
HAL Id: hal-04113136
https://hal.science/hal-04113136v1

Submitted on 1 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lower Bound on the Minimum Distance of
Single-Generator Quasi-Twisted Codes

Adel Alahmadi, Patrick Solé, Ramy Taki Eldin

To cite this version:
Adel Alahmadi, Patrick Solé, Ramy Taki Eldin. Lower Bound on the Minimum Distance of Single-
Generator Quasi-Twisted Codes. Mathematics , 2023, 11 (11), pp.2539. �10.3390/math11112539�.
�hal-04113136�

https://hal.science/hal-04113136v1
https://hal.archives-ouvertes.fr


Citation: Alahmadi, A.; Solé, P.;

Taki Eldin, R. Lower Bound on the

Minimum Distance of Single-

Generator Quasi-Twisted Codes.

Mathematics 2023, 11, 2539. https://

doi.org/10.3390/math11112539

Academic Editors: Sergey Bezzateev,

Jiyou Li and Marjan Mernik

Received: 25 March 2023

Revised: 21 April 2023

Accepted: 23 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Lower Bound on the Minimum Distance of Single-Generator
Quasi-Twisted Codes
Adel Alahmadi 1,* , Patrick Solé 2 and Ramy Taki Eldin 3,4

1 Math Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2 I2M, (Aix Marseille Univ., CNRS, Centrale Marseille), 13009 Marseilles, France; sole@enst.fr
3 Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt; ramy.farouk@eng.asu.edu.eg
4 Egypt University of Informatics, Knowledge City, New Administrative Capital, Cairo, Egypt
* Correspondence: analahmadi@kau.edu.sa

Abstract: We recall a classic lower bound on the minimum Hamming distance of constacyclic codes
over finite fields, analogous to the well-known BCH bound for cyclic codes. This BCH-like bound
serves as a foundation for proposing some minimum-distance lower bounds for single-generator
quasi-twisted (QT) codes. Associating each QT code with a constacyclic code over an extension field,
we obtain the first bound. This is the QT analogue to a result in the literature for quasi-cyclic codes.
We point out some weaknesses in this bound and propose a novel bound that takes into account the
Chinese remainder theorem approach to QT codes as well as the BCH bound of constacyclic codes.
This proposed bound, in contrast to previous bounds in the literature, does not presuppose a specific
form of code generator and does not require calculations in any extension field. We illustrate that our
bound meets the one in the literature when the code generator adheres to the specific form assumed
in that study. Various numerical examples enable us to compare and discuss these bounds.

Keywords: quasi-twisted codes; constacyclic codes; quasi-cyclic codes; BCH bound

MSC: 94B15; 94B65

1. Introduction

Due to their simple algebraic structures, cyclic codes over finite fields constitute one
of the classes of linear codes that have attracted considerable attention in the literature.
This has inspired researchers to explore more general classes of linear codes that have a
similar structure. Generalizing the shift constant of cyclic codes introduces the class of
constacyclic codes [1], and generalizing the shift index of cyclic codes introduces the class
of quasi-cyclic (QC) codes [2]. Eventually, the class of quasi-twisted (QT) codes appeared
to generalize QC and constacyclic codes. A λ-QT code of index ` is a linear code that is
invariant under the λ-constacyclic shift of ` coordinates. In particular, a one-QT code is QC,
while a λ-QT code of index ` = 1 is λ-constacyclic.

Having a code with the largest minimum distance is beneficial for real-world commu-
nication systems, as the code’s error-correction capability is proportional to its minimum
distance. Databases such as [3] list codes with the best-known parameters. However,
as pointed out by ref. [4], determining the minimum distance of a linear code is an NP-
hard problem. As such, researchers have focused on providing lower and upper bounds
to the minimum distance as an alternative. The Hartmann–Tzeng bound and the Bose–
Chaudhuri–Hocquenghem (BCH) bound are two of the well-known lower bounds for
cyclic codes. The BCH bound for cyclic codes was extended to constacyclic codes in [5,6].
Furthermore, Lally [7] studied a lower bound on the minimum distance of QC codes.
Specifically, a cyclic code over some extension field was built, and its minimum distance
was employed to determine a lower bound on the minimum distance of the given QC code.
Therefore, to compute this bound, it is necessary to perform calculations in an extension

Mathematics 2023, 11, 2539. https://doi.org/10.3390/math11112539 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11112539
https://doi.org/10.3390/math11112539
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7758-3537
https://orcid.org/0000-0002-4078-8301
https://orcid.org/0000-0003-4184-9222
https://doi.org/10.3390/math11112539
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11112539?type=check_update&version=1


Mathematics 2023, 11, 2539 2 of 13

field of the field over which the QC code is defined. Lower bounds for single-generator QT
codes are presented in [5,8], where the code generator has a specific pattern. These bounds
can also be calculated by employing the BCH bound for constacyclic codes.

This paper begins with a proof of the BCH bound for constacyclic codes. We prove
this bound for completeness, as all subsequent bounds depend on it. Our study focuses on
the lower bounds on the minimum distance of single-generator QT codes. We establish
an analogous bound to Lally’s result [7] for the QT code. Specifically, we associate a
constacyclic code over an extension field to each QT code, and then we employ the BCH
bound of constacyclic codes to determine a minimum-distance lower bound for the QT
code. For general single-generator QT codes, some weaknesses, however, are notable for
this bound. We propose an alternative lower bound to tackle this weakness. To this end,
we implicitly utilize the Chinese remainder theorem (CRT) to decompose the QT code into
a direct sum of minimal QT subcodes. The proposed bound employs this decomposition
in conjunction with the BCH bound for constacyclic codes. We outline two advantages
for the proposed bound: firstly, it does not presuppose any specific form for the code
generator; secondly, all calculations are carried over the same field of the code alphabet,
not an extension field.

We compare our proposed lower bound with those presented in [5,7,8] by analyzing
several examples with various parameters. Although the lower bound proposed in [5]
assumes a specific form for the code generator, we do not assume any specific form in
our bound. We show that when the code generator has the designed form in [5], the two
bounds coincide. This shows that the proposed bound generalizes that in [5]. Theorem III.2
in [8] presents another lower bound on the minimum distance of any single-generator QT
code; however, we contradict this bound with Example 6 below.

