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To explore coastal bridge safety subjected to extreme waves during coastal natural hazards, numerical simulations that combine finite element methods and experimental data have been recognized as effective in computing wave-induced loads on coastal bridges. However, the structural design and performance assessment for bridge networks require laborious efforts and massive computational resources to account for uncertain scenarios. To provide reliable wave force estimation tools and facilitate the associated risk assessment, this study performs a hydrodynamic experiment on the wave-bridge interactions and develops data-driven Long-Short-Term-Memory (LSTM) Machine Learning (ML) models for time series forecasting of wave forces. Specifically, a 1:30 scale bridge superstructure specimen is used for the wave test in the wave channel. Different solitary wave and regular wave conditions are tested. Time histories of wave profiles, wave-induced forces, and pressures are measured and served as a dataset basis for the training of LSTM models. High-performance LSTM prediction models are developed through the tuning of different hyperparameters. The well-trained models have high accuracy and could predict the wave force time series based on the excitation wave profiles in seconds. It is envisioned that LSTM models could provide more reliable estimations with the development based on more data sources, providing a fast path for structural design, analysis, and maintenance.

Introduction

As an essential component of transportation systems in nearshore cities, the safety of coastal bridges is often threatened by the hostile natural environment. Due to the increasing hazard intensity and sea level rise caused by global climate change, tropical cyclone and tsunamiinduced waves have resulted in severe damage to low-lying bridges in recent decades.

According to the post-hazard survey, Hurricane Ivan in 2004 was responsible for 58 bridge span damages being unseated from the piers and 66 spans being misaligned [START_REF] Meng | Uplift wave load on the superstructure of coastal bridges[END_REF]). In the next year, Hurricane Katrina caused severe damage to coastal bridges once again, including the US 90 highway bridge over Biloxi Bay, the US 90 highway bridge over Bay St.

Louis, and a box-girder railroad bridge [START_REF] Robertson | Case study of concrete bridge subjected to hurricane storm surge and wave action[END_REF]. The deck unseating failure, which refers to the unexpected bridge span fall under extreme wave impacts, has been recognized as one of the critical failure modes of coastal bridges [START_REF] Ataei | Probabilistic modeling of bridge deck unseating during hurricane events[END_REF][START_REF] Azadbakht | Effect of trapped air on wave forces on coastal bridge superstructures[END_REF][START_REF] Robertson | Lessons from Hurricane Katrina storm surge on bridges and buildings[END_REF]). This has motivated a number of studies to assess the magnitudes of wave loads and bridge damage mechanisms in past years.

To date, a series of physical tests have been carried out to study the huge wave forces acting on bridge spans [START_REF] Guo | Experimental study on the dynamic responses of a freestanding bridge tower subjected to coupled actions of wind and wave loads[END_REF][START_REF] Istrati | Role of trapped air on the tsunami-induced transient loads and response of coastal bridges[END_REF][START_REF] Qu | Numerical investigation of hydrodynamic load on bridge deck under joint action of solitary wave and current[END_REF][START_REF] Seiffert | Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I: Flat plate[END_REF][START_REF] Seiffert | Wave loads on a coastal bridge deck and the role of entrapped air[END_REF][START_REF] Zhang | Experimental and numerical investigation of wave-current forces on coastal bridge superstructures with box girders[END_REF], but an accurate estimation method has not been promoted. Motivated by the extensive coastal bridge damages during Hurricane Ivan in 2004and Hurricane Katrina in 2005, Douglass et al. (2006) conducted a large-scale test to investigate periodic wave-induced forces on a bridge span and proposed some basic empirical formulas to estimate the maximum vertical and horizontal wave forces. [START_REF] Bradner | Experimental setup for a largescale bridge superstructure model subjected to waves[END_REF] measured the wave loads on a 1:5 scale reinforced concrete model of the I-10 type bridge span and investigated the effects of different wave parameters. [START_REF] Cuomo | Wave-in-deck loads on coastal bridges and the role of air[END_REF] reported their experimental studies on a 1:10 scale bridge model and pointed out the adverse effects due to the trapped air beneath the deck. Although the first guideline for estimating wave forces acting on the coastal bridges was then published based on the physics-based method (AASHTO 2008), several key factors are still not clear due to the lack of data support. For instance, [START_REF] Guo | Experimental study on the dynamic responses of a freestanding bridge tower subjected to coupled actions of wind and wave loads[END_REF] compared their experimental measured loads with the wave forces estimated using empirical formulas. They found that the AASHTO method tends to underestimate the vertical force at a smaller wave height but significantly overpredict the vertical force when the specimen is fully submerged. A similar phenomenon was observed in the simulations of focused wave groups conducted by [START_REF] Moideen | Numerical investigation of extreme wave impact on coastal bridge deck using focused waves[END_REF], that the AASHTO formulae highly underestimate the peak vertical impact force for lower wave heights and moderately capture the peak vertical impact force at higher wave heights. Besides, the applicability of AASHTO formulas is also limited to their focused wave conditions, while accurate predictions are not available for other scenarios. To overcome these shortages, a few more experimental studies were then carried out in recent years [START_REF] Xiang | Assessment of extreme wave impact on coastal decks with different geometries via the arbitrary lagrangian-eulerian method[END_REF][START_REF] Zhu | Experimental and numerical investigation on wave impacts on box-girder bridges[END_REF][START_REF] Zhu | Experimental and 3D numerical investigation of solitary wave forces on coastal bridges[END_REF]). Nevertheless, an accurate wave force estimation method has not been reached, and more relevant studies are required to develop existing formulas. To fulfill the research gap on this point, this study carries out an experimental study to investigate wave-bridge interactions. Two different wave shapes, regular waves and solitary waves are tested to explore the extreme waves caused by tropical cyclones and tsunamis, respectively.

Another significant problem associated with the study of wave-bridge interactions lies in the shortage of time series analysis. Although several experimental tests and numerical simulations have been conducted to measure the wave loads, most of them mainly focused on the maximums of vertical and horizontal forces but neglected the changing process of pressure distributions [START_REF] Jin | Computation of wave loads on the superstructures of coastal highway bridges[END_REF][START_REF] Seiffert | Tsunami and Storm Wave Impacts on Coastal Bridges[END_REF][START_REF] Seiffert | Effect of Entrapped Air on Solitary Wave Forces on a Coastal Bridge Deck with Girders[END_REF]. One direct consequence is that the subsequent performance assessments mostly rely on static structural analysis, which typically compared the maximum load with the static bridge capacity. Such a method cannot fully predict the potential risks induced by periodic wave impacts during a real storm hazard and may mislead the maintenance and management strategies for high-risk bridges (Zhu et al. 2021). Dynamic analysis of wave-bridge interactions has aroused growing concern in recent years. For example, [START_REF] Xu | Time domain simulations of wind-and wave-induced load effects on a three-span suspension bridge with two floating pylons[END_REF] performed time-domain simulations to compute the combined effects of wind and waves on a three-span suspension bridge and found it challenging to determine appropriate intensity measures to be considered in the structural design. Yuan et al. (2021) investigated the performance of bearing connections under dynamic wave impacts and found that the structural responses are highly dependent on the connection stiffness. [START_REF] Ding | Underwater shaking table tests on bridge pier under combined earthquake and wave-current action[END_REF] investigated the combined earthquake and wave-current effects on bridge piers and highlighted the enlarged responses caused by the long-period hazards. All of these studies pointed out the necessity of an insight understanding of the time history effects of wave impacts.

To address this issue, time histories of vertical and horizontal wave forces, as well as the hydraulics pressures beneath the deck under various wave scenarios are measured. These results not only intuitively reflect the effects of different wave parameters, but also provide datasets for the training of prediction models in the following sections.

Experiments are reliable approaches for acquiring wave forces on coastal bridges but could be extremely expensive and difficult for large-scale investigations [START_REF] Xu | Predicting wave forces on coastal bridges using genetic algorithm enhanced ensemble learning framework[END_REF].

