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Abstract

Land cover maps are a pivotal element in a wide range
of Earth Observation (EO) applications. However, anno-
tating large datasets to develop supervised systems for re-
mote sensing (RS) semantic segmentation is costly and time-
consuming. Unsupervised Domain Adaption (UDA) could
tackle these issues by adapting a model trained on a source
domain, where labels are available, to a target domain,
without annotations. UDA, while gaining importance in
computer vision, is still under-investigated in RS. Thus, we
propose a new lightweight model, GeoMultiTaskNet, based
on two contributions: a GeoMultiTask module (GeoMT),
which utilizes geographical coordinates to align the source
and target domains, and a Dynamic Class Sampling (DCS)
strategy, to adapt the semantic segmentation loss to the fre-
quency of classes. This approach is the first to use geo-
graphical metadata for UDA in semantic segmentation. It
reaches state-of-the-art performances (47,22% mIoU), re-
ducing at the same time the number of parameters (33M),
on a subset of the FLAIR dataset, a recently proposed
dataset properly shaped for RS UDA, used for the first time
ever for research scopes here.

1. Introduction

Accurate land cover information is crucial for a wide
range of applications, including environmental monitoring
and management [9,21,56], urban planning, and monitoring
[6,41]. In particular, semantic segmentation is a key task in
the analysis of very high-resolution (VHR) remote sensing

(RS) images, as it enables the automatic categorization of
land cover [32]. However, annotating large datasets for su-
pervised learning is costly and time-consuming, especially
when not all data are acquired contemporaneously [31].

In this context, unsupervised domain adaptation (UDA)
offers a promising solution for adapting a model trained
on a source domain to a target domain, without the need
for annotations [13, 20, 26], reducing domain shift. Al-
though this task is gaining importance in computer vision
(CV) [17,18,52], in RS it is still under-investigated. On one
hand, often new RS UDA methods are applied on datasets
not properly developed for this purpose [38] and, conse-
quently, far from the real-world UDA scenario. On the other
hand, general CV models are often applied to RS images,
with little regard to the EO peculiarities. A clear example
is the use of metadata, such as geographical coordinates,
which are often discarded [39, 59].

For this reason, we experiment a new lightweight Convo-
lutional Neural Network (CNN), named GeoMultiTaskNet
(GeoMTNet), on a new dataset (FLAIR i.e., French Land
cover from Aerospace ImageRy [15]), properly shaped for
UDA (see for example the radiometric shifts in Fig. 1). This
contribution is the first in which the FLAIR dataset is used
for scientific purposes.

GeoMTNet is a novel algorithm for UDA in semantic
segmentation of RS images leveraging geographical coordi-
nates, to align the source and target domains, with two key
novelties. First, we propose a simple GeoMultiTask mod-
ule (GeoMT) that learns to predict the geographic position
of the input image. Second, inspired by [24], we propose
a Dynamic Class Sampling (DCS) module that adapts the
semantic segmentation loss to the frequency of the classes.
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Figure 1. Radiometric discrepancies of the aerial images between
domains. The bands displayed are composite of near-infrared, red
and green spectral information. Figure adapted from [15].

To our knowledge, this is the first work to address UDA
in semantic segmentation using geographical metadata. The
proposed approach offers a promising solution for reducing
the annotation cost in semantic segmentation of VHR RS
images, with a simple and portable module. Our proposed
method establishes on a subset of the FLAIR dataset new
state-of-the-art performance (47.22% mIoU) with a limited
number of parameters (33M), w.r.t. the transformer coun-
terparts (85M).

2. Related Work
2.1. Unsupervised Domain Adaptation

UDA approaches could be divided into three main
branches: feature alignment, labeling adjustment, and dis-
criminative methods. Feature alignment methods have the
aim of aligning some characteristics (e.g., color histograms
or features) of source and target domains. Some examples
are DeepCORAL [43], KeepItSimple [2], CoVi [33], GtA
[50]. Labeling adjustment makes use of pseudo-labeling to
force the predictions of the target domain to be consistent.
Several works followed these strategies, such as NoisyStu-
dent [53], CBST [60]. Discriminative methods are based
on loss terms that force the net to distinguish among source
and target features, e.g., DANN [14], AdaptSegNet [46],
ADVENT [48], DADA [49]. Moreover, some hybrid ap-
proaches are also developed. For example, we can recall
methods based on a combination of the presented strate-
gies, such as SePiCo [52], DISE [7] and DAFormer [17,18].
Finally, hybrid UDA approaches such as self-supervised
learning (SSL) [8, 34, 50] or continual learning [40] have
been explored.

