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Energy expenditure estimation from respiratory
magnetometer plethysmography: A comparison
study

A. Houssein, J.Prioux, S.Gastinger, B. Martin, F.Zhou, and D.Ge

Abstract— Physical activity (PA) quantification by esti-
mating energy expenditure (EE) is essential to health. Ref-
erence methods for EE estimation often involve expensive
and cumbersome systems to wear. To address these prob-
lems, light-weighted and cost-effective portable devices are
developed. Respiratory magnetometer plethysmography
(RMP) is among such devices, based on the measurements
of thoraco-abdominal distances. The aim of this study was
to conduct a comparative study on EE estimation with low
to high PA intensity with portable devices including the
RMP. Fifteen healthy subjects aged 23.84 + 4.36 years were
equipped with an accelerometer, a heart rate (HR) monitor,
a RMP device and a gas exchange system, while performing
9 sedentary and physical activities: sitting, standing, lying,
walking at 4 and 6 km/h, running at 9 and 12 km/h, biking at
90 and 110 W. An artificial neural network (ANN) as well as a
support vector regression algorithm were developed using
features derived from each sensor separately and jointly.
We compared also three validation approaches for the
ANN model: leave one out subject, 10 fold cross-validation,
and subject-specific. Results showed that 1. for portable
devices the RMP provided better EE estimation compared
to accelerometer and HR monitor alone; 2. combining the
RMP and HR data further improved the EE estimation per-
formances; and 3. the RMP device was also reliable in EE
estimation for various PA intensities.

Index Terms—Energy expenditure, machine learning,
physical activity, respiratory magnetometer plethysmogra-
phy, accelerometer, Heart rate monitor.

[. INTRODUCTION

EGULAR physical activity (PA) is essential to maintain

and improve health conditions. It plays an important role
in the prevention and treatment of cardiovascular diseases, di-
abetes, obesity, and several types of cancer [1], [2]. Therefore,
the quantification of PA is of major interest in epidemiological
and physiological research to investigate the relationships
and effects of PA to health conditions. Quantification of PA
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consists of identifying the type of PA and estimating the
related energy expenditure (EE).

Several tools exist to measure or estimate EE. Reference
methods such as direct calorimetry, indirect calorimetry and
doubly-labeled water provide the most accurate measurements
of EE. However, these methods are limited due to the specific
equipment and associated human expertise, not to mention
the high costs [3]. To overcome these problems, researchers
have attempted to develop portable devices that are light-
weighted and less expensive. Motion sensors (accelerometers)
are frequently used in the literature to quantify both PA
and EE [4], [5]. However, the use of a single accelerometer
appears to be insufficient for activities involving both upper
and lower body movements [6], leading to the idea of using
multiple accelerometers placed at different body positions [4],
at the cost of increasing both the system complexity and the
physical constraints in wearing them. Another problem related
to accelerometers is that the workload of activities remains
difficult to quantify. Physiological variables, such as heart
rate (HR), are also frequently used for EE estimation [7].
Unfortunately, HR is also influenced by factors unrelated to
EE such as stress, emotion, temperature, etc. [8], [9] and its
use requires individual calibration.

Durnin et al [10] and Ford et al [11] have shown that minute
ventilation (VE) can be effectively used as an index of EE
estimation. Recent advances in technologies to estimate Vg
from wearable sensors have encouraged researchers to use
this physiological variable to estimate EE [12]. Among these
technologies, the respiratory magnetometer plethysmography
(RMP) system has been validated as a reliable method [12].
The study of Gastinger et al. [13] was the first to use the
RMP system in estimating EE. They used sample-wise linear
regression models to connect the respiration traces from the
RMP to the measured EE values, and individual calibration
was required for each subject and for each activity, a tedious
and impractical process. In addition, the authors evaluated
the performances of the RMP system over a limited range
of activities with low to moderate intensity, including only
sedentary and walking activities. To our knowledge, no study
in the literature ever compared the RMP with other devices
for the EE estimation performances. The main objective of our
work was to develop a new approach to EE estimation using
non-linear machine learning models with features extracted
from the RMP signals directly related to respiration and
EE, and to test its performances with the most frequent PA
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activities of various intensities including sedentary, walking,
running and biking. We also compared the performances of
the RMP to other widely-used sensors such as HR monitor
and accelerometer, and evaluated the effects of model choice
and validation approaches.

Il. MATERIALS AND METHODS
A. Subjects

This study was approved by the committee for the protection
of persons of ile de France 1 (Ref: CPPIDF1-2019-ND25
cat2). Fifteen healthy subjects (10 men and 5 women) aged
23.8414.36 years voluntarily participated in this study (height
175.42 £ 6.77 ¢cm, weight 66.63 + 9.83 kg, body mass index
21.56 £ 2.19 kg/m?). All subjects were healthy and did not
present any pulmonary or heart diseases. After a detailed
description of the protocol, subjects provided their informed
consent.

B. Experimental protocol

Subjects participated in two sessions of activities conducted
on two different days. The order of these sessions was ran-
domized. The first session consists of both PA and sedentary
activities. In the second session, a maximal graded test was
performed. However, we only used the dataset of the first
session for the current study. PA were selected to cover the
most frequently performed PA in daily life with a wide range
of intensities. During the experiments, subjects were equipped
with an HR monitor, an accelerometer, a RMP system and a
gaz exchange measurement system for reference EE measure-
ments. During the first session, each subject performed three
successive sedentary activities: sitting, standing, lying, with a
duration of 6 min separated by a 1 min rest. Then, each subject
performed three PA with two different intensities: walking at
4 and 6 km/h, running at 9 and 12 km/h, biking at 90 and
110 W. The duration of each PA was 6 min, with a 3 min rest
in between. The rest period was chosen to ensure sufficient
recovery and to allow the EE level to return to its value at
rest. Both walking and running were performed on a treadmill,
while biking on a cycle ergometer. The order of activities
was chosen with increasing intensity. All these activities were
performed in laboratory under standardized conditions.

C. Materials

During experiments, subjects were equipped with a RMP
device, a HR monitor (Polar), a triaxial accelerometer (Acti-
Graph) and a gas exchange system (Ultima CardioO2) to
measure respiratory frequency (RF) and EE in each cycle, and
to visualize them in real time. Table I summarizes the main
characteristics of the sensors used in our study.

1) Respiratory gas exchange system: Indirect calorimetry is
the reference method for measurement of EE. Gas exchange
measurements were recorded using an indirect calorimetry,
the Ultima CardiO2 (Medical Graphics Corp, St. Paul, MN,
USA). It requires the use of a face mask equipped with
a Directconnect™ flow sensor (Medical Graphics Corp, St.
Paul, MN, USA) [22]. The Ultima CardioO2 was calibrated

TABLE [|: Main characteristics of sensors.

Sensor Position | Measurements Sampling| Software
fre-
quency

RMP system | Anterior | Antero-posterior dis- | 15 Hz Apios

and tances of the rib cage

posterior | and abdomen, longi-

positions | tudinal distances of

of  the | the rib cage and spine

sternum

and

nombril
Accelerometer| Hip Acceleration 30 Hz ActiLife
(ActiGraph
wGT3x+)
Heart rate | Chest Heart rate 1 Hz Polar
monitor ProTrainer
(Polar
RS800CX)
Gas exchange | Facial Respiratory cycle by | Cardiorespirq
system mask frequency cycle atory
(Ultima Energy expenditure diagnostic
CardioO2)

according to manufacturers’ instruction before each test [22].
Data were acquired on a breath-by-breath basis, provinding
continous analysis and display of respiratory vaiables such as
tidal volume (V1), RF, VE, and EE. The recorded data were
saved in the internal database of the Ultima CardioO2 and
then transfered to a PC for analysis.

