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This article is a discussion on the necessity of the assumption of diffuse field in sta-1

tistical energy analysis (SEA) and the validity of the coupling power proportionality2

which states that the vibrational power exchanged between coupled subsystems is3

proportional to the difference of their modal energies. It is proposed to re-formulate4

the coupling power proportionality in terms of local energy density instead of modal5

energy. We show that this generalized form remains valid even if the vibrational field6

is not diffuse. Three causes of lack of diffuseness have been studied: coherence of rays7

in symmetrical geometries, non ergodic geometries, and the effect of high damping.8

Numerical simulations and experimental results conducted on flat plates in flexural9

vibration are provided to support these statements.10

aalain.le-bot@ec-lyon.fr
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I. INTRODUCTION11

Predicting the dynamical behaviour of structures in the low frequency range is a problem12

that is largely overcome today. But at high frequencies, the classical methods like the well-13

known finite element analysis become quickly inefficient. This has motivated the emergence14

of methods with a lower numerical cost like statistical energy analysis (SEA)1–4 (see Ref.515

for an up-to-date synthesis of the theory).16

The principle of SEA is to subdivide a complex system into subsystems and to analyze17

their exchanges of vibrational energy. The main result which allows a systemic approach is18

the so-called coupling power proportionality which claims that the power exchanged between19

two lightly coupled subsystems is proportional to the difference of their modal energies also20

referred to as vibrational temperatures. It is in this way that SEA may be interpreted as21

the theory of thermodynamics of sound and vibration6.22

The foundation of the coupling power proportionality must be found in the assumption23

of modal energy equipartition, or equivalently, in the assumption of diffuse field (see Refs.7,824

for a definition of diffuse field). Several alternative theories have been proposed to relax25

these assumptions. The theory of statistical energy modal distribution analysis (SmEdA)9,1026

extends SEA to mid-frequencies by setting power balance equations to individual modes27

instead of mode packets making it possible not to assume energy equipartition. Whereas28

non-diffuse fields are naturally accounted for in the framework of geometrical acoustics for29

instance by the approach of radiative energy transfer equations11–14 and more recently by30

dynamical energy analysis15–17, these two approaches have the advantage to establish clearly31
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the link between geometrical acoustics and SEA18 and even to propose a continuum between32

a full ray-tracing analysis and a more gross SEA analysis16.33

In the wave approach of SEA19,20, the coupling power proportionality is naturally derived34

from the analysis in terms of plane waves impinging on the boundary separating the two35

subsystems21,22. The advantage of this approach is that it provides explicit formulas for the36

coupling loss factors that are also applicable to the case of non isotropic incidence. But this37

type of analysis is restricted to the hypothesis of rays and its main innuendo the principle of38

locality. In case of point connected subsystems, the applicability of locality is questionable39

although the coupling power proportionality remains valid.40

There is however an interest to test the validity of the coupling power proportionality41

beyond the assumption of diffuse field in the most general case. Some particular effects42

may frustrate a uniform and isotropic distribution of energy and therefore may constitute43

an obstacle to application of SEA. For instance, symmetries in geometry can lead to a non-44

homogeneity of the field. In a circular plate, one observe the presence of a caustic passing45

through the point of excitation where the energy density has a higher level23. Vibrational46

energy is also enhanced on points and lines outside source position for spatial symmetry47

reasons24. This phenomenon is caused by an effect of coherence in ray propagation. This48

energy enhancement has been observed for instance by deflectometry25 and with vibrational49

field measurements with a laser vibrometer26.50

In this context, the objective of this study is to check if the coupling power proportion-51

ality is still valid for point connected subsystems in situations where the field is not fully52

homogeneous.53
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The paper is organized as follows. Section II reminds of theoretical aspects of SEA and54

proposes a local formulation of the coupling power proportionality. Section III presents four55

examples of vibrational fields for which the energy is not perfectly uniformly distributed.56

The validity of the local form of the coupling power proportionality is tested by numerical57

simulations in Section IV and by experiments in Section V. Finally, in Section VI, the notion58

of vibrational temperature is introduced and a thermodynamic interpretation of these results59

is proposed.60

II. BASICS OF SEA61

The principle of statistical energy analysis is to divide a complex system into simple62

subsystems and, for each subsystem, to estimate the power supplied by external sources, the63

losses of vibrational energy by natural processes of dissipation, and the exchange of energy64

with other subsystems.65

A. SEA assumptions66

The theory of statistical energy analysis requires three assumptions.67

• (H1) The sources are random, stationary, wide band, and uncorrelated;68

• (H2) The couplings between subsystems are conservative and weak;69

• (H3) The vibrational field is diffuse in all subsystems.70

These assumptions have been discussed in the literature (see Ref.27 for a review of them)71

and some of them have been partly relaxed. The consequence of strong coupling is discussed72
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in Ref.28,29. The necessity of conservative coupling is justified in Ref.30. Since the purpose73

of this article is only to investigate the influence of diffuse field in the subsystems on SEA74

results, the rest of the discussion will be held under the condition that (H1) and (H2) apply.75

