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We study the convergence of the transport plans γε towards γ0 as well as the cost of the entropy-regularized optimal transport (c, γε) towards (c, γ0) as the regularization parameter ε vanishes in the setting of finite entropy marginals. We show that under the assumption of infinitesimally twisted cost and compactly supported marginals the distance W2(γε, γ0) is asymptotically greater than C √ ε and the suboptimality (c, γε) -(c, γ0) is of order ε. In the quadratic cost case the compactness assumption is relaxed into a moment of order 2 + δ assumption. Moreover, in the case of a Lipschitz transport map for the non-regularized problem, the distance W2(γε, γ0) converges to 0 at rate √ ε. Finally, if in addition the marginals have finite Fisher information, we prove (c, γε) -(c, γ0) ∼ dε/2 and we provide a companion expansion of H(γε). These results are achieved by disentangling the role of the cost and the entropy in the regularized problem.
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Notations Ω, X

Ω is an open subset of R d and X a compact subset of Ω

P(Ω)

Probability measures on Ω, absolutely continous (P ac (Ω)), with finite variance (P 2 (Ω))
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Introduction

We study the regularized optimal transport problem for a cost c

∈ C 2 (R d × R d , R) inf γ∈Π(µ0,µ1) cdγ + εH(γ|µ 0 ⊗ µ 1 ) (1) 
where the infimum is taken over all measures γ ∈ P(R d × R d ) with marginals µ 0 , µ 1 . Here H(.|.) is the relative entropy also known as Kullback-Leibler divergence. In this paper we will focus on the case where µ 0 , µ 1 have finite entropy with respect to H d , the Lebesgue measure, H(µ i | H d ) < ∞ and finite order two moments. In that case the minimizer γ ε is the same as if µ 0 ⊗ µ 1 was replaced by the Lebesgue measure H 2d in the entropy term, and hence we consider

OT ε := inf γ∈Π(µ0,µ1) cdγ + εH(γ|H 2d ) (εEOT) 
Note that ε = 0 yields the classical optimal transport problem. In this case the minimizer need not to be unique and γ 0 will sometimes denote any of them. We are interested in deriving rates for the cost term cdγ ε = (c, γ ε ) as well as the 2-Wasserstein distance between γ ε and γ 0 , when it is unique.

In the last decade this problem has witnessed a rapid increase in interest. It has proved to be an efficient way to approximate OT problems, especially from a computational viewpoint. The celebrated Sinkhorn's algorithm [START_REF] Sinkhorn | A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices[END_REF] was applied in this framework in the pioneering works [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances[END_REF][START_REF] Benamou | Iterative Bregman Projections for Regularized Transportation Problems[END_REF]. The good convergence guarantees [START_REF] Franklin | On the scaling of multidimensional matrices[END_REF][START_REF] Di | An Optimal Transport Approach for the Schrödinger Bridge Problem and Convergence of Sinkhorn Algorithm[END_REF] cemented the success of EOT and its applications.

Clearly EOT is a perturbation of classical OT thus it is natural to study the behaviour of this problem as ε vanishes. In this direction several aspects deserved to be studied such as the convergence of optimal values, potentials (optimizers of the dual problem) and optimal plans, possibly with quantitative rates. In the direction of convergence of optimal values recent contributions have thoroughly treated the issue: in the quadratic case, under regularity assumptions, the link between EOT and the Schrödinger problem [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF] has allowed to find a second order [START_REF] Erbar | From large deviations to Wasserstein gradient flows in multiple dimensions[END_REF] and more recently a third order [START_REF] Conforti | A formula for the time derivative of the entropic cost and applications[END_REF][START_REF] Chizat | Faster Wasserstein distance estimation with the Sinkhorn divergence[END_REF] expansion of the value OT ε in ε. The second order expansion has been generalized to other cost functions [START_REF] Pal | On the difference between entropic cost and the optimal transport cost[END_REF], and the first order term has been obtained under very mild assumptions on the cost function and the marginals [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF][START_REF] Eckstein | Convergence Rates for Regularized Optimal Transport via Quantization[END_REF]. Those articles focus on the value problem of (εEOT).

Our main objective is to disentangle the role of the cost cdγ ε and the entropy H(γ ε | L) in order to derive rate of convegence for both. The cost term is of interest itself because it is a faster converging approximation of OT 0 . The entropy term also allows to lower bound W 2 (γ ε , γ 0 ), the Wasserstein distance between the entropic optimal transport plan γ ε and the optimal transport plan γ 0 . The study of the convergence of the cost term in EOT has also been done recently in [START_REF] Altschuler | Asymptotics for Semidiscrete Entropic Optimal Transport[END_REF] for the semidiscrete case which grants an ε 2 rate. They also derive convergence rates for the Kantorovich potentials. In the discrete case the rate of convergence is exponential [START_REF] Cominetti | Asymptotic analysis of the exponential penalty trajectory in linear programming[END_REF][START_REF] Weed | An explicit analysis of the entropic penalty in linear programming[END_REF]. In the continuous case, to our knowledge, no asymptotic rate for the suboptimality cdγ ε -cdγ 0 was known but a rate of order ε was suspected based on simple examples such as Gaussian measures. We tackle the problem of sizing the suboptimality in this article.

Main results

The aim of this paper is to provide tight rates of convergence on the Wasserstein distance W 2 (γ ε , γ 0 ), the cost term (c, γ ε ) and the entropy term

H(γ ε | H 2d ). Let µ 0 , µ 1 ∈ P ac (R d ) such that H(µ i | H d ) < ∞.
It is known [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF][START_REF] Eckstein | Convergence Rates for Regularized Optimal Transport via Quantization[END_REF] that under mild assumptions (see lemma 3.6) on µ 0 , µ 1 ,

OT ε = (c, γ ε ) + εH(γ ε | H 2d ) ≤ OT 0 - d 2 ε ln(ε) + O(ε) (2) 
For the quadratic cost and under the stronger assumption of finite Fisher information for the marginals, we have (see [17, claim 4.1], see also [START_REF] Pal | On the difference between entropic cost and the optimal transport cost[END_REF] for other costs and different hypothesis)

OT ε = OT 0 - d 2 εln(2πε) + εH m + o(ε) (3) 
where

H m := 1 2 [H(µ 0 | H d ) + H(µ 1 | H d )].
Our goal are to disentangle the role of the cost term (c, γ ε ) and of the entropy term H(γ ε | H 2d ) in those rates rates of convergence. For clarity we present here the three main results present in the article. The first gives a second order expansion of the entropy and the cost of the entropic optimal transport. It relies on known expansions of the Benamou-Brenier (εBB) formulation of the entropic optimal transport problem. The proof of this result can be found in section 2

Theorem (Theorem 2.3). Suppose that the cost is quadratic, that is c(x, y) = 1 2 ∥x -y∥ 2 . Further assume that I(µ i ) < ∞ and Supp(µ i ) compact. Then

H(γ ε | H 2d ) = - d 2 ln(2πε) + H m - d 2 + o(1) (4) 
and

(c, γ ε ) = OT 0 + d 2 ε + o(ε) (5) 
If we relax the finite Fisher information hypothesis the orders of magnitude still hold. The method, presented in section 3, used to prove that result relies on the Minty reparametrization trick (see definition 3.3) which implies a quadratic detachment for the duality gap function

E = c -(φ ⊕ ψ),
where φ, ψ are Kantorovich potentials.

Theorem (Theorem 3.7). Suppose that the cost is quadratic, that is c(x, y) = 1 2 ∥x -y∥ 2 . Further assume that µ i have finite moment of order 2 + δ then

(c, γ ε ) = OT 0 + Θ(ε), H(γ ε | H 2d ) = - d 2 ln(ε) + O(1), √ ε = O(W 2 (γ ε , γ 0 )) (6) 
In the special case where the Monge map ∇f associated to the optimal transport plan γ 0 is Lipschitz then

W 2 (γ ε , γ 0 ) = Θ( √ ε) (7) 
Finally for infinitesimally twisted costs we have a similar result but under the stronger assumption of compactly supported marginals. The concept of local quadratic detachment 4.1 is introduced and is key to the proof of the result which can be found in section 4.

