative reduction of the maximum peak in the spectrum is Ja

II = 0.0335, i.e. 0.97 % of the
fluctuation level. This corresponds to a reduction of the oscillation amplitude by a factor
of 5 or by 15 dB. The standard deviation associated decreases to σ̃ II = 97 %. Like for
the narrow-bandwidth regime, the control is achieved with small actuation power, using
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Figure 16. Spectrogram of the velocity for the mode-switching regime controlled with KII.

around 2 % of the maximum actuation power. Figure 16 reveals that the controlled flow
no longer shows a mode-switching behaviour like in figure 4(b). The actuation command
plotted in figure 15(a) shows short-time intermittent high-amplitude spikes emerging from
the minimum actuation level (Amin). As for the narrow-bandwidth regime, the control law
KII is re-evaluated 20 times and a small performance drop is observed: JII went from
−94 % to −89 % and the standard deviation from σ̃ II = 97 % to σ̃ = 112 %. Finally, like
in § 4.3, the time series of the actuation command has been employed as a signal input
for open-loop control. Surprisingly, the equivalent open-loop control performs as good as
the close-loop control law, suggesting that feedback was not at play in the reduction of the
power amplitude for the mode-switching regime. However, anticipating the next section
(§ 5), controlling the narrow-bandwidth regime with KII reveals that feedback is still a
feature selected by gMLC.

For the polynomial approximation of the KII control of the mode-switching regime, a
linear regression was unable to derive an affine reconstruction of the actuation command;
the corresponding determination coefficient is R2 = 0.13. Even with expanding the affine
reconstruction with quadratic and cubic terms, R2 is less than 0.25, implying that no linear
control can be inferred from the data.

Regarding the cluster-based analysis of the control, figure 17 reveals a complex structure
for the dynamics. The transition matrix (not plotted) shows that the cluster self-transitions
are dominant. The reconstructed phase space reveals two regions of opposite actuation
signs. The complex interactions between the centroids show that strong nonlinearities are
at play. Interestingly, the spectrum of the actuation command (figure 26(b) in Appendix D)
does not include any significant peak, except for the very low frequencies. The actuation
command corresponds then to a random noise without any correlation with the measured
velocity.
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Figure 17. Visualization of the control law KII controlling the mode-switching regime. The control network
is depicted like in figure 13. The actuation amplitudes are denoted with bars, red (blue) for positive (negative)
amplitude with respect to the mean actuation. The yellow boxes indicate 10 % of the maximum amplitude. The
black arrows serve as the most probable transition from one cluster to the other (p > 0.15). The grey arrows are
for less probable transitions (0.15 ≥ p ≥ 0.10). Lower probability transitions and self-transitions are omitted
for clarity. The red (blue) background denotes the supposed regions of positive (negative) amplitude. The dotted
black line is the supposed limit that separates the regions.

In less than 1000 evaluations, gMLC builds feedback control laws that reduced the
maximum peak of the power spectrum with small actuation power in two regimes:
the narrow-bandwidth regime and the mode-switching regime. We proposed a visual
representation of the control laws to aid the interpretability of the actuation mechanisms
that enabled such efficient controls. However, a real analysis of the controlled flow is
not done yet and constitutes a study in itself. The identification of the involved control
mechanism requires a study of the short transient that leads to the stabilized state.
Nonetheless, we can affirm that the control impacts the linear amplifier of the shear layer
as the DBD actuator modifies its thickness on average. This effect has been demonstrated
by studying the difference between the unforced and forced mean flow even for low
actuation levels, i.e. near the ionization threshold. Such a mechanism is expected to remain
valid for turbulent flows and even for often-studied transonic cavity flows. Moreover,
Cornejo Maceda et al. (2021) show that gMLC surpasses MLC in terms of final solution
performance and learning speed for a 2-D numerical simulation. In Appendix A, we
demonstrate that gMLC also surpasses MLC in experiments, establishing gMLC as a
keystone for fast learning of feedback control laws directly on the plant. We foresee that
gMLC will greatly contribute to the learning of control laws for MIMO control.

5. Control law investigation

In this section, we further investigate the capabilities of the control laws KI and KII learned
for the narrow-bandwidth regime and the mode-switching regime, respectively. Firstly, the
robustness of the laws is tested by applying each law on the other regime, comprising a
dynamics different from the learning conditions (§ 5.2). Secondly, we characterize the new
control of these regimes with an affine approximation and our cluster-based visualization
method (5.2). Finally, we establish the existence of effective feedback for the control of
both regimes with open-loop tests (§ 5.3).
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Stabilization of a multi-frequency open cavity flow

5.1. Robustness of the control
In this study, feedback control laws are optimized for steady conditions: fixed Reynolds
number and incoming velocity during the learning process. To achieve robustness, the
control laws learned should also perform for a large range of parameters. Thus, to test
the robustness of the learned laws, they are re-evaluated for operating conditions different
from the learning ones: the law KI optimized for the narrow-bandwidth regime is now
employed to control the mode-switching regime and vice versa. Such a test is demanding
as the dynamics is partially different from one regime to the other. In particular, the
unforced dynamics of the mode-switching regime includes the main frequency of the
narrow-bandwidth regime but also displays intermittency with another frequency.