The remainder of this paper is divided into the following sections: In Section 2,
the algebraic structures of constacyclic and QT codes are reviewed. Section 3 presents the
lower bound of single-generator QT codes, which mimics the work in [7] on QC codes.
Section 4 provides the proposed bound in detail. Section 5 then examines the proposed
bound on several numerical examples. Finally, the paper is concluded in Section 6.

2. Algebraic Structures of QT Codes

A cyclic code of length m over a finite field Fq is a linear subspace of Fm
q that is

invariant under the shift transformation

(c0, c1, . . . , cm−1) 7→ (cm−1, c0, c1, . . . , cm−2).

Cyclic codes form a subclass of constacyclic codes. For a nonzero λ ∈ Fq,
a λ-constacyclic code over Fq of length m is a linear subspace of Fm

q that is invariant
under the constacyclic shift

(c0, c1, . . . , cm−1) 7→ (λcm−1, c0, c1, . . . , cm−2).

The polynomial representation to the codewords of constacyclic codes endows them
with the algebraic structure of an ideal of a ring. Let R = Fq[x]/〈xm − λ〉 be the ring of
all polynomials over Fq of degrees less than m, where the addition and multiplication are
defined as modulo xm − λ. The codeword (c0, c1, . . . , cm−1) of a λ-constacyclic code C is
mapped to the polynomial c0 + c1x + · · ·+ cm−1xm−1 in R. Hence, C is regarded as an
ideal ofR. Conversely, any ideal ofR corresponds to a constacyclic code. Throughout this
paper, we refer to the λ-constacyclic code C over Fq of length m as an ideal ofR. We call
λ the shift constant of C. It follows that a cyclic code is constacyclic with a shift constant
equal to unity.

By increasing the number of coordinates that must be shifted for the code to be
invariant under this shifting, cyclic codes can be generalized to quasi-cyclic (QC) codes.
A QC code over Fq of length n is a linear subspace of Fn

q that is invariant under the cyclic
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shift by ` coordinates. The length of a QC code is divisible by `, that is, n = m`, where ` is
the index, and m is the co-index. A typical QC codeword can be subdivided as

(c0,1, c0,2, . . . , c0,`, c1,1, c1,2, . . . , c1,`, . . . , cm−1,1, cm−1,2, . . . , cm−1,`),

and represented as a polynomial vector (c1(x), c2(x), . . . , c`(x)), where cj(x) =
m−1
∑

i=0
ci,jxi

for 1 ≤ j ≤ `. In the polynomial representation, a QC code is an Fq[x] submodule of
⊕`

j=1Fq[x]/〈xm − 1〉. In turn, each Fq[x] submodule of ⊕`
j=1Fq[x]/〈xm − 1〉 corresponds to

a QC code over the Fq of index ` and co-index m. It follows that a cyclic code is a QC of
index ` = 1.

Constacyclic codes are not a subclass of QC codes. Therefore, it is convenient to
introduce the class of quasi-twisted (QT) codes, which generalizes both constacyclic and
QC codes. For a nonzero λ ∈ Fq, a λ-QT code Q over Fq of length m`, index `, and co-
index m is a linear subspace of Fm`

q that is invariant under the λ-constacyclic shift by `
coordinates. Again, we refer to λ as the shift constant of Q. QT codes, as with QC codes,
have a polynomial representation, which turns them into Fq[x]-submodules ofR`, where
R = Fq[x]/〈xm − λ〉. Throughout this paper, we regard QT codes as submodules ofR`. It
follows that a constacyclic code is a QT of index ` = 1, but a QC code is 1-QT. A QT code
is said to be a single generator if there exists g = (g1(x), g2(x), . . . , g`(x)) ∈ R` such that
Q = Fq[x]g. For each 1 ≤ j ≤ `, gj(x) is an element ofR. Nevertheless, in the sequel, we
may mean that gj(x) is the equivalent polynomial of degree less than m in the polynomial
ring Fq[x]. This happens throughout the paper, and the reader should be able to identify
to which polynomial we are referring, whether it belongs to R or Fq[x]. For instance,
to determine the greatest common divisor of some polynomials, denoted gcd, or the roots
of a polynomial, it is beneficial to think of these polynomials as elements of the principal
ideal domain Fq[x].

We conclude this section by summarizing some of the results in [7]. Suppose Q is a
single-generator QC code over Fq of length m` generated by g = (g1(x), g2(x), . . . , g`(x)).
In [7], Q is associated with a cyclic code C over Fq` of length m as follows: Fix an element
α ∈ Fq` of degree ` over Fq. By viewing gj(x) as a polynomial in Fq[x], define f (x) =

∑`
j=1 gj(x)αj−1, which is now considered an element of R = Fq` [x]/〈xm − 1〉. The ideal

generated by f (x) in R is the cyclic code C associated withQ. We can write C = Fq` [x] f (x);
therefore, C is an Fq` [x] submodule of R. On the other hand, R can be thought of as an Fq[x]
module. The codewords of Q are in one-to-one correspondence with the elements of the
Fq[x] submodule of R generated by f (x). This correspondence given by a(x)g 7→ a(x) f (x).
It is shown in [7] that the dimension of Q as an Fq-vector space is

k = m− deg
(

gcd1≤j≤`
{

gj(x)
})

.

Furthermore, a lower bound on the minimum Hamming distance d(Q) ofQ is given by

d(Q) ≥ d(C)d(B),

where B is the linear code over Fq of length ` generated by the vector equivalent of the

coefficients of f (x) with respect to the Fq basis
{

1, α, α2, . . . , α`−1
}

of Fq` . In the next section,
we generalize this result from QC codes to QT codes.

3. Constacyclic and QT Codes Bound

The objective of this section is to provide the expected generalization of the result in [7]
for single-generator QT codes. It seems reasonable that the equivalent bound of QT codes
would require a BCH bound for constacyclic codes, because the bound of QC codes requires
a BCH bound for cyclic codes. In fact, the BCH bound for constacyclic codes is essential
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to all lower bounds that we present in this paper as well as for use in our generalization
of [7]. As a result, we begin this section with a simple proof of this BCH bound for the
convenience of the reader.

Let C be a λ-constacyclic code over Fq of length m, which is regarded as an ideal in the
quotient ringR = Fq[x]/〈xm − λ〉. BecauseR is a principal ideal ring, there is a generator
polynomial g(x) ∈ R, such that C = Fq[x]g(x) = 〈g(x)〉. Instead of introducing some
notations to differentiate between polynomials in Fq[x] and their images inR, we leave it
up to the reader to determine our meaning. Hence, the generator polynomial of C as an
element of Fq[x], which we also denote by g(x), is defined as the unique monic codeword of
C of a minimum degree. It is noted that g(x) divides xm − λ. Suppose that C1 and C2 are λ-
constacyclic codes with generator polynomials g1(x) and g2(x), respectively. Accordingly,
C1 + C2 is a λ-constacyclic code with the generator polynomial gcd{g1(x), g2(x)}, which
is the greatest common divisor of g1(x) and g2(x) in Fq[x]. In general, let {Ct}, t ∈ I ,
be a collection of λ-constacyclic codes indexed by a set I , and let gt(x) be the generator
polynomial of Ct for each t ∈ I . Then, gcdt∈I{gt(x)} is the generator polynomial of
∑t∈I Ct.

Lemma 1. Let {gt(x)} be a collection of elements ofR indexed by a set I . Then, 〈g(x)〉 ⊆ R is
the smallest λ-constacyclic code that contains {gt(x)}t∈I , where

g(x) = gcdt∈I{gt(x)}.

Proof. Let C ⊆ R be any λ-constacyclic code that contains {gt(x)}t∈I . Then 〈gt(x)〉 ⊆ C
for each t ∈ I . Consequently, 〈g(x)〉 = ∑t∈I 〈gt(x)〉 ⊆ C. On the other hand, 〈g(x)〉 is a
λ-constacyclic code. As a result, it is the smallest code that contains {gt(x)}t∈I .

Recall that the BCH bound on the minimum distance of a cyclic code of length m
necessitates the determination of the mth roots of unity in some extension field of Fq.
Similarly, finding the m zeros of xm − λ in an extension field Fqe of Fq is required to
determine the BCH bound on the minimum distance of a λ-constacyclic code of length
m. Specifically, assume m and q are coprime, the multiplicative order of λ is r, and the
multiplicative order of q modulo mr is e. Then, the splitting field of xm − λ is Fqe . The m
zeros of xm − λ are precisely

{
βγi|0 ≤ i ≤ m− 1

}
, where β and γ are the mth roots of

λ and unity, respectively, in Fqe . In other words, if ζ is a primitive element of Fqe and
λ = ζ(q

e−1)l/r for some integer l, then the zeros of xm − λ are{
ζ

qe−1
m ( l

r +i)
∣∣∣0 ≤ i ≤ m− 1

}
.

Definition 1. Suppose m and q are coprime. Let g(x) denote the generator polynomial of a λ-
constacyclic code over Fq of length m. Furthermore, let β and γ be the mth roots of λ and unity,
respectively, in Fqe . Define η(g(x)) = δ, where δ is the largest positive integer such that

g
(

βγb
)
= g

(
βγb+1

)
= g

(
βγb+2

)
= · · · = g

(
βγb+δ−2

)
= 0

for some integer 0 ≤ b ≤ m− 1. If g
(

βγb
)
6= 0 for all 0 ≤ b ≤ m− 1, define η(g(x)) = 1.

It is important to select the integer b of Definition 1 with care in order to maximize the
number of consecutive mth roots of λ that are zeros of g(x), as this can lead to a better lower
bound on the minimum distance; this is shown in the following theorem. The following
theorem presents a BCH-like bound for constacyclic codes. The proof, utilizing elementary
linear algebra techniques, can be found in [6].

Theorem 1. Suppose m and q are coprime. Let C be a λ-constacyclic code over Fq of length m with
generator polynomial g(x). Then, the minimum distance d(C) of C is at least η(g(x)).
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We are now ready to imitate Lally’s work [7] in order to give a lower bound for QT
codes. Let Q be a single-generator λ-QT code over Fq of length m` and index `. Suppose
that Q = Fq[x]g, where g = (g1(x), g2(x), . . . , g`(x)) ∈ R` is a generator of Q. Fix an

element α of degree ` over Fq; hence,
{

1, α, α2, . . . , α`−1
}

is a basis of Fq` as a vector space

over Fq. Define f (x) = ∑`
j=1 gj(x)αj−1 as an element of R = Fq` [x]/〈xm − λ〉. This

polynomial generates an ideal of R that is a λ-constacyclic code over Fq` of length m,

which we denote by C̃. Each codeword c = (c1(x), c2(x), . . . , c`(x)) ∈ Q is linked with
the codeword ∑`

j=1 cj(x)αj−1 ∈ C̃. A lower bound on the minimum distance of C̃ can be
found with Theorem 1, which may be utilized to establish a lower bound on the minimum
distance of Q (cf. Theorem 3 in [7]). The result is precisely as follows:

Theorem 2. Let Q be a λ-QT code over Fq of index ` and co-index m, generated by g =

(g1(x), g2(x), . . . , g`(x)) ∈ R`. Let f (x) = ∑`
j=1 gj(x)αj−1 = f0 + f1x + · · ·+ fm−1xm−1 ∈

R; and let C̃ denote the λ-constacyclic code over Fq` of length m generated by f (x). Let B
be the linear code over Fq of length ` generated by the vectors equivalent to the coefficients

f0, f1, . . . , fm−1 ∈ Fq` with respect to the basis
{

1, α, . . . , α`−1
}

of Fq` . Then,

d(Q) ≥ d(C̃)d(B).

Proof. Assume that c = (c1(x), c2(x), . . . , c`(x)) ∈ Q is an arbitrary nonzero codeword,
where cj(x) = ∑m−1

i=0 ci,jxi and ci,j ∈ Fq. Then, ∑`
j=1 cj(x)αj−1 ∈ C̃. This can be rearranged

as ∑`
j=1 cj(x)αj−1 = ∑`

j=1 ∑m−1
i=0 ci,jxiαj−1 = ∑m−1

i=0

(
∑`

j=1 ci,jα
j−1
)

xi = ∑m−1
i=0 ci(α)xi, where

ci(α) = ∑`
j=1 ci,jα

j−1. Because the latter is a codeword of C̃, the number of nonzero ci(α) for 0 ≤
i ≤ m− 1 is at least d(C̃). There is also a polynomial a(x) ∈ Fq[x], such that ∑m−1

i=0 ci(α)xi =

∑`
j=1 cj(x)αj−1 = ∑`

j=1 a(x)gj(x)αj−1 = a(x) f (x) = a(x)
(

f0 + f1x + · · ·+ fm−1xm−1). This
means that each ci(α) is anFq-linear combination of f0, f1, . . . , fm−1. Therefore, (ci,1, ci,2, . . . , ci,`)
∈ B for every 0 ≤ i ≤ m− 1. The result follows, because for every nonzero ci(α), we have
wt(ci(α)) ≥ d(B).

The dimension of the QT code described in Theorem 2 can be determined using the
following theorem, the proof of which is nearly identical to that of Theorem 2 in [7].

Theorem 3. Suppose Q is a λ-QT code over Fq of index ` and co-index m generated by
g = (g1(x), g2(x), . . . , g`(x)). The dimension of Q as an Fq-vector space is

k = m− deg(gcd{xm − λ, g1(x), g2(x), . . . , g`(x)}).

Example 1. Consider the single-generator 2-QT code Q over F3 of index ` = 4, co-index m = 7,
and generator

g =
(

x4 + x3 + 2x2 + 1, x4 + 2x3 + 2x2 + 2x + 1, x3 + 2x, x4 + 2x3 + 2x2 + 2x + 1
)

.

In F3[x], gcd
{

x7 − 2, g1(x), . . . , g4(x)
}
= x− 2. Theorem 3 states that the dimension of

Q is 6. Let α denote a zero of the primitive polynomial x4 + 2x3 + 2 ∈ F3[x]. The 2-constacyclic
code C̃ described in Theorem 2 is generated by f (x) = ∑4

j=1 gj(x)αj−1 = (α3 + α + 1)x4 +

(2α3 + α2 + 2α + 1)x3 + (2α3 + 2α + 2)x2 + (2α3 + 2α2 + 2α)x + α3 + α + 1. We employ
Theorem 1 to determine a lower bound to d(C̃). In fact, the splitting field of x7 − 2 is F312 . If ζ

is a zero of the primitive polynomial x12 + x6 + x5 + x4 + x2 + 1 ∈ F3[x], then α = ζ
312−1
34−1 .

We set β = ζ
312−1

14 and γ = ζ
312−1

7 , which are the 7th root of 2 and unity, respectively. Observe
that

{
βγ, βγ2, βγ3, βγ6} are the zeros of f (x). By Definition 1, η( f (x)) = 4. It follows from
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Theorem 1 that d(C̃) ≥ 4. The generator matrix of the code B over F3 of length ` = 4 described in
Theorem 2 is 

1 0 1 1
2 1 2 1
2 0 2 2
2 2 2 0
1 0 1 1

.

We find that d(B) = 2; hence, d(Q) ≥ 8. The exact minimum distance of Q is found to be
d(Q) = 13.

In Example 1, the polynomial f (x) has a degree of 4, and all of its zeros are zeros of
xm − λ. Thus, f (x) divides xm − λ. In this situation, we observe that Theorem 2 yields
an acceptable bound. However, when f (x) does not divide xm − λ, we observe that the
lower bound provided by Theorem 2 is a weak bound in most cases. We show this with the
following example, which employs a randomly generated QT code.

Example 2. We examine a single-generator ω-QT code Q over F4 of index ` = 6, co-index
m = 5, where ω is a zero of x2 + x + 1 ∈ F2[x]. We randomly construct g which is described
by the starting values g0 = 0, g1 = 1, g2 = ω, g3 = ω2 and the linear recurrence relation
gi = gi−1 + ωgi−2 + ωgi−3 + ωgi−4 for i = 4, 5, . . . , 29. This results in

g =
(

0, 1, ω, ω2, ω, ω, ω2, ω, ω2, ω, 1, 0, 0, 1, ω2, 1, ω, ω2, ω2, ω2, 0, 1, 1, ω, ω, 1, ω2, 1, 1, 0
)

whose polynomial representation is as follows

g =
(

ωx(x3 + ωx2 + x + ω2), ω(x4 + ωx3 + x2 + ωx + 1), ω2(x2 + x + ω)(x2 + ω2x + 1),

ω2(x + 1)(x + ω2)(x2 + ω2x + ω2), ωx(x + 1)(x + ω)2, (x + ω2)(x2 + ωx + ω)
)

.

Let α denote a zero of x6 + x5 + ωx4 + ω2x3 + x2 + x + ω ∈ F4[x]. The ω-constacyclic
code C̃ described in Theorem 2 is generated by f (x) = ∑`

j=1 gj(x)αj−1 =(
ωα4 + ω2α3 + ω2α2 + ωα + ω

)
x4 +

(
α5 + ωα4 + ω2α3 + α2 + ω2α + ω2)x3 +(

α5 + α4 + ω2α3 + ωα + ω
)
x2 +

(
ω2α5 + α4 + ωα3 + ω2α + 1

)
x + α5 + α3 + α2 + ωα. It is

only necessary to observe that f (x) is coprime to x5 − ω. Then, C̃ = F5
46 ; hence, d(C̃) = 1.

The generator matrix of code B over F4 of length ` = 6 described in Theorem 2 is
0 ω ω2 ω2 ω ω
1 ω ω2 1 ω2 ω2

1 1 ω2 0 ω ω
ω2 1 ω 0 ω2 1
1 0 1 1 ω 0

.

We find that d(B) = 2; hence, d(Q) ≥ 2. The exact minimum distance of Q is found to be
d(Q) = 17.

Example 2 explores one of the weaknesses of Theorem 2. The other disadvantages
of using Theorem 2 are that it requires calculations over an extension field as well as
determining the exact minimum distance of B, which is generally NP-hard. In response to
these weaknesses, we propose a novel lower bound on the minimum distance of single-
generator QT codes in the next section.

4. Novel Bound to QT Codes

We expect the lower bound given in Theorem 2 to be far from the exact minimum
distance for a general single-generator QT code. This is demonstrated in Example 2,
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especially when the polynomial f (x), as an element of Fq` [x], is coprime to xm− λ. In effect,

this results in d(C̃) = 1 and, hence, d(Q) ≥ d(B). In this section, we deal with this problem
by establishing a completely new lower bound for single-generator QT codes. We apply
the CRT to decompose any single-generator QT code before employing Theorem 1 at each
polynomial coordinate. Throughout this section, Q denotes a single-generator QT code
over Fq of index ` and co-index m, where m and q are coprime. Suppose

g = (g1(x), g2(x), . . . , g`(x)) ∈ R`

is a generator of Q, where R = Fq[x]/〈xm − λ〉. Then, Q = 〈g〉, which is the cyclic Fq[x]
submodule of R` generated by g. Because m and q are coprime, xm − λ = ∏s

t=1 pt(x),
where p1(x), p2(x), . . . , ps(x) are distinct irreducible polynomials in Fq[x]. Now, we define
Qt = 〈gt〉 for each 1 ≤ t ≤ s, where

gt =

(
xm − λ

pt(x)

)
g =

(
xm − λ

pt(x)

)
(g1(x), g2(x), . . . , g`(x)) ∈ R`. (1)

Clearly, Qt is a single-generator QT code annihilated by pt(x). Then, Qt is a minimal
QT subcode ofQ because gt ∈ Q. To exclude constituentsQt, which are not involved in the
construction of Q, we define the set X = {1 ≤ t ≤ s | gt 6= 0}, or, equivalently, using (1),
we have the following alternative definition:

X = {1 ≤ t ≤ s | pt(x) - Entj(g) for at least one 1 ≤ j ≤ `}. (2)

The following result shows thatQ can be decomposed to the direct sum of the minimal
QT subcodes Qt through employing the CRT implicitly.

Lemma 2. With the above notation, Q = ⊕t∈XQt.

Proof. Because Qt ⊆ Q for every t ∈ X, ∑t∈X Qt ⊆ Q. Because gcd1≤t≤s

{
xm−λ
pt(x)

}
= 1

in Fq[x], there are polynomials at(x) ∈ Fq[x] such that ∑1≤t≤s at(x)
(

xm−λ
pt(x)

)
= 1. Conse-

quently,

g = ∑
1≤t≤s

at(x)
(

xm − λ

pt(x)

)
g = ∑

1≤t≤s
at(x)gt = ∑

t∈X
at(x)gt ∈ ∑

t∈X
Qt.

Accordingly, Q ⊆ ∑t∈X Qt; therefore, Q = ∑t∈X Qt. Now suppose that
∑t∈X bt(x)gt = 0, then

0 = ∑
t∈X

bt(x)
(

xm − λ

pt(x)

)
g =

(
∑
t∈X

bt(x)
xm − λ

pt(x)

)
g.

Then, ∑t∈X bt(x) xm−λ
pt(x) annihilates Q. However, Q is annihilated by ∏t∈X pt(x); then,

∏t∈X pt(x)|∑t∈X bt(x) xm−λ
pt(x) . For every arbitrary τ ∈ X, pτ(x)|∑t∈X bt(x) xm−λ

pt(x) =

bτ(x) xm−λ
pτ(x) + ∑t∈X,t 6=τ bt(x) xm−λ

pt(x) . Because pτ(x)|∑t∈X,t 6=τ bt(x) xm−λ
pt(x) , we infer that

pτ(x)|bτ(x) xm−λ
pτ(x) , so pτ(x)|bτ(x). Therefore, bτ(x)gτ = 0 for every τ ∈ X, and we conclude

that Q = ⊕t∈XQt.

Recall that the power set of X is the set of all subsets of X. We denote the power set of
X after excluding the empty set by P(X). That is, P(X) is the set of all nonempty subsets
of X. We now prove that every nonzero codeword of Q corresponds to a unique element
of P(X).
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Lemma 3. For each nonzero c(x) ∈ Q, there exist a unique I ∈ P(X) and nonzero polynomials
at(x) ∈ Fq[x] (for t ∈ I) such that c(x) = ∑t∈I at(x)gt.

Proof. From Lemma 2, c(x) ∈ Q = ∑t∈X Qt = ∑t∈X〈gt〉. Thus, we have c(x) =

∑t∈X at(x)gt for some at(x) ∈ Fq[x]. The result is achieved by defining

I = {t ∈ X | at(x) 6= 0}.

The following definition attempts to avoid the zero coordinates for each I ∈ P(X).
This is achieved by defining the set

J (I) =
{

1 ≤ j ≤ ` | Entj(gt) 6= 0 for at least one t ∈ I
}

,

where Entj(gt) ∈ R denotes the jth entry of gt, or, equivalently, using (1), we have the
following alternative definition:

Definition 2. For each I ∈ P(X), define

J (I) =
{

1 ≤ j ≤ ` | pt(x) - Entj(g) for at least one t ∈ I
}

.

In other words, if I is the associated element in P(X) with the codeword c(x) ∈ Q,
as shown by Lemma 3, then J (I) keeps a record of the nonzero coordinates of c(x).
The following result gives a lower bound on the weight wt(c(x)) of any codeword c(x).

Lemma 4. Assume c(x) is a nonzero codeword of Q, and let c(x) = ∑t∈I at(x)gt, where I ∈
P(X) and 0 6= at(x) ∈ Fq[x] for each t ∈ I . Then,

wt(c(x)) ≥ ∑
j∈J (I)

η
(
gcdt∈I

{
Entj(gt)

})
.

Proof.

wt(c(x)) =
`

∑
j=1

wt
(
Entj(c(x))

)
= ∑

j∈J (I)
wt
(
Entj(c(x))

)
= ∑

j∈J (I)
wt

(
∑
t∈I

at(x)Entj(gt)

)
(3)

Now, for each j ∈ J (I), let Cj be the smallest λ-constacyclic code over Fq of length m
that contains

{
Entj(gt)

}
t∈I . From Lemma 1, gcdt∈I

{
Entj(gt)

}
generates Cj. We then de-

duce from Theorem 1 that d
(
Cj
)
≥ η

(
gcdt∈I

{
Entj(gt)

})
. Therefore, wt

(
∑t∈I at(x)Entj(gt)

)
≥ η

(
gcdt∈I

{
Entj(gt)

})
because ∑t∈I at(x)Entj(gt) ∈ Cj. The result follows from (3).

Lemma 3 asserts that each codeword of Q corresponds to an element I ∈ P(X).
However, Lemma 4 provides a lower bound for each codeword from its corresponding
I . Hence, taking into account all elements of P(X) ensures that no codeword is missed.
Therefore, a lower bound on d(Q) is stated as follows:

Theorem 4. Let Q = Fq[x]g be a single-generator QT code over Fq of index ` and co-index m,
where m and q are coprime. With the notation introduced above,

d(Q) ≥ min
I∈P(X)

 ∑
j∈J (I)

η

(
xm − λ

∏τ pτ(x)

), (4)

where τ runs over
{

t ∈ I | pt(x) - Entj(g)
}

.
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Proof. The following lower bound on d(Q) is now immediately available from the previous
discussion:

d(Q) ≥ min
I∈P(X)

 ∑
j∈J (I)

η
(
gcdt∈I

{
Entj(gt)

}).

Therefore, (4) follows from (1) by observing that

gcdt∈I
{

Entj(gt)
}
=

xm − λ

∏τ pτ(x)
.

This is because pt(x) - gcdt∈I
{

Entj(gt)
}

if and only if pt(x) - Entj(g).

Although Theorem 4 is applied to several numerical examples in Section 5, we con-
clude this section by applying it to Example 1. Recall that Theorem 2 provides a lower
bound of 8 on the minimum distance of the code presented in Example 1. Indeed, as men-
tioned at the beginning of this section, Theorem 2 provides an acceptable lower bound
when f (x) divides xm − λ, which is the case in Example 1. However, to establish a fair
comparison between Theorems 2 and 4, they must be examined on a randomly generated
code, which is performed in the next section.

Example 3. We proceed with the QT code Q considered in Example 1. Recall that

g =
(
(x + 1)(x3 + 2x + 1), (x + 1)2(x2 + 1), x(x + 1)(x + 2), (x + 1)2(x2 + 1)

)
generates Q. The irreducible factors of x7 − 2 in F3[x] are p1(x) = x + 1 and p2(x) = x6 +
2x5 + x4 + 2x3 + x2 + 2x + 1. Equation (2) implies that X = {2}; hence, P(X) = {{2}}.
By Definition 2, J (X) = {1, 2, 3, 4}. By Theorem 4, we find

d(Q) ≥
4

∑
j=1

η

(
x7 − 2
p2(x)

)
=

4

∑
j=1

η(x + 1) = 8,

where η(x + 1) = 2 by Definition 1.

In Examples 1 and 3, recall that the polynomial f (x) defined in Theorem 2 divides
xm − λ. Although these examples show that Theorems 2 and 4 give the same lower bound,
Theorem 4 has the advantage in that it does not require any calculations over any extension
fields nor does it require calculating the minimum distance of another linear code: B.
On the other hand, a disadvantage of the lower bound of Theorem 4 appears when xm − λ
decomposes to many irreducible factors. In fact, the size of P(X) exponentially increases
with the size of X.

5. Numerical Examples

We have four goals in this section: We first compare the proposed bound to the one
provided in Theorem 2. Indeed, as demonstrated by Example 2, the latter bound has some
weaknesses. Therefore, we inspect the bound of Theorem 4 on the code of Example 2.
Second, we investigate the lower bound suggested in Theorem 4 for codes with different
indices. Third, we consider the lower bound introduced in Theorem 3.2 of [5]. In fact, this
bound does not apply to all single-generator QT codes: it only suits a specific form for the
code generator. We consider this specific form and prove that Theorem 4 and Theorem 3.2
in [5] are equivalent under the assumption of this form. Therefore, we may argue that
the proposed bound generalizes that in Theorem 3.2 in [5] since it does not require any
specific form for the code generator. Lastly, we present a counterexample to the lower
bound provided in Theorem III.2 in [8].

We begin with the following example to examine Theorem 4 on a nonbinary QT code.
Remember that the QT code introduced in Example 2 shows a flaw in the lower bound
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given by Theorem 2. Specifically, Theorem 2 gives a lower bound of 2 to a QT of minimum
distance 17. We need to determine what lower bound Theorem 4 can achieve for the
same code.

Example 4. Let Q be the QT code of Example 2 generated by the randomly chosen codeword

g =
(

ωx(x3 + ωx2 + x + ω2), ω(x4 + ωx3 + x2 + ωx + 1), ω2(x2 + x + ω)(x2 + ω2x + 1),

ω2(x + 1)(x + ω2)(x2 + ω2x + ω2), ωx(x + 1)(x + ω)2, (x + ω2)(x2 + ωx + ω)
)

.
(5)

Because m = 5 and λ = ω, p1(x) = x + ω2, p2(x) = x2 + x + ω, p3(x) = x2 + ωx + ω.
Let ζ be a zero of the primitive polynomial x2 + x + ω ∈ F4[x]. Then, ω = ζ5, while γ = ζ3

and β = ζ are the primitive 5th root of unity and ω, respectively. The zero of
(
x + ω2) is {βγ3},

the zeros of
(

x2 + x + ω
)

are {βγ0, βγ1}, and the zeros of
(
x2 + ωx + ω

)
are {βγ2, βγ4}.

From Theorem 3, the dimension of Q is k = 5. Equation (2) implies that X = {1, 2, 3}.

1. For I = {1}, by Definition 2, J (I) = {1, 2, 3, 5} and ∑j∈J (I) η
(

x5−ω
p1(x)

)
=

4η
(
(x2 + x + ω)(x2 + ωx + ω)

)
= 16.

2. For I = {2}, by Definition 2, J (I) = {1, 2, 4, 5, 6} and ∑j∈J (I) η
(

x5−ω
p2(x)

)
=

5η
(
(x + ω2)(x2 + ωx + ω)

)
= 20.

3. For I = {3}, by Definition 2, J (I) = {1, 2, 3, 4, 5} and ∑j∈J (I) η
(

x5−ω
p3(x)

)
=

5η
(
(x + ω2)(x2 + x + ω)

)
= 20.

4. For I = {1, 2}, by Definition 2, J (I) = {1, 2, 3, 4, 5, 6} and ∑j∈J (I) η
(

x5−ω
∏τ pτ(x)

)
=

3 + 3 + 4 + 4 + 3 + 4 = 21.
5. For I = {2, 3}, by Definition 2, J (I) = {1, 2, 3, 4, 5, 6} and ∑j∈J (I) η

(
x5−ω

∏τ pτ(x)

)
=

2 + 2 + 4 + 2 + 2 + 4 = 16.
6. For I = {1, 3}, by Definition 2, J (I) = {1, 2, 3, 4, 5} and ∑j∈J (I) η

(
x5−ω

∏τ pτ(x)

)
=

3 + 3 + 3 + 4 + 3 = 16.
7. For I = {1, 2, 3}, by Definition 2, J (I) = {1, 2, 3, 4, 5, 6} and ∑j∈J (I) η

(
x5−ω

∏τ pτ(x)

)
=

1 + 1 + 3 + 2 + 1 + 4 = 12.

Therefore, d(Q) ≥ 12, where the minimum distance of Q is found to be d(Q) = 17.

We now examine Theorem 4 on several binary QC codes of the same length with
varied indices and co-indices.

Example 5. We randomly generate the binary codeword

g = (1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1,

1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0)

of length 45. This codeword is interpreted as a generator of several QC codes Q of length 45 and
different indices. We determine the lower bound on d(Q) provided by Theorem 4 for different `
values.

1. Let ` = 15. Then, m = 3, p1(x) = x + 1, and p2(x) = x2 + x + 1. The zeros of(
x2 + x + 1

)
are {ζ, ζ2}, and the zero of (x + 1) is {ζ0}. In polynomial representation,

g =
(

x + 1, 1, 1, x2, 1, x(x + 1), x2 + x + 1, x(x + 1), x2 + 1, x2 + 1,

x2 + x + 1, x2 + x + 1, x2 + 1, 0, x + 1
)

.

From Theorem 3, the dimension of Q is k = 3. Equation (2) implies that X = {1, 2}.
(a) For I = {1}, ∑j∈J (I) η

(
x2 + x + 1

)
= 7× 3 = 21.
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(b) For I = {2}, ∑j∈J (I) η(x + 1) = 11× 2 = 22.

(c) For I = X, ∑j∈J (I) η
(

x3−1
∏τ pτ(x)

)
= 2 + 1 + 1 + 1 + 1 + 2 + 3 + 2 + 2 + 2 + 3 +

3 + 2 + 2 = 27.

Therefore, d(Q) ≥ 21. In fact, we find d(Q) = 21.
2. Let ` = 9. Then m = 5, p1(x) = x + 1, and p2(x) = x4 + x3 + x2 + x + 1. Let ζ be a

zero of the primitive polynomial x4 + x + 1 ∈ F2[x]. Then, γ = ζ3 is the primitive 5th root
of unity. The zeros of

(
x4 + x3 + x2 + x + 1

)
are {γ, γ2, γ3, γ4}, and the zero of (x + 1) is

{γ0}. In polynomial representation,

g =
(

x3 + x + 1, x, x(x + 1), x(x + 1)3, (x + 1)(x3 + x + 1), x(x3 + x + 1),

x4 + x3 + x2 + x + 1, x3 + x + 1, (x + 1)x2
)

.

From Theorem 3, the dimension of Q is k = 5. Equation (2) implies that X = {1, 2}.
(a) For I = {1}, ∑j∈J (I) η

(
x4 + x3 + x2 + x + 1

)
= 5× 5 = 25.

(b) For I = {2}, ∑j∈J (I) η(x + 1) = 8× 2 = 16.

(c) For I = X, ∑j∈J (I) η
(

x5−1
∏τ pτ(x)

)
= η(1) + η(1) + η(x + 1) + η(x + 1) +

η(x + 1) + η(1) + η
(
x4 + x3 + x2 + x + 1

)
+ η(1) + η(x + 1) = 1+ 1+ 2+ 2+

2 + 1 + 5 + 1 + 2 = 17.

Therefore, d(Q) ≥ 16. In fact, we find d(Q) = 19.
3. Let ` = 5. Then, m = 9, p1(x) = x + 1, p2(x) = x2 + x + 1, and p3(x) = x6 + x3 + 1.

Let ζ be a zero of the primitive polynomial x6 + x4 + x3 + x + 1 ∈ F2[x]. Then, γ = ζ7 is the
primitive 9th root of unity. The zeros of

(
x6 + x3 + 1

)
are {γ, γ2, γ4, γ5, γ7, γ8}, the zeros

of
(

x2 + x + 1
)

are {γ3, γ6}, and the zero of (x + 1) is {γ0}. In polynomial representation,

g =
(
(x + 1)3(x3 + x2 + 1), x2(x + 1)2(x4 + x3 + x2 + x + 1),

x8 + x6 + x5 + x4 + x2 + x + 1, (x + 1)(x7 + x5 + x3 + x + 1), (x + 1)(x6 + x + 1)
)

.

From Theorem 3, the dimension of Q is k = 9. Equation (2) implies that X = {1, 2, 3}.
For I = {1} or I = X, the right side of (4) has the smallest value. Therefore, d(Q) ≥
η
(
(x2 + x + 1)(x6 + x3 + 1)

)
= 9. We found d(Q) = 9.

4. Let ` = 3. Then m = 15, p1(x) = x+ 1, p2(x) = x2 + x+ 1, p3(x) = x4 + x+ 1, p4(x) =
x4 + x3 + 1, and p5(x) = x4 + x3 + x2 + x + 1. Let ζ be a zero of the primitive polynomial
x4 + x + 1 ∈ F2[x]. The zeros of

(
x4 + x + 1

)
are {ζ, ζ2, ζ4, ζ8}, the zeros of

(
x4 + x3 + 1

)
are {ζ7, ζ11, ζ13, ζ14}, the zeros of

(
x4 + x3 + x2 + x + 1

)
are {ζ3, ζ6, ζ9, ζ12}, the zeros of(

x2 + x + 1
)

are {ζ5, ζ10}, and the zero of (x + 1) is {ζ0}. In polynomial representation,

g =
(
(x + 1)(x5 + x3 + x2 + x + 1)(x6 + x4 + x3 + x + 1),

x(x2 + x + 1)4(x5 + x3 + x2 + x + 1), (x + 1)2(x3 + x + 1)(x8 + x7 + x5 + x3 + 1)
)

.

From Theorem 3, the dimension of Q is k = 15. Equation (2) implies that X = {1, 2, 3, 4, 5}.
For I = X, the right side of (4) has the smallest value. Therefore, d(Q) ≥ η(x + 1) +
η
(

x2 + x + 1
)
+ η(x + 1) = 2 + 2 + 2 = 6. We found d(Q) = 10.

Theorem 3.2 in [5] introduces a lower bound on the minimum distance of a single-
generator QT code Q, where the code generator is assumed to be of the form

g = ( f1(x)g(x), f2(x)g(x), . . . , f`(x)g(x)). (6)

g(x) divides xm − λ, and f j(x) is coprime to (xm − λ)/g(x) for 1 ≤ j ≤ `, as elements of
Fq[x]. It was shown that d(Q) ≥ `η(g(x)) under this particular form (6) of g. In fact, this
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lower bound is limited to single-generator QT codes with this generator form. For instance,
it does not apply to the code in Example 4. Specifically, (5) forces us to choose g(x) = 1,
so f3(x) is not coprime to

(
x5 −ω

)
. This reinforces our proposed bound, which has the

advantage of being applicable to any single-generator QT code because Theorem 4 makes
no assumptions about the code generator. Furthermore, we prove in Corollary 1 below that
Theorem 4 generalizes Theorem 3.2 in [5]. To this end, assuming the code has generator (6),
we show that the lower bound of Theorem 4 is reduced to that of Theorem 3.2 in [5].

Corollary 1. Let Q be a QT code over Fq of index ` and co-index m, where m and q are coprime.
Assume Q = Fq[x]g with

g = ( f1(x)g(x), f2(x)g(x), . . . , f`(x)g(x)),

where g(x) divides xm − λ, and f j(x) is coprime to (xm − λ)/g(x) for 1 ≤ j ≤ `. Then

d(Q) ≥ `η(g(x)).

Proof. Suppose that xm − λ = ∏s
t=1 pt(x) and, without loss of generality, that g(x) =

∏s
t=r+1 pt(x) for some 1 ≤ r ≤ s. Then, gt 6= 0 for 1 ≤ t ≤ r and gt = 0 for r + 1 ≤ t ≤ s.

Hence, X = {1, 2, . . . , r}. The condition on f j(x) implies that for every I ∈ P(X), J (I) =
{1, 2, . . . , `}. Consequently, the value of the right side of (4) is the smallest when I = X.
From Theorem 4, we find

d(Q) ≥
`

∑
j=1

η

(
gcd1≤t≤r

{
xm − λ

pt(x)
f j(x)g(x)

})
=

`

∑
j=1

η(g(x)) = `η(g(x)).

We conclude this section by contradicting Theorem III.2 in [8], which provides a
lower bound on the minimum distance of any single-generator QT code. Specifically,
Theorem III.2 in [8] states that d(Q) ≥ `η

(
gcd1≤j≤`

{
gj(x)

})
for any single-generator QT

code with generator g = (g1(x), g2(x), . . . , g`(x)). This theorem is contradicted by the
following example.

Example 6. Let Q be the binary QC code of index ` = 2 and co-index m = 7 generated by

g =
(
(x + 1)(x3 + x2 + 1), (x3 + x + 1)(x3 + x2 + 1)

)
.

From Theorem III.2 in [8], d(Q) ≥ 2η
(
x3 + x2 + 1

)
= 6. However, the codeword

(x + 1)g =
(

x5 + x4 + x3 + 1, 0
)
∈ Q has a weight of 4, which contradicts the lower bound.

On the other hand, Theorem 4 demonstrates that d(Q) ≥ 4. This can be shown as follows: We
have p1(x) = x + 1, p2(x) = x3 + x + 1, and p3(x) = x3 + x2 + 1. Equation (2) implies that
X = {1, 2}.

1. For I = {1}, J (I) = {2} and ∑j∈J (I) η
(

x7−1
p1(x)

)
= η

(
(x3 + x + 1)(x3 + x2 + 1)

)
= 7.

2. For I = {2}, J (I) = {1} and ∑j∈J (I) η
(

x7−1
p2(x)

)
= η

(
(x + 1)(x3 + x2 + 1)

)
= 4.

3. For I = {1, 2}, J (I) = {1, 2} and ∑j∈J (I) η
(

x7−1
∏τ pτ(x)

)
= 4 + 7 = 11.

Therefore, d(Q) ≥ 4; hence, d(Q) = 4.
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6. Conclusions

We proposed two different lower bounds on the minimum distance of single-generator
QT codes. Imitating the work in [7] on QC codes, the first lower bound was established
by associating a constacyclic code over Fq` of length m to each QT code over Fq of index `
and co-index m. We noted the weakness of this lower bound for general single-generator
QT codes. To address this, we introduced a novel bound, which implicitly relies on the
decomposition of single-generator QT codes using the CRT to avoid computations over
extension fields. We then examined the effectiveness of the proposed bound for codes over
various finite fields and various indices. Additionally, we offered a counterexample to one
of the bounds of single-generator QT codes addressed in [8].

In future work, we will attempt to generalize Theorem 4 to establish a lower bound on
the minimum distance of multigenerator QT codes.
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