Theorem (Theorem 4.8). Suppose that the cost is C 2 and infinitesimally twisted (see definition 4.3). Further assume that µ i is compactly supported then

(c, γ ε ) = OT 0 + Θ(ε), H(γ ε | H 2d ) = - d 2 ln(ε) + O(1), √ ε = O(W 2 (γ ε , γ 0 )) (8)

Definitions and assumptions

First, let recall the definition of the relative entropy H(µ|ν) and the Fisher information I(µ) that provide quantitative estimate of the smoothness of a measure : if µ, ν ∈ P ac (R d ), we note

H(µ|ν) := ln dµ dν dµ if µ ≪ ν +∞ otherwise and I(µ) = ∥∇µ(x)∥ 2 µ(x) 2 dµ(x) if µ ≪ H d +∞ otherwise (9) 
Where dµ dν denotes the Radon-Nikodym derivative of µ with respect to ν and µ(x) the density of µ with respect to the Lebesgue measure H d by a slight abuse of notation. Note that a finite Fisher information I(µ) < +∞ implies a finite differential entropy H(µ|H d ) [START_REF] Villani | Topics in Optimal Transportation[END_REF]Chapter 9], that we will often denote simply by H(µ) . We now introduce the Kantorovich potentials which are the solutions to the dual of the classical optimal transport problem. sup φ,ψ φdµ 0 + ψdµ 1 [START_REF] Cominetti | Asymptotic analysis of the exponential penalty trajectory in linear programming[END_REF] Where the sup is taken over all functions φ ∈ L

1 (µ 0 ), ψ ∈ L 1 (µ 1 ) such that for all x, y ∈ R d × R d , we have φ(x) + ψ(y) ≤ c(x, y).
It is well known that in our current setting this problem has maximizers which are continuous [START_REF] Villani | Topics in Optimal Transportation[END_REF]Chapter 1], that is the Kantorovich potentials are continuous. Moreover it is also possible to assume that the constraint φ(x) + ψ(y) ≤ c(x, y) is binding, that is that φ and ψ are c-transform1 one of each other. In the following, we will use the name Kantorovich potentials to denote a pair of continuous and mutual c-transform solutions to the dual problem [START_REF] Cominetti | Asymptotic analysis of the exponential penalty trajectory in linear programming[END_REF]. For a pair (φ, ψ) of Kantorovich potentials, we will call duality gap the quantity E(x, y) := c(x, y) -(φ(x)+ψ(y)) and we will note E = c-(φ⊗ψ). Remark that in the quadratic case, when µ i ∈ P ac (R d ), the Kantorovich potentials are unique up to a constant and so the duality gap function E is unique.

In the general case, we will be interested in the gap between cdγ ε and cdγ 0 which can be restated in terms of any duality gap function E = c -(φ ⊕ ψ) with φ, ψ Kantorovich potentials. Indeed we have by duality theorem that cdγ 0 = φdµ 0 + ψdµ 1 and so

cdγ ε -cdγ 0 = cdγ ε -(φ ⊕ ψ)dγ ε = Edγ ε (11) 
As explained in the main results, we will explore three different sets of assumptions, that we present, from the most specific to the most generic. Each set of assumption correspond to one of the theorems presented in the main results.

• (H1)

The cost is quadratic : c(x, y) := 1 2 ∥x -y∥ 2 . The marginal have finite fisher information I(µ i ) < +∞ and compact support • (H2) The cost is quadratic : c(x, y) := 1 2 ∥x -y∥ 2 . The marginals have finite differential entropy H(µ i |H d ) < +∞ and finite moments of order 2 + δ for some δ > 0 • (H3) The cost c belongs to C 2 and is infinitesimally twisted (see definition 4.3).

The marginals (µ i ) have compact support and finite differential entropy.

Since a finite Fisher information implies a finite differential entropy, hypothesis (H2) is an important relaxation of (H1) on the regularity and concentration of (µ i ). Similarly, hypothesis (H3) is an important relaxation of (H1) since the class of cost is broader and the marginals are assumed less regular. A last remark : while the finite entropy or finite information hypothesis are deeply linked with the nature of the problem and essential to our results, the concentration assumptions such as compact support or finite moment must be seen as technical and the results are likely to hold in any case.

Exact asymptotics from the Schrödinger problem

In this section, we assume validity of hypothesis (H1), that is that the cost is quadratic and that the marginals µ 0 and µ 1 have finite Fisher information and compact support. Under finite Fisher information of the marginals, it is known that the value of (εEOT) has a second order expansion in ε (see [17, claim 4.1], see also [START_REF] Pal | On the difference between entropic cost and the optimal transport cost[END_REF] for other costs and different hypothesis)

OT ε = 1 2 W 2 2 - d 2 εln(2πε) + εH m + o(ε) (ε → 0) (12) 
In this section, we will disentangle the roles of (c, γ ε ) and H(γ ε |H 2d ) in this asymptotic formula, and hence give a Taylor expansion of both. We will use the dynamic formulation of the entropic optimal transport.

Schrödinger problem and Benamou-Brenier formulation

The quadratic EOT problem can be reformulated as a Schrödinger problem (see [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF])

C ε = min γ∈Π(µ0,µ1) H(γ|m ε ) ( 13 
)
where m ε be the measure of density 1 (2πε) d/2 e -c/ε with respect to the Lebesgue measure H 2d . Since for γ ∈ Π(µ 0 , µ 1 ), we can compute explicitely εH(γ|m ε ) = (c, γ) + εH(γ | H 2d ) + d 2 ε ln(2πε), we have that the solutions of ( 13) and (εEOT) are the same and

OT ε = εC ε - d 2 ε ln(2πε) (14) 
Moreover there exists an analogous to Benamou-Brenier formula for C ε (see [START_REF] Gigli | Benamou-Brenier and duality formulas for the entropic cost on RCD*(K, N) spaces[END_REF]) :

C ε = H m + min ρ,v 1 ε 1 0 1 2 |v t | 2 dρ t (x)dt + ε 8 1 0 ∥∇ρ t ∥ 2 ρ t dxdt (εBB)
Where the min is taken as in the classical Benamou-Brenier formula on paths from µ 0 to µ 1 that in the weak sense solve the continuity equation ∂ t ρ+div(ρv) = 0. We will denote by v ε , ρ ε the solution. This dynamic formulation and other variations are in fact the core of the Schrödinger problem, that intend to solve for the most probable trajectory of a free process at positive temperature with fixed initial and final marginals µ 0 and µ 1 (see [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF] for a survey). The first term in (εBB) corresponds to the kinetic energy while the second term corresponds to the diffusion (ε is the temperature parameter).

2.2 A precise expansion of H(γ ε ) and (c, γ ε )

Minimization problems (εEOT) and (εBB) give the natural idea of using the envelope theorem to express the ε-derivative of OT ε and C ε . For a minimization problem with a real parameter ε, this theorem ensures that at any differentiability point ε 0 of the value function and for any minimizer, the derivative of the value function coincide with the ε-partial derivative of the objective function with fixed minimizer (see [START_REF] Milgrom | Envelope theorems for arbitrary choice sets[END_REF]). This idea has been followed in [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF] for (εEOT) and in [START_REF] Conforti | A formula for the time derivative of the entropic cost and applications[END_REF] for (εBB). We will use the more general setting of [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF] that only requires compact support for the marginals µ i and obtain that ε → OT ε is C ∞ for ε > 0. From equation [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances[END_REF], it is direct that in that case the function εC ε is also smooth, and so we can apply envelope theorem both to

OT ε = min γ 1 2 ∥x-y∥ 2 dγ +εH(γ | H 2d ) and to εC ε = εH m + min ρ,v 1 0 1 2 |v t | 2 dρ t (x)dt + ε 2 8 1 0 I(ρ t )dt to get d dε OT ε = H(γ ε ) and d dε [εC ε ] = H m + ε 4 1 0 I(ρ ε t )dt ( 15 
)
Where H(γ ε ) stands for H(γ ε | H 2d ). But from equation ( 14)

d dε OT ε = d dε εC ε -d 2 ε ln(2πε
) , so we have

H(γ ε ) = - d 2 ln(2πε) + H m - d 2 + ε 4 
1 0 I(ρ ε t )dt (16) 
This gives a quantitative relation between the entropy H(γ ε ) of the static problem (εEOT) and the average Fisher Information 1 0 I(ρ ε t )dt of the dynamic problem (εBB). It allows to state a complete coupling system between the different terms of (εEOT) and (εBB) as explained in the following proposition : Proposition 2.1. For the quadratic cost, suppose that the support of µ i are compact, and that

H(µ i |H d ) < +∞. Then        (c, γ ε ) = 1 0 1 2 |v ε t | 2 dρ t (x)dt - ε 2 8 1 0 I(ρ ε )dt + d 2 ε H(γ ε ) = ε 4 1 0 I(ρ ε )dt - d 2 ln(2πε) + H m - d 2 (17) 
Proof. The second line of the system ( 17) is nothing but equation [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF]. For the first line, equation [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances[END_REF] implies that

(c, γ ε ) = εC ε - d 2 ε ln(2πε) -εH(γ ε ) (18) 
We can inject the expression of H(γ ε ) given by ( 16) and the expression of C ε with the minimal continuous path (ρ ε , v ε ) of equation (εBB) to obtain the first line of the system [START_REF] Erbar | From large deviations to Wasserstein gradient flows in multiple dimensions[END_REF].

Thanks to the system [START_REF] Erbar | From large deviations to Wasserstein gradient flows in multiple dimensions[END_REF], it is enough to study the asymptotics of ε andH(γ ε ). When the Fisher information of the marginal is finite, it turns out that the behaviour of

1 0 I(ρ ε )dt and 1 0 |v ε t | 2 dρ t (x)dt to get results on (c, γ ε )
1 0 I(ρ ε )dt and 1 0 |v ε t | 2 dρ t (x)
dt can be described quite precisely :

Proposition 2.2. Suppose that the cost is quadratic. If µ 0 and µ 1 have finite Fisher information, when ε tends to 0 :

ε 1 0 I(ρ ε )dt → 0 and 1 0 |v ε t | 2 dρ t (x)dt = W 2 2 + o(ε) (19) 
Proof. Since the Fisher information of the marginal is finite, from [START_REF] Erbar | From large deviations to Wasserstein gradient flows in multiple dimensions[END_REF]Claim 4.1] the Taylor expansion [START_REF] Conforti | A formula for the time derivative of the entropic cost and applications[END_REF] of OT ε holds. But since OT ε = εC ε -d 2 ε ln(2πε), expansion ( 12) is equivalent to the following :

C ε - 1 2ε W 2 2 -H m → 0
However from the expression of C ε with the minimal continuous path (ρ ε , v ε ) of equation (εBB),

C ε - 1 2ε W 2 2 -H m = 1 ε 1 0 1 2 |v ε t | 2 dρ t (x)dt - 1 2 W 2 2 + ε 8 1 0 ∥∇ρ ε t ∥ 2 ρ ε t dxdt Both terms 1 ε 1 0 1 2 |v ε t | 2 dρ t (x)dt -1 2 W 2 2 (µ 0 , µ 1 ) and ε 8 1 0 ∥∇ρ ε t ∥ 2 ρ ε t
dxdt are positive, the first one because (ρ ε , v ε ) is a path from µ 0 to µ 1 solving the continuity equation, and so the (ε = 0) Benamou-Brenier formula holds. Since the sum tends to zero, we know that both terms tend to zero which is what we needed to prove. Proposition 2.2 can be seen as a refinement of [START_REF] Gentil | An entropic interpolation proof of the HWI inequality[END_REF]Lemma 3.3] where, among other asymptotics, it is shown that ε2 1 0 I(ρ ε )dt → 0 and

1 0 |v ε t | 2 dρ t (x)dt → W 2 2
We can now combine propositions 2.1 and 2.2 to obtain a Taylor expansion of (c, γ ε ) and H(γ ε ) :

Theorem 2.3. Suppose that the cost is quadratic, let µ 0 , µ 1 ∈ P ac (R d ) and suppose that for i = 1, 2, we have I(µ i ) < +∞ and the support of µ i is compact. Then

H(γ ε ) = - d 2 ln(2πε) + H m - d 2 + o(1) (20) 
and

(c, γ ε ) = 1 2 W 2 2 + d 2 ε + o(ε) (21) 
Proof. Since a finite Fisher information implies a finite differential entropy, the hypothesis of propositions 2.1 and 2.2 hold and we can inject the asymptotics on 19) obtained in the latter in the system (17) of the former.

1 0 I(ρ ε )dt and 1 0 |v ε t | 2 dρ t (x)dt (

Remark 2.4.

The rate in d 2 ε for the subobtimality (c, γ ε ) -(c, γ 0 ) had been already observed in the case of gaussian measures in 1D (see introductions of [START_REF] Altschuler | Asymptotics for Semidiscrete Entropic Optimal Transport[END_REF], [START_REF] Bernton | Entropic optimal transport: Geometry and large deviations[END_REF]). It is astonishing to remark that this first order term does not depend on µ 0 and µ 1 . Hence, the estimator (c, γ ε ) -d 2 ε could provide an interesting estimate of W 2 2 (µ 0 , µ 1 ) with a lack of precision comparable to the one of the Sinkhorn divergences

OT ε (µ 0 , µ 1 ) -1 2 [OT ε (µ 0 , µ 0 ) + OT ε (µ 1 , µ 1 
)] (see [START_REF] Feydy | Interpolating between Optimal Transport and MMD using Sinkhorn Divergences[END_REF])

Rephrasing the results with different functionals

The asymptotic formula for the entropy [START_REF] Gentil | An entropic interpolation proof of the HWI inequality[END_REF] and the formula for (c, γ ε ) in the system [START_REF] Erbar | From large deviations to Wasserstein gradient flows in multiple dimensions[END_REF] suggest to introduce two quantities that are linked to our problem. First, the Entropy power function

N d (µ) := e -2 d H(µ|H d ) 2πe
. This functional has various links with our problem : Costa's theorem states that it is concave along the heat flow (see [START_REF] Costa | A new entropy power inequality[END_REF]), √ N 2d is concave along Wasserstein geodesics (see [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF]) and along Schrödinger bridges (see [START_REF] Ripani | Convexity and regularity properties for entropic interpolations[END_REF]). And it turns out that the asymptotic (20) can be rewritten in the simple way 2

N 2d (γ ε ) ∼ N d (µ 0 ) 1/4 N d (µ 1 ) 1/4 ε 1/2
The other quantity that we need to present is the energy3 

E ε := 1 ε 2 1 2 |v ε t | 2 dρ t (x) - 1 8 I(ρ ε t )
As the notation let think and as it is proved in [START_REF] Conforti | A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost[END_REF]Corollary 1.1] and [20, lemma 3.3], this energy does not depend on the time t. With this quantity, the expression of (c, γ ε ) in the system (17

) becomes (c, γ ε ) = ε 2 E ε + d 2 ε
, and so the Taylor expansion (21) expresses

ε 2 E ε = 1 2 W 2 2 + o(ε)
Note that it was already known that

ε 2 E ε → 1 2 W 2 2
(see the introduction of [START_REF] Conforti | A formula for the time derivative of the entropic cost and applications[END_REF] or the proof of [20, lemma 3.3]). The convergence in o(ε) seems new to us. Given the expression for d dε [εC ε ] of equation ( 15), the other Taylor expansion [START_REF] Gentil | An entropic interpolation proof of the HWI inequality[END_REF] corresponding to ε 1 0 I(ρ ε )dt → 0 is also equivalent to the fact that εC ε is C 1 in 0 with derivative H m . It can be seen as an extension in 0 of [START_REF] Conforti | A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost[END_REF]Theorem 1.1].

Rates for the quadratic cost

In the last section, under the strong assumptions (H1) of smoothness (I(µ i ) < +∞) and concentration (Supp(µ i ) compact), the Taylor expansions of (εEOT) and (εBB) allowed us to give precise rates for the entropy as well as the cost term in (εEOT). The main idea was to disentangle the role of the entropy and the cost. In this section we choose the weaker set of assumptions (H2). The cost is still the quadratic one : c(x, y) = 1 2 ∥x -y∥ 2 , but the Fisher information need not to be finite and so the second order Taylor expansion ( 12) of (εEOT) need not to hold. However, the entropy H(µ i ) is still supposed finite. Thanks to the technical assumption that the moments of order 2 + δ of the marginals are finite for some δ > 0, we still have (see lemma 3.6) some rates of convergence for the value of (εEOT) of the form

0 ≤ OT ε -OT 0 ≤ - d 2 ε ln(ε) + O(ε) (22) 
From that, it is still possible to disentangle the cost and the entropy (theorem 3.7) through a careful study of the behaviour of H(γ ε ) as ε → 0. It will grant rates for (c, γ ε ) -(c, γ 0 ) of the same order ε as in last section. We start by providing a sketch of the proof : Let E be a duality gap function E = c -(φ ⊕ ψ). Recall that since γ ε has µ i as marginals, we have that Edγ ε = (c, γ ε ) -(c, γ 0 ), and so we will denote by (E, γ ε ) this suboptimality. The goal is to prove (E, γ ε ) ≃ ε and H(γ ε ) ≃ -d 2 ln(ε), so it is natural to try to prove first H(γ ε ) ≃ -d 2 ln(E, γ ε ), or in terms of entropy power, N 2d (γ ε ) ≃ (E, γ ε ). But thanks to the information encoded in inequality [START_REF] Gigli | Benamou-Brenier and duality formulas for the entropic cost on RCD*(K, N) spaces[END_REF], it is enough to show an inequality of the type N 2d (γ ε ) ≤ C (E, γ ε ). In fact, as explained in detail in section 3.1, this kind of inequality is not specific to γ ε and it comes from the following fact : the contact set Σ := {x, y/E(x, y) = 0} has d dimensions less than the ambiant space R 2d and (E, γ) quantifies the average distance of γ to Σ because E has a quadratic detachment in Minty's coordinates (see definitions 3.1 and 3.3). As a matter of fact, W 2 2 (γ, γ 0 ) also quantifies this distance, because γ 0 is supported on Σ. In proposition 3.5 we obtain results of the form

N 2d (γ) ≤ C (E, γ) and N 2d (γ) ≤ CW 2 (γ, γ 0 ) (23)
or equivalently in term of entropy,

H(γ) ≥ - d 2 ln(E, γ) + C and H(γ) ≥ - d 2 ln(W 2 2 (γ, γ 0 )) + C (24) 
These inequalities are the key for all our rates of convergence of (E, γ ε ), W 2 2 (γ ε , γ 0 ) and H(γ ε ) detailed in section 3.2.

