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SINr: a python package to train interpretable word
and graph embeddings

Thibault Prouteau · Nicolas Dugué ·
Simon Guillot · Anthony Perez

Abstract In this paper, we introduce the SINr Python package to train word
and graph embeddings. The SINr approach is based on community detection:
a vector for a node is built upon the distribution of its connections through the
communities detected on the graph at hand. Because of this, the algorithm runs
very fast, and does not require GPUs to proceed. Furthermore, the dimensions
of the embedding space are interpretable, those are based on the communities
extracted. The package is distributed under Cecill-2.1 license and is available
on Github and pypi.

Keywords Graph embedding · Word embedding · Interpretability · Frugal
machine learning

1 Introducing SINr

With neural approaches, tremendous progress was made in natural language
processing, notably to represent the vocabulary of the language at hand, those
representations are then used as input for machine learning algorithms. These
representations are dense numeric vectors named word embeddings. Some ex-
amples of approaches to train such vectors using large textual corpora are
Word2vec [6], Glove [8], and the Transformer-based approached for contextu-
alized representations, Camembert [5] or Flaubert [4] in French. This progress
was transfered to the graph universe, allowing the emergence of graph em-
bedding, a whole field of research with Word2vec inspired approaches such as
Node2vec [3], matrix factorization methods like HOPE [7] and auto-encoding
paradigms [2].

Thibault, Nicolas and Simon
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(a) A graph G = (V,E)
partitioned in two commu-
nities.

C0 C1

0 1 2 3 4 5 6 7

1 1 1 0.66 0.33 0.33 0.66 1 1 1

(b) Bipartite projection of G into graph G′ = (⊤,⊥, E) along the
communities. Weight on the edges is the proportion of neighbors
in that community.

C1 C2
0 1 0
1 1 0
2 1 0
3 0.66 0.33
4 0.33 0.66
5 0 1
6 0 1
7 0 1

(c) Adjacency matrix of G′, each row is a SINr embedding.

Fig. 1: Illustration of SINr, vertices are represented based on the communities
they are linked to.

SINr was introduced to take advantage of this progress, it allows to embed
words and nodes just like the aforementioned methods. However, it is based
on community detection: for each node, the vector of embedding is calculated
as the proportion of its links going to the communities as described Figure 1.
This approach allows to avoid some flaws inherent to the usual approaches:

– As far as we know, SINr is the first approach specifically designed to deal
with both word and graph embeddings. Textual corpora are represented
as graphs, and with the adequate preprocessing provided by the package,
word embeddings can easily be extracted with SINr. For graph embedding,
no specific pre-processing is required.

– Contrary to the neural approaches that require complex GPU calculations,
SINr is based on the Louvain [1] algorithm to detect community and thus
runs in linear-time, it can be executed on standalone laptops.

– Contrary to the usual approaches, because dimensions are based on the
communities, the space in which words and graphs are embedded with
SINr is interpretable.

The performances of SINr were evaluated on several tasks, including link
prediction on graphs, and pair of words similarities for textual data [9]. While
providing good performances, it runs faster than most of the other embedding
approaches. Furthermore, the interpretability of the model was also demon-
strated to be comparable to the state-of-the-art when considering word em-
bedding [10]. In this paper, we consider the SINr package that we distribute
on https://github.com/SINr-Embeddings/sinr and that can also be found
on Pypi to be installed with pip.



SINr: a python package to train interpretable word and graph embeddings 3

Fig. 2: Because of the sparsity of the embedding space, one can see that related
words have non-zero values for the same dimensions (abscissa), mother and
father for dimensions 4, 7, 8, 9 and 11 for instance. The non-zero dimensions
are distinct when comparing mother and car that are unrelated.

2 Playing with SINr

One can setup SINr using pip install sinr, and train word and graph
embeddings using the package features. While these embedding features are
shared among models, SINr brings the option to probe and get an understand-
ing of the resulting embedding space as one can see Figure 2. Using SINr leads
to sparse vectors: a node is not connected to all the communities of a graph,
and similarly, a word is not related to all the topics of a corpus. As shown
by [11], sparsity is one of the features required to enforce interpretability. The
other one is to embed data in spaces larger than the classic 128 dimensions
ones. The γ resolution parameter of the Louvain [1] algorithm allows to vary
the number of communities, thus controlling the number of dimensions.

3 Conclusion

We presented SINr, a package to train word and graph embeddings based on
community detection. It runs in linear-time on standalone laptops and leads
to interpretable spaces that can be inspected using features provided in the
package. In the future, we plan to deal with temporal graphs and thus temporal
embeddings with SINr and to include more features to visualize vectors.
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