The diffuse field assumption is certainly the most difficult to satisfy in practice. A diffuse76

field is defined as a homogeneous and isotropic superposition of plane waves whose phase is77

random.78

A solution to obtain a diffuse field is to excite the structure with a uniform distribution79

of point forces which are δ-correlated in space and time (rain-on-the-roof). In that case, all80

modes receive an equal amount of energy and if their damping ratio is the same, they store81

a same amount of energy.82

With a single point force, the state of diffuse field is reached when the source is random83

and the structure sufficiently reverberant. Then, a large number of modes weakly damped84

contribute to the vibrational energy within the system. The number of resonant modes85

must be large to avoid a modal effect by a dominating mode and the damping must be low86

to ensure the mixing of energy by rays that propagate over a long range and are reflected87

throughout the subsystem.88

To check if the vibrational field is diffuse in the subsystems validity diagrams have been89

proposed31. This diagram plots a criterion of uniformity of energy in the frequency, damping90

loss factor plane. The zone of diffuse field is confined by two lines marking the conditions91

of large number of resonant modes and weak attenuation of rays during a mean-free-path.92

Based on the location of each subsystem in these diagrams, it is possible to anticipate the93

applicability of SEA32.94
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FIG. 1. Two flat subsystems coupled with a spring at point r1 on plate 1 and point r2 on plate 2.

Plate 1 is excited with a wide-band stationary random force F at point s.

B. The law of coupling power proportionality95

Let us consider two flat plates in flexural vibration weakly coupled by a spring attached96

at point r1 on plate 1 and point r2 on plate 2 as shown in Figure 1. Subsystem 1 is excited97

by a wide band random force F (t) at point s. We assume that the field is diffuse in both98

plates.99

Under these conditions, the coupling power proportionality states that the expectation100

of the power P (W) exchanged between connected subsystems is101

P = β

(

E1

n1

− E2

n2

)

. (1)

where Ei is the expectation of vibrational energy (J) in subsystem i, ni the modal density102

(modes per rad/s), and β a dimensionless coefficient. In particular, this law shows that the103

vibrational energy always flows from subsystems having a large modal energy to that with104

a lower modal energy.105
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In the case of flat plates in flexural vibration, the modal density is given by106

ni =
Ai

4π

√

mi

Di

(2)

where Ai is the area (m2) , mi is the mass per unit area (kg/m2), and Di = Eih
3
i /12(1− ν2

i )107

the bending stiffness (N.m) with Ei the Young modulus (Pa), hi the thickness (m) and νi108

the Poisson coefficient of plate i. Note that the modal density of a plate does not depend109

on the frequency and is proportional to its area.110

When the plates are coupled by a spring of stiffness K, the coupling coefficient is111

β =
K2

32πω2
c

√
m1m2D1D2

(3)

where ωc is the central frequency (rad/s) of the wide-band random source.112

C. Generalized coupling power proportionality113

Introducing the mean energy density ei (J/m
2) defined as ei = Ei/Ai the energy per unit114

area into Eq. (1) gives115

P = β

(

e1A1

n1

− e2A2

n2

)

. (4)

This form suggests a generalization to the case where the energy is not uniformly dis-116

tributed into the subsystems. Substituting the local energy density ei(r) at the coupling117

point r to the mean energy density ei in Eq. (4) leads to118

P = β

(

e1(r1)A1

n1

− e2(r2)A2

n2

)

. (5)

where e1(r1) and e2(r2) are respectively the energy densities at point r1 on subsystem 1 and119

point r2 on subsystem 2.120
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In Eq. (1) appear the modal energies Ei/ni. Since most of modes expand over the whole121

subsystem, these are global quantities. But Eq. (5) is written in terms of energy densities122

ei(r) which are local quantities. Furthermore, the ratio Ai/ni = 4π
√

Di/mi is also a local123

since it only depends on local characteristics of the plate (mi and Di).124

When the vibratory fields are diffuse, Eqs. (1) and (5) are equivalent. However, it is125

relevant to wonder if the latter remains valid in cases where the local energy density ei(r)126

is not equal to the mean energy density ei. The rest of the paper focuses on this question.127

III. DIFFUSE AND NON-DIFFUSE FIELD128

Three geometries of plates are considered: a Bunimovich stadium plate, a rectangular129

plate, and a circular plate (see Fig. 2). These shapes have been chosen because they are130

representative of various behaviours in ray propagation33. A Bunimovich stadium is a chaotic131

billiard34. Almost all rays propagating and specularly reflecting on boundaries explore the132

entire phase space (all positions and all directions) with an equal probability of presence.133

The vibrational field resulting from a large number of rays emitted by a single source is134

therefore naturally diffuse.135

A rectangular billiard is an integrable dynamical system. A ray does not generally explore136

the entire phase space. It generally passes near all points of the rectangle excepted if its137

path is closed. But the angle of incidence is always the same on small edges and the same138

(with possibly a different value) on large edges (with positive or negative sign). Thus the139

ray can take only four directions during its propagation. The resulting field is therefore140
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homogeneous but not isotropic. However, if a point source emits many rays equally in all141

directions, then it enforces the field to be isotropic and therefore to be diffuse.142

A circular billiard is also an integrable dynamical system. The angle of incidence of a143

ray on the boundary is constant during its propagation. The ray forms a circular caustic144

that never get into. Thus the ray explores entirely the part of the disk located outside this145

circular caustic excepted if its path is closed. But the ray does not explore the part of the146

disk located inside the circular caustic. The phase space is not entirely explored and the147

resulting vibrational field is never diffuse neither with a single ray nor with an isotropic148

source emitting rays in all directions.149

A. Direct numerical simulation of energy field150

In all subsequent numerical simulations, the values of the mechanical parameters are the151

followings. The Young modulus is E = 203 GPa, the mass density ρ = 8010 kg.m−3 and152

Poisson’s ratio ν = 0.3. The thickness of the three plates is h = 2 mm. Their dimensions153

are represented in Figure 2. They all have an area about A = 0.25 m2. Two values of154

the damping loss factor are used: η = 0.002 in case of light damping and η = 0.2 when155

the damping is strong. A unique external force F (t) is applied to plate 1 at point s. The156

excitation point is located at x=176 mm, y=164 mm in the stadium plate, at x=120 mm,157

y=70 mm in the rectangular plate, and at x=150 mm, y=150 mm in the circular plate. The158

force is a stationary random process of power spectral density S0 constant in the octave159

band ∆ω centred on ωc =2π × 4000 rad.s−1 and zero elsewhere.160
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(a)

(b)

(c)

FIG. 2. Shape and dimensions of plates in mm. (a); Bunimovich stadium, (b); Rectangular plate,

and (c); Circular plate.

With these values, we may estimate the mean-free-path l̄ = πA/P where A is the plate161

area and P the perimeter. For the stadium plate l̄ = 0.42 m, for the rectangular plate162

l̄ = 0.40 m, and for the circular plate l̄ = 0.44 m. The group velocity is cg = 553 m/s and163

the wavelength is λ = 7 cm at 4 kHz which is six times lower than the mean-free-path. This164

justifies that a geometrical acoustics approximation applies. The modal density is about165

0.0065 mode per rad/s and therefore the number of resonant modes in the octave band166

4 kHz is about N = 120 which is high enough to consider a statistical population of modes.167
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Finally, the attenuation per mean-free-path is m̄ = ηωl̄/cg is m̄ = 0.04 when the damping168

is light (η = 0.002). This means that 1− exp (−m̄) = 4 % of the energy is lost between two169

successive reflections of a ray. This low value ensures that rays experience a large number170

of reflections before to vanish. But this value grows up to 98 % when the damping is high171

(η = 0.2) meaning that rays loss almost all their energy before the first reflection.172

The expectation of vibrational energy density e(r) at position r is e(r) = m < u̇2 >173

where u̇ is the vibrational velocity and < . > denotes the random expectation operator.174

The variance of u̇ is
∫

Su̇u̇ dω/2π where Su̇u̇ is the power spectral density of u̇. In addition,175

Su̇u̇ = S0ω
2|H|2 where H(r, s;ω) is the receptance (frequency response function between the176

force F at point s and deflection u at point r). Since the power spectral density S0 of the177

force is constant within ∆ω, this gives178

e(r) =
mS0

π

∫

∆ω

ω2|H(r; s;ω)|2 dω. (6)

In the numerical estimation of this integral, the angular frequency step is chosen as ωη/4
√
2.179

The receptance H(r, s;ω) in terms of natural frequencies ωn and mode shapes Ψn is obtained180

with a modal expansion181

H(r; s;ω) =
∑

n>0

Ψn(s)Ψn(r)

m(ω2
n − ω2 + iηωnω)

. (7)

where i is the imaginary unit. The modes are calculated by the finite element method with182

MSC/NASTRAN 2021.1 up to the frequency 6 kHz to ensure that H(r; s;ω) is correctly183

estimated within the entire octