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We investigate whether a neural network approach can reproduce and predict the electron-nucleus cross
sections in the kinematical domain of present and future accelerator-based neutrino oscillation experiments. For
this purpose, we consider the large amount of data available to the community via the University of Virginia’s
Quasielastic Electron Nucleus Scattering Archive and use a residual, fully connected feedforward neural net-
work. We illustrate the training performances of the neural network by comparing its results with experimental
data for the electron double-differential cross section on carbon. The agreement between predictions and data is
remarkable from quasielastic to deep-inelastic scattering. To test the predicting power of the neural network we
consider the numerous kinematical conditions for which experimental cross sections on calcium are available.
Furthermore, we show the predictions of the electron-scattering cross sections on oxygen, argon, and titanium:
Nuclei of particular interest in the context of present and future accelerator-based neutrino oscillation programs.
The agreement between these predictions and the data is comparable to the one of other theoretical models
commonly used to calculate electron and neutrino cross sections, such as SuSAv2 and GiBUU. Results obtained
with GENIE, a Monte Carlo event generator, are also discussed for comparison. The good performances obtained
with our neural network suggest that neural networks could be exploited for theoretical and experimental
investigations of electron- and neutrino-nucleus scattering.

DOI: 10.1103/PhysRevC.107.065501

I. INTRODUCTION

For over 100 years, electron-scattering experiments have
represented one of the most powerful and fruitful approaches
for investigating the structure of physical systems. The
Franck-Hertz experiment [1], which showed that the energy
absorption by atoms is quantized by studying the flux of elec-
trons through a vapor of mercury atoms, can be considered as
the progenitor of an important tradition of electron-scattering
experiments allowing us to move the frontiers of our knowl-
edge of the structure of matter: From atoms, to nuclei [2], to

quarks, precisely discovered thanks to experiments [3,4] of
this kind.

The possibility of using other lepton beams also appeared
in parallel with the development of increasingly energetic
and intense electron beams. In particular, starting from Pon-
tecorvo’s [5] idea and Schwartz’s [6] project, experiments
with neutrino beams have been performed, the first having led
to the discovery of the muon neutrino [7].

Nowadays accelerator-based neutrino experiments, such as
T2K [8] and NOvA [9], are performed for a precise determi-
nation of neutrino oscillation parameters. The next generation
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experiments DUNE [10] and Hyper-Kamiokande [11] will
play a central role in the neutrino oscillation program.

To ensure the success of these experiments, a reduction
in systematic errors to the level of a few percent is needed.
Today, one of the greatest sources of systematic error is the
neutrino-nucleus cross sections. In these experiments nuclear
targets (such as C, O, and Ar) are involved, and in the energy
region of hundreds of MeV to a few GeV these cross sec-
tions are known to a precision not exceeding 20% [12,13].
Knowledge of these cross sections is crucial to determine
the neutrino energy that enters the expression of the neu-
trino oscillation probability. Since neutrino beams are not
monochromatic, in contrast with electron beams, the initial
neutrino energy is reconstructed from the final states of the
neutrino-nucleus reaction.

The current program of electron-scattering experiments
continues in connection with nuclear, hadronic, and particle
physics and represents a powerful tool in connection with
neutrino physics. Indeed, electrons and neutrinos both be-
ing leptons, their interaction with atomic nuclei is similar:
It happens via vector current in the case of electrons and
via vector and vector-axial currents in the case of neutrinos.
Hence the vector part of the cross section and the final state
interaction of the scattered particles are identical for electron
and neutrino scattering. Although the axial part of the neutrino
cross section complicates the comparisons, electron-scattering
experiments, which have the great advantage of employing
monoenergetic electron beams, are useful in the investigation
of neutrino-nucleus scattering from several points of view.
First of all, the large amount of cross section data already ob-
tained by many different electron-scattering experiments can
be used to validate microscopic theoretical models employed
to predict neutrino-nucleus cross sections; a nonexhaustive list
of such studies includes the works of Refs. [14–17]. These
world data have been recently considered in Refs. [18–20] to
benchmark the neutrino Monte Carlo event generators, such
as GENIE [21], commonly used in the neutrino community,
as well as to check the neutrino energy reconstruction via
calorimetric and quasielastic kinematics-based methods [22].
The available data also include the recently published electron
cross sections on argon and titanium [23–26]. These cross sec-
tions were measured in the experiment proposed in Ref. [27]
to determine the spectral function of 40Ar, the nucleus em-
ployed in DUNE, and in the detectors of the Fermi National
Accelerator Laboratory short-baseline neutrino program [28].