2) RMP system: The RMP system was that used by Du-
mond et al. [14] (Nomics s.a, Liege Science Park, Belgium).
It is a lightweight (80 g) and small (85 mm X 55 mm X
16 mm) device composed of two pairs of electromagnetic coils
connected to a recorder box. Each pair consists of a transmitter
and a receiver. The transmitter generates a magnetic field
through a circuit with a resonant frequency. The receiver
detects the resonant frequency of the magnetic field from
the transmitter and converts it into a signal. The intensity
of the magnetic field collected provides a measure of the
distance between the transmitter and the receiver. The RMP
system consists of two transmitters and two receivers. The first
transmitter is placed in anterior position at the level of the
sternum. The first receiver is placed in a posterior position on
the spine, opposite to the first transmitter. The second receiver
is placed in the anterior position on the midline of the abdomen
just above the umbilicus. The second transmitter is placed in a
posterior position on the spine opposite to the second receiver
(Figure 1). RMP measures four distances: the anteroposterior
displacements of the rib cage and abdomen as well as the axial
displacements of the chest wall and the spine. The data were
recorded with a sampling rate of 15 Hz. The device records
signals and stores them in an internal memory. The memory
capacity is 16 MB, equivalent to 100 h of recording. The RMP
system is powered by a lithium battery that can be rechargeable
via USB. When the battery is fully charged, the autonomy of
this system is sufficient to ensure several nights of recording
(minimum 60 h in recording mode). The APIOS software is
used to transfer a recording from the device to the PC.

3) Accelerometer: The ActiGraph accelerometer is among
the most widely used activity monitors for PA quantification
[15]. It is a triaxial accelerometer (ActiGraph wGT3X+) with
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Fig. 1:

Distances measured by RMP system.

a dimension of 46 mmx33 mmx 15 mm and a weight about
19 g. It measures acceleration along three axes: vertical,
anteroposterior and mediolateral. The data are recorded with
a sampling frequency ranging from 30 to 100 Hz. Before the
start of experiments, the accelerometer was initialized using
ActiLife software. The sampling frequency can be selected.
In our study, we selected a frequency of 30 Hz. The data
were stored in a non-volatile memory and then downloaded
via a USB cable to a PC using the ActiLife software. The
ActiGraph uses a rechargeable lithium battery, with an auton-
omy depending on the selected sampling frequency, between
11.5 to 22.5 days. The memory capacity is between 12.5 and
42.5 days. The accelerometer was placed at the hip in a pocket
with Velcro closure.

4) Heart Rate Monitor: HR was recorded continuously using
the Polar RS800CX HR monitor, composed of a Polar Wear-
Link W.IN.D transmitter and a smartwatch. The transmitter
consists of an attached transmitter and a chest belt placed
around the chest. It collects and transmits HR data to the
smartwatch. The smartwatch records HR data with a sampling
rate of 1 Hz. It can measure HR for approximately 31 h, either
in beats per minute, or in % of maximum or reserve HR. The
ProTrainer software allows to visualize and transfer the data
to a PC via USB IrDA.

D. Data processing

Signals collected from different sensors were preprocessed
to eliminate artifacts unrelated to respiration activities. Figure
2 illustrates the different steps used to process these data.

1) Data processing: Signals from the RMP system are often
affected by several types of noises caused by movement and
artefacts. Indeed, the belts of RMP system typically moved
during intense PA on treadmill, inducing artefacts. Therefore,
RMP signals were first low-pass filtered with the cut-off
frequency (fc) chosen according to the PA intensity estimated
by the measured HR:
fc= 0.4 Hz if HR < 90 bpm
fc= 0.8 Hz if 90 < HR< 170 bpm
fc= 1.1 Hz if HR> 170 bpm
Similarly for the accelerometer, signals were filtered by a
4-th order Butterworth bandpass filter with a pass-band of
0.25 — 2.5 Hz to reject noise and artefacts outside of the PA-
related frequency band.

2) Features extraction: To increase the efficiency of EE
estimation model during training, filtered data from different
sensors were converted into an appropriate space representa-
tion (the features). For this purpose, we divided data using
a sliding window of 30 s without overlapping. In total, we
obtained 154 temporal segments for sedentary and biking
activities, and 165 segments for walking and running activities.
Features of RMP, accelerometer and Polar HR signals were
then computed from each segment.

