

Monte Carlo method to calculate the lifetime efficiency of a solar reactor for reduction of zinc oxyde

O. Farges^{1,2}, **M. El Hafi**¹, **J.J. Bézian**¹ olivier.farges@univ-lorraine.fr

¹RAPSODEE Center, UMR CNRS 5302, Mines Albi, Toulouse University, France ²LEMTA Lab., UMR CNRS 7563, Lorraine University, Nancy, France

Thursday 17 November 2016

< ロト < 置 ト < 差 ト < 差 ト 差 の < @</p>

Modelling of a solar reactor plant

Estimation of the lifetime energy conversion efficiency

Monte Carlo modelling

Simulation results

Conclusion and Outlook

Modelling of a solar reactor plant

Estimation of the lifetime energy conversion efficiency

Monte Carlo modelling

Simulation results

Conclusion and Outlook

A model to simulate thermochemical solar plants

- To estimate performance over a defined period of time (1 h, 1 day, 1 year or more)
- To optimally design the reactor and the whole facility (heliostat field, tower, beam down, ...)

DIFFICULTIES TO BE OVERCOME

- Take into account the sun's path and the intermittent nature of the solar resource ¹
- Deal with the nonlinear nature of chemical conversion laws

¹O. Farges et al. "Life-time integration using Monte Carlo Methods when optimizing the design of concentrated solar power plants". In: Solar Energy 113 (2015). pp. 57–62

A well known thermochemical process²³⁴ as case study

⁴ R. Müller, W. Lipiński, and A. Steinfeld. "Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO". In: *Avvlied Thermal Engineering* 28.5–6 (2008). p. 524–531

² A. Steinfeld. "Solar thermochemical production of hydrogen–a review". In: *Solar Energy* 78.5 (2005), pp. 603–615

³P. Haeberling et al. "A receiver-reactor for the solar thermal dissociation of zinc oxide". In: Journal of Solar Energy Engineering 130 (2008), pp. 021009–1

Concerning the reactor thermal behaviour

• The reactor thermal efficiency γ_r is constant

$$\gamma_r = \frac{P_u(t)}{P_{th}(t)} = 80\,\%$$

- · Conductive and convective losses are not taken into account
- The reactor is at a uniform temperature T_r

Modelling of a solar reactor plant

Estimation of the lifetime energy conversion efficiency

Monte Carlo modelling

Simulation results

Conclusion and Outlook

The thermal power P_{th} could be expressed as a function of the

reactor temperature T_r

•
$$P_{th}(t) = \frac{A_{aperture} \times \epsilon \times \sigma}{1 - \gamma_r} \times T_r(t)^4$$

• Moving from $P_{th}(t) = f(T_r(t))$ to $T_r(t) = f^{-1}(P_{th}(t))$

•
$$T_r(t) = \underbrace{\sqrt[4]{\frac{1 - \gamma_r}{A_{aperture} \times \epsilon \times \sigma}}}_{k_T} \times P_{th}(t)^{1/4}$$

INSTANTANEOUS ENERGY CONVERSION EFFICIENCY

• The instantaneous solar-to-chemical energy conversion efficiency

$$\eta_r(t) = \frac{P_u(t)}{P_{th}(t)} = \frac{\nu\left(T_r(t)\right) \times \left(H_r\left(T_r(t)\right) + \Delta H\left(T_r(t)\right)\right)}{P_{th}(t)}$$

with

• the reaction rate $\nu_r(T_r(t))$ is a zero-order Arrhenuis-type rate law

$$u_r(T_r(t)) = V_r \times k_0 \exp\left(\frac{-Ea}{R \times T_r}\right)$$

• the reaction enthalpie $H_r(T_r(t))$ and the enthalpie change $\Delta H(T_r(t))$ are polynomial functions of T_r

INSTANTANEOUS ENERGY CONVERSION EFFICIENCY

• The instantaneous solar-to-chemical energy conversion efficiency

$$\eta_r(t) = \frac{P_u(t)}{P_{th}(t)} = \frac{\nu \left(P_{th}(t)\right) \times \left(H_r \left(P_{th}(t)\right) + \Delta H \left(P_{th}(t)\right)\right)}{P_{th}(t)} = f\left(P_{th}(t)\right)$$

with

+ the reaction rate $\pmb{\nu_r}(\pmb{P_{th}}(t))$ is a zero-order Arrhenuis-type rate law

$$\nu_r(P_{th}(t)) = V_r \times k_0 \exp\left(\frac{-Ea}{R \times k_T} P_{th}(t)^{-1/4}\right)$$

• the reaction enthalpie $H_r(P_{th}(t))$ and the enthalpie change $\Delta H(P_{th}(t))$ are polynomial functions of P_{th}

LIFETIME ENERGY CONVERSION EFFICIENCY

• The lifetime solar-to-chemical energy conversion efficiency

$$\langle \eta_r \rangle = \int_{LifeTime} \eta_r(t) \,\mathrm{d}t$$

- We obtain a formulation where η_r is a combination of several nonlinear functions of the time-dependent thermal power $P_{th}(t)$
- The aim is now to simulate this model with MC method

Modelling of a solar reactor plant

Estimation of the lifetime energy conversion efficiency

Monte Carlo modelling

Simulation results

Conclusion and Outlook

Main reasons to apply MC method

- Effective method to deal with multi-integral formulation
- Orthogonality with geometric aspects
- Suited for massive parallelization
- Accurate prediction with confidence interval
- Sensitivity estimations
- Easy coupling with a stochastic optimization algorithm⁵

⁵O. Farges et al. "Particle swarm optimization of solar central receiver systems from a Monte Carlo direct model". In: *IPDO* 2013 : 4th Inverse problems, design and optimization symposium. IPDO 2013 : 4th Inverse problems, design and optimization symposium. Ed. bv O. Fudym. I.-L. Battaelia. G. Dulikravich. et al. Albi. Ecole des Mines d'Albi-Carmaux. June 2013

Non linearities and MC method

- the wide spread opinion:
 - "the extension of Monte Carlo methods to nonlinear processes may be impossible" ⁶
 - "Monte Carlo methods are not generally effective for nonlinear problems mainly because expectations are linear in character"⁷

⁶J. H. Curtiss. ""Monte Carlo" methods for the iteration of linear operators". In: Journal of Mathematics and Physics 32.1 (1953), pp. 209–232

M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. John Wilev & Sons. 2008

Non linearities and MC method

- the wide spread opinion:
 - "the extension of Monte Carlo methods to nonlinear processes may be impossible" ⁶
 - "Monte Carlo methods are not generally effective for nonlinear problems mainly because expectations are linear in character"⁷
- We propose a method to deal with nonlinear problems with MC method

⁶J. H. Curtiss. ""Monte Carlo" methods for the iteration of linear operators". In: Journal of Mathematics and Physics 32.1 (1953), pp. 209–232

M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. John Wilev & Sons. 2008

MC METHOD AND NON-LINEARITIES

+ A quantity $\mathcal{P}(t)$ is evaluted with MCM

$$\mathcal{P}(t) = \int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times \hat{w}(\boldsymbol{x})$$

- We estimate a quantity \mathcal{A} with a conversion function f_c :

$$\mathcal{A}(t) = f_c(\mathcal{P}(t))$$

- We estimate an averaged quantity $\langle \mathcal{A} \rangle$

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times f_c \left(\mathcal{P}(t) \right)$$

+ A quantity $\mathcal{P}(t)$ is evaluted with MCM

$$\mathcal{P}(t) = \int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times \hat{w}(\boldsymbol{x})$$

- We estimate a quantity \mathcal{A} with a conversion function f_c :

$$\mathcal{A}(t) = f_c(\mathcal{P}(t))$$

- We estimate an averaged quantity $\langle \mathcal{A} \rangle$

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times f_c\left(\mathcal{P}(t)\right)$$

• If f_c is linear $f_c = k \times (\mathcal{P}(t) + \mathcal{P}_0)$:

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times \int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times k \times (\hat{w}(\boldsymbol{x}) + \mathcal{P}_0)$$

+ A quantity $\mathcal{P}(t)$ is evaluted with MCM

$$\mathcal{P}(t) = \int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times \hat{w}(\boldsymbol{x})$$

• We estimate a quantity A with a conversion function f_c :

$$\mathcal{A}(t) = f_c(\mathcal{P}(t))$$

- We estimate an averaged quantity $\langle \mathcal{A} \rangle$

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times f_c\left(\mathcal{P}(t)\right)$$

• If f_c is non-linear $f_c = k \times (\mathcal{P}(t) + \mathcal{P}_0)^2$:

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times k \times \left[\int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times (\hat{w}(\boldsymbol{x}) + \mathcal{P}_0) \right]^2$$

+ A quantity $\mathcal{P}(t)$ is evaluted with MCM

$$\mathcal{P}(t) = \int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times \hat{w}(\boldsymbol{x})$$

• We estimate a quantity A with a conversion function f_c :

$$\mathcal{A}(t) = f_c(\mathcal{P}(t))$$

- We estimate an averaged quantity $\langle \mathcal{A} \rangle$

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times f_c\left(\mathcal{P}(t)\right)$$

• If f_c is non-linear $f_c = k \times (\mathcal{P}(t) + \mathcal{P}_0)^2$:

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times k \times \left[\int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times (\hat{w}(\boldsymbol{x}) + \mathcal{P}_0) \right]^2$$

ł

Université Fédérale Toulouse Midi-Pyrénées

MC METHOD AND NON-LINEARITIES

- A quantity $\mathcal{P}(t)$ is evaluted with MCM

$$\mathcal{P}(t) = \int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} imes \hat{w}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

- We estimate a quantity \mathcal{A} with a conversion function f_c :

 $\mathcal{A}(t) = f_c(\mathcal{P}(t))$

- We estimate an averaged quantity $\langle \mathcal{A} \rangle$

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times f_c\left(\mathcal{P}(t)\right)$$

• If f_c is non-linear $f_c = k \times (\mathcal{P}(t) + \mathcal{P}_0)^2$:

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times k \times \underbrace{\left[\int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times k \times (\hat{w}(\boldsymbol{x}) + \mathcal{P}_0) \right]^2}_{\mathcal{A}(t)}$$

+ A quantity $\mathcal{P}(t)$ is evaluted with MCM

$$\mathcal{P}(t) = \int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d} \boldsymbol{x} imes \hat{w}(\boldsymbol{x})$$

• We estimate a quantity \mathcal{A} with a conversion function f_c :

 $\mathcal{A}(t) = f_c(\mathcal{P}(t))$

- We estimate an averaged quantity $\langle \mathcal{A} \rangle$

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times f_c\left(\mathcal{P}(t)\right)$$

• If f_c is non-linear $f_c = k \times (\mathcal{P}(t) + \mathcal{P}_0)^2$: n^2 MC realizations

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times k \times \underbrace{\left[\int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times k \times (\hat{w}(\boldsymbol{x}) + \mathcal{P}_0) \right]^2}_{\mathcal{A}(t)}$$

• Introduction of two independent random variables X_1 et X_2

$$\begin{split} \left[\int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times (\hat{w}(\boldsymbol{x}) + \mathcal{P}_0) \right]^2 &= \\ \int_{\mathcal{D}_{\boldsymbol{X}_1}} p_{\boldsymbol{X}_1(t)}(\boldsymbol{x}_1) \, \mathrm{d}\boldsymbol{x}_1 \times (\hat{w}(\boldsymbol{x}_1) + \mathcal{P}_0) \times \int_{\mathcal{D}_{\boldsymbol{X}_2}} p_{\boldsymbol{X}_2(t)}(\boldsymbol{x}_2) \, \mathrm{d}\boldsymbol{x}_2 \times (\hat{w}(\boldsymbol{x}_2) + \mathcal{P}_0) \end{split}$$

• \Rightarrow rewriting of $\langle \mathcal{A} \rangle$:

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times \int_{\mathcal{D}_{\boldsymbol{X}_1}} p_{\boldsymbol{X}_1(t)}(\boldsymbol{x}_1) \, \mathrm{d}\boldsymbol{x}_1 \times \int_{\mathcal{D}_{\boldsymbol{X}_2}} p_{\boldsymbol{X}_2(t)}(\boldsymbol{x}_2) \, \mathrm{d}\boldsymbol{x}_2 \times \hat{w}(\boldsymbol{x}_1, \boldsymbol{x}_2)$$

⁸I. Dauchet. "Analyse radiative des photobioréacteurs". PhD thesis. Université Blaise Pascal Clermont-Ferrand II. 2012 16/26

- Introduction of two independent random variables X_1 et X_2

$$\begin{split} \left[\int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times (\hat{w}(\boldsymbol{x}) + \mathcal{P}_0) \right]^2 = \\ \int_{\mathcal{D}_{\boldsymbol{X}_1}} p_{\boldsymbol{X}_1(t)}(\boldsymbol{x}_1) \, \mathrm{d}\boldsymbol{x}_1 \times (\hat{w}(\boldsymbol{x}_1) + \mathcal{P}_0) \times \int_{\mathcal{D}_{\boldsymbol{X}_2}} p_{\boldsymbol{X}_2(t)}(\boldsymbol{x}_2) \, \mathrm{d}\boldsymbol{x}_2 \times (\hat{w}(\boldsymbol{x}_2) + \mathcal{P}_0) \end{split}$$

• \Rightarrow rewriting of $\langle \mathcal{A} \rangle$: 2 × *n* MC realizations

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times \int_{\mathcal{D}_{\boldsymbol{X}_1}} p_{\boldsymbol{X}_1(t)}(\boldsymbol{x}_1) \, \mathrm{d}\boldsymbol{x}_1 \times \int_{\mathcal{D}_{\boldsymbol{X}_2}} p_{\boldsymbol{X}_2(t)}(\boldsymbol{x}_2) \, \mathrm{d}\boldsymbol{x}_2 \times \hat{w}(\boldsymbol{x}_1, \boldsymbol{x}_2)$$

⁸I. Dauchet. "Analyse radiative des photobioréacteurs". PhD thesis. Université Blaise Pascal Clermont-Ferrand II. 2012 16/26

- Introduction of two independent random variables X_1 et X_2

$$\begin{split} & \left[\int_{\mathcal{D}_{\boldsymbol{X}}} p_{\boldsymbol{X}(t)}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \times (\hat{w}(\boldsymbol{x}) + \mathcal{P}_0) \right]^2 = \\ & \int_{\mathcal{D}_{\boldsymbol{X}_1}} p_{\boldsymbol{X}_1(t)}(\boldsymbol{x}_1) \, \mathrm{d}\boldsymbol{x}_1 \times (\hat{w}(\boldsymbol{x}_1) + \mathcal{P}_0) \times \int_{\mathcal{D}_{\boldsymbol{X}_2}} p_{\boldsymbol{X}_2(t)}(\boldsymbol{x}_2) \, \mathrm{d}\boldsymbol{x}_2 \times (\hat{w}(\boldsymbol{x}_2) + \mathcal{P}_0) \end{split}$$

• \Rightarrow rewriting of $\langle \mathcal{A} \rangle$:

$$\langle \mathcal{A} \rangle = \int_{\tau} p_{\tau}(t) \, \mathrm{d}t \times \int_{\mathcal{D}_{\boldsymbol{X}_1}} p_{\boldsymbol{X}_1(t)}(\boldsymbol{x}_1) \, \mathrm{d}\boldsymbol{x}_1 \times \int_{\mathcal{D}_{\boldsymbol{X}_2}} p_{\boldsymbol{X}_2(t)}(\boldsymbol{x}_2) \, \mathrm{d}\boldsymbol{x}_2 \times \hat{w}(\boldsymbol{x}_1, \boldsymbol{x}_2)$$

Could be generalized with Taylor series expansion⁸

⁸I. Dauchet. "Analyse radiative des photobioréacteurs". PhD thesis. Université Blaise Pascal Clermont-Ferrand II. 2012 16/26

STATISTICAL MODELLING OF ENERGY CONVERSION EFFICIENCY

• $\eta_r(t) = f(P_{th}(t))$ is decomposed with Taylor series expansion around P_{th0}

$$\eta_{T}(t) = f\left(P_{th}(t)\right) = f(P_{th0}) + \frac{f'(P_{th0})}{1!} \left(P_{th}(t) - P_{th0}\right) + \frac{f^{(2)}(P_{th0})}{2!} \left(P_{th}(t) - P_{th0}\right)^{2} + \dots + \frac{f^{(n)}(P_{th0})}{n!} \left(P_{th}(t) - P_{th0}\right)^{n} + R_{n} \left(P_{th}(t)\right)$$

$$\langle n_{r} \rangle = \int_{0}^{\infty} n_{r}(t) dt$$

$$\int_{LifeTime} (f) df$$

- The expansion is stopped \Rightarrow Bernoulli process \Rightarrow no statistical bias introduced
 - A probability \mathcal{P}_i based on $P_{th}(t)$ is introduced
 - A random number r_i is sampled in [0; 1]
 - If $r_i < \mathcal{P}_i$, the Taylor expansion serie continue to at degree i + 1
 - Else, the Taylor expansion serie is stopped at degree *i*

Modelling of a solar reactor plant

Estimation of the lifetime energy conversion efficiency

Monte Carlo modelling

Simulation results

Conclusion and Outlook

- Use an exemple presented by L. Schunk, W. Lipiński, and A. Steinfeld⁹: a 1 MW reactor
- with a solar plant which delivers at most the nominal power

⁹L. Schunk, W. Lipiński, and A. Steinfeld. "Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-Experimental validation at 10 kW and scale-up to 1 MW". In: *Chemical Engineering Journal* 150.2–3 (2009). pp. 502–508

Instantaneous energy conversion efficiency estimation

Results	Values
Instantaneous energy conversion efficiency η_r ¹⁰	54%
Instantaneous energy conversion efficiency η_r	40,2%

 $^{^{10}}$ L. Schunk, W. Lipiński, and A. Steinfeld. "Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-Experimental validation at 10 kW and scale-up to 1 MW". In: Chemical Engineering Journal 150.2–3 (2009), pp. 502–508 $^\circ$

Instantaneous energy conversion efficiency estimation

Results	Values
Instantaneous energy conversion efficiency η_r ¹⁰	54 %
Instantaneous energy conversion efficiency η_r	40,2%

with MCM

Yearly averaged energy conversion efficiency $\langle \eta_r
angle =$ 4,8 % \cdot yr⁻¹

¹⁰L. Schunk, W. Lipiński, and A. Steinfeld. "Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO-Experimental validation at 10 kW and scale-up to 1 MW". In: *Chemical Engineering Journal* 150.2–3 (2009), pp. 502–508

Dependance of the solar resource

• The yearly averaged conversion efficiency is dependent to the solar resource

Location	convertion eff.
Sevilla	$4.8\% \cdot \mathrm{yr}^{-1} \pm 0.00026$
Casablanca	$5,5\% \cdot yr^{-1} \pm 0.00024$
Albuquerque	$9\% \cdot yr^{-1} \pm 0.00042$

Modelling of a solar reactor plant

Estimation of the lifetime energy conversion efficiency

Monte Carlo modelling

Simulation results

Conclusion and Outlook

- We propose a method to estimate nonlinear efficiency with MC method
- All MC advantages could be applied to complex systems with nonlinear outputs
 - Solar plant
 - Wave scattering
 - Biomass production
 - Atmospheric radiative transfer
 - ۰...

- Modelling with MCM of coupled heat transfer of the reactor: 2 PhD just started on a statistical approach to deal with coupled heat transfer in complex geometries
- Take into account the evolution of the solar resource ⇒ coupling with General Circulation Model (GCM)

Thank you for your attention