Figure 26 displays the spectra for each controlled case. For the control of the
narrow-bandwidth regime with KI (figure 18(a), green line), we note that the law KII

manages to reduce the main peak fa of the spectrum to the same level as the law KI

(red line). Moreover, for the frequency range around f +, KII performs better than KI as
it mitigates the peak-splitting phenomenon described in § 4.3. Such feature is expected as
KII has been optimized to control the mode f +. In fact, the whole spectral range is reduced
in amplitude. This non-transfer of energy to other frequencies is a remarkable feature of
KII.

As for the control of the mode-switching regime with KI (figure 18(b), green line), the
power of the main frequency fa is drastically reduced, reaching the same power level as
the control with KII (red line). However, the controller is less efficient than KII, as KI fails
to reduce the power associated with the frequency range surrounding the frequency f +
of mode n = 3. Again, like for the control of the narrow-bandwidth regime with KI, we
observe the spillover effect with a splitting of the main frequency into two frequencies on
either side and with a lower power level.

In summary, both learned control laws KI and KII are able to retain their efficiency when
controlling regimes that are out of the learning conditions. Expectedly, KI was unable
to reduce the peak of the frequency f + in the mode-switching regime. Nonetheless, it
manages to reduce the fa, despite only appearing intermittently. On the other hand, for
the narrow-bandwidth regime, the control with KII was more significant than KI as it
prevents the peak splitting (or spillover) of the third mode. Thus this test also reveals that
KII is not only able to control the frequency fa and f + but also to prevent the rise of both
modes simultaneously. Of course, from the point of view of the cost function, both control
laws KI and KII are similar when controlling the narrow-bandwidth regime, and gMLC
could have converged towards any of the two control laws. Yet, KII is the control law that
answers the best to the control objective, which is the stabilization of the flow. Therefore,
it is the learning conditions that make the difference. This analysis reveals that learning a
control law in complex and rich conditions is beneficial for the robustness and the overall
efficiency of the control as the richness of the dynamics will be reflected in the control
law.

5.2. Interpretation of the resulting controlled flow
Now, we propose an interpretation of the controls performed in the previous section using
both analytical approximation and cluster-based visualization of the control laws. Firstly,
we analyse the case where KII controls the narrow-bandwidth regime. Like for § 4.4, a
linear regression is unable to reconstruct the actuation command despite being in a less
complex regime. The determination coefficient is R2 = 0.13. The addition of quadratic
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Figure 18. Spectral response of the flow controlled by KI and KII for the narrow-bandwidth regime (top) and
the mode-switching regime (bottom). Black spectra correspond to the unforced dynamics of each regime;
red spectra correspond to the flow controlled by law learned in the given regime, i.e. KI (KII) for the
narrow-bandwidth (mode-switching) regime. Green corresponds to the flow controlled by the law learned in
the other regime and blue to the open-loop equivalent of the latter one. The horizontal dashed lines denote
the maximum of each spectrum in the observation window (shaded green section). The vertical axes are in
log10 scale. (a) Power spectra for the narrow-bandwidth regime and (b) power spectra for the mode-switching
regime.

terms brings the coefficient no higher than 0.78. A complex nonlinear control is expected
as KII manages to control both frequencies fa and f +.

As for the control law visualization, figure 19 depicts a similar control network as in
§ 4.3. However, there is only one large cycle composed of centroids 1, 2, 3, 4, 5, 6 and
7. The limit cycle presents four phases regularly alternating between positive and negative
actuation, suggesting that the control operates at twice the frequency of the flow. A spectral
analysis of a1 = u and b (see figure 26(c) in Appendix D) shows that the main peaks
are respectively fa = 29.03 Hz and f = 58.23 Hz ≈ 2fa, confirming the phase relation
between the flow dynamics and the actuation command. Interestingly, the second harmonic
2fa is slightly excited but does not resonate for the controlled flow (figure 18(a), green line),
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Figure 19. Visualization of the control law KII controlling the narrow-bandwidth regime. The control network
is depicted as in figure 13. The actuation amplitudes are denoted with bars, red (blue) for positive (negative)
amplitude with respect to the mean actuation. The yellow boxes indicate 25 % of the maximum amplitude. The
black arrows serve as the most probable transition from one cluster to the other (p > 0.50). The grey arrows are
for less probable transitions (0.50 ≥ p ≥ 0.5). Lower probability transitions and self-transitions are omitted for
clarity. The red (blue) background denotes the supposed regions of positive (negative) amplitude. The dotted
black lines are the supposed limits that separate the regions.

Term 1 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Gain k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10
Value −1.65 0.48 −0.06 −0.05 0.01 −0.01 0 0 0 0.01 0

Table 6. Gains for the affine reconstruction of KI controlling the mode-switching regime.

while it resonates for the open-loop equivalent of KII (blue line). In summary, KII controls
the flow at twice the main frequency but avoids the resonance of the second harmonic.
The efficiency of a controller at twice the main frequency has been previously reported
by Schumm, Berger & Monkewitz (1994). The authors note the stabilization of a cylinder
wake by transverse vibration of the cylinder at 1.8 times the natural shedding frequency. In
particular, they declare that the control effect is due to a nonlinear interaction between the
instability and the forcing input. Thus, both the analytical and cluster-based analyses point
towards a nonlinear actuation mechanism for the control of the narrow-bandwidth regime
with KII.

Secondly, we interpret the case where KI controls the mode-switching regime. This time,
the linear regression builds an affine approximation of the control as the determination
coefficient is R2 = 0.92. The gains associated with each feature component are displayed
in table 6. As for § 4.3, the most relevant feature is a1 = u(t), but again the control
cannot be reduced to an affine relationship as figure 20 displays a nonlinear curve. Such
observation is in agreement with the spectral analysis of b and a1 = u (see figure 26(d)
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Figure 20. Actuation command b vs a1 for the case: KI controlling the mode-switching regime.
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Figure 21. Visualization of the control law KI controlling the mode-switching regime. The control network
is depicted as in figure 13. The actuation amplitudes are denoted with bars, red (blue) for positive (negative)
amplitude with respect to the mean actuation. The yellow boxes indicate 25 % of the maximum amplitude. The
black arrows serve as the most probable transition from one cluster to the other (p > 0.15). The grey arrows are
for less probable transitions (0.15 ≥ p ≥ 0.9). Lower probability transitions and self-transitions are omitted for
clarity. The red (blue) background denotes the supposed regions of positive (negative) amplitude. The dotted
black lines are the supposed limits that separate the regions.

in Appendix D) showing the peaks at the same frequency. The complexity of the flow
translates into a complex control network as in § 4.4. Figure 21 depicts a reconstructed
phase space divided into two main regions: one on the left (centroids 1, 2 and 3) with
positive actuation amplitude; and one on the right (centroids 4, 5, 6, 7, 9 and 10) with
negative actuation amplitude. The role of centroid 8 may be small as its associated
actuation is close to the mean value. Interestingly, the overall structure of the control
network is similar to the one in figure 21, suggesting that the control mechanism is also a
complex nonlinear one.
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5.3. The need of feedback
We have shown with the control of the narrow-bandwidth regime (§ 4.3) that without
feedback the control law KI is unable to stabilize the flow and even excites the frequencies
fa and f + (figure 11b). Moreover, KI is able to partially control the mode-switching regime
(§ 5.1) and, as expected, the same controller applied in an open-loop manner is no longer
able to control the main mode fa (blue spectrum in figure 18b). We note, nonetheless, a
small shift of the spectrum towards the higher frequencies.

On the other hand, surprisingly, it has been shown in (§ 4.4) that KII performs in open
loop as well as in closed loop. This result is consistent with the absence of correlation
between the actuation command b and the velocity measure a1 = u, see figure 26(b) in
Appendix D. So, it seems that the learning process has selected the flow information
(ai, see Appendix C) without any improvement of the cost. However, KII applied in
closed-loop manner to the narrow-bandwidth regime performs even better than KI, while
in an open-loop manner, KII fails to achieve any control. Indeed, the corresponding
spectrum (blue spectrum in figure 18b) is almost similar to the unforced flow. Therefore,
it should be noticed that the flow state information ai in KII is truly functional and, in fact,
gives the controller the ability to remain effective well away from the learning conditions.

This analysis shows the extent to which feedback is a key feature for control. We
believe that the ability of gMLC to learn effective and efficient feedback control laws
in experiments will greatly benefit future MIMO control experiments.

5.4. Stabilization of the open cavity flow
In this study, the flow is monitored by a single hot-wire sensor downstream of the actuator.
The sensor signal is employed for sensor feedback and to characterize the controlled
flow. The achieved stabilization near the sensor extends in the spanwise and streamwise
directions, assuming a significant portion of the finite aspect ratio cavity.

For large aspect ratios S/D, e.g. O(100) or more, the effect of 2-D actuation along the
whole span can be expected to depend on the sensor location. The feedback stabilization
in the sensor plane will become a non-stabilizing open-loop actuation far beyond the
spanwise coherence length. An interesting example has been reported for the stabilization
of a large aspect ratio cylinder wake. Roussopoulos (1993) forced the cylinder wake with
a pair of loudspeakers driven in opposite phase and significantly reduced the fluctuations
at the downstream sensor location. Far away from the sensor in spanwise direction, no
stabilization was observed. For our open cavity flow, we expect a loss of control authority
at a distance from the hot-wire position greater than the transverse coherence length. This
transverse coherence of the mixing layer instabilities is at least of the order of the cavity
depth D. Our cavity has an aspect ratio of S/D = 6, i.e. we control at least one third of
the cavity spanwise (1D on either side of the hot-wire plane). The remaining lateral thirds
are in the Ekman layers and, therefore, probably less oscillatory. The global stabilization
could be augmented with multiple actuators and multiple sensors. As for the spanwise
homogeneity of our one-piece DBD actuator, measurements performed for actuation levels
close to the ionization threshold, when the ionization is still quite inhomogeneous along
the electrode, show that the flow response is independent of the spanwise location of the
measurement point. It should be noted that the feedback is only provided by a sensor in the
symmetry plane. Yet, the global stabilization of the cavity flow is validated with additional
measurements at several spanwise locations as elaborated in Appendix E.

Concerning the streamwise direction, the source of the oscillation is related to the
mixing layer through the Kelvin–Helmholtz instability. At the level of the mixing layer,
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the hypothesis of an oscillation along the length of the cavity which would be cancelled at
the downstream edge corresponds to the idea of a standing wave with a node at the hot-wire
location. However, with a Kelvin–Helmholtz instability, we are in the case of convective
instability which can only be killed by cancelling the disturbances at the source. Otherwise,
any oscillations close to the most dangerous frequency would inevitably be amplified
and be present at all x and especially at the hot-wire location. This is well observed in
the visualization of the natural flow where the oscillations reach maximum nonlinear
amplitudes and break on the downstream corner. Hence, the downstream stabilization of
the flow results necessarily in the control of the mixing layer in the streamwise direction.

6. Conclusions

This paper deals with a closed-loop stabilization experiment of an oscillating
flow exhibiting nonlinear coupling between several frequencies. The control law is
automatically learned with gMLC (Cornejo Maceda et al. 2021). The chosen plant is
an open cavity flow in experiment for two distinct regimes: a narrow-bandwidth regime
with dominant frequency fa and a mode-switching regime where another frequency f +
temporarily occurs. The flow is actuated upstream at the leading edge with a DBD plasma
actuator and monitored downstream at the trailing edge with a hot-wire sensor. The cost
function penalizes the energy peaks at the dominant frequencies in this velocity signal and
the actuation power.

First, the effect of steady forcing is explored. For the narrow-bandwidth regime, an
increasing actuation level progressively mitigates the main frequency fa while the energy
of the other mode ( f +) rises. The fluctuation energy is reduced by up to 97 % compared
with the unforced case. The corresponding maximum actuation level defines the limit
where a residual resonance can still be observed. Similarly, in the mode-switching regime,
the two frequencies present in the flow (fa and f +) are both damped as the actuation level
increases. A 90 % decrease of the maximum power is achieved for 88 % of the maximum
actuation level. Thus, reducing the main oscillations of the mixing layer is possible with a
high-amplitude steady forcing.

Second, a feedback control law from hot-wire signal to DBD actuation is optimized
with gradient-enriched machine learning control. The control law associated with the
narrow-bandwidth regime reduces the energy of the peak frequency to 1.29 % of the
unforced case, i.e. more than the steady forcing. In addition, this better feedback
performance requires less than 1 % of the steady open-loop actuation power. Feedback
is demonstrated to be crucial for the established control: an open-loop control with
the recorded feedback actuation command has hardly any stabilizing effect. A novel
cluster-based investigation of the control law indicates a similar mechanism as fixed
point stabilization with phasor control. This mechanism is corroborated by an analytical
simplification of the control law. Intriguingly, the phase delay strongly varies with
amplitude of the oscillations. Thus, the control has the features of stabilizing control of
fixed point with minimal actuation power to compensate for system noise.

Third, gMLC is also employed to optimize the control law to stabilize the
mode-switching regime. The learned law manages to successfully decrease the energy
related to the two main frequencies to 3.35 % of the unforced case and also with small
actuation power around 2 % of the maximum actuation level. This time, the control
performs in open loop as well as in closed loop. The actuation mechanism seems hardly
interpretable and more complex than phasor control. Re-evaluation of the learned laws
leads to a slight performance drop rendering them insensitive to the varying experimental
conditions.
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Stabilization of a multi-frequency open cavity flow

Optimization

gMLC

Feedback

KI

KI

KII

Narrow-bandwith
regime

U I
∞ = 2.13 ms–1

J I ↓ –98 %

σ̃I = 61 %

J ↓ –94 %

σ̃ = 65 %

Feedback

J ↓ –81 %

σ̃ = 90 %

Feedback

J ↓ –94 %

σ̃ = 66 %

Feedback

J ↓ –89 %

σ̃ = 112 %
KII

J II ↓ –94 %

σ̃II = 97 %

L I = 7.00 cm R I = 1.5

Mode switching
regime

U∞
II  = 2.23 ms–1

L II = 8.75 cm R II = 1.75

Re-evaluation

Figure 22. Summary of the performance for the laws learned (KI, KII) in this study. On the left, the
performance of the laws during the optimization process, and on the right, the performance during the offline
re-evaluations. The re-evaluation results are averaged over 20 realizations. The results associated with the
learning on the narrow-bandwidth regime and the mode-switching regime are marked by the superscripts I and
II, respectively. The downward arrows symbolize cost reduction. The feedback symbols indicate whether (�)
or not (×) feedback is a necessary feature for the control. Here σ̃ designates the normalized standard deviation
of the downstream velocity.

Finally, the robustness of the optimized controllers is assessed by applying the
law learned for one regime to the other regime. Expectedly, the law learned in the
narrow-bandwidth regime only partially stabilizes the mode-switching regime:
the energy associated with frequency fa is similar to their minimal actuated level while the
energy of f + is hardly mitigated. On the other hand, the law learned in the mode-switching
regime performs even better than the law learned in the given regime. The main frequency
fa is controlled and the f + spillover effect is prevented, revealing that a simultaneous
control of both frequencies is possible. Moreover, the need for feedback is demonstrated:
Applying the recorded closed-loop actuation command in open-loop fashion has hardly
any stabilizing effect. Figure 22 summarizes the control performances for each case and
also re-evaluation tests of the learned laws to assess their robustness. Lastly, the global
nature of the stabilization is discussed.

Summarizing, the feedback in stabilization is demonstrated as for similar linear control
(Rowley & Williams 2006) and model-based control (Samimy et al. 2007a). The actuation
power is shown to be a tiny fraction as compared with stabilizing steady actuation.

The key enabler for the fast learning of feedback control laws directly in the plant is
gMLC as regression solver. Genetic programming as evolutionary algorithm explores and
populates new local minima while the subplex simplex method efficiently slides down
towards the minima exploiting the local gradient information. A comparison between
gMLC and MLC confirms the benefits of the gradient-augmented method for the control
performance and learning rate. Fast learning is critical for experiments with limited testing
budget.

Moreover, the performances of the learned laws in one regime at least partially persist
when applied to another regime. Intriguingly, the law obtained in the mode-switching
regime outperforms the feedback law for single-frequency regime as it has learned to
stabilize the two characteristic frequencies. Parezanović et al. (2016) made a similar
observation for the destabilization of the mixing layer.

We demonstrated the learning capability of gMLC for moderate Reynolds numbers
on a single-input single-output (SISO) control experiment. Ongoing work focuses on
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the learning of multiple-input multiple-output (MIMO) feedback laws in more complex
flows. One example is drag reduction of a generic truck model under yaw. Another
example is lift increase of an airfoil under angle of attack at a Reynolds number near
one million. Hitherto, already the gMLC predecessor, machine learning control (MLC)
has been successfully employed in dozens of numerical and experimental plants (Noack
2019; Ren et al. 2020) comprising O(10) control inputs and O(10) control outputs. Future,
MIMO control law optimizers may be expected to synergize a spectrum of methods. One
example is cluster-based control (Nair et al. 2019) which can rapidly learn smooth control
laws and deep reinforcement learning (Rabault et al. 2019, 2020; Fan et al. 2020; Ren,
Rabault & Tang 2021) which seems to be very efficient in exploiting short-term actuation
responses.
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Appendix A. Main oscillation modes in the open cavity flow

As indicated in § 2, our data shown in figure 5 correspond precisely to the more
comprehensive results from Basley et al. (2013), provided that the boundary layer
thickness at the cavity entrance is slightly corrected. Basley et al. (2013) presents a
space–time and frequency analysis of time-resolved velocity measurements recorded at
all points of the open cavity flow in the incompressible limit. The authors give the origin,
the coupling, and the prediction of the main spectral features observed when the aspect
ratio of the cavity L/D varies between R = 1 and R = 2. The dynamics studied comprise
several frequencies fΔ, fΩ , fb, fl, fa, fr, f + that interact nonlinearly with each other and
their harmonics. The first two are shown as originating from centrifugal instabilities taking
place spanwise within the intra-cavity recirculation, fb, the so-called edge frequency, and
all the following ones are directly associated with the shear layer instability.

We shall not describe the dynamics of the flow as it is presented in detail in Basley
et al. (2013). Figure 23, extracted from Basley et al. (2013), highlights the interest of the
open cavity as a benchmark of adjustable complexity for the development of machine
learning algorithms. Beyond the benchmark role, the open cavity is still one of the flow
configurations frequently encountered in industrial applications such as transportation
systems and still has a strong impact on the performance and noise level of these vehicles.
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Figure 23. Strouhal numbers for the main oscillation modes are displayed as functions of the dimensionless
cavity length L/θ0. Self-sustained oscillations frequencies (black boxes), side-band peaks (grey boxes) and low
frequencies (white boxes). Rectangle dimensions represent uncertainties. The shaded area (yellow) is drawn a
posteriori to separate self-sustained oscillation frequencies from most side-band peaks. It is delimited by StL =
StL∗ ± 1/3,with StL∗ = 0.014(L/θ0 − 10) the centreline Strouhal number. Hatched regions highlight side-band
frequencies departing from the general scheme. Note that in this graph, U0 corresponds to U∞ of the present
paper. Figure and legend reproduced from Basley et al. (2013, figure 3), with the permission of AIP Publishing.

Appendix B. Comparison between gMLC and MLC

In this appendix, we compare the learning performance of machine learning control
(Duriez et al. 2017, MLC) and gMLC (§ 3.3) for the same experimental conditions as
those of § 4.3, i.e. we aim again to mitigate the oscillations of the mixing layer in the
narrow-bandwidth regime. As a reminder, the narrow-bandwidth regime is described in
§ 2.5.

We recall that MLC differs from gMLC in two respects. First, evolution consists of
improving a group of individuals through generations. Second, unlike gMLC, no gradient
information is employed. The first generation of randomly generated individuals evolves
through the evolution phases thanks to three genetic operations:

• Crossover: two new individuals are generated by stochastic recombination of two
individuals, exploiting parts of the parent individuals.

• Mutation: a new individual is generated by a stochastic modification in one
individual, the resulting individual may share new structures or generate new ones
depending on the impact of the change.
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MLC learning curve for the narrow-bandwidth regime
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gMLC best
MLC best
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Figure 24. Distribution of the costs during the MLC optimization process. Each dot represents the cost J of
one individual. The colour of the dots represents how the individuals have been generated. Black dots for the
individuals randomly generated by MCS (individuals i = 1, . . . , 100), blue dots for the individuals generated
with genetic operator (individuals i = 101, . . . , 1000). For each generation the individuals have been sorted
according to their cost. The red line shows the evolution of the best cost for the MLC optimization process. The
green line corresponds to the gMLC optimization process. The vertical axis is in log10 scale.

• Replication: an identical copy of one individual is generated, assuring the memory
of good individuals throughout the generations.

The genetic operators are applied to the better-performing individuals to generate the
next generations of individuals. The best individuals are selected with a tournament
selection method. As suggested in Duriez et al. (2017), a tournament selection of size of
7 for 100 individuals is chosen. Genetic operations are chosen randomly following given
probabilities: the crossover probability Pc, the mutation probability Pm, and the replication
probability Pr. The probabilities add up to unity Pc + Pm + Pr = 1. Following Cornejo
Maceda et al. (2021), we choose [Pc, Pm, Pr] = [0.6, 0.3, 0.1] as for this set of parameters
MLC converges towards better solutions in average and has one of the lowest dispersion
of the final solution. Moreover, an elitism operator, transferring the best individual of one
generation to the next, is employed to assure that the best individual does not get lost.
The parameters employed for the definition of the control laws are the same as for gMLC,
see table 4. The individuals are evaluated over Tev = 40 s for both the gMLC and MLC
experiments. For a fair comparison, a population of 100 individuals is chosen to evolve
over 10 generations, for a total of 1000 individuals.

Figure 24 shows the learning process of MLC and the distribution of the individuals
evaluated following their cost J. We note that most of the learning is unusually done at the
MCS phase, where the cost is reduced to J = 0.12. The next improvement is carried out
at the 8th generation, where the cost of the best control law slightly decreases to J = 0.10
and the associated standard deviation is σ̃ = 1.59. Such a type of control law has been
encountered in most of MLC realizations. We take a particular case where the MCS phase
is particularly efficient and where the evolutionary phases do not allow us to leave this
local minimum. It is then necessary to wait for 2000 evaluations to reach performances
similar to gMLC, the final cost being J = 0.05 and the standard deviation dropping to
σ̃ = 0.73. For 700 evaluations, gMLC already reduced the cost function to J = 0.02. As
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Stabilization of a multi-frequency open cavity flow

described in § 4.3, the progress of gMLC results on one side, from the exploration of the
control law space with the crossover and mutation operators and, on the other side, from
the exploitation with the gradient descent performed with downhill simplex. Therefore,
for a same number of evaluations, gMLC surpasses MLC both in terms of learning speed
and performance of the final solution. By multiplying the gains in terms of speed and cost,
gMLC outperforms MLC by one order of magnitude. The benefits of gMLC over MLC
have been described in Cornejo Maceda et al. (2021) for computational fluid dynamics,
and it is now demonstrated in experimental conditions for the open cavity.

Appendix C. Gradient-enriched MLC laws

In this appendix, we describe the control laws derived with gMLC. In § C.1, we detail the
control law learned in the narrow-bandwidth regime KI (§ 4.3) and in § C.2, we give more
insight on the control law learned in the mode-switching regime KII (§ 4.4).

C.1. Control law learned in the narrow-bandwidth regime, KI

The control law KI learned by gMLC in the narrow-bandwidth regime is a linear
combination of 19 control laws; it is rewritten in (C1). We recall that the division and
logarithm operations are protected to be defined over all the real values. We note that
KI includes all feedback signals at least one time except sensor a8 = u(t − 7Ts) that is
missing. Sensors a1 and a2 are present in a majority; 12 occurrences for a1 and 5 for a2,
supporting the possibility of phasor control as a control mechanism. Table 7 breaks down
the control law KI into a linear combination of control laws. We note that nine additional
control laws (#11 to #19) have been introduced in the simplex due to the exploration phases.
Moreover, the best-performing control law (#15) among the 19 control laws is associated
with the highest weight. However, control law #17 weight is a close second, suggesting
that KI is mainly composed of control laws #15 and #17. Also, we note that among the five
best control laws, they all include essentially sensor a1, advocating that this phase relation
may be related to the cavity resonance

KI(a) = −0.002318 − 0.005459a7 − 0.000626
sin(a3)

− 0.001108 log(sin(exp(a4)))

− 0.009794

sin
(

a2 − 0.079456
3.2502/a1

) + 0.001799
a5

− 0.002659
log(a6 + 2.9498)

+ 0.023733

sin
(

0.668879
3.2502/a1

) + 0.15732 sin(3.2502 + a1) + 0.053174 sin(log(a4 − a2))

− 0.031016 tanh(log(a10) − sin(a2)(2.9498 − 1.00278a1))

+ 0.46563 sin(2.71881 + a1 + sin(tanh(sin(a2))))

+ 0.08288 tanh(a1 − 3.48119 + sin(tanh(sin(a2))))

+ 0.43035 sin(3.190735 + a1)

− 0.16553
(

log(a1) − exp
(

1.526921
a9/ exp(a1)

a9 + exp(a1)

))
+ 0.048964 sin(2.71881 + a1 + sin(tanh(sin(a1)))), (C1)
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# b Weight J

1 −0.486443 1.6 × 10−3 0.2783

2 −0.14431a7 3.78 × 10−2 0.2888

3 −0.190619 −4.0 × 10−3 0.3093

4 −0.14431
sin(a3)

4.3 × 10−3 0.2410

5 −0.230847 5.9 × 10−3 0.2770

6 −0.293101 3.2 × 10−3 0.2803

7 log(sin(exp(a4))) −1.1 × 10−3 0.2796

8 −0.14431
sin

(
a2−0.079456

3.2502/a1

) 6.79 × 10−2 0.2276

9 −0.14431
a5

1.25 × 10−2 0.3073

10 −0.14431
log(a6+2.9498)

1.84 × 10−2 0.2589

11 −0.14431
sin

(
0.668879

3.2502/a1

) 1.645 × 10−1 0.1329

12 sin(3.2502 + a1) 1.573 × 10−1 0.0967

13 sin(log(a4 − a2)) 5.32 × 10−2 0.0826

14 1.03805 tanh(log(a10) − (sin(a2)(2.9498 − 1.00278a1))) −2.99 × 10−2 0.2344

15 sin(2.71881 + a1 + sin(tanh(sin(a2)))) 4.656 × 10−1 0.0311

16 tanh(a1 − 3.48119 + sin(tanh(sin(a2)))) 8.29 × 10−2 0.0492

17 sin(3.190735 + a1) 4.304 × 10−1 0.0495

18 log(a1) − exp(1.526921 a9/ exp(a1)
a9+exp(a1)

) −1.655 × 10−1 0.0462

19 sin(2.71881 + a1 + sin(tanh(sin(a1)))) 4.90 × 10−2 0.0360

— KI — 0.0192

Table 7. Summary of the 19 control laws composing KI described in (C1). For each control law, we present
the mathematical expression b, its weight in KI and cost J. The three best-performing control laws #15, #18
and #19 are highlighted in bold.

Ja
I = 0.0129, (C2)

Jb
I = 0.0063, (C3)

σ̃ I = 60.59 %. (C4)

C.2. Control law learned in the mode-switching regime, KII

The control law KII learned by gMLC in the mode-switching regime is a linear
combination of several control laws, see (C5)

KII(a) = −0.045324 + 0.10642 tanh(sin(log(log(a4)))) − 0.065719 log(sin(exp(a4)))

+ 0.80925 log((a1 − a4))

+ 0.29696 log(sin(− exp(a3) − a9 + a4 − 0.022658))

− 0.00047578 log(log(sin(− exp(a3) − a9 + a4 − 0.022658)))
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Stabilization of a multi-frequency open cavity flow

# b Weight J

1 tanh(sin(log(log(a4)))) 1.064 × 10−1 0.2306
2 −0.19537 2.320 × 10−1 0.2423
3 log(sin(exp(a4))) −6.57 × 10−2 0.1858
4 log((a1 − a4)) 8.092 × 10−1 0.0713
5 log(sin(− exp(a3) − a9 + a4 − 0.022658)) 2.970 × 10−1 0.2332
6 log(log(sin(− exp(a3) − a9 + a4 − 0.022658))) −5 × 10−4 0.1438
7 log(sin(− exp(a3) − 0.387155)) −9.21 × 10−2 0.2263
8 log(sin(−a3 − 1.022513))) 1.412 × 10−1 0.1014

9 log(a4 tanh(
log(a4)

a6
)) −2.322 × 10−1 0.1880

10 a9 − a4 − 0.63772 1.930 × 10−1 0.2341
11 log(sin(sin(−4.7665 log( a4

0.424163 )))) −2.3 × 10−3 0.0960
— KII — 0.0564

Table 8. Summary of the 11 control laws composing KII described in (C5). For each control law, we present
the mathematical expression b, its weight in KII and cost J. The three best control laws #4, #8 and #11 are
highlighted in bold.

− 0.092056 log(sin(− exp(a3) − 0.387155))

+ 0.14116 log(sin(−a3 − 1.022513))

− 0.23223 log
(

a4 tanh
(

log(a4)

a6

))
− 0.19296(a9 − a4 − 0.63772)

− 0.0023331 log
(

sin
(

sin
(
−4.7665 log

( a4

0.424163

))))
, (C5)

Ja
II = 0.0335, (C6)

Jb
II = 0.0229, (C7)

σ̃ II = 97.37 %. (C8)

Interestingly, in contrast to the narrow-bandwidth regime, the best control law, KII,
includes mostly delayed sensor signals: four instances of a3 and nine instances of a4.
Table 8 details the 11 control laws that constitute KII. We note that the best-performing
control law (#4) is the one with the highest weight. It is worth noting that the control law
#4 is a function of a phase difference which may be reminiscent of a Pyragas-type control
(Pyragas 1995).