Lower bounds on the entropy

The results of this section are completely independent of the optimality of γ ε , and even independent of the fact that γ ε transports µ 0 on µ 1 . Hence in the following, we will replace γ ε by a generic γ ∈ P ac (R 2d ). The results presented in this section are lower bounds on its entropy H(γ). These inequalities rely on the comparison of γ with a Gaussian along directions transverse to the support of a generic optimal plan γ 0 for ε = 0. Indeed we know that any optimal plan γ 0 is supported on Σ = {E = 0} which is approximatively a submanifold of (co)dimension d. We will then show that Edγ as well as W 2 2 (γ, γ 0 ) control the variance of γ along transverse directions to Σ. Finally since under variance constraint the Gaussian has the smallest entropy we will conclude with the wanted lower bounds of equations ( 23) and [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF]. The same strategy will work in the case of twisted costs. However in the quadratic case the proof requires only a global change of variable (Minty's trick) which makes the arguments clearer. We start with the fundamental property of a function that allows for estimates like [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF] or [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF], the quadratic detachment

Definition 3.1 (Quadratic detachment). Let G : R d × R d → R + . We say that G has a quadratic detachment if for any u ∈ R d it exists v u ∈ R d such that ∀(u, v) ∈ R 2d G(u, v) ≥ 1 2 ∥v -v u ∥ 2 (25) 
This quadratic detachment property allows for a bound on the differential entropy H(γ) := H(γ|R 2d ) of any plan γ ∈ P ac (R 2d ) :

Proposition 3.2. Let G be a function on R d × R d and γ ∈ P ac (R 2d ) and denote C d := -d 2 ln( 4πe d ). If G has a quadratic detachment H(γ) ≥ - d 2 ln Gdγ + H(γ 1 ) + C d ( 26 
)
Where γ 1 is the projection of γ on the first coordinate, ie the first marginal of γ, and where H is the differential entropy (H(γ) = H(γ|R 2d ) and H(γ

1 ) = H(γ 1 |R d ))
Proof. If H(γ) = +∞ or Gdγ = +∞ there is nothing to prove. We assume that H(γ) < +∞ and Gdγ < +∞. Let γ = γ 1 ⊗ γ u be the disintegration of γ with respect to the first coordinate. Gdγ < +∞ implies that γ u has a finite moment of order 2, γ 1 almost everywhere, because G has a quadratic detachment. By additivity of entropy we have

H(γ) = H(γ 1 ) + H(γ u )dγ 1 (u) (27) 
However under variance constraint the gaussian with independent coordinates has the smallest entropy thus H(γ u ) ≥ H(N (0, Var(γ u )

d I d )) = -d 2 ln (Var(γ u )) -d 2 ln( 2πe d ).
Moreover, the average of a random variable minimizes the average square distance, so Var(γ u ) ≤ ∥v -v u ∥ 2 dγ u (v) ≤ 2 G(u, v)dγ u (v) where the last inequality holds because G has a quadratic detachment. So we have

H(γ) ≥ H(γ 1 ) - d 2 ln 2 G(u, v)dγ u (v) dγ 1 (u) - d 2 ln( 2πe d ) (28) 
Now by concavity of the logarithm, exchanging it with the integral against γ 1 gives an even lower quantity, hence we obtain the desired inequality.

This result shows a clear path to get lower bounds on the entropy of γ ε : typically, it is enough to show that the duality gap has a quadratic detachment to show inequality [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF]. However, E has no quadratic detachment in the classic (x, y) coordinates, but in transverse coordinates, that we call Minty's coordinates ( [START_REF] Minty | Monotone (nonlinear) operators in Hilbert space[END_REF]) Definition 3.3 (Minty's coordinates). We wil call Minty's coordinates the coordinates (u, v) = 1 √ 2 (x + y, x -y). The change of variable (x, y) → (u, v) is an isometry and for any convex function f , the graph of the subdifferential of f in the (x, y)-coordinates corresponds to the graph of a 1-Lipschitz function defined on the whole space in the (u, v)-coordinates (see [33, theorem 12.12, theorem 12.25]). Moreover, for γ ∈ P(R 2d ), we will denote by γ the pushforward of γ through this change of variable and call Minty's decomposition of γ the disintegration of γ with respect to the orthogonal projection onto the first coordinate γ = μ ⊗ γu .

The quadratic detachment of E in those coordinates follows from the slightly more general inequality [START_REF] Minty | Monotone (nonlinear) operators in Hilbert space[END_REF], known as Minty's trick. It can be generalized for twisted costs (see lemma 4.4). In the quadratic case, it is somehow folklore and we recall the proof, but for more general cost, it was proved in [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF], following arguments of [START_REF] Robert J Mccann | Rectifiability of optimal transportation plans[END_REF]. We also prove the quadratic detachment of the function d(., Σ) 2 that we will use to bound the entropy with the Wasserstein distance to an optimizer. Lemma 3.4. Let µ 0 , µ 1 ∈ P 2 (R d ) with E := c -(φ ⊕ ψ) the duality gap of the quadratic optimal transport problem from µ 0 to µ 1 . Denote by d(z, Σ) the distance of a point z ∈ R 2d to the set Σ = {E = 0}. In Minty's coordinates, the functions (u, v) → E(u, v) and (u, v) → d((u, v), Σ) 2 have quadratic detachment. 4Proof. First note that in the quadratic case E rewrites as E(x, y) = f (x) + f * (y) -⟨x, y⟩ where f is a convex function and f * is its Legendre-Fenchel conjugate. Thus for (x, y),

(x ′ , y ′ ) ∈ R d × R d we have E(x, y) + E(x ′ , y ′ ) = f (x) + f * (y) -⟨x, y⟩ + f (x ′ ) + f * (y ′ ) -⟨x ′ , y ′ ⟩ ≥ ⟨x, y ′ ⟩ -f * (y ′ ) + f * (y) -⟨x, y⟩ + ⟨x ′ , y⟩ -f (y) + f * (y ′ ) -⟨x ′ , y ′ ⟩ ≥ ⟨x -x ′ , y ′ -y⟩ (29) 
In Minty's coordinates (u, v) = 1 √ 2 (x + y, x -y) we can see E as a function of (u, v). In these coordinates, inequality [START_REF] Milgrom | Envelope theorems for arbitrary choice sets[END_REF] becomes

E(u, v) + E(u ′ , v ′ ) ≥ 1 2 (∥v ′ -v∥ 2 -∥u ′ -u∥ 2 ) ( 30 
)
The set Σ = {x, y/E(x, y) = 0} corresponds to the subdifferential of the convex function f . Hence in the Minty's coordinates (u, v), it corresponds to the graph in u of a 1-lipschitz function that is defined on the whole space R d (see [33, theorem 12.12, theorem 12.25]). So for any u ∈ R d , it exists a unique v u ∈ R d such that E(u, v u ) = 0. And thanks to Minty's trick [START_REF] Minty | Monotone (nonlinear) operators in Hilbert space[END_REF] we have that

E(u, v) ≥ 1 2 |v -v u | 2 .
It remains to show that the distance to the graph of the 1-lipschitz function u → v u has a quadratic detachment. Let u, u ′ , v ∈ R d . From the inequality

∥a∥ 2 + ∥b∥ 2 ≥ 1 2 ∥a + b∥ 2 applied to a = v u -v u ′ and b = v u ′ -v, we get ∥v u -v u ′ ∥ 2 + ∥v u ′ -v∥ 2 ≥ 1 2 ∥v u -v∥ 2
And we can bound

∥v u -v u ′ ∥ 2 by ∥u -u ′ ∥ 2 because u → v u is 1-lipschitz. Hence we obtain ∥u -u ′ ∥ 2 + ∥v u ′ -v∥ 2 ≥ 1 2 ∥v u -v∥ 2
But the left hand side is the distance from (u, v) to (u ′ , v u ′ ) and the inequality holds for any u ′ , so

d((u, v), Σ) ≥ 1 2 ∥v u -v∥ 2
Now that we know that E and d(., Σ) 2 have quadratic detachment, we can use proposition 3.2 to bound the entropy of γ from bellow with Edγ and W 2 2 (γ, γ 0 ). Proposition 3.5. Suppose that the cost is quadratic. Let (µ 0 , µ 1 ) ∈ P 2 (R d ), (φ, ψ) be associated Kantorovich potentials and E := c-(φ⊕ψ) be a duality gap function. Let γ 0 be an optimal transport plan from µ 0 to µ 1 . Then, for any γ ∈ P ac (R 2d )

H(γ) ≥ - d 2 ln Edγ + H(μ) + C d (31) 
H(γ) ≥ - d 2 ln W 2 2 (γ, γ 0 ) + H(μ) + C d (32) 
where γ = μ ⊗ γu is the Minty's decomposition of γ and C d := -d 2 ln( 4πe d ) (see definition 3.3). If we denote by σ γ (X + Y ) the standard deviation of X + Y when the law of (X, Y ) is γ, we have

N 2d (γ) ≤ σ γ (X + Y ) d Edγ N 2d (γ) ≤ σ γ (X + Y ) d W 2 (γ, γ 0 ) (33) 
Proof. By lemma 3.4, the duality gap E and the square distance d(., Σ) 2 have quadratic detachment. So we can apply proposition 3.2 on both to obtain

H(γ) ≥ - d 2 ln Edγ + H(μ) + C d (34) 
H(γ) ≥ - d 2 ln d(x, Σ) 2 dγ(x) + H(μ) + C d (35) 
The first inequality is exactly [START_REF] Pal | On the difference between entropic cost and the optimal transport cost[END_REF] and the second implies (32) because an optimal plan γ 0 is concentrated on a contact set Σ = {x, y/E(x, y) = 0} by optimality and so W 2 2 (γ, γ 0 ) ≥ d(x, Σ) 2 dγ(x). The second part is a consequence and we provide only the proof for Edγ because the proof for W 2 2 (γ ε , γ 0 ) is stricly similar. Taking the exponential of (31), we get

N 2d (γ) 2 ≤ 2 d N d (μ) Edγ
Since the gaussian minimizes the entropy at fixed variance, the entropy power of μ is bigger than the one of a gaussian of same variance, that is

N d (μ) ≤ Var(μ) d . Moreover Var(μ) = 1 2 Var γ (X + Y ) because μ is the law of the first marginal of γ in the coordinates (u, v) = 1 √ 2 (x + y, x -y)
. This is enough to finish the proof of [START_REF] Rockafellar | Variational Analysis[END_REF].