2.2. UDA for Remote Sensing

Different methods, not all aiming properly for UDA,
have been proposed. StandardGAN [45] works with multi-
source domains, forcing the domains to have similar dis-
tributions. Seasonal Contrast (SeCo) [30] is based on

two steps: gathering uncurated RS images, then, us-
ing SSL. Bidirectional sample-class alignment (BSCA)
[19] addresses semi-supervised domain adaption for cross-
domain scene classification. ConSecutive Pre-Training
(CSPT) [57], similarly to [30], aims to leverage knowl-
edge from unlabeled data through a self-supervision ap-
proach. MemoryAdaptNet [58] constructs an output space
adversarial learning framework to tackle domain shift.
UDAT [55] addresses UDA for nighttime aerial tracking,
through a transformer. MATerial and TExture Representa-
tion Learning (MATTER) [3] aligns domains of different
datasets, through a self-supervision task, on several tasks.
UDA for RS [24], complementing [17], proposes a Gradual
Class Weights (GCW) and a Local Dynamic Quality (LDQ)
module.

2.3. Using Geographical Metadata

The first attempts at using geoinformation, outside the
UDA framework, were presented in [25,44]. In [28], the au-
thors provide a comprehensive review of location encoding.
[27] proposes an efficient spatiotemporal prior, that esti-
mates the probability that a given object category occurs at a
specific location. GeoKR [23] uses metadata for an efficient
pre-training strategy on a wide dataset. In [5], geographi-
cal coordinates are used for map translation. Geography-
Aware SSL [4] proposes an SSL algorithm based on the
geoinformation of the patches. In [29], the authors present
Space2Vec to encode the absolute positions and location
spatial relationships. PE-GNN [22] follows a similar ap-
proach, using graphs.

3. Methodology
As stated, the aim of GeoMTNet is to reduce do-

main shift using geographic coordinates, by designing a
lightweight and easy-to-use architecture. In particular,
given a set of source images XS ∈ RH×W×B , where H
is the height of the images, W is the width and B are the
bands of the images in input, and a set of target images
XT ∈ RH×W×B , we want to predict the annotation maps
of the target, ŶT ∈ RH×W , making use only of XS , XT

and the labels of the source images, YS ∈ RH×W . The la-
bels of the target images, YT ∈ RH×W , could only be used
for evaluation purposes. To achieve these targets, we de-
cided to adopt a classic U-Net [36] as the backbone model.
It is easy to train and commonly used. It has a reduced
number of parameters w.r.t. transformer counterparts. It ex-
ploits a semantic segmentation training, through the use of
a pixel level-classification loss. On the other hand, to tackle
domain shift, visible in Fig. 1, the GeoMultiTask (GeoMT)
module is added. The net is further trained with the Dy-
namic Class Sampling (DCS) strategy. Both of them have
been shaped to be easily portable to different architectures.
First, the GeoMT makes use of the geographical coordinates



Figure 2. On the left the overview of the proposed architecture, made of: an encoder (E), a decoder (D), the GeoMultiTask module, and
the Dynamic Class Sampling module. On the right, the structure of the GeoMultiTask module with input and output sizes.

as a proxy to supervise the domain shift. Inspired by differ-
ent self-supervised approaches [4, 30], we consider that an
effective method to improve the performance on the target
domains is to constrain, through a loss term, the features
of the encoder to understand where the target images are
located. Considering that also the source domain is made
of different sub-domains (i.e. departments), the GeoMT is
employed to constrain the encoder to learn generalized rep-
resentations of all the data. Second, as the distribution of
the labels is skewed, we propose DCS, to limit the errors on
the under-represented classes, inspired by [24]. The whole
architecture is shown in Fig. 2. In the next sections, the
GeoMultiTask module (Section 3.1) and the Dynamic Class
Sampling (Section 3.2) are presented in a formal and de-
tailed way.