Scientists and engineers tried to establish full-scale numerical models to compute approximations for various hazard scenarios, while it is often prohibitive to form a sufficiently large database for its unbearable computational cost, especially for the reliability and life-cycle analysis involving large-scale computations [START_REF] Chorzepa | Hurricane vulnerability of coastal bridges using multiple environmental parameters[END_REF][START_REF] Dong | Probabilistic Time-Dependent Multihazard Life-Cycle Assessment and Resilience of Bridges Considering Climate Change[END_REF][START_REF] Jia | 3D Numerical Modeling and Quantification of Oblique Wave Forces on Coastal Bridge Superstructures[END_REF][START_REF] Xiao | Numerical modeling of wave runup and forces on an idealized beachfront house[END_REF]. To overcome this limitation, machine learning (ML) methods have been utilized to establish the relationship between input hazard intensities and output structural responses. For example, [START_REF] Xu | Predicting wave forces on coastal bridges using genetic algorithm enhanced ensemble learning framework[END_REF] examined the prediction performance of different ML technologies. It was found that ML models have superior abilities to estimate the maximum wave forces, but more datasets are required to improve the model quality.

Besides, to facilitate the risk assessment and proposition of mitigation measures, Zhu et al. (2021) utilized ML models to replace the time-consuming simulations and achieved satisfying results. However, a similar problem is that existing ML technologies typically focus on the peak values, but investigations on the time series effects are limited. Xu et al. (2023) performed a state-of-the-art review on ML technologies in coastal bridge hydrodynamics and observed that the time series predictions involving sequential data are relatively less. Also, numerical simulation is still the main source of training data. To address this issue, this study develops a Long Short-Term Memory (LSTM) network based on the wave force time histories measured in the experiment. Different hyperparameters are tuned and validated to improve the model's accuracy. The optimization model demonstrates good performance in forecasting wave forces under different wave scenarios.

Overall, this study aims to investigate the wave impacts on coastal bridge superstructures and develop data-driven ML techniques for the prediction of time series results. Time histories of wave forces and pressures are investigated through laboratory experiments. LSTM models are established to forecast wave impacts based on the measured wave profiles. The proposed data-driven LSTMs can be an alternative to relieve the laboriousness and high cost of experimental and numerical simulations on the wave-bridge interactions. The rest parts of this paper are organized as follows. Section 2 introduces the laboratory testing of wave-bridge interactions, including experimental design, laboratory facilities, and wave models. Section 3 gives an overview of the LSTM method utilized in this study. Section 4 presents the measured wave forces and pressures under different wave conditions. Section 5 shows the fitting results using the LSTM method and discusses the prediction performance of the promoted method.

Finally, conclusions, limitations, and future works are given in Section 6.

Laboratory testing of wave-bridge interactions

Laboratory tests are conducted in conjunction with activities at the Hydraulics Laboratory of the Hong Kong Polytechnic University. A bridge deck mock-up is tested at the wave channel to evaluate the structural performance during wave impacts. Measured datasets are mainly used for two purposes: (a) quantifying adverse impacts induced by waves and comparisons with existing methods and (b) providing a database for the machine learning models.

Investigated bridge and extreme wave model

The investigated bridge is one span of a simply supported bridge as shown in Fig. 1(a). This type of US-90 bridge played an important role in transportation networks over Biloxi Bay, Mississippi, but was severely destroyed in a category-5 storm Hurricane Katrina in 2005 [START_REF] Robertson | Lessons from Hurricane Katrina storm surge on bridges and buildings[END_REF]). These segments vary from 13.7 m to 15.9 m. Each segment consists of six prestressed concrete girders and three pairs of diaphragms are settled between each girder. However, the bearing connections between the deck and the bent are not strong enough to resist extreme wave impacts. The air could be trapped between the girders and increase the uplift loads, which means these segments were nearly buoyant once submerged (Robertson et al. 2006). Also, similar superstructure designs have been utilized in many other coastal highway bridges, so this type of bridge is adopted as a representative example in this study. As shown Two types of waves, regular waves and solitary waves are tested to account for the extreme waves induced by tropical cyclones and tsunamis, respectively. The storm-induced waves are highly periodic in nature, while tsunami waves are often caused by the displacement of a significant volume of water under the sea. A total of 98 regular wave cases and 30 solitary wave cases are tested, as listed in Table 1 andTable 2, respectively. Each case is repeatedly tested 5 times to avoid experimental monitoring deviations. The surface wave functions of these two types of waves are given as 
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Overview of LSTM methodology 186