The aim of this paper is to investigate the use of neu-
ral networks to reproduce and predict the electron-nucleus
cross sections in the kinematical domain of present and future
accelerator-based neutrino oscillation experiments.

In the last decade, applications using neural networks have
become ubiquitous and are found in many tasks beyond funda-
mental research. In the high energy physics community, deep
learning provides a faster alternative to both standard data
analysis techniques and Monte Carlo approaches to simulate
the detector outputs [29–33]. Deep learning for event recon-
struction in accelerator-based neutrino experiments is used for
example in Refs. [34–40]. Recent studies [41,42] applied gen-
erative adversarial networks to construct an AI-based Monte
Carlo event generator for deep-inelastic electron-proton

TABLE I. Percent contribution of the different nuclear targets
electron-scattering data [50] considered in our paper.

4He 6Li 9Be 12C 16O 24Mg 27Al 40Ar 40Ca 48Ca 48Ti 56Fe 59Ni

21.5 1.3 3.1 24.0 1.0 0.3 6.3 1.4 10.5 9.6 1.4 19.3 0.3

scattering, free of theoretical assumptions about the un-
derlying particle dynamics. In the context of electron and
neutrino scattering, theoretical studies have used neural net-
works to obtain information on the two main ingredients of the
lepton-nucleus cross sections: nuclear responses and nucleon
form factors. More precisely, in Ref. [43] a physics-informed
artificial neural network is employed to reconstruct the elec-
tromagnetic response functions. In Ref. [44] a Bayesian
approach for feed-forward neural networks has been applied
to extract from the neutrino-deuteron scattering data the nu-
cleon axial form factor, a quantity which has been widely
debated in the last ten years, following the MiniBooNE mea-
surement of the quasielastic-like neutrino cross section on
carbon [45]. The possibility of using machine learning algo-
rithms in reconstructing neutrino energy has been explored in
Ref. [46]. For a recent review on the current trends and per-
spectives of artificial intelligence in nuclear physics we refer
to Ref. [47].

II. DATA

A large amount of data is needed to predict electron-
nucleus cross sections via a neural network approach.
These data, accumulated by many different electron-scattering
experiments which began in the mid-1970s, have been as-
sembled by the authors of Refs. [48,49] and made available
in the University of Virginia’s Quasielastic Electron Nucleus
Scattering Archive [50].

This archive contains about 600 different combinations of
targets, energies, and angles consisting of some 20 000 data
points. These data cover the energy region of interest for
present and future long-baseline neutrino oscillation experi-
ments, from giant resonance excitations up to deep-inelastic
scattering, with a predominant contribution of quasielastic and
� resonance excitations.

The nuclei included in the archive [50] vary from hydrogen
to uranium. Driven by the idea of having a relatively homo-
geneous dataset, containing the nuclei employed in neutrino
detectors, we decided to discard the very light nuclei and the
heavy nuclei characterized by a large neutron-proton asym-
metry. The final subset of nuclei considered varies between
4He and 59Ni. They are specified in Table I together with their
relative contribution to our dataset.

In Fig. 1 we plot some examples of inclusive double-
differential cross sections d2σ/dωd� for different values of
incoming electron energy E and electron-scattering angle θ1

1We recall that the relation between the differential solid angle d�

in the direction specified by the scattered electron momentum and
the electron-scattering angle θ is d� = 2πd cos θ .
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FIG. 1. Inclusive (e, e′) 12C double-differential cross section data as a function of the transferred energy in four different kinematical
conditions written above each panel. The vertical lines correspond to the kinematics of quasielastic and � excitations given by Eqs. (2) and
(4), respectively.

as a function of the energy transferred to the nucleus ω (also
called energy loss, ω = E − E ′ being the difference between
the incoming and outgoing electron energy E ′). For this il-
lustration we have selected 12C, a nucleus for which much
data exist. Two characteristics that would complicate the neu-
ral network prediction task can already be seen from these
few examples which refer to different kinematical conditions.
First, the cross section may span many orders of magnitude:
Five orders in the four panels of Fig. 1, which refer to the
same nucleus, and 12 orders of magnitude (from 4×10−6

to 106) when considering the whole dataset. Secondly, the
shapes of the cross section can vary greatly, reflecting the
different reaction mechanisms that can be induced by different
kinematics. Starting from the top left panel of Fig. 1, the
first recognizable excitations are the nuclear giant resonances
which correspond to the sharp peaks in the cross sections for
ω < 20 MeV. Moreover, the quasielastic bump appears in the
first three panels. It corresponds to one nucleon knockout and
is peaked around

ωQE = Q2

2MN
= q2 − ω2

2MN
=

√
q2 + M2

N − MN , (1)

where MN is the nucleon mass and q the momentum transfer
to the nucleus, given by the difference between the incoming
and scattered electron momentum, q = k − k′. In terms of the
electron kinematics variable, when electron mass is neglected,
Eq. (1) can be written as

ωQE = E2(1 − cos θ )

MN + E (1 − cos θ )
. (2)

A vertical line corresponding to this value is plotted in each
panel of Fig. 1. The shift of the position of the real quasielastic
peak with respect to the value of Eqs. (1) and (2) is due to the
absence of nucleon binding and nuclear collective effects in
these formulas. The broadening of the quasielastic bump is
due to nucleon Fermi motion. The second bump at a higher
ω corresponds to the � resonance excitation. In the case of
scattering with a free nucleon at rest, it would peak at

ω� =
√

q2 + M2
� − MN = Q2

2MN
+ �M, (3)
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with �M = (M2
� − M2

N )/2MN = 338 MeV. Equivalently,
Eq. (3) can be written as

ω� = MN�M + E2(1 − cos θ )

MN + E (1 − cos θ )
, (4)

also shown in Fig. 1. Beyond the � excitations, higher energy
nucleon resonances contribute to the cross section up to the
onset of the deep inelastic scattering. On the other hand, in
the ω region between the quasielastic and � peaks, the so-
called dip region, a large part of the cross section is due to
multinucleon excitations, arising from nucleon-nucleon cor-
relations and meson exchange processes. These complicated
many-body mechanisms have attracted a lot of attention in
the neutrino community in recent years, starting from the
suggestion [51] of their inclusion as a natural explanation of
the MiniBooNE cross sections [45]. These mechanisms play
a crucial role in the neutrino energy reconstruction problem
[52–56].

In this paper, we remove the small number of data points
corresponding to the low energy giant resonances. Their
presence worsens the neural network predictions for essen-
tially two reasons: They are characterized by the largest (and
spiked) cross sections, and they represent a small proportion
of the whole dataset, which focuses on quasielastic excitations
and beyond. We postpone the inclusion of these excitations to
future work.

Several microscopic quantum-mechanical and phe-
nomenological approaches exist to describe the different
reaction mechanisms that contribute to the inclusive
electron-nucleus cross section. While some approaches
allow a description of all the nuclear excitations mentioned
earlier, others focus on specific excitations only. For a
review of these models we refer the reader to Refs. [49,57],
where different approaches are discussed in connection with
both electron and neutrino scattering. In the following we
analyze to what extent neural networks can reproduce the
electron-nucleus cross sections.

III. NEURAL NETWORKS

In regression tasks, machine learning models are designed
to learn mappings between an input domain and a prede-
fined set of outputs for the target variables. The dataset
considered in this paper is composed of different features:
The atomic number Z , the nucleus mass number A, the
electron beam energy E , the electron-scattering angle θ , the
energy loss ω, and the inclusive double-differential cross sec-
tion d2σ/dωd�. This last quantity is the value to be predicted
by the supervised learning algorithm we present. Beyond the
five data features (Z , A, E , θ , and ω), we add four additional
complementary variables, obtained as combinations of the five
original ones. These added variables are cos θ , ωQE defined in
Eq. (2), ω� defined in Eq. (4), and Q2 = q2 − ω2, here defined
as

Q2 = 2E (E − ω)(1 − cos θ ), (5)

a relation that is only valid when the electron mass is set to
zero.

The addition of handcrafted features, such as the four-
momentum transfer in the reaction and the approximate
position of the quasielastic and � peaks [despite a possible
offset between real and approximated values due to the lack
of removal energy parameters in Eqs. (2) and (4)], is found to
be useful to drive the network.

A larger neural network is expected to perform equally well
without adding handcrafted features but our choice to include
these additional variables makes the optimization process eas-
ier and allows us to use a smaller network, that is faster to train
and less prone to overfitting. However, exactly quantifying
how these four variables actually improve the prediction is
not possible since there is no guarantee that the fine tuning
is equally well performed when we add the four additional
variables and when we do not add them.

The model is built upon deep neural networks (DNNs)
[58]. DNNs are designed to learn hierarchical and increasingly
abstract representations of the data. A DNN is a composition
of L parametric functions named layers. The output of each
layer, fl , l ∈ {0, . . . , L − 1}, is understood as a representation
of the input samples. More specifically, the layer is composed
of neurons, which are the building blocks of a layer. Hence,
the layer fl takes the output of the previous layer fl−1 and ap-
plies a nonlinear transformation to compute its output. These
transformations use the model parameters, Wl for each layer,
commonly called weights and conveniently represented by a
rectangular matrix. They relate the neurons of a layer to the
previous layer and contain the information extracted by the
model from the training data. Thus, given an input x, a neural
network f performs the following computation to infer its
output:

f (W, x) = fL−1(WL−1, fL−2(WL−2, . . . , f0(W0, x)) . . .). (6)

In Eq. (6), the state of layer l can be denoted xl and is called
a representation. In a standard feedforward network, xl−1 is
employed to compute xl as follows:

xl = fl−1(Wl−1, xl−1) = g(Wl−1xl−1 + bl−1), (7)

where Wl−1xl−1 is a matrix product, xl−1 can be seen as a
column vector of nl−1 components, Wl−1 is then a matrix of
nl−1 columns and nl lines, and bl−1 is a column vector of
nl lines. g is an elementwise nonlinear function. We used
the standard rectified linear unit (ReLU) function defined as
ReLU(z) = max{0, z}. Other choices might work equally well
or even better, and we make no claim of optimality in this
paper. The result of Eq. (7) is the input of the next layer of the
neural network, layer l .

During the initial exploratory phase of this paper we used
fully connected neural networks as described by Eq. (7).
We found that the richness of the data was such that deep
neural networks with less than 35 layers were unable to
fit the training set. We therefore used deeper networks that
then became difficult to train for the reasons explained
in Ref. [59]. The solution proposed by the authors of
Ref. [59] is to use what they named a residual network.
The architecture of our neural network is a fully connected
residual network [59] which means that we perform an ad-
dition that shortcuts the architecture to help the optimization
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FIG. 2. Illustration of the chosen neural network, composed of ten fully connected residual blocks. Details of one of these residual blocks
are shown on the right of the figure. The activation function used is a rectified linear unit.

procedure converge. The skipped connection is performed as
follows:

xl = fl−1(Wl−1, xl−1, xl−5) = g[Wl−1g(xl−1 + xl−5) + bl−1].

(8)

The skipped connections or residual blocks are used in
deep learning to help training deep neural networks [58,59].
Our neural network, implemented with TENSORFLOW [60],
is composed of ten residual blocks of five fully connected
layers with increasing and then decreasing sizes ranging from
input size (nine input data) up to size 50 and then down to
size 5 before connecting to the output of size 1. Our neural
network architecture is represented in Fig. 2, and the resulting
model has 50 connected layers. To help information flow

in the backpropagation stage we have chosen a layer width
that varies progressively. Abrupt changes in widths made the
optimization process harder and local minima were difficult to
escape from. The constraint we have is that we start with nine
inputs and have an output of dimension 1.