RMP features: Two parameters directly related to Vi were
calculated from RMP signals. The first was the interdecile
range of the RMP signals to reflect the variations in thora-
coabdominal distances related to tidal volumes. This range is
the difference between the 90*" and 10*" percentiles of the
signal in each temporal segment. The second parameter was
the RF estimated from each temporal segment. The product
of the Vr and RF corresponds to VE, a proven index for EE
estimation.

To estimate RF from the RMP system, we have adopted a
temporal approach. Indeed, the sampling frequency of the
RMP signals was not high enough to obtain an accurate
estimation of RF with a frequency approach (e.g. Fourier
transform, periodogram). The proposed temporal approach
first detected the respiratory cycles, by applying a peak (local
maxima and minima) detection algorithm with an adaptive
thresholding (Figure 3). Then, a quality index was calculated
for each RMP signal to identify the one with the highest
quality in terms of regularity or periodicity of the respiration
cycles. The quality index was defined as the sum of the
variation coefficients of peaks. This variation coefficient was
simply the quotient of the standard deviation over the mean of
cycle durations (consecutive min or max differences). Thus, a
lower index indicates a better periodicity and therefore more
regular respiratory cycles.

std(T)
Cvmafc = =
T
N—-1
T — Zi:l 1
N

Where CV .. is the variation coefficient of the maximum
peaks, T' the vector of the cycle durations (between two
consecutive maximum peaks), 7' the average cycle durations,
std the standard deviation and N the number of maximum
peaks.

The RF estimate was simply the inverse of the averaged cycle
durations from the RMP segment with the best quality index.
Accelerometer features: We computed the activity count for
each axis from the filtered accelerometer data. This count
is the sum of the acceleration values of the considered axis
in a temporal segment. We calculated also the count of the
magnitude vector which is the square root of the sum of the
squares of the acceleration counts of the three axes. These
features give an indication of the intensity level of PA.

HR features: The sampling rate was low which did not
allow the calculation of complex features. Therefore, we only
computed the average HR for each temporal segment.
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Data were collected from subjects wearing the accelerometer, HR monitor, RMP system and a facial mask during different
activities. Signals were extracted, preprocessed for noise reduction, and divided into segments. Then, features were extracted

and used as inputs of regression models for EE estimation.
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Fig. 3: Example of detection of respiratory cycles from RMP
signals.

3) Regression Models: A nonlinear regression model,
artificial neural network (ANN), was developed in the
MATLAB environment using the Deep learning Toolbox for
each sensor separately and then by combining both RMP and
HR system, to establish the relationships between EE and
the corresponding features. The ANN model implemented in
our study was a multilayer perceptron with three layers, an
input layer, an output layer and a hidden layer. The input and
output neurons were connected by weighted connections. The
number of neurons in the input layer was equal to the number

of features. The output layer was composed of a single
neuron that corresponds to the predicted EE. The hidden
layer was composed of 5 neurons. Various architectures with
different number of neurons in hidden layer was applied to
select the optimal network (Figure 4). A hyperbolic tangent
sigmoid transfer function “transig” was used for the hidden
layers and a linear transfer function “purelin” for the output
layers. The training was done using Levenberg Marquardt
optimization function “trainlm” that consists in adjusting the
weights and bias of the neural network in order to minimize
the mean square error between the value of estimated EE
and the measured EE. For all models, a leave-one-out subject
validation (LOOS) was used. With this validation, a model
was trained with data from all subjects except one that was
used to test the model.

To show the effect of the regression model on the estimation
performance using RMP system, we compared the ANN
regression model to the support vector regression (SVR)
model. The SVR model was a nonlinear model in which the
data was projected into a larger representation space using
a kernel function to find a linear function that estimates EE
with minimum error. The kernel function used in our study
was a polynomial function of type 2. It was developed and
trained by fitrsvm” MATLAB function using Statistics and
Machine learning Toolbox.

In order to evaluate the importance of the individualization
of the models for EE estimation using RMP system, we
compared LOOS to two other validation approaches: 1) a
subject specific approach (SS) in which each ANN model
was trained using only data from one specific subject, and
the test was then performed by 5 fold cross validation for the
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RMP: respiratory magnetometer plethysmography. HR: heart
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subject, and 2) a 10 fold cross validation (CV) approach in
which the dataset including all subjects was randomly divided
into 10 subsets of equal sizes. At each iteration the model
was trained with 9 subsets and the remaining was used to test
the model.

4) Statistical analysis: The evaluation of the performance of
EE estimation was performed by comparing the estimated EE
to its reference value from the gas exchange system. Graphical
representations of estimated EE versus reference values were
plotted with their associated regression line. The most common
parameters used for model validation were calculated:

- The root mean square error (RMSE) defined by:

N

1
5 D EE; = EEg:)?
=1

RMSE =

-The coefficient of determination (R?) defined by:

N
RZ—1_ Z'L:l(EEi — E%giy
> (EE; — EE)*

, where N is the number of temporal segments, EE,,,4; the
estimated EE, F'F; the reference EE of the i-th segment, and
EE the average reference EE.

To quantify the significances of differences between two or
more regression models, we used a multiple comparison test
ANOVA, and a p < 0.05 was considered to be significant.

1. RESULTS
A. Performance of RF estimation

We evaluated the performance of RF by first comparing
the estimated RF to the reference RF (Table II). Our results

TABLE II: Differences between measured and estimated res-
piratory frequency (RF) for all PA.

Activities RF reference | RF estimated | Estimation er-
(cycles/min) (cycles/min) ror of RF
(cycles/min)
Sitting 13.59 £4.77 13.57 £4.74 0.74 £ 0.65
Standing 13.56 £+ 5.36 13.55 £ 5.22 0.81 +0.88
Lying 12.96 + 4.44 12.95 +4.43 0.83 £0.80
Walking 4 km/h 17.89 £4.79 17.69 £4.75 1.30 +1.14
Walking 6 km/h 19.66 £ 5.71 19.63 £ 5.59 1.26 +1.51
Running 9 km/h 27.57 £ 7.22 27.84 £7.00 1.60 £1.71
Running 12 km/h | 32.39 + 8.51 32.72 + 7.99 1.69 +1.77
Biking 90 W 24.81 + 6.00 24.98 + 5.92 1.234+1.36
Biking 110 W 26.21 + 7.54 26.30 + 7.40 1.34 +1.49
I RVP "y '
5 [ERMP+HR g 1
MR
4.5 |l Acc 2 7
<+
4t ° J
o
=350 o 1
£ g g 353
T 3r [ N it > b
< o2y o
u25F 52 Soall < S
n 8 Sae PO Sa
= o~ Tl &2
r 2r 0 8a | = =
gess 28 Eoak M f
0 > > <~ ~
. .. $ N <& < &
§F 8888885 & F
) $ $a (g\(g ~(§°’ Q‘;P ‘%\szz §q7
&£ & & S

Fig. 5: RMSE of EE estimation for different sensors.

showed that they were not significantly different for all seden-
tary and PA. Our results also showed that error increases with
the intensity. Indeed, the noise generated by the movement
increases with the intensity, leading to an increase in the
estimation error.

B. Comparison of sensors

Figure 5 illustrated the RMSE of the estimated EE for
each activity using the different sensors (RMP, accelerometer,
HR monitor) and their combinations (RMP+HR). Our results
showed that RMP provides better overall performance than HR
monitor and accelerometer. The overall RMSE was lower with
RMP (2.01 kcal/min) compared to HR monitor (2.25 kcal/min)
and accelerometer (2.61 kcal/min). By combining RMP and
HR, the performance of EE estimation was further improved.
For all activities, RMSE with RMP and HR (0.56 — 3.34
kcal/min) were lower than those with RMP alone (0.83 — 3.56
kcal/min) or those with HR alone (0.61 — 4.15 kcal/min). The
same results were observed for accelerometer alone (0.78 —
4.84 kcal/min). In addition, the estimation error increased
with activity intensity. RMSE were the lowest for lying (0.56
kcal/min) and the highest for running 12 km/h activity (3.34



This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3252173

6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

. RMP only RMPHR standard dev.latlon of the re.ference and es@mated EE from all

R2 =071 2 R%=073 Sitting sensors are illustrated in Figure 7. The estimated EE using a

=1 - o Ly combination of RMP and HR system were not significantly
8] . . .
= S N x::f:g P different from the reference for all PA, whereas using the
2 ko] ’ 4 . . .
10 o Runring Sk RMP system alone, they became significantly different for
= = O Running 12km - J .
8 8 o Biking 90W most activities except for biking and running at 9 km/h. For
woe o | Blng 11OW sedentary activities and for all sensors, the estimated EE were

0 : significantly different from the reference.