For a considerable length of time, one of the primary difficulties that plagued conventional neural network architectures was the incapacity to interpret input sequences that were dependent on each other for relevant information [START_REF] Sherstinsky | Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network[END_REF][START_REF] Zhang | Application of deep learning algorithms in geotechnical engineering: a short critical review[END_REF].

Traditional neural networks receive an independent data vector on each occasion and lack the ability to store information in memory to assist with memory-dependent tasks. To address this limitation, a novel class of Recurrent Neural Networks (RNNs) was developed. This approach utilizes a straightforward feedback mechanism for neurons in the network, whereby the output is returned to the input to provide information about the most recent inputs. Another issue associated with RNNs is the vanishing gradient problem. The vanishing gradient problem is essentially a situation in which an RNN cannot propagate useful gradient information from the output end of the model back to the layers near the input end of the model. It may result in models with many layers being rendered unable to learn on a specific dataset. and could even cause models with many layers to prematurely converge to a substandard solution [START_REF] Hochreiter | The vanishing gradient problem during learning recurrent neural nets and problem solutions[END_REF]).

To counteract the aforementioned drawback of RNN, an LSTM network is built to predict wave force time series from the measured wave profiles. In accordance with the Universal Approximation Theorem posited by Robert Hecht-Nielsen (Hecht-Nielsen 1992), an LSTM neural network endowed with a hidden layer is capable of effectuating a mapping between finite-dimensional spaces. This holds true as long as the network boasts an adequate assemblage of hidden neurons, and the greater the number of said neurons, the more heightened veracity of the network's approximation. Within the confines of the present paper, an LSTM neural network equipped with hidden layers is appropriated as a prediction model for time series wave loads. The LSTM model is built on the RNN architecture by incorporating four states into a single recurrent structure. These states facilitate the persistence of a unit that determines the retention of input information. Each layer of the LSTM is comprised of one recurrent structure. The frequency of self-updates in the overall structure is dictated by the dimensions of the input data and the number of cycles, so the current LSTM layer only requires the computation of one recurrent unit, instead of multiple consecutive units.

The network structure of a typical LSTM cell is shown in Fig. 3, where X = input state to the cell; Y = output state of the cell; t = the number of the cell; h = hidden state output; c = cell state memory; σ = logistic sigmoid function; and tanh = hyperbolic tangent function. The LSTM cell works as follows: the input gate controls the amount of input data from the current network that is stored in the unit at the present time; the forget gate assesses the extent of the state transition from the previous time to the present time; and the output gate governs the output of the current unit state.

Two performance indicators, mean squared error (MSE) and the R 2 -score, are used to evaluate the prediction performance of the established LSTM models. MSE is the metric typically used as a loss function to be minimized during network training. The main limitation of the MSE is that the assumed numerical values are not normalized with respect to the variability of the data. To overcome this point, the R 2 -score can measure the predictive power of a given model with respect to the predictive power of the trivial model, which always forecasts the mean value of the observed data (i.e., R 2 = 0). The R 2 -score is widely used because it can be seen as a normalized version of the R 2 . These two indicators are calculated as
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where y = the measured data in the experiment; y' = the predicted value using LSTMs; and y = mean of the truth data. 

Wave-induced forces and comparisons with previous studies

The wave loads on the bridge span are dependent on both structural dimensions and wave parameters, so impacts caused by regular waves and solitary waves are investigated separately.

To obtain more insight into wave force characteristics, vertical and horizontal wave forces as well as the hydraulics pressure on the specimen are analyzed.