We have established the bounds (33) on a general plan γ. It is now time to apply these results to the entropic plan γ ε under hypothesis (H2) in order to obtain rates of convergence of the suboptimality (c, γ ε ) -(c, γ 0 ). We will also quantify the weak convergence of γ ε towards γ 0 in W 2 distance.

Rates of convergence

In the sequel of the section, we use the set of assumptions (H2) that imply in particular that the optimizer γ 0 is unique. The main result of this section states that the suboptimality (c, γ ε ) -(c, γ 0 ) converges to 0 at a speed of order ε. We also derive the same speed for W 2 2 (γ ε , γ 0 ) and this matches in both cases the rate found for gaussians. The proofs of the theorems require an upperbound on the rate of convergence of OT ε towards OT 0 . The key point being that the convergence rate is of the form

εH(γ ε ) ≤ OT ε -OT 0 ≤ - d 2 ε ln(ε) + O(ε) (36) 
This result has been obtained recently for general costs under some regularity conditions [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF] and in the quadratic case under moments conditions [START_REF] Eckstein | Convergence Rates for Regularized Optimal Transport via Quantization[END_REF]. The following lemma explicits the dependence of the bounded term O(ε) found in the latter.

Lemma 3.6. Assume as in hypothesis (H2) that the cost is quadratic, that µ 0 , µ 1 ∈ P 2+δ (R d ) for some δ > 0 and that H(µ i ) < +∞. Then, as ε → 0

OT ε -OT 0 ≤ - d 2 ε ln(ε) + Cε (37)
for a constant C depending on d, m 2+δ (µ i ) and H(µ i ).

Proof. The constant C introduced in [15, corollary 3.12] is (up to a numerical constant) the quantization constant of the optimal transport γ 0 . It allows for the following upper bound

OT ε -OT 0 ≤ - d 2 ε ln(ε) + (H(µ 0 ) + H(µ 1 ))ε + Cε (38)
However by Minty's trick [15, lemma 3.11] this quantization constant is tied to the quantization constant of a measure admitting a moment of order 2 + δ. In that case [23, corollary 6.7] gives an explicit bound

C ≤ C ′ (m 2+δ (γ 0 ) + d) (39) 
where C ′ is independent of dimension. We conclude by using triangular inequality to upper bound m 2+δ (γ 0 ) by 2 2+δ (m 2+δ (µ 0 ) + m 2+δ (µ 1 )).

With the inequality (37) that gives an upper bound on H(γ ε ) and the lower bound [START_REF] Pal | On the difference between entropic cost and the optimal transport cost[END_REF] found in the previous section, we are now able to show that (c, γ ε ) -(c, γ 0 ) = Θ(ε) :

Theorem 3.7. Suppose that the cost is quadratic. Let µ 0 , µ 1 ∈ P 2+δ,ac (R d ) for some δ > 0. And further assume that their entropy is finite. Then in the limit ε → 0,

(c, γ ε ) -(c, γ 0 ) = Θ(ε), H(γ ε ) = - d 2 ln(ε) + O(1) and OT ε = OT 0 - dε 2 ln(ε) + O(ε) (40)
More precisely, there exist c, C > 0, depending on m 2+δ (µ i ), H(µ i ) and the dimension d, such that

cε ≤ Edγ ε = (c, γ ε ) -(c, γ 0 ) ≤ Cε (41) 
Proof. Set (E, γ ε ) := Edγ ε , and consider d, H(µ i ) and m 2+δ (µ i ) as fixed. Lemma 3.6 grants the following upper bound on the regularized problem for ε small enough

(E, γ ε ) + εH(γ ε ) ≤ - d 2 ε ln(ε) + Cε (42)
On the other hand, from proposition 3.5, we know that N 2d (γ ε ) ≤ σγ ε (X+Y ) d (E, γ ε ). But we have also σ γε (X + Y ) ≤ σ γε (X) + σ γε (Y ) = m 2 (µ 0 ) + m 2 (µ 1 ) because the marginals of γ ε are µ 0 and µ 1 . And by Hölder inequality, m 2 (µ) ≤ m 2+δ (µ) 2 2+δ . So N 2d (γ ε ) ≤ C ′ (E, γ ε ) or equivalently, by taking the logarithm,

H(γ ε ) ≥ - d 2 ln (E, γ ε ) + C ′′ (43) 
Now by combining (43) with (42) we have

(E, γ ε ) ε - d 2 ln (E, γ ε ) ε ≤ C ′′′ (44)
The function x → x -d/2 ln(x) goes to +∞ near 0 and +∞. Thus (E,γε) ε = Θ(1), or more precisely, there exist constants c, C > 0, depending on d, m 2+δ (µ i ) and

H(µ i ), such that cε ≤ (E, γ ε ) ≤ Cε. Injecting (E, γ ε ) = Θ(ε) in inequalities (42) and (43) gives respectively H(γ ε ) ≤ -d 2 ln(ε) + O(1) and H(γ ε ) ≥ -d 2 ln(ε) + O(1)
which concludes the proof. Now that we have proven that the suboptimality (c, γ ε ) -(c, γ 0 ) has speed ε, we want to do the same for the the Wasserstein distance W 2 2 (γ ε , γ 0 ). Inequality [START_REF] Ripani | Convexity and regularity properties for entropic interpolations[END_REF] will give a lower bound on W 2 2 (γ ε , γ 0 ), but we need also an upper bound. If the Brenier map is Lipschitz, the following lemma provides it. 5Lemma 3.8. For the quadratic cost, suppose that the Brenier map T = ∇f is L Lipschitz. Then

W 2 2 (γ ε , γ 0 ) ≤ ∥y -T (x)∥ 2 dγ ε ≤ 2L ((c, γ ε ) -(c, γ 0 )) (45)
Proof. Let S(x, y) = (x, T (x)) with T = ∇f and f the Brenier convex function associated with γ 0 . Then S is a transport map from γ ε to γ 0 thus W 2 2 (γ ε , γ 0 ) ≤ ∥y -T (x)∥ 2 dγ ε . We now use an inequality proved by Berman in [START_REF] Berman | Convergence Rates for Discretized Monge-Ampère Equations and Quantitative Stability of Optimal Transport[END_REF] and Li and Nochetto in [START_REF] Li | Quantitative stability and error estimates for optimal transport plans[END_REF], who have built upon an earlier work of Gigli [START_REF] Gigli | On Hölder continuity-in-time of the optimal transport map towards measures along a curve[END_REF]. The inequality is that whenever the Brenier map is Lipschitz we have ∥y -T (x)∥ 2 ≤ 2LE with E = c -(φ ⊕ ψ) the duality gap. Combining these two inequalities grants the result, since Edγ ε = (c, γ ε ) -(c, γ 0 ).

The hypothesis that the Brenier map is Lipschitz might seem abstract. However, note that Caffarelli's regularity theory ( [START_REF] Caffarelli | The Regularity of Mappings with a Convex Potential[END_REF], [START_REF] Caffarelli | Monotonicity Properties of Optimal Transportation and the FKG and Related Inequalities[END_REF]) ensures it holds under some simple regularity conditions on the marginals. For example as soon as the marginals have Hölder densities bounded away from zero on their supports and the latter are smooth and uniformly convex. In a different direction, recent works [START_REF] Chewi | An entropic generalization of Caffarelli's contraction theorem via covariance inequalities[END_REF] ensure regularity of the transport map between log-concave measures under a variance constraint.

Theorem 3.9. Suppose that the cost is quadratic. Let µ 0 , µ 1 ∈ P 2+δ,ac (R d ) for some δ > 0. And further assume that their entropy is finite and that the Brenier map T = ∇f is Lipschitz. Then W 2 2 (γ ε , γ 0 ) = Θ(ε). More precisely :

1. if µ 0 , µ 1 ∈ P 2+δ,ac (R d ) with finite entropy, then there exist c > 0, depending on the moments m 2+δ (µ i ), the entropies H(µ i ) and the dimension d, such that, as ε → 0

cε ≤ W 2 2 (γ ε , γ 0 ) (46)
2. if moreover the Brenier map is L-lipschitz, then there exist C > 0 depending on d, m 2+δ (µ i ), H(µ i ) and L, such that, as ε → 0

cε ≤ W 2 2 (γ ε , γ 0 ) ≤ Cε (47)
Proof. For the first part, let's recall that from proposition 3.5, we have

N 2d (γ ε ) ≤ σγ ε (X+Y ) d (E, γ ε ).
As in the proof of theorem 3.7, we bound can bound σ γε (X + Y ) with the moments m 2+δ (µ i ) and so we obtain

N 2d (γ ε ) ≤ C(m 2+δ (µ i ), d)W 2 (γ ε , γ 0 ) (48)
But on the other hand, from lemma 3.6, we now that