0 5 10 15 20 0 5 10 15 20
EE reference kcal EE reference kcal
" HR only 0 Acc only C. Comparison of regression models
2 _ R% =052 . . .
Ri-o64 To study the model effects on EE estimation, we imple-

g g mented another frequently used nonlinear models: SVR using
ém 2 the same RMP features and reference values for both training
% % and testing. Our results showed that RMSE of the SVR model
i s i

0

0 5 10 15 20 0 5 10 15 20

EE reference kcal EE reference kcal

Fig. 6: Estimated EE as
different sensors.

a function of reference EE using

16 |IBMEE estimated by RMP
IIEE estimated by RMP+HR

10.73

[[JEE estimated by HR NS
14 | EEE estimated by Acc -9
bt
z [IEE reference NSNS*NS o2
g 12 o @
- S <8 | NSNS*** NSNS#*
[s) Seo—co T ~
= N~ © 2 - 3
= da w [cehy n
o 10 WNSw o D[N 2 Foe 2
= ~ [T NN
2 NS N B3 ]
3 © < |7 ©
c 8r 5 TS o
g < &m e
5, 85
el
§ I~
[
(=
w 4 |
oL
’ S &
© ©
& \é&\ o« &» ®
© 9 U N
S > N & S
N & & &F N
S é‘(\\ ka
Q-
Activities

Fig. 7: Mean and standard deviation of reference and estimated
EE for all sensors.

NS: non significant different p>0.05 , *: significant different
p<0.05, **: high significant different p<0.01

kcal/min). To evaluate the agreement between the measured
and estimated EE with either the RMP, HR, accelerometer
alone, or the combination of RMP+HR, we have plotted the
estimated EE against those measured and then calculated the
coefficient of determination (Figure 6). Our results showed
that a higher coefficient of determination was achieved by
combining the RMP and HR system (R? = 0.73) compared
to using only the RMP system (R?> = 0.71), HR monitor
(R? = 0.64), or accelerometer (R%? = 0.52). The mean and

.90
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I sVR model
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3.56

3t

25

RMSE [kcal/min]

Fig. 8: RMSE for ANN and SVR model.

were lower than those of the ANN for sedentary and walking
activities, while the opposite was observed for running and
cycling activities (Figure 8). One machine learning model
can better fit for certain types of activities, but not for all
of them. Though the underlying mecanism is not explored
in this study, this may pave the way for more complex
hybrid regression methods coupled with an activity type
recognition/classification module. Regarding the coefficient of
determination, Figure 9 showed that the ANN model (R? =
0.71) was better than the SVR model (R? = 0.69). However,
the difference was not significant.

D. Comparison of validation approaches

We have compared 3 validation approaches: LOOS, SS
and CV. Figure 10 showed that RMSE decreased significantly
using SS (0.49—1.94 kcal/min) as compared to LOOS (0.83 —
3.56 kcal/min). This result was observed for different physical
and sedentary activities. Furthermore, RMSE obtained with
CV (0.47 — 2.77 kcal/min) were lower than those with LOOS
(0.83 — 3.56 kcal/min). We can conclude that estimation
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Fig. 10: RMSE for different validation approches of ANN
model.

errors were mainly due to the inter-subject variations. Figure
11 showed estimated EE using the RMP as a function of
measured EE for each activity and for the three approaches.
The coefficient of determination of SS approach (R? = 0.91)
was significantly higher than that of LOOS (R? = 0.71) and
CV approach (R? = 0.81).