An essential element of neural networks training is the
choice of the cost function. For the neural network to be
able to accurately predict the cross section structure over its
wide range and different shapes, we chose to use the relative
absolute error given by

C(ŷ) = 1

n

n∑
i=1

|yi − ŷi|
yi

. (9)
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In Eq. (9), ŷi is a model prediction and y is the cross section di-
vided by A, y = (d2σ/dωd�)/A obtained from the dataset. In
our case,

ŷi = f (W, xi ), (10)

where the input data vector is the nine-dimensional vector of
normalized components: xi = (Z, A, E , θ, ω, cos θ, ωQE , ω�,

Q2) and (xi, yi ) is an input-output pair. Another choice for
the loss function could be the χ2 that would allow to take
into account the experimental errors. For this first exploratory
study, driven by a major simplicity and rapidity of calculations
and by the fact that in the present dataset the experimental
errors are in general small, we prefer to choose the relative
absolute error as cost function. We leave the use of χ2 to
future works.

During the training phase, the model is presented with a
large number of input-output pairs. The weights, W , are ini-
tialized randomly with a normal distribution [58] and an initial
prediction of the output is computed using Eq. (6). During
the forward pass, the models prediction error is estimated by
computing the value of a cost function that quantifies the dis-
crepancy between the current prediction ŷ given by Eq. (9) and
the true target y. This cost function is computed over a batch
of data and differentiated with respect to the model weights,
W , in the backward pass. Model weights are then updated
with the computed differential to improve the predictions of
the neural network. The general idea is to update W in the
following way:

W = W − ε
∂C

∂W
. (11)

The variable ε is called the learning rate and the value we
chose was standard, ε = 0.001. In practice, we use the ADAM

optimizer [61] which provides an empirical improvement over
Eq. (11) with a slowly decreasing learning rate, reminiscent
of annealing, to help the optimization process. The values of
the neural network weights that minimize the cost function
are obtained during the training phase by iteratively taking
forward and backward passes on the training dataset. Once
a predetermined number of epochs (a forward and a back-
ward pass) is computed, the training phase is finished and
the model is deployed on new samples, unseen during the
training, to make predictions. Training takes about 30 min for
5000 epochs on a 12GB NVIDIA Tesla K80 GPU. We include
standard L2 regularization in order to reduce the variance of
the model and hopefully improve generalization: The pre-
dictions on data not used during the training phase. Weights
are stored during training and for inference we roll back to
the epoch that yielded the lowest validation error during the
whole training. In the inference phase, the output of the model
is computed for the test dataset. One hopes that the model will
generalize well on the test data and infer target values close to
the actual values thanks to the patterns it has learned from its
training data.

IV. RESULTS

The training set is composed of the available samples
excluding one or more chosen isotopes (Z ′, A′), or exam-
ples corresponding to some particular kinematical conditions.

FIG. 3. Evolution of the cost function during the 4000 epochs
training process for a successful training run. This illustrates a slight
overfitting, controlled by L2 regularization.

These excluded data will be examined in the testing stage.
In other words, we used the trained neural network to make
predictions for the isotopes (Z ′, A′) or for some specific kine-
matical conditions. This allows us to assess the ability of the
trained neural network to infer the desired target for cases
unseen during the training stage.

A. Training results
To further illustrate our procedure let us consider some spe-

cific cases. The whole dataset, representing our starting point,
is the subset of the electron-scattering data [50] corresponding
to nuclei from 4He to 59Ni. Their relative contribution is
illustrated in Table I. As a first experiment, we remove from
the entire dataset only the isotope (Z = 20, A = 40), i.e., the
40Ca, our test nucleus, for which we intend to predict the cross
section. The rest of the dataset is randomly split: 90% for the
training set and the remaining 10% for the validation set that
allows us to monitor overfitting.