3.1. GeoMultiTask Module

In other EO tasks, some approaches used geographical
coordinates, such as using them as residual [5] or skip con-
nections, or even being stacked to the input [54]. In our
case, inspired by SSL [4, 30], we decided to use coordi-
nates to drive and constrain the encoder features. Specifi-
cally, both XS and XT images pass through the encoder E .
This results in ZS ∈ RH′×W ′×C and ZT ∈ RH′×W ′×C

feature maps, where H ′,W ′ and C are the height, width
and number of channels of the feature maps. ZS passes
through the decoder D to obtain ŶS . In parallel, both rep-
resentations ZS and ZT enter the GeoMT to predict a vector
Ĉ ∈ RD containing localization information. Specifically,
each patch is assigned a pair of coordinates (Clon, Clat),
referring to the centroid of the patch itself. These coordi-
nates undergo the following transformations to be used as
supervision for Ĉ:

1. centering them in the reference system EPSG:2154,
w.r.t. whom the coordinates are expressed. Partic-

ularly, we subtract x = 489353.59 m to Clon and
y = 6587552.20m to Clat, to make the median values
equal (0, 0);

2. noise injection of 30 km to let the net capture large-
scale patterns not too specifically referred to the
patches in the batch, but rather to wider areas of
France, that may eventually even cross the boundaries
of individual departments;

3. positional encoding of the coordinates, for similar rea-
sons of the noise injection. The strategy uses the fol-
lowing formula:

C =


sin (Clonω1)
cos (Clonω1)

...
sin

(
Clatωd/4

)
cos

(
Clatωd/4

)


d

with ωi =
1

f2i/d
, (1)

where D = 256 and f = 20, 000. Particularly, for the
same reasons of the noise injection, f is set to 20,000
and not 10,000 like in most applications [5, 47].

GeoMT consists, firstly, of a max-pooling layer, which is
used to reduce dimensionality and select the most meaning-
ful features. After this, 5 linear layers, 4 of which employ
batch normalization and ReLUs, are stacked. The detailed
sizes are given in right part of Fig. 2. This module produces
Ĉ from which we compute the self-supervised loss Lcoord

that has the form of a mean squared error:

Lcoord =
1

n

n∑
i=1

(
Ĉi −Ci

)2

, (2)

where n is the number of samples.



The final loss of the GeoMTNet is thus:

L = Lseg + LS
coord + LT

coord, (3)

where Lseg is the segmentation loss, computed among ŶS

and YS , LS
coord is the loss term referred to the source do-

main images, and LT
coord to the target ones.

3.2. Dynamic Class Sampling

Class imbalance is a common problem in deep learning,
that leads to poor model generalization, especially in rare
classes. To address this issue, researchers have proposed
various methods, such as assigning class weights inversely
proportional to the frequency of the class in the dataset [60].
The class weight for class c, referred to the n-th label, is
calculated as follows:

w(n, c) =
Nc · exp [(1− fc) /t]∑C
c′=1 exp [(1− fc′) /t]

, (4)

where fc is the frequency of class c in the training
dataset, Nc is the total number of classes, and t is a tem-
perature parameter. The frequency fc is calculated as:

fc =
1

H ×W

H∑
h=1

W∑
w=1

(
y
(h,w)
S

)
c
, (5)

where y(h,w)
S denotes the one-hot source label at location

(h,w) in the image, and (·)c denotes the c-th scalar of a
vector. Inspired by [24], which applies a similar mechanism
to the pseudo-labels predicted by the student network, the
class weight is updated iteratively for each image using an
exponentially weighted average:

DCS(n, c) = α ·DCS(n− 1, c) + (1− α) · w(n, c). (6)

α is the decay rate of the exponential average. It helps to
reduce volatility, especially in the early stages of training.
Unlike other approaches [24], this weighting strategy does
not impact the pseudo-labels but the predicted labels di-
rectly. The distribution of the classes will be different from
the whole dataset in advance, due to sampling randomness:
the weights will be updated iteratively for each image. It
is also worth noting that, instead of directly initializing the
class weights to the distributions estimated from the first
sample, they are initialized to 1 and then updated iteratively
by an exponentially weighted average. A higher t leads to
a more uniform distribution. A lower one makes the model
pay more attention to the rare classes.

The final segmentation loss is:

Lseg = −
H∑

h=1

W∑
w=1

DCS(n, c) · y(h,w)
S · log

(
hθ

(
x
(h,w)
S

))
,

(7)
where hθ is the model with weights θ.

4. Dataset
The French National Institute of Geographical and For-

est Information (IGN) [1] is a French public state admin-
istrative establishment in charge of measuring large-scale
changes on the French territory. It is constructing the French
national reference land cover map Occupation du sol à
grande échelle (OCS-GE), also making use of AI-based
data and techniques. To this purpose, IGN developed the
FLAIR dataset1.

4.1. FLAIR dataset

The French Land cover from Aerospace ImageRy
(FLAIR) dataset [15] includes 50 spatial domains varying
along the different landscapes and climates of metropolitan
France. Each domain is a French department (Fig. 3).

The complete dataset is composed of 77,412 patches,
covering approximately 810 km2. Each patch is 512× 512
pixels, with a ground sample distance (GSD) of 0.2m. Each
domain is composed of 1725− 1800 patches. The domains
were selected considering the major landscapes (e.g., urban,
agricultural, etc..) and per semantic class radiometries (see
Fig. 1). To acquire the images, more than three years were
needed. This led to a high intra- and inter-domain variance
in the acquisitions (see Fig. 3 and 1). The images have 5
bands corresponding to blue, green, red, near-infrared and
elevation channels. The first 4 channels are retrieved from
VHR aerial images ORTHO HR® [12]. The fifth channel is
obtained through the difference between the Digital Surface
Model and the Digital Terrain Model (see [15] for more de-
tails). The corresponding ground truth labels describe the
semantic class for each pixel. Nineteen classes are anno-
tated. The other class corresponds to pixels impossible to
define with certainty. Finally, the dataset is split into 40
domains for the training and 10 for testing, ensuring a com-
parable distribution of the labels in train and test. The do-
mains are highlighted in Fig. 3. Each patch is enriched with
metadata:

• domain and zone label. The zone label is made of two
letters, allowing a macro-distinction of the two major
types of land cover of the area. The letter U indicates
urban, N natural area, A agricultural area, and F forest.

• date and hour at which the aerial image was acquired;

• the geographical coordinates of the centroid and the
mean altitude of the patch;

• camera type used during aerial image acquisition [42].

To our knowledge, this is the first time that this dataset has
been used for scientific research. Particularly, in our exper-
iments, we used a subset of the whole dataset: D06, D08,

1downloadable at https://ignf.github.io/FLAIR/

https://ignf.github.io/FLAIR/


Figure 3. On the left, the ORTHO HR® aerial image cover of France. On the center, the train and test split of the 50 domains, with the
domains selected for our experiments highlighted. On the right, the acquisition time of each domain. Figure adapted from [15].

D13, D17, D23, D29, D33, D58, D67, D74 as source do-
mains and D64, D68, D71 as target domains. We ended up
with more than 16k images for training and more than 5k
for testing.

5. Experimental Setup

As stated, for our experiments, we selected 10 depart-
ments as source domains and 3 as target domains. Adopt-
ing the same strategy as [15], we considered as other all
the classes labeled as > 12. These classes are strongly
under-represented, being < 0.2% of all the labels. Thus, we
ended up with 13 classes (i.e. building, pervious surface,
impervious surface, bare soil, water, coniferous, decidu-
ous, brushwood, vine, grassland, crop, plowed land, other).
A single Tesla V100-SXM2 32 GB GPU was used for the
training phase. Having limited computational power, but
still wanting to preserve the high resolution of the dataset
(GSD = 0.2 m), for the training, we used random crops of
256 × 256. For the testing stage, we perform inference on
four non-overlapping crops of 256× 256, for each patch of
size 512 × 512. For the U-Net, we use a ResNet18 [16],
pretrained on ImageNet, as encoder and the softmax func-
tion as activation on the last layer. For all the experiments,
we fix the batch size to 16, the number of epochs to 120 and
the learning rate to 0.0001. We used early stopping with a
patience of 30 epochs. The semantic segmentation loss is a
cross-entropy, ignoring the other class. We used Adam as
optimizer and RandAugment [11] as the set of augmenta-
tions. The mean intersection over union (mIoU) on the first
12 classes is the selected evaluation metric. For the DCS
module, we set the parameters to T = 0.9 and α = 0.7. To
assess the performance of our strategy, we selected different
methods2 from the literature for an extensive comparison.
We chose: AdaptSegNet [46], which employs an adversar-

2We tested them through the code in their official GitHub repositories.

ial training approach; ADVENT [48], using an entropy min-
imization strategy; DAFormer [17], which adopts a trans-
former with a self-training strategy and UDA for RS [24],
that optimizes the DAFormer for RS tasks. In Section 6,
we present different experimental results, addressing both
comparisons and several ablation studies.