H(γ ε ) ≤ -d 2 ln(ε) + C(m 2+δ (µ i ), H(µ i ), d). Or equivalently, N 2d (γ ε ) ≥ C(m 2+δ (µ i ), H(µ i ), d) √ ε (49) 
So, combining inequality ( 48) and (49), we get W 2 2 (γ ε , γ 0 ) ≥ cε for some constant c depending on d, H(µ i ) and m 2+δ (µ i ). The second part is a direct combination of lemma 3.8 from which

W 2 2 (γ ε , γ 0 ) ≤ 2L ((c, γ ε ) -(c, γ 0 )) and theorem 3.7 which states that (c, γ ε ) -(c, γ 0 ) ≤ C(m 2+δ (µ i ), H(µ i ), d)ε.
Remark 3.10. Note that, as explained in [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF]Proposition 4.5], the method of lemma 3.8 allows to control also the L 2 -gap between T ε , the barycentric projection of γ ε , and the Brenier map T = ∇f .

||T ε -T || 2 L 2 (µ) ≤ |y -T (x)| 2 dγ ε (x, y) ≤ 2L Edγ ε ≤ Cε
In a similar fashion we get a control over the distance between the support of γ ε and the graph of the optimal transport

d(y, supp(γ 0 )) 2 dγ ε ≤ |y -T (x)| 2 dγ ε (x, y) = O(ε) (50) 
Hence, for the quadratic case, under technical assumptions, we have obtain generic rates of convergence when the marginals µ i have finite differential entropy :

(c, γ ε ) = (c, γ 0 ) + Θ(ε) H(γ ε ) = - d 2 ln(ε) + O(1) W 2 (γ ε , γ 0 ) = Θ( √ ε) (51)
Can we generalize it to a broader class of costs ? This is the objective of next section.

Rates for infinitesimally twisted costs

In this section, we use the set of assumption (H3) that is adapted to twisted cost functions. As in the quadratic case, we begin by estimates on the entropy based on quadratic detachment.

Lower bound on the entropy

The key ingredient used to lower bound the entropy was the lower bound involving the variance H(γ) ≥ H(N (0, Var(γ)/d)). In fact we used a finer result using a disintegration of γ in two components, one of which had bounded variance. In order to extend the preceding results to more general costs our goal is to have a local version of the proposition 3.5 that states a precise lower bound for H(γ). Indeed, imagine that E ≥ 0 is a function such that there is a direction along which E grows quadratically locally around Σ = {E = 0}. For any measure γ, it is then possible to bound the variance of γ along that same direction which in turns give a bound on the entropy of γ in a similar fashion to lemma 3.4. In order to state this idea formally we introduce the concept of local quadratic detachment for a positive function.

Definition 4.1 (Local quadratic detachment). Let X ⊂ R d a compact set and E : X × X → R + continuous. Assume that Σ = {E = 0} ̸ = ∅. We says that E has a local quadratic detachment of parameters ((U i ) i , (Φ i ) i , κ) where κ > 0, (U i ) i is a finite open covering of Σ, and (Φ i ) i a family of volume preserving affine functions Φ i : x → (u, v) ∈ R d × R d such that for all (u, v), (u, v ′ ) ∈ Φ i (U i ) E(u, v) + E(u, v ′ ) ≥ κ∥v -v ′ ∥ 2 (52) 
Where E denotes E • Φ -1 i by a slight abuse of notation.

This local quadratic detachment property is a direct generalisation of the notion of quadratic detachment (definition 3.1). And it happens that the same result holds: the entropy of γ is lower bounded by the log of the integral of a function having a local quadratic detachment. The idea of proof is the same as in the quadratic case with some added technical issues associated to the locality of the quadratic detachment.

Proposition 4.2. Let X ⊂ R d a compact set and E a continuous function on X × X that has a local quadratic detachment with parameters

((U i ) N i=1 , (Φ i ) N i=1 , κ). Set R = X × X \ i U i .
There exists a constant C depending on X, ∥Φ i ∥ op and N such that for any γ ∈ P(X × X) we have

H(γ) ≥ - d 2 ln E(x)dγ - d 2 ln 4πe κd + d 2 ln 1 ∧ inf x∈R E(x) + C (53) 
Proof. First if H(γ) = +∞ or Edγ = +∞, there is nothing to prove. We assume that H(γ) < +∞ thus γ has a density that we denote ρ and Edγ < +∞. Let κ > 0, (U i ) N i=1 and Φ i as in the definition 4.1 of the local quadratic detachment. Let ζ i a partition of unity subordinate to the family (U i ) i . Denote by

U = i U i . If p i = (ζ i ρ)(U ) > 0 let ρ i = 1 pi ζ i ρ, else ρ i = 0.
Then we have the following decomposition ρ = 1 U i p i ρ i + 1 U c ρ which we can inject in the definition of the entropy

H(γ) = ρ ln(ρ) = U i p i ρ i ln( j p j ρ j ) + U c ρ ln(ρ) = i p i ρ i ln( j p j ρ j ) + U c ρ ln(ρ) ≥ i p i ρ i ln(p i ρ i ) + U c ρ ln(ρ) ≥ i p i ln(p i ) + i p i ρ i ln(ρ i ) + U c ρ ln(ρ) ≥ i p i H(ρ i ) - 1 e N + H 2d (X × X) (54) 
Where the first inequality holds because p i ρ i ≤ j p j ρ j and the last inequality holds because under support constraint the uniform distribution has the smallest entropy. Now for i such that ρ i ̸ = 0 set

τ i = (Φ i ) # ρ i , since Φ i is volume preserving we have H(τ i ) = H(ρ i ).
We now disintegrate τ i with respect to the projection onto the first coordinate u and denote the disintegration τ i = µ i ⊗ τ u i . By additivity of the entropy we have

H(τ i ) = H(µ i ) + H(τ u i )dµ i (55) 
However let u in the support of µ i and let v within the support of

τ u i . Take v ′ ∈ π 2 Φ i (X × X) such that E(u, v ′ ) = min π1Φi(X×X) E(u, .
), which is possible by compactness of π 2 Φ i (X × X) and continuity of E. Then by the local quadratic detachment of E we have

E(u, v) ≥ 1 2 (E(u, v ′ ) + E(u, v)) ≥ κ 2 ∥v ′ -v∥ 2 (56) 
Moreover since the variance is the distance to the constants in L 2 space we have

E(u, v)dτ u i ≥ κ 2 ∥v ′ -v∥ 2 dτ u i ≥ κ 2 Var(τ u i ) (57) 
Using this control of the variance in conjonction with the fact that the gaussian has lowest entropy under variance constraint we have

H(τ u i ) ≥ - d 2 ln (Var(τ u i )) - d 2 ln 2πe d ≥ - d 2 ln E(u, v)dτ u i - d 2 ln 4πe κd (58) 
On the other hand we know that µ i is supported in π 1 Φ i (U i ) the diameter of which is smaller than a constant time that of X, thanks to the continuity of Φ i . Thus since on a bounded support the uniform distribution has the smallest entropy we have

H(µ i ) ≥ -ln(H d (π 1 Φ i (U i ))) = C(∥Φ i ∥ op , X).
Now coming back to equation (55) we have

H(ρ i ) = H(τ i ) = H(µ i ) + H(τ u i )dµ i ≥ - d 2 ln E(u, v)dτ u i dµ i - d 2 ln 4πe κd + C(∥Φ i ∥ op , X) ≥ - d 2 ln E(u, v)dτ i - d 2 ln 4πe κd + C(∥Φ i ∥ op , X) ≥ - d 2 ln E(x)dρ i - d 2 ln 4πe κd + C(∥Φ i ∥ op , X) (59) 
where the second to last inequality holds by concavity of the logarithm and the last inequality holds because Φ i is volume preserving. We now multiply equation ( 59) by p i and sum over i in order to combine it with the lower bound term in equation ( 54)

H(γ) ≥ i p i H(ρ i ) - 1 e N + H 2d (X × X) ≥ i p i - d 2 ln E(x)dρ i - d 2 ln 4πe κd + C(∥Φ i ∥ op , X) - 1 e N + H 2d (X × X) ≥ - d 2 ρ(U ) ln U E(x)dρ - d 2 ln 4πe κd + C(N, ∥Φ i ∥ op , X) (60) 
where we used the concavity of the logarithm one last time. It remains to prove that there is a constant such that -ρ(U ) ln U Edρ ≥ -ln Edρ + C.

Let E 0 = 1 ∧ inf x∈U c E(x) > 0 because Σ ∩ U c = ∅ is a compact set and E is continuous. Then U c Edρ ≥ E 0 (1 -ρ(U )) which implies -ln Edρ ≤ -ln U Edρ + E 0 (1 -ρ(U ))
. For α ∈ [0, 1] and x > 0 set f : x → -α ln(x) + ln(x + E 0 (1 -α)). We have f (x) ≥ f (αE 0 ) = -α ln(α) + (1α) ln(E 0 ) ≥ ln(E 0 ). This allows us to conclude that

H(γ) ≥ - d 2 ln E(x)dρ - d 2 ln 4πe κd + d 2 ln(E 0 ) + C(N, ∥Φ i ∥ op , X) (61) 

Rates of convergence of OT ε

The quadratic case showed that the duality gap function E = c -(φ ⊕ ψ) has a global quadratic detachment, where φ, ψ are any Kantorovich potentials. In fact the duality gap still has a quadratic detachment, though local, in the more general case of infinitesimally twisted costs, which includes situations where the optimal plans are not necessarily given by a map. This is the point of [7, lemma 4.2], which relies on a generalized version of Minty's trick also stating that in charts the support of γ 0 is the graph of a Lipschitz function. They also provide a quadratic lower bound on the duality gap in these local charts. Our goal is to then apply proposition 4.2 in order to control the entropy of the optimal regularized transport plans as ε → 0. We will then be able to conclude by finding a rate of order ε for (c, γ ε ) -(c, γ 0 ) in a similar fashion to the quadratic case. Throughout this section we will work on X a compact subset of R d . We denote by Ω an open set containing X. We will assume that the marginals µ 0 , µ 1 are supported in X and have finite entropy. We start by recalling the results found in [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF].