Stochastic gradient descent on minibatches is used for pa-
rameters optimization [58]. The minibatches of 512 instances
of the training set are constituted randomly. This promotes
regularization and speeds up the training. As a standard prac-
tice, at the end of the training process over 4000 epochs, we
plot the evolution of the cost function, displayed in Fig. 3,
to check that the training has converged as expected and to
monitor overfitting. In order to reduce the variance of the
model and to control overfitting we used L2 regularization on
the first and largest layers. It is standard practice to regularize
large layers, that are more prone to overfitting, more than
small layers. To limit overfitting we use for our prediction the
parameters that gave the best validation value.

In order to illustrate the overall performance of the neural
network on the training set, we consider its predictions for
12C, a nucleus currently employed in the T2K and NOvA
neutrino detectors. For this nucleus, many electron-scattering
cross section data are available, for different kinematical con-
ditions, inducing different nuclear excitations, from nuclear
giant resonances up to deep inelastic scattering, as discussed
in Sec. II.
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The neural network double-differential cross section
results for 12C are illustrated in Figs. 4 and 5 for a se-
lected set of the values of incoming electron energy E and
electron-scattering angle θ present in the database. The overall
agreement with data is remarkable for all the incoming ener-
gies and electron-scattering angles.2

These good results suggest that neural networks can
be considered as a tool for representing data that have
this kind of behavior (changing shape depending on the
type of induced excitation). In this context, we recall
that for 12C the values of d2σ/dωd� vary between a
minimum of 7.7×10−5 nb/(GeV sr) and a maximum of
9.6×105 nb/(GeV sr). Despite this variation of ten orders of
magnitude, the choice of the mean relative absolute error of
Eq. (9) as cost function allows for efficient training of the
neural network.

B. Testing results

Following the results obtained for the training set, in this
section we investigate the predictive power of the neural net-
works for the test set. First, we consider 40Ca as test nucleus.
This choice is motivated by the existence of many available
cross section data for this nucleus. The neural network predic-
tions for this nucleus, which, we reiterate, was not included
in the training set, are shown in Figs. 6 and 7. These fig-
ures show the result of an average over N = 100 different
neural networks trained on the same dataset. After initializing
the same neural network architecture with N different real-
izations of a random variable, we train the neural networks.
For each training run we keep the weights that performed best
on the validation set. These different neural networks give
different predictions on the test set. For each scattering angle
θ , each energy E , and each transferred energy ω, we obtain
N independent values for ŷi, the prediction for d2σ/dωd�.
We can then estimate the average based on these N different
predictions. Assuming a Gaussian distribution of these pre-
dictions, average and 95% confidence intervals for the true
average μ are estimated as follows:

y = 1

N

N∑
i=1

ŷi, (12)

σ 2 = 1

N − 1

N∑
i=1

(ŷi − y)2, (13)

|y − μ| < 1.96 × σ√
N

. (14)

The estimated average of the predictions is plotted in
Figs. 6 and 7 together with the estimated 95% confidence
interval, bounded by two red lines and shaded in blue. One can
observe that the overall agreement of our neural network pre-
dictions with the data for 40Ca is satisfactory from quasielastic
up to the � resonance. The prediction results could be further

2There are some additional kinematical conditions that are not
shown in Figs. 4 and 5 to avoid overwhelming figures but the agree-
ment between the data and the neural network fit on the training set
remains remarkable also in the cases not shown.

improved by adding more examples into the training set, with
different choices of the neural-network hyperparameters or
including more handcrafted features. One could also use al-
ternative approaches, like Bayesian neural networks, to better
take into account the uncertainty. However, for the exploratory
purpose of the present paper, we do not claim optimality in
any sense, and our focus is on presenting the interest of the
method.

As an additional illustration of the predictive performances
of the neural network approach we consider some tests
on nuclei of particular interest for the neutrino-oscillation
program, namely, oxygen, employed in the present and
future water Cherenkov detectors Super-Kamiokande and
Hyper-Kamiokande, and argon, the nucleus employed in three
detectors of the present short-baseline Fermi National Accel-
erator Laboratory neutrino programs as well as by the future
DUNE experiment.

In order to investigate the predictive power of our neu-
ral network for some specific kinematical conditions, in the
case of oxygen (for which only few data are available, as
shown in Table I) we remove from the training dataset all
the events corresponding to electron scattering on 16O with
a scattering angle of θ = 37.1◦ and an incoming electron
energy of E = 0.737 GeV. The predictions are shown in
the left-hand panel of Fig. 8. In the same figure, in its
middle and right-hand panel, we show the neural network
predictions for argon and titanium. For these two nuclei, the
inclusive electron-scattering data have been made available
only recently [23–25]. Due to the increasing interest in argon
detectors, the results of titanium (Z = 22) represent an impor-
tant source of information for the charged current interaction
of neutrinos with a neutron of 40Ar (Z = 18, N = 22). For
40Ar and 48Ti, experimental data only exist for one particular
experimental setup (the same for both nuclei), corresponding
to E = 2.222 GeV and θ = 15.541◦. We removed from the
usual dataset data points corresponding to these two nuclei
in order to avoid the risk of overfitting due to the presence
in the training dataset of other similar nuclei with the same
kinematical conditions. For all three panels of Fig. 8, the rep-
resented 95% confidence interval is computed by considering
N = 40 independent neural network predictions, following
the methodology previously explained for 40Ca (where it was
taken to be N = 100). In the case of 16O the band is very
narrow because the confidence intervals are small but in the
case of 40Ar and 48Ti it is more visible in the figure. We
explain this because of the complete absence of 40Ar and 48Ti
in the training set.

For all three cases shown in Fig. 8, the neural network
predictions are excellent for the whole dataset, from the
quasielastic bump to the � resonance, passing by the dip
region. Similar agreement has also been obtained by other
theoretical approaches, such as SuSAv2 [57] and Giessen
Boltzmann-Uehling-Uhlenbeck (GiBUU) [64], largely em-
ployed in neutrino cross section studies. We briefly remind
the reader that SuSAv2, an updated version of the super
scaling analysis [65] approach, is based on the observation
of the superscaling behavior (i.e., on the simultaneous q
and Fermi momentum independence) of the scaling function
(a sort of nuclear response function in terms of a scaling
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FIG. 4. Comparisons between the experimental inclusive (e, e′) double differential cross section on 12C, in black squares with experimental
error bars, and the neural network’s predictions, red circles, for the different values of incoming electron energy E and scattering angle θ

(indicated above each panel), as a function of the transferred energy. To obtain these predictions, the 12C data occurrences were used in the
training set as well as all the other nuclei of the dataset except 40Ca.
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FIG. 5. The same as Fig. 4 but for other kinematical conditions.
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FIG. 6. Comparisons between the experimental inclusive (e, e′) double-differential cross section on 40Ca, in black squares with experi-
mental error bars, and the neural network’s predictions, red circles, for the different values of incoming electron energy E and scattering angle
θ written above each panel, as a function of the transferred energy. These are the predictions for the test data for which the neural network has
not been trained. A 95% confidence interval is shown by the shaded blue area, bounded by red lines.
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FIG. 7. The same as Fig. 6 but for other kinematical conditions.
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FIG. 8. Comparison between the inclusive (e, e′) double differential cross section data and the neural network’s predictions for 16O (left
panel), 40Ar (middle panel), and 48Ti (right panel). The different values of incoming electron energy and scattering angle are written above
each panel. For the left panel, the neural network was trained without the data represented on the figure. For the middle and right panels,
the neural network was trained without both 40Ar and 48Ti data. Theoretical predictions of SuSAv2 and GiBUU approaches are also shown.
They are taken respectively from Refs. [14,57] for 16O and from Refs. [62,63] for 40Ar and 48Ti. GENIE Monte Carlo event generator results,
taken from Ref. [20] in the case of 40Ar and from Ref. [18] in the case of 48Ti, are also displayed. The red lines are the boundary of the 95%
confidence interval shaded in blue.

variable) extracted from electron-scattering data. Similarly to
the neural network, it can be considered as a phenomeno-
logical data-driven approach, obviously with a much lower
number of parameters and with a sound physical basis which
microscopically justify it [66]. The GiBUU framework is an
implementation of transport theory which allows a description
of many nuclear reactions. It allows consistent treatment of
the initial reaction vertex and of the final state processes. It
takes into account various nuclear effects via the local density
approximation for the nuclear ground state, mean-field poten-
tials, and in-medium spectral functions. In the implementation
of Ref. [14], from which we take the electron cross section re-
sults of oxygen shown in Fig. 8, multinucleon excitations were
not included, which explains the GiBUU’s underestimation of
data in the dip region in this case. The underestimation was
reduced in the GiBUU calculations for argon and titanium
[63] by using an updated version of the model that takes
into account the multinucleon contributions. We note that the
dip region, which is particularly difficult to microscopically
describe and reproduce with theoretical approaches, is well
predicted by the neural network.