IV. DISCUSSION

The main objective of our study was 1) to evaluate a new
approach to EE estimation using RMP, 2) to compare its
performances with the most frequently used sensors in the
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Fig. 11: Estimated EE by RMP as a function of reference EE
for different validation approaches.

literature such as HR monitor and accelerometer, and 3) to
study the effects of model choices. Our dataset included both
sedentary activities and PA from low to high intensities of
daily life. Better results of EE estimation are obtained with
the RMP system with a lower RMSE and a higher coefficient
of determination than those with the accelerometer and HR
monitor.

Indeed, few studies in literature have attempted to evaluate EE
based on respiratory variables [13], [16], [17]. Liu et al. [16]
used a portable multi-sensor device to measure acceleration
and Vg in 50 subjects performing 13 types of activities at
different intensities. Their results showed that combining these
two sensors allowed to estimate EE with a RMSE of 0.42
METs, an error 22.2% smaller than using a single accelerom-
eter placed at the hip. More recently, Lu et al. [17] used a
combination of HR, VE and acceleration derived from a single
wearable sensor. Their results showed better performances
when combining these three measurements (R? = 0.92) than
those using the HR alone (R? = 0.75) or combined with the
acceleration (R? = 0.86). Gastinger et al. [13] validated the
RMP system but only for postural and walking activities. In
addition, these authors used individual calibration, based on
a linear equation developed for each subject and for each
activity. In our study, the RMP system was evaluated for
a much higher number of activities with different intensity
levels, including walking, running and cycling. We also used
a novel algorithm by applying an artificial neural network
to cycle-based respiration features strongly related to EE .
Finally, we used an independent subject validation to avoid
the complex calibration process.

Our results showed that combining the RMP and HR monitor
improved the EE estimation for all PA studied: the estimated
EE were not significantly different from their reference val-
ues. The HR provided additional information about the PA
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intensity directly related to EE variations, but its contribution
was only observed for non-sedentary activities. This could
be explained by the indistinguishably low variations in both
thoraco-abdominal distances and HR values for sedentary
activities. Other studies concurred that HR was not a good
indicator of EE for sedentary to low-intensity PA [18]. Indeed,
these authors showed that HR did not provide any additional
information to their model for low-intensity activities, since
they are usually performed with normal HR. In order to
evaluate the effect of model choice on EE estimation, we com-
pared the estimation performances with two frequently used
machine learning algorithms, i.e., ANN and SVR. Our results
showed a comparable performances for both models. Kate et
al. [21] found similar results in comparing different machine
learning algorithms that the EE estimation performances are
not strongly affected by model choices.

In our study, we also analyzed the effects of the validation
methods. This has been done by comparing three different
validation approaches, namely the LOOS, the SS and the
CV approach. Our results showed a significant performance
increase with the SS (R? = 0.91) and CV (R?> = 0.81)
when compared to the LOOS (R? = 0.71). The development
and validation of the model using data from the same subject
can lead to adjustment of the machine learning models to the
individual characteristics. On the other hand, when models
are validated on an independent subject (as in the case of
LOOS), the unavailability of subject-specific data and the
inter-subject variations are the main factors affecting the
estimation performances. Indeed, two individuals performing
the same activity may yield significantly different EE values,
as physical conditions and metabolism vary from one person
to another [19], [20]. Nevertheless, LOOS has a particular
importance in the interoperability assessment of models among
a new population.

Our proposed method has several insufficiencies to be noted.
Firstly, the performances for sedentary activities could be
improvement by assigning a static EE value for these ac-
tivities using the compendium of PA, or by applying other
estimation approaches such as identifying the PA intensity
levels and developing a regression model for each level.
In either way, it suggests a recognition of the sedentary
activity type with a classification tool. Secondly, the dataset
included only 15 healthy and young subjects due to constraints
in the recruitment. The total volume, however, in terms of
samples is sufficient statistically (1430 samples). Thirdly, the
study was conducted under controlled laboratory conditions.
A larger dataset containing more subjects to cover a larger
population characteristics in the future is essential for the
model development in order to obtain more accurate results
for EE estimation. Finally, it would be of interest to also
evaluate the RMP system on patients with respiratory and
cardiovascular diseases and to test more complex deep learning
models.
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