Definition 4.3 (Infinitesimal twist). Given c ∈ C 2 (Ω 2 ) we say that c is infinitesimally twisted if ∇ 2 xy c(x, y) = (∂ 2 xiyj c(x, y)) i,j ∈ M d (R) is invertible for every (x, y) ∈ Ω 2 .
We now recall the quadratic detachment lemma [7, lemma 4.2]. Their proof closely follow an earlier proof found in [START_REF] Robert J Mccann | Rectifiability of optimal transportation plans[END_REF], however they are interested in points that do not belong to the support of the optimal transport plan.

Lemma 4.4. Let c ∈ C 2 (Ω 2 ) be an infinitesimally twisted cost, and (φ, ψ) ∈ C(X) 2 be a pair of c-conjugate functions. We denote by E = c -φ ⊕ ψ ≥ 0 the duality gap function defined on X × X, by Σ = {E = 0} the contact set and for every r > 0,

τ (r) = sup x,x ′ ∈X×X ∥x ′ -x∥≤r ∥∇ 2 xy c(x ′ ) -1 ∇ 2 xy c(x) -Id∥ ∈ [0, ∞) (62) If x ∈ X × X and x, x ′ ∈ B r (x) ∩ (X × X), then E(x) + E(x ′ ) ≥ ∥∆v∥ 2 -∥∆u∥ 2 -τ (r)(∥∆v∥ 2 + ∥∆u∥ 2 ) ( 63 
)
where ∆u = u(x ′ ) -u(x), ∆v = v(x ′ ) -v(x), and

u(x) = 1 2 (x -∇ 2 xy c(x)y), v(x) = 1 2 (x + ∇ 2 xy c(x)y) (64) 
for every x = (x, y).

Remark 4.5. The following remark was made in [START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF]. What directly follows from the lemma is that locally, up to a change of variable, the support of γ 0 lies within the graph of a Lipschitz function, with Lipschitz constant arbitrarily close to 1. Indeed for (u, v), (u

′ , v ′ ) ∈ Φ(B(x, r)) ∩ Φ(suppγ 0 ) we have 0 = E(u, v) + E(u ′ , v ′ ) ≥ (1 -τ (r))∥∆v∥ 2 -(1 + τ (r))∥∆u∥ 2 (65) 
Thus 1 + τ (r) 1 -τ (r) ∥∆u∥ ≥ ∥∆v∥ (66) 
This lemma essentially says that locally around the set Σ = {E = 0} the function E grows at least quadratically along the direction Im(Id + ∇ 2 xy c(x)). In particular when the functions (φ, ψ) are Kantorovich potentials of the optimal transport problem, this gives a quadratic lower bound of the duality gap close to Σ. The following lemma restates lemma 4.4 in the language of the quadratic detachment of the duality gap function.

Lemma 4.6. Using the notations of lemma 4.4. Let (φ, ψ) ∈ C(X) 2 be a pair of c-conjugate functions. Then E = c-(φ⊕ψ) has a local quadratic detachment of parameters ((B(x i , r)) i , (Φ i ) i , κ) where r is such that τ (r) ≤ 1 2 , and

κ = 1 4 inf x∈X 2 |det(∇ 2 xy c(x))| 1/d ).
The familly (B(x i , r)) i is a finite covering of Σ, and

Φ i (x) = α i (u i (x)-u i (x i ), v i (x)-v i (x i )) with α i chosen such that J Φ i = 1 and u i (x) = 1 2 (x -∇ 2 xy c(x i )y), v i (x) = 1 2 (x + ∇ 2 xy c(x i )y) (67) 
Proof. We use the notations of lemma 4.4. Let r > 0 such that τ (r) ≤ 1/2 which is possible since by continuity of ∇ 2 xy c over the compact set X 2 . We have τ (r) → 0 as r → 0. Note that E is continuous because φ, ψ are c-conjugate functions and c is continuous. Thus Σ is closed, hence compact. We can choose (x i ) N i=1 ∈ Σ N such that (B(x i , r)) i is a finite covering of Σ. For i ∈ [1, N ] and for every x, x ′ ∈ B(x i , r) such that u i (x) = u i (x ′ ), we have by lemma 4.4

E(x) + E(x ′ ) ≥ (1 -τ (r))∥∆v i ∥ 2 ≥ 1 2α 2 i ∥∆(α i v i )∥ 2 (68) 
where v i (x) = 1/2(x + ∇ 2 xy c(x i )y). Note that Φ i is an affine volume preserving map thus we have 1 =

α 2d i 2 d |det(∇ 2 xy c(x i ))|.
The determinant and the cross derivative are continuous which implies

I = inf x∈X 2 | det(∇ 2
xy c(x))| > 0 by the infinitesimal twist condition on c. We conclude that

E(x) + E(x ′ ) ≥ 1 2α 2 i ∥∆(α i v i )∥ 2 ≥ I 1/d 4 ∥∆(α i v i )∥ 2 (69) 
We will use this lemma in the specific case ofa duality gap function where φ, ψ are Kantorovich potentials for the optimal transport problem. Note that there is no dependence in ε and thus the quadratic detachment framework can be used to derive the rates found in the quadratic cost case.

It is known (see [START_REF] Eckstein | Convergence Rates for Regularized Optimal Transport via Quantization[END_REF][START_REF] Carlier | Convergence rate of general entropic optimal transport costs[END_REF]) that for infinitesimally twisted cost and compactly supported marginals of finite entropy, the regularized problem εEOT satisfies the following inequality for some real

M OT ε -OT 0 ≤ - d 2 ε ln(ε) + M ε (70) 
We formally recall that convergence result in the following lemma.

Lemma 4.7. [15, Theorem 3.8, Lemma 3.13] Assume that µ i are compactly supported and c ∈ C 2 (Ω 2 ) is infinitesimally twisted. Then there is C > 0 such that, as ε → 0

OT ε -OT 0 ≤ - d 2 ε ln(ε) + Cε (71)
Proof. Let X compact such that supp(µ i ) ⊂ X. Then by continuity, ∇ 2 c is bounded. Moreover since µ i are compactly supported [15, lemma 3.13] ensures that the optimal transport plan γ 0 satisfies the right quantization property for [15, theorem 3.8] to apply and grant a constant C > 0 such that

OT ε -OT 0 ≤ - d 2 ε ln(ε) + Cε (72) 
Note that OT ε -OT 0 = Edγ ε + εH(γ ε ). Thus in combination with lemma 4.7 and the lower bound on the entropy 4.2 we have the following result. 

(µ i ) < ∞. Then (c, γ ε ) -(c, γ 0 ) = Θ(ε), H(γ ε ) = - d 2 ln(ε) + O(1) and OT ε = OT 0 - dε 2 ln(ε) + O(ε) (73) 
Proof. We denote by X a compact subset of Ω such that µ i (X) = 1. It is known that the Kantorvich potentials are c-conjugate functions and thus are continuous on Ω. In particular the duality gap function E(x, y) = c(x, y) -φ(x) -ψ(y) is continuous on Ω × Ω. By lemma 4.6 we thus know that E has a local quadratic detachment. Thus proposition 4.2 implies that there is a constant C such that

H(γ ε ) ≥ - d 2 ln Edγ ε + C (74) 
Now combining this inequation with the upper bound on the rate of convergence (70) we have

- d 2 ε ln(ε) + Cε ≥ Edγ ε + εH(γ ε ) ≥ Edγ ε - d 2 ε ln Edγ ε + Cε (75) 
Dividing both sides by ε and adding ln(ε) we get

Edγ ε ε - d 2 ln Edγ ε ε ≤ C (76) 
And we conclude as in theorem 3.7.

4.3 Lower bound on W 2 (γ ε , γ 0 )

We now focus on the lower bound of the Wasserstein distance between γ ε and γ 0 . Unlike the quadratic case we won't be able to directly use a quadratic detachment for the Wasserstein distance.