6. Experimental Results
GeoMTNet reaches satisfying performance, shown in

Tables 1 and 2. As expected, the under-represented classes,
such as coniferous and brushwood, are the most difficult to
be correctly predicted. This is due both to the few quanti-
ties of data and the radiometric similarity with some more
frequent classes. For example, coniferous could be easily
confused with deciduous. At the same time, some errors
are due to the fact that images share some similar spatial
patterns. This is the case of vine and crop pixels. Another
frequent misclassification error concerns bare soil. Even
though the performance is satisfying (55% mIoU), we can
see that the variance implicit in the definition of this class
led to confusion with herbaceous cover or impervious sur-
face. In the next sections, comparisons (Section 6.1) and
ablation studies (Sections 6.2, 6.3 and 6.4) are carried one.

6.1. Comparison

Despite using a smaller number of parameters (33M),
GeoMTNet reaches better results than all the other se-
lected architectures (47.22% mIoU). In particular, we can
see from Table 1 that there is a deep gap w.r.t. Adapt-
SegNet [46] (24.97% mIoU) and ADVENT [48] (25.56%
mIoU), which are more dated and, probably, properly devel-
oped for the synthetic-to-real benchmarks [35, 37]. On the
other hand, DAFormer [17] and UDA for RS [24], based on
a transformer, have comparable performance with the Ge-
oMTNet (respectively 45.61% and 47.02% mIoU). When
using strategies properly shaped for RS task, such as in



UDA for RS [24], optimal results are obtained. However,
from both Table 1, Table 2 and Fig. 4, we can see that
GeoMTNet leads to better results also w.r.t. the aforemen-
tioned method with a reduced number of parameters (33M
for GeoMTNet vs 85M for UDA for RS). Focusing on the
detailed performance, reported in Table 2, we can observe
that GeoMTNet almost has the best performance on all the
classes, except for four of them (that are pervious surface,
bare soil, brushwood, and vine). This is mainly justified
by the fact that each different architecture tends, when de-
ciding among two similar classes, to overestimate one of
them and underestimate the other. For example, vine is of-
ten confused with plowed land (and sometimes crop, too),
due to their similar pattern. DAFormer, still having a gain
of more than 10% in IoU over GeoMTNet performance for
vine, reaches poor results both on plowed land (41.83% vs
54.79% in IoU) and crop (23.74% vs 35.02% in IoU). This
phenomenon could be observed also in Fig. 4, where some
predictions of the three best models (namely DAFormer,
UDA for RS, and GeoMTNet) are reported to draw some
qualitative results. We observe that DAFormer performs
overall worse, as it often predicts some irrelevant classes,
with a poorer texture and shape of the polygons predicted.
On the other hand, most of the time UDA for RS predicts
a smaller number of classes with a wider predicted area for
each of them w.r.t. the other methods. This is mainly due
to the LDQ module of UDA for RS, which bases the pixel
prediction on the predictions made on the contiguous pixels.
This can be seen both in positive cases, Fig. 4 b), where the
land cover prediction of the traffic circle is more consistent
than in GeoMTNet, and in negative cases, Fig. 4 d), where
the low confidence in predicting pervious surface and build-
ing ends in a uniformed incorrect prediction of impervious
surface. On the other hand, we can appreciate the consis-
tency in shape reconstructions and boundaries in GeoMT-
Net more than in the others (see, for example, the building
edges in Fig. 4 c)). Moreover, we can see how shadows con-
sist in an important problem for all the architectures (see for
example in Fig. 4 a) how the shape of the plowed land in the
upper right part of the image is badly reconstructed for both
UDA for RS and GeoMTNet). Another issue to consider is
that train patches are of size 512 × 512 while the model is
trained on 256 × 256 patches. Thus, sometimes, the bor-
ders of the predicted tiles to have contrasting predictions, as
visible in the central part of Fig. 4 e).

6.2. GeoMultiTask module

To understand the GeoMTNet capabilities, various infor-
mative ablation studies have been conducted. To perform
these experiments in an easy and rapid way, we used a sim-
ple U-Net [36] as CNN, with less than 2M parameters. As
mentioned before, the GeoMT takes as input the features
provided by the encoder and tries to infer low-frequency

Architecture mIoU (%) params (M)
AdaptSegNet [46] 24.97 99

ADVENT [48] 25.56 99
DAFormer [17] 45.61 85

UDA for RS [24] 47.02 85
GeoMultiTaskNet (ours) 47.22 33

Table 1. Our GeoMultiTaskNet outperforms all the other methods
on the considered FLAIR target domains. In addition to the im-
proved results in terms of mIoU, the size of the proposed model is
also significantly smaller than that of the other selected algorithms.

encoded coordinates, with a random noise injection. As it
could be argued from Tables 3 and 4, both of these strategies
improve the net performance.