Appendix D. Actuation spectral analysis

In this appendix, we provide the power spectra of the actuation commands for the
narrow-bandwidth regime and the mode-switching regime controlled by the control laws
KI and KII.

When both regimes are controlled with KI (figures 25a and 25d), the actuation
command and the velocity measured downstream have a similar spectral signature
suggesting a linear relationship between them. This analysis is partially consistent with
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Figure 25. Spectra of the actuation command and the velocity measured by the hot-wire sensor
downstream. (a) Narrow-bandwidth regime controlled by KI. (b) Mode-switching regime controlled by KII.
(c) Narrow-bandwidth regime controlled by KII. (d) Mode-switching regime controlled by KI.

the analytical interpretation performed in §§ 4.3 and 5.2 as KI enables a complex phase
relationship between the actuation and the sensing.

As for KII, in both regimes, the spectrum of the actuation command differs from the
spectrum of the velocity measured downstream. For the control of the mode-switching
regime (figure 25b), the spectrum does not display any significant peak except for the
very low frequencies. The actuation command seems to correspond to a random noise
without any correlation with the velocity measured downstream, suggesting that KII does
not exploit the sensor information for the control, as shown in § 4.4. Nevertheless, the
control of the narrow-bandwidth regime shows otherwise since the spectrum associated
with the actuation command clearly shows two peaks, one at 2fa and 2f + (see figure 25c).
The presence of the peak at 2fa is consistent with the interpretation of the cluster-based
control visualization, suggesting a control at twice the main frequency of the flow fa
(see figure 13). A systematic evaluation of all the control laws composing KII (see table 8)
shows that it is the term log((a1 − a4)) that is responsible for the frequency doubling, due
to the absolute value function included for the generalization of log to negative values. The
spectrum of |a1 − a4| shows the same peaks of the actuation command produced by KII.

Appendix E. Global stabilization of the cavity

In this section, the global stabilization of the cavity flow along the spanwise direction is
demonstrated for feedback control in the mode-switching regime. Like in § 4, a closed-loop
control law has been learned by feeding back velocity information from the hot-wire HW1
located at the centreline of the cavity, see figure 26(a). An additional hot-wire (HW2),
positioned at 1.48D of the first one and 2 mm upstream, records the flow velocity of the
evaluated individuals. The hot-wire HW2 is located at the limit of the coherence length,
defined in § 5.4 and far enough from the damping region of the Ekman layer. This second
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Figure 26. Spectra of additional hot-wire probes at different spanwise positions in the controlled
mode-switching regime. (a) Hot-wire sensor positions. Only hot-wire HW1 is employed for the feedback
control. Hot-wires HW2 and HW3 simultaneously measure the velocity at different spanwise locations. The
height of hot-wires HW2 and HW3 is at y = 2 mm, i.e. lower than hot-wire HW1 (y = 6 mm), (b) Velocity
spectrum measured by the first hot-wire (HW1) during the control of the mode-switching regime. The unforced
and control spectra are averaged over 200 and 20 realizations, respectively, (c) Velocity spectrum measured
by the second hot-wire (HW2) during the control of the mode-switching regime. The unforced and control
spectra are averaged over 200 and 20 realizations, respectively and (d) Velocity spectrum measured by the
third hot-wire (HW3) during the control of the mode-switching regime. The unforced and control spectra are
averaged over 20 realizations.

hot-wire sensor is also located at y = 2 mm, in the core of the mixing layer instability.
We recall that hot-wire HW1 is located at y = 6 mm to limit the low-velocity incursions
for the control, see § 2.5. The same gMLC parameters have been employed as in § 4 for
the learning, and 1000 control laws have been evaluated. The costs of the best control
law are Ja = 0.0320 and Jb = 0.0451. This new control law performs quantitatively as
well as the control law KII from § 4.4 but is less efficient as the standard deviation of
the velocity signal is slightly increased (σ̃ = 104.44 %). Figures 26(b) and 26(c) show the
peak reductions for the hot-wires HW1 and HW2, respectively. The controlled spectra have
been obtained by averaging 20 re-evaluations, whereas the unforced ones are obtained by
averaging 200 realizations recorded during the learning process. First, for the first hot-wire
(HW1), the two main frequencies of the cavity ( fa and f +) are controlled similarly to the
control achieved with KII. Second, figure 26(c) shows that the amplitude of both peaks
( fa and f +) have also been reduced for the hot-wire HW2. The control of the frequencies
fa and f + beyond the coherence length shows the effective stabilization of the flow in the
spanwise direction.

Measurements of the unforced and controlled flows have been repeated, but with the
second hot-wire placed at the position HW3 as indicated in figure 26(a). The averaged
spectra of the unforced and controlled flows are plotted in figure 26(d). We note that
both peaks have been effectively mitigated. However, the peak reduction of the second
frequency ( f +) is less pronounced than for the two hot-wire locations HW1 and HW2.
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Summarizing, the mitigation of the dominant peaks at different spanwise locations
corroborates the global stabilization by feedback from the centre plane.
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