Solitary wave results

By collecting the measured results from the load cell and pressure gauges, Fig. 4 This phenomenon is consistent with its characteristics, that the solitary waves are non-periodic fluctuations with their volume and energy highly concentrated. T, the wave impacts show a trend of first increasing and then decreasing as the T grows. The peak values are always observed when T is around 1.2 -1.4 s, i.e., corresponding wavelength λ ranges from 2.03 -2.66 m, frequency ν ranges from 4.49 -6.28 Hz, and the non-dimensional parameter deck-wavelength ratio from 0.14 -0.24. This phenomenon indicates that, in the design stage of coastal bridges, the structural dimensions of the span can be adjusted to mitigate the wave impacts. 

ML results

To explore the relationships between wave-induced forces and excitation waves, and to provide a highly efficient tool for stochastic analysis in future studies, this section develops advanced LSTM models for predicting time series wave impacts. The training process, model performance, and tuning of different hyperparameters are presented in this section.

Development of LSTM models

Advanced deep learning models, which are based on a multi-layer architecture centered on LSTM cells, have been constructed for solitary wave and regular wave impacts, respectively.

A total of 294 datasets of the experimental measurements (98 cases, 3 repeated tests for each case) are utilized for the LSTM training of regular waves, and 90 datasets (30 cases, 3 repeated tests for each case) are used for solitary waves. The changing wave profiles collected from the wave gauges are used as the model input, and the wave force time series are used as the output.

During the model training, 70% of the raw data are used as the training set, 15% are used as the test set, and the rest 15% are used as the validations set. A potential benefit of this approach is that the LSTM prediction results can reduce the deviations caused by the repeated tests, since it comprehensively incorporates all the datasets.

To scale up the number of hidden layer neural networks, the accuracy of the operation must first be scrutinized, followed by an analysis of the time demands inherent in sample training and prediction. In an event that the number of neurons contained within the hidden layer is insufficient, the learning accuracy will be reduced and the number of required training iterations will rise commensurately. Conversely, if the number of neurons surpasses a certain threshold, the network's complexity shall escalate, thereby inflating the requisite training time and the number of mandatory weights. It follows that the ultimate output of the neural network hinges on the number of hidden neurons employed. Therefore, in this investigation, a total of 128 hidden neurons are selected after several trials.

Since each node residing within the fully connected layer is connected to all antecedent nodes, its role is to meld the salient characteristics previously distilled from the earlier layer, and then assimilate the hidden patterns intrinsic to the time series at hand. Considering both the computational efficiency and model accuracy, it is found that 64 nodes have been deemed adequate for deployment in the fully connected layer in this context.

Regarded as a critical hyperparameter in both supervised and deep learning, the learning rate governs the capacity of the objective function to converge upon a local minimum within a given timeframe. An optimal learning rate facilitates the objective function's resolution within a reasonable duration of time. In the context of this study, the optimal learning rate has been performance when the learning rate is set to 0.001, and the changes in the predictive efficacy with respect to the variation of dropout values are not significant. It is worth noting that both models demonstrate the same optimal hyperparameter configuration, where the learning rate is set to 0.001, and the dropout rate is set to 0.3. This observation highlights the importance of fine-tuning hyperparameters for machine learning models, as finding the optimal combination of hyperparameters can significantly improve the model's performance. Furthermore, the consistent hyperparameter configuration for the two models suggests that these settings could be a good starting point for developing similar models in the future, particularly for predicting loads induced by ocean waves. 1. Through experimental measurements of wave-induced pressure on the bridge span, it is observed that there is a concentrated uplift pressure on the seaward side (facing the waves) of the deck under all the solitary wave conditions and most regular wave conditions. The maximum value of the pressure P at the seaward side could be 20 -30% larger than the opposite side and could reach 2304.54 Pa. This phenomenon may induce a large overturning moment on the deck, affecting structural stability.

2. After comparing the measured wave forces under different wave conditions, it is found that under similar wave amplitudes and clearances, solitary waves and regular waves may cause close vertical forces on the deck, while the horizontal forces caused by regular waves are much larger. This means the different wave profiles may also affect the wave forces and should be accounted for in the prediction methods.

3. LSTM models with 128 hidden neurons, 64 nodes in each connected layer, and a learning rate of 0.001 are developed to have the optimal forecasting performance for wave-induced forces. Through the investigations on different hyperparameters, it is found that when the learning rate is low (from 0.001 to 0.003), the effect of dropout on the model's predictive accuracy is relatively small. 

  Fig. 1 (a) Span unseating failure of US-90 Biloxi-Ocean Springs Bridges during Hurricane Katrina (Padgett et al. 2008) and (b) dimensions of the investigated bridge span

  2)where η = water surface elevation; H = wave height; D = water depth; c = wave celerity; A = amplitude; k = wave number; x = coordinate; and t = time. Detailed introduction of experimental facilities, control strategies, and stability validations of the generated waves can be found in the authors' previous work[START_REF] Zhu | Experimental and numerical investigation on wave impacts on box-girder bridges[END_REF][START_REF] Zhu | Experimental and 3D numerical investigation of solitary wave forces on coastal bridges[END_REF].

Fig. 2

 2 Fig. 2 (a) Schematic diagram of the hydraulics laboratory and photos of experimental facilities; (b) dimensions of the span model (top view) and distributions of the pressure gauges; and (c) photo of the acrylic board span model

Fig. 3

 3 Fig. 3 Network structure of a typical LSTM cell

  shows three typical time series results of vertical forces and pressures applied on the specimen under solitary wave cases with D = 0.48 m and H = 0.18 m, D = 0.52 m and H = 0.18 m, and D = 0.56 m and H = 0.18 m. Because of the symmetric distributions of the pressure gauges, only the measured data from gauges 1-5 are presented. As shown in Fig.4, both the wave forces and pressures increase to a maximum value and then drop to a valley as the propagation of solitary waves. For a constant wave height H = 0.18 m, the maximum values of vertical forces Fy increase from 74.15 to 113.64 N as water depth increases. However, there are little changes in the maximums of horizontal forces Fx, which are around 47.90 N, 40.17 N, and 43.80 N respectively. For the wave pressures, pressures measured at the seaward side facing the waves, i.e., wave gauge 1, are around 20-30% larger than those measured at the opposite side. This means that not only the concrete components in these areas are subject to greater impacts, but also the connections may suffer from higher loads. In addition, the pressures decrease to a negative value after the wave crest passes the span, and the downward forces are caused by the vacuum area created beneath the span when the water surface drops rapidly. The minimum negative pressures reduce for larger water depths and are around -266.74 Pa, -334.49 Pa, and -342.26 Pa, respectively. Most of the previous studies only focuses on the maximum vertical and horizontal forces induced by extreme waves, but recent ones have pointed out the concentrated wave pressure and the subsequent overturning moment could also be critical reasons for span failure[START_REF] Cai | Numerical Investigation of Connection Forces of a Coastal Bridge Deck Impacted by Solitary Waves[END_REF][START_REF] Istrati | Role of trapped air on the tsunami-induced transient loads and response of coastal bridges[END_REF] Zhu et al. 2021). Therefore, both the maximum wave forces and pressures are analyzed in the following sections.By tracing the time histories of the monitored data, the maximum values of vertical force, horizontal force, and pressure are collected and presented in Fig.5. The final results are taken by removing the maximum and minimum values from all five trials for each wave case, and then averaging the rest results. The projections of the maximums on the xz-plane are plotted as well. It should be noted that all of the pressure results are taken from pressure gauge 1 since it records the highest pressure for all the cases. From the test results, the following can be observed: (a) The maximums of Fy, and P show a close-linear relationship with both wave height H and water depth D. However, Fx only increases for larger H, but changes little with D.(b) The maximum pressure for the tested cases is 1362.58 Pa, which equals 40.88 kPa after being converted to a prototype scale. The concentrated pressure at the seaward side is around 20-30% over the average value. (c) Solitary wave-induced impacts are mainly affected by the wave height H and the water depth (or clearance between the water level and the bridge span).

Fig. 4

 4 Fig. 4 Time histories of (a) wave force for case D = 0.48 m and H = 0.18 m; (b) surface pressure for case D = 0.48 m and H = 0.18 m; (c) wave force for case D = 0.52 m and H = 0.18 m; (d) surface pressure for case D = 0.52 m and H = 0.18 m; (e) wave force for case D = 0.56 m and H = 0.18 m; and (f) surface pressure for case D = 0.56 m and H = 0.18 m

Fig. 6

 6 Fig. 6 Time histories of (a) wave force for case D = 0.52 m, H = 0.14 m, and T = 1.2 s; (b) surface pressure for case D = 0.52 m, H = 0.14 m, and T = 1.2 s; (c) wave force for case D = 0.52 m, H = 0.14 m, and T = 1.6 s; (d) surface pressure for case D = 0.52 m, H = 0.14 m, and T = 1.6 s; (e) wave force for case D = 0.52 m, H = 0.14 m, and T = 2.0 s; and (f) surface pressure for case D = 0.52 m, H = 0.14 m, and T = 2.0 s

  Fig. 11 Loss curves of trained LSTM models in different datasets (a) solitary waves; (b) regular waves

  Fig. 14 Hyperparameter tuning results for LSTM prediction model of regular waves: (a), (b) MSE and R 2 with respect to different learning rates for the same dropout values; and (c), (d) MSE and R 2 with respect to different dropout values for the same learning rate

4.

  The experimental-data-based LSTM prediction models have the advantages of less deviation and higher efficiency. LSTM models for both wave types have satisfying R 2 -source values close to 0.98, and small MSEs at a 10 -1 level. The well-trained model could predict the wave force time series based on the excitation wave profiles in seconds.

  

  

  

  

  

  

Table 1

 1 

	Tested regular wave cases

D (m) H (m) No. D (m) H (m) No. D (m) H (m) No. D (m) H (
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= 0.5 m and H = 0.16 m; (c) Fy of regular wave case with D = 0.5 m, H = 0.14 m, and T = 1s; and (d) Fy of regular wave case with D = 0.5 m, H = 0.16 m, and T = 1s

Hyperparameter tuning

To have a deeper understanding of the developed models, the impacts of hyperparameter configurations on the performance of an LSTM model are explored in this section. Specifically, the effect of learning rate and dropout settings on the model prediction results are discussed.

The importance of hyperparameter tuning in optimizing machine learning models is wellrecognized. Therefore, comprehending the effect of individual hyperparameters on the model's performance is crucial for customizing the model for a given task. Precisely, determining an appropriate learning rate and dropout rate can significantly enhance the model's predictive capacity. The tested learning rates range from 10 -4 to 10 -2 , while the dropout values span from 0.2 to 0.7. To assess the influence of hyperparameters on the model prediction results, two performance indicators, mean squared error (MSE) and coefficient of determination (R 2 ), which were introduced in Section 2, are utilized. These metrics offer a reliable approach for evaluating the model's predictive capability relative to the actual observations. For the solitary wave load LSTM prediction model, Figs. 13 (a) and (b) show the model's predictive performance variation with respect to different learning rates for the same dropout values. Our analysis reveals a quadratic relationship between the model's predictive ability and the learning rate, leading to a single-peak curve in the model performance graph. The optimal learning rate is approximately 0.001. These findings highlight the importance of choosing an appropriate learning rate to optimize the model's prediction capability. On the other hand, Figs. 13 (c) and (d) illustrate the change in predictive performance with different dropout values for the same learning rate. Interestingly, no clear trend is observed in the model performance curve, indicating that the impact of dropout on the model's performance is relatively minor. However, it is worth noting that a dropout value of 0.5 typically results in the worst predictive performance, and its use should be avoided in practical applications. Moreover, these analyses reveal that when the learning rate is low (approximately 0.001 to 0.003), the effect of dropout on the model's predictive accuracy is minimal. This finding is significant as it suggests that in