At first, we focused on the challenge of using coordi-
nates, still feeding the GeoMT with the decoder features.
As stated, the goal is to allow the net to capture large-scale
patterns, not too specific to the single patch, but rather to
areas of France that may eventually even cross the bound-
aries of individual departments. We tried two strategies:
positional encoding and noise injection. Positional encod-
ing [47], used in EO approaches [5], allows the coordinates
to be represented with a vector, making it easier to grasp
reciprocal phenomena of proximity between patches. Noise
injection allows to make net performance more generaliz-
able, avoiding the association of a specific coordinate with
a specific patch. In light of these considerations, we have
tried different configurations (Table 3). Notably, using a
lower frequency (i.e., 1/20000) than the one used in the lit-
erature [5, 47], brings greater benefits. In fact, we are inter-
ested in large-scale effects, enhanced by a lower frequency.
Concerning noise injection, it has been empirically demon-
strated that a consistent noise (30 km) compared to the size
of a patch (about 100 m) helps the generalization process.
However, increasing it too much (about 50 km) leads to ex-
cessive network confusion and a consequent drop in perfor-
mance.

Secondly, we needed to limit the number of parameters,
especially w.r.t. the other models in the literature. To do
this, we have no longer used as input of the GeoMT the
features in output from the decoder, but those in output
from the encoder. In fact, the encoder features should al-
ready provide the necessary information to perform a cor-
rect segmentation. This intuition was supported by the re-
sults, shown in Table 4, which shows a slight drop in per-
formance, completely negligible. Notably, the shape of the
GeoMT is also slightly different. In the case described so
far (input features of the decoder), the module consists of
two convolutional layers (to reduce the dimensionality of
the features with a limited number of parameters) followed
by three linear layers.



Architecture IoU (%)
building pervious surface impervious surface bare soil water coniferous deciduous brushwood vine grassland crop plowed land

AdaptSegNet [46] 39.98 20.75 40.23 20.36 15.25 4.93 35.37 10.99 34.51 42.69 11.06 23.47
ADVENT [48] 35.79 24.38 48.82 6.85 31.98 0.00 51.65 11.79 33.33 25.76 11.46 24.29
DAFormer [17] 67.09 45.56 61.99 55.35 65.12 8.91 54.39 20.31 64.39 38.79 23.74 41.83

UDA for RS [24] 66.3 48.05 62.36 59.28 61.24 9.22 60.02 16.52 57.74 40.12 30.32 54.17
GeoMultiTaskNet (ours) 67.53 40.86 63.89 55.31 67.02 13.85 60.97 14.08 53.09 40.33 35.02 54.79

Table 2. Comparison in the IoU for each class of the considered FLAIR target domains.

Figure 4. Some examples of predictions for the best performing models. Particularly we can see in order: the input image, the ground
truth, the prediction of DAFormer, the prediction of UDA for RS and the prediction of our GeoMTNet.

6.3. GeoTimeMultiTask experiments: using the
temporal information

We tried to include temporal information as well, also
inspired by other works [4, 30]. In particular, we inserted
both month and time of day information, discarding the
year. In fact, the month impacts the seasonality of some
classes (e.g., the vegetative ones), and the hour the acquisi-
tion conditions [10]. As previously, we tried to inject some
noise, so that the features could generalize better. Specif-

ically, the time information was circle encoded (i.e., ar-
ranged equally spaced on a circle) and, when used, a ran-
dom noise of ±1 was added. Finally, these experiments
were carried out using either the encoder or the decoder
features. In both circumstances, the TimeMultiTask mod-
ule (TimeMT) has been defined similarly to the GeoMT,
but smaller in size. For example, in the case of using the
encoder features, the TimeMT consists of one max-pooling
layer and two linear layers. We refer to these experiments
as GeoTimeMT, being characterized by both GeoMT and



noise (km) 1/frequency (-) mIoU (%) params (M)
- - 42.05 1.9
- - 41.69 270
- 10,000 43.57 270

±30 10,000 43.69 270
±30 20,000 44.83 270
±50 20,000 42.68 270

Table 3. Ablation studies, showing the behavior of GeoMulti-
TaskModule under different noise injections and encoding.

input features mIoU (%) params (M)
- 42.05 1.9

output of the decoder 44.83 270
output of the encoder 44.70 11.2

Table 4. Ablation studies, showing the behavior of GeoMulti-
TaskModule when using different input features.

input features time used time noise mIoU (%) params (M)
- - - 42.05 1.9

decoder both no 38.19 405
encoder both no 42.72 11.9
encoder month yes 43.77 11.9

Table 5. Ablation studies, showing the behavior of GeoTimeMul-
tiTaskModule under different conditions.

TimeMT modules. Also for this set of experiments, a sim-
ple U-Net was used as the backbone, without ResNet as the
encoder. The results are shown in Table 5. Two behav-
iors can be observed immediately: using temporal meta-
data leads to limited improvements (+1.72% mIoU w.r.t. the
baseline); GeoTimeMT, which combines geographical and
temporal information, does not improve results obtained us-
ing only GeoMT (43.77% vs 44.70% mIoU). For these rea-
sons, our GeoMTNet makes only use of geographical coor-
dinates.

Analyzing the detailed results, we can observe that using
the features outputted by the encoder is more beneficial than
the ones outputted by the decoder, both from a performance
(38.19% vs 42.72% mIoU) and size point of view (405M
vs 11.9M parameters). In fact, the benefits derived from
temporal metadata are more related to the features directly
encoded from the images, such as radiometric information
of the images, more than to the decoded representations of
the patches, such as the one connected to land cover. In ad-
dition, we observe again that using less precise information,
thus with noise injection, leads to better results (42.72% vs
43.77% mIoU). Finally, we observe that the hour informa-
tion is less relevant than the month information. In fact,
the large variance of the dataset and the large amount of
images, make it more important and beneficial to have rep-
resentations from different seasons of same classes more

than under different light conditions. In fact, classes such
as brushwood or crop really vary their radiometric informa-
tion depending on the seasonality.

6.4. Comprehensive baselines

We considered important to evaluate the impact of each
component of the GeoMTNet. The results of these experi-
ments are shown in Table 6.

net mIoU (%) params (M)
baseline 42.51 25
+GeoMT 46.68 32.7

+DCS 43.25 25
GeoMTNet 47.22 32.7

Table 6. Ablation studies about the component of the GeoMulti-
TaskNet. As stated, both components lead to better results than the
baseline, even though the GeoMultiTask module performs better.

The component that leads to the greatest improvement
is the GeoMT which leads to a gain of about 4% in mIoU,
while DCS does not go beyond a percentage point. This is
due to the fact that GeoMT is properly shaped to enhance
RS metadata, to empower the architecture on which it is ap-
plied. In contrast, unlike other approaches such as [24], in
our GeoMTNet, the weighting module, namely DCS, does
not impact the pseudo-labels, but the predicted labels di-
rectly. Therefore, its effectiveness on images from target
domains is influenced directly by the source images.

7. Conclusions

In light of major technological innovations, more and
more RS images are available. However, the annotation of
these images is not progressing at the same rate, leading to a
vast amount of unlabelled data. Most of the time, these im-
ages carry metadata, which are often simply discarded for
CV tasks. In this work, we showed that the use of archi-
tectures specifically designed to exploit such metadata in
an EO context can lead to excellent results. To this end, we
proposed GeoMultiTaskNet, which outperforms other mod-
els in the literature, despite being a lightweight network,
on the FLAIR dataset. This real-world scenario-oriented
dataset presents a great variety of information and is well-
suited for this type of experiments. In this context, this work
only presents itself as a first step in a line of research that
is as important as it is still under-investigated: remote sens-
ing unsupervised domain adaptation. Future steps include
the extension of GeoMultiTaskNet over the entire FLAIR
dataset. In addition, the intention is to probe this model on
other datasets [51], where domain shift is more important,
and to find new ways to integrate geo-metadata into already
performing models, such as transformers.
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https://www.ign.fr, 2022. [Accessed: 02 February
2023]. 4

[2] Alexey Abramov, Christopher Bayer, and Claudio Heller.
Keep it simple: Image statistics matching for domain adap-
tation. arXiv preprint arXiv:2005.12551, 2020. 2

[3] Peri Akiva, Matthew Purri, and Matthew Leotta. Self-
supervised material and texture representation learning for
remote sensing tasks. In Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
8203–8215, June 2022. 2

[4] Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tan-
may, Marshall Burke, David Lobell, and Stefano Ermon.
Geography-aware self-supervised learning. In Proc. of the
IEEE/CVF International Conference on Computer Vision,
pages 10181–10190, 2021. 2, 3, 7

[5] Luc Baudoux, Jordi Inglada, and Clément Mallet. Toward
a yearly country-scale corine land-cover map without using
images: A map translation approach. Remote Sensing, 13(6),
2021. 2, 3, 6

[6] Michael Max Bühler, Christoph Sebald, Diana Rechid, Eber-
hard Baier, Alexander Michalski, Benno Rothstein, Kon-
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Mosavi, and Gustau Camps-Valls. Machine learning infor-
mation fusion in Earth observation: A comprehensive review
of methods, applications and data sources. Information Fu-
sion, 63:256–272, 2020. 1

[40] Antoine Saporta, Arthur Douillard, Tuan-Hung Vu, Patrick
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Cord, and Patrick Pérez. Dada: Depth-aware domain adap-
tation in semantic segmentation. In ICCV, 2019. 2

[50] Qin Wang, Dengxin Dai, Lukas Hoyer, Luc Van Gool, and
Olga Fink. Domain adaptive semantic segmentation with



self-supervised depth estimation. In Proc. of the IEEE/CVF
International Conference on Computer Vision, 2021. 2

[51] Junshi Xia, Naoto Yokoya, Bruno Adriano, and Clifford
Broni-Bediako. Openearthmap: A benchmark dataset for
global high-resolution land cover mapping. In Proc. of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 6254–6264, 2023. 8

[52] Binhui Xie, Shuang Li, Mingjia Li, Chi Harold Liu, Gao
Huang, and Guoren Wang. Sepico: Semantic-guided pixel
contrast for domain adaptive semantic segmentation. arXiv
preprint arXiv:2204.08808, 2022. 1, 2

[53] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. In Proc. of the IEEE/CVF conference on Com-
puter Vision and Pattern Recognition, pages 10687–10698,
2020. 2

[54] Naisen Yang and Hong Tang. Semantic segmentation of
satellite images: A deep learning approach integrated with
geospatial hash codes. Remote Sensing, 13(14):2723, 2021.
3

[55] Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani
Paudel, and Guang Chen. Unsupervised domain adaptation
for nighttime aerial tracking. In Proc. of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8896–8905, 2022. 2

[56] Bing Zhang, Yuanfeng Wu, Boya Zhao, Jocelyn Chanussot,
Danfeng Hong, Jing Yao, and Lianru Gao. Progress and chal-
lenges in intelligent remote sensing satellite systems. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 15:1814–1822, 2022. 1

[57] Tong Zhang, Peng Gao, Hao Dong, Yin Zhuang, Guanqun
Wang, Wei Zhang, and He Chen. Consecutive pre-training:
A knowledge transfer learning strategy with relevant unla-
beled data for remote sensing domain. Remote Sensing,
14(22), 2022. 2

[58] Jingru Zhu, Ya Guo, Geng Sun, Libo Yang, Min Deng,
and Jie Chen. Unsupervised domain adaptation seman-
tic segmentation of high-resolution remote sensing imagery
with invariant domain-level context memory. arXiv preprint
arXiv:2208.07722, 2022. 2

[59] Xiao Xiang Zhu, Devis Tuia, Lichao Mou, Gui-Song Xia,
Liangpei Zhang, Feng Xu, and Friedrich Fraundorfer. Deep
learning in remote sensing: A comprehensive review and list
of resources. IEEE geoscience and remote sensing magazine,
5(4):8–36, 2017. 1

[60] Yang Zou, Zhiding Yu, BVK Kumar, and Jinsong Wang. Un-
supervised domain adaptation for semantic segmentation via
class-balanced self-training. In Proc. of the European Con-
ference on Computer Vision (ECCV), pages 289–305, 2018.
2, 4


	1 . Introduction
	2 . Related Work
	2.1 . Unsupervised Domain Adaptation
	2.2 . UDA for Remote Sensing
	2.3 . Using Geographical Metadata

	3 . Methodology
	3.1 . GeoMultiTask Module
	3.2 . Dynamic Class Sampling

	4 . Dataset
	4.1 . FLAIR dataset

	5 . Experimental Setup
	6 . Experimental Results
	6.1 . Comparison
	6.2 . GeoMultiTask module
	6.3 . GeoTimeMultiTask experiments: using the temporal information
	6.4 . Comprehensive baselines

	7 . Conclusions