For ε > 0, by construction γ ε is absolutely continuous with respect to the Lebesgue measure, thus there is an optimal transport map for the quadratic cost from γ ε to γ 0 . In particular this map is the gradient of a convex function f . We are now able to write the Wasserstein distance as W 2 2 (γ ε , γ 0 ) = ∥x -∇f (x)∥ 2 dγ ε (x). Inspired by the quadratic case and the last section we could say that x → ∥x -∇f (x)∥ 2 has a local quadratic detachment, but this function is not necessarily continuous which prevents us from applying the results on quadratic detachment. However the spirit of the proofs remains true and the results of this section are essentially an adaptation of the results presented before. First the Wasserstein distance between two measures satisfies a property close to a quadratic detachment whenever one of the measure is supported on a Lipschitz graph. Lemma 4.9. Let E a subspace of R n , T : E → E ⊥ and µ = (Id × T ) # µ 0 with µ 0 a probability on E with finite moment of order 2. Suppose that T is L-Lipschitz. Then for any ν ∈ P 2,ac (R d )

W 2 2 (µ, ν) ≥ (1 -L)W 2 2 (µ 0 , ν 0 ) + 1 L + 1 V ar(ν x )dν 0 (x) ( 77 
)
where ν = ν 0 ⊗ ν x is the disintegration of ν with regard to the orthogonal projection on E. In particular

(1 + L) 2 W 2 2 (µ, ν) ≥ V ar(ν x )dν 0 (x) (78) 
Proof. Let π be the optimal coupling between µ, ν. Let (X ′ , Y ′ ) ∼ µ and (X, Y ) ∼ ν such that (X ′ , Y ′ , X, Y ) ∼ π. Thus

W 2 2 (µ, ν) = E π ∥X -X ′ ∥ 2 + ∥Y -T (X ′ )∥ 2 (79) 
. Now using that T is L-Lipschitz:

L∥X -X ′ ∥ + ∥Y -T (X ′ )∥ ≥ ∥Y -T (X)∥.

(80)

and taking the square

L 2 ∥X -X ′ ∥ 2 + ∥Y -T (X ′ )∥ 2 + 2L∥X -X ′ ∥∥Y -T (X ′ )∥ ≥ ∥Y -T (X)∥ 2 . ( 81 
)
Thus we have

W 2 2 (ν, µ) ≥ E π ∥X -X ′ ∥ 2 + ∥Y -T (X ′ )∥ 2 ≥ (1 -L 2 )E π ∥X -X ′ ∥ 2 + E π ∥Y -T (X)∥ 2 -2LE π [∥X -X ′ ∥∥Y -T (X ′ )∥] (82) 
but the last term satisfies by Young inequality ab ≤ 1 2 (a 2 + b 2 )

E π [∥X -X ′ ∥∥Y -T (X ′ )∥] ≤ 1 2 (E π ∥X -X ′ ∥ 2 + E π ∥Y -T (X ′ )∥ 2 ) ≤ W 2 2 (µ, ν) 2 (83) 
Inequality (82) becomes

W 2 2 (µ, ν)(1 + L) ≥ (1 -L 2 )E π ∥X -X ′ ∥ 2 + E π ∥Y -T (X)∥ 2 (84) 
and finally we have

W 2 2 (µ, ν) ≥ (1 -L)E π ∥X -X ′ ∥ 2 + 1 1 + L E π ∥Y -T (X)∥ 2 ≥ (1 -L)W 2 2 (µ 0 , ν 0 ) + 1 1 + L E νx ∥Y -E [Y | X = x] ∥ 2 dν 0 ≥ (1 -L)W 2 2 (µ 0 , ν 0 ) + 1 1 + L V ar(ν x )dν 0 (85) 
Where the second inequality is true since the mean is the L 2 orthogonal projection of the random variable on the space of constants. Now since W 2 2 (µ, ν) ≥ W 2 2 (µ 0 , ν 0 ) we have (1 + L)W 2 2 (µ, ν) ≥ W 2 2 (µ, ν) + LW 2 2 (µ 0 , ν 0 ) ≥ W 2 2 (µ 0 , ν 0 ) + 1 1 + L V ar(ν x )dν 0 (86)

Which finally grants (1 + L) 2 W 2 2 (µ, ν) ≥ V ar(ν x )dν 0 . The proof can be slightly modified to show that the function x → d(x, Γ) 2 where Γ is the graph of a Lipschitz function has a quadratic detachment. As stated before, to use the local quadratic detachment apparatus one could show that x → ∥x -∇f (x)∥ 2 has a local quadratic detachment where ∇f is the optimal transport from γ ε to γ 0 . And thanks to remark 4.5, γ 0 is supported on a Lipschitz graph on charts. In particular if on an open set U , γ 0 is the graph of a Lipschitz function, then x → ∥x -∇f (x)∥ 2 satisfies a quadratic detachment on (∇f ) -1 (U ). However since we have no information on the regularity of the transport map we cannot conclude that (∇f ) -1 (U ) is open and observe a local quadratic detachment. Thus we have to adapt the proof of proposition 4.2 in order to manage this issue and derive a lower bound for the entropy of γ ε using W 2 2 (γ ε , γ 0 ). Proposition 4.10. Let µ i ∈ P(Ω) two compactly supported measures of finite entropy. Then there exists C > 0 such that as ε → 0

H(γ ε ) ≥ - d 2 ln W 2 2 (γ ε , γ 0 ) + C (87) 
Proof. Throughout we use the notations of lemma 4.4. Since γ ε has a density, there is a transport map T for the optimal transport problem with quadratic cost from γ ε to γ 0 . Let r > 0 such that τ (r) ≤ 1 2 . Let (U i = B(x i , r) i an open covering of the support of γ 0 with x i ∈ suppγ 0 . Let (ζ i ) i a partition of unity subordinate to the covering (U i ) i . For i set γ i ε = 1 pi ζ i • T γ ε and γ i 0 = 1 pi ζ i γ 0 , where p i is the normalization constant which is independent of ε. Note that T transports γ i ε to γ i 0 . Thus we have W 2 2 (γ ε , γ 0 ) ≥ i p i W 2 2 (γ i ε , γ i 0 ) We now introduce Φ i : Φ i (x, y) = α i (u i (x, y)u i (x i ), v i (x, y) -v i (x i )) where α i is such that Φ i is volume preserving. Let τ i ε , τ i 0 the pushforwards of γ i ε and γ i 0 with respect to this map. We disintegrate τ i ε with respect to the projection on the variable u and denote it µ i ε ⊗ τ i,u ε . Note that Φ i is not an isometry, however it is an affine map thus W 2 2 (γ i ε , γ i 0 ) ≥ C i W 2 2 (τ i ε , τ i 0 ), where C i = 1/∥Φ i ∥ op . Note that C i only depends on ∇ 2 xy c(x i ), thus it is independent of ε. It was pointed out in remark 4.5 that for every i, τ i 0 is supported on the graph of a √ 3-Lipschitz function. Thus thanks to lemma 4.9

H(γ i ε ) = H(τ i ε ) = H(µ i ε ) + H(τ i,u ε )dµ i ε ≥ H(µ i ε ) - d 2 ln V ar(τ i,u ε )dµ i ε + C ≥ H(µ i ε ) - d 2 ln W 2 2 (γ i ε , γ i 0 ) + d 2 ln C i √ 3 + 1 + C ≥ - d 2 ln W 2 2 (γ i ε , γ i 0 ) + C(X) (88) 
Where the last inequality holds because µ i ε is supported on a compact set of diameter comparable to that of X, as seen in the proof of theorem 4.2. We proceed as in the proof of proposition 4.2 . Thus by summing over i we get

H(γ ε ) = i p i ln(p i ) + i p i H(γ i ε ) ≥ - d 2 i p i ln W 2 2 (γ i ε , γ i 0 ) + C ≥ - d 2 ln W 2 2 (γ ε , γ 0 ) + C (89) 

Theorem 4 . 8 .

 48 Let c ∈ C 2 (Ω 2 ) infinitesimally twisted. Let µ i ∈ P ac (Ω) two compactly supported measures satsifying H

φ(x) = infy c(x, y) -ψ(y) and ψ(y) = infx c(x, y) -φ(x)

Remark that since the functional N is multiplicative, the right hand side is the 4d entropy power of µ 0 ⊗ µ 1 ⊗ N (0, ε 2d I 2d )

see the introduction of[START_REF] Conforti | A formula for the time derivative of the entropic cost and applications[END_REF] for a discussion on the name energy

here, by a slight abuse of notation, E denotes E • Φ -1 where Φ : (x, y) → (u, v) is Minty's change of variable (definition3.3) 

This lemma and its proof was suggested to us by P. Pegon

Where the last inequality holds by concavity of the logarithm.

It remains to combine the last result with the rate of convergence of (εEOT) in order to retrieve the negative result on the Wasserstein distance between γ ε and γ 0 . Theorem 4.11. Let c ∈ C(Ω 2 ) infinitesimally twisted. Let µ i ∈ P(Ω) two compactly supported measures of finite entropy. Then there exists c > 0 such that as ε → 0

Proof. Lemma 4.7 ensures that

And proposition 4.10 grants the following lower bound for the entropy

Combining the two equations together we have

Taking the exponential grants the result.

Remark that in the general case, we obtain only the domination ε = O(W 2 2 (γ ε , γ 0 )) whereas in the quadratic case, even if it is under strong assumptions, we could obtain W 2 2 (γ ε , γ 0 ) = Θ(ε) (theorem 3.9). The reason is not that the solution are not smooth enough. Indeed, there exist some precise assumptions, such as the Ma-Trudinger-Wang conditions (see [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF]), that guarantee regularity of the solutions of the dual problem. The true difficulty is to replace the formula W 2 2 (γ ε , γ 0 ) ≤ L(E, γ ε ) of lemma 3.8 that transform this regularity (the lipschitz constant L of the transport map) into a bound of W 2 2 (γ ε , γ 0 ).