For completeness, in Fig. 8 we also plot the results ob-
tained with two different versions of GENIE (one of the most
commonly used Monte Carlo event generators in the neutrino
community) for 40Ar and 48Ti, taken from Refs. [20] and [18],
respectively. One can observe that starting from the dip region
GENIE results disagree with the data. This disagreement is
analyzed in Refs. [18,20], where several results are also shown
and discussed for inclusive electron-scattering on carbon.

V. SUMMARY AND PERSPECTIVES

We have deployed a neural network model to predict
the electron-scattering inclusive double-differential cross sec-
tions on nuclei. The neural network predictions have been
compared with a large amount of electron-scattering data col-
lected in the past as well as with recent data on argon and

titanium that are of interest to the neutrino community. Our
results show that neural networks can reproduce and predict
the electron-scattering cross section with an accuracy compa-
rable to that provided by microscopic approaches developed in
the past and nowadays generalized to investigate the neutrino-
nucleus scattering.

Neural network approaches can be impaired by a limited
amount of data. Therefore, it was not a given that the data
available were sufficient to train the model to make inference
for unseen data. The many orders of magnitude spanned by
the cross sections and their varying shape due to the different
types of nuclear excitations (quasielastic, multinucleon, res-
onance excitations, and deep inelastic) induced in different
scattering kinematics make inference challenging. The neural
network performance suggests that it could be used as an addi-
tional tool in the studies of electron and neutrino scattering on
nuclei. Moreover, this can be used to predict the electron cross
sections for nuclei and/or for kinematical conditions where
experimental data are absent and employ these predictions to
validate Monte Carlo simulations. It could also be employed
as a support to drive and speed up microscopic evaluation of
cross sections and/or response functions, in some sense by
generalizing what has been performed in Ref. [43] beyond the
quasielastic excitation considered in that work.

Another perspective involves the use of neural networks to
directly predict the neutrino-nucleus cross sections. This task
is not trivial since the neutrino beams are not monochromatic.
So in this case the measured quantity is the flux-integrated
double differential cross section in terms of the final state mea-
surable variables. For the charged-current scattering process
(νl , l ) on nuclei, where l is the charged lepton, this neutrino
cross section reads

d2σν

dEld�
= 1∫

�(Eνl ) dEνl

∫
dEνl

[
d2σν

dωd�

]
ω=Eνl −El

�(Eνl ),

(15)
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where El is the charged lepton energy and d� is the differen-
tial solid angle in the direction specified by the charged lepton
momentum. They represent the two final state measured vari-
ables. This expression formally reduces to that analyzed in
this paper, when the flux of incoming particles, �, reduces
to a delta distribution. This is the case of monochromatic
electron beams. For neutrino scattering, the problem is more
complex since for a given set of the measured variables El

and � one explores the full energy spectrum of neutrinos
above the charged lepton energy, being Eνl = El + ω. As
a consequence, all the reaction channels (giant resonances,
quasielastic, multinucleon excitations, pion production arising
from nucleon resonances decay, and deep-inelastic scattering)
are entangled and isolating a primary vertex process from the
measurement of the neutrino flux-integrated differential cross
section is much more difficult. When employing a deep learn-
ing approach for neutrino scattering, the technical challenge
would be to design a network sufficiently rich to encode the

complexity of the cross section for different primary vertex
processes over the phase space relevant to the signal process.
A similar approach is currently under study in the high energy
collider community [30] in connection with the so-called ma-
trix element method. This possibility should be investigated
with the perspective of the development of an AI-based Monte
Carlo event generator for neutrino-nucleus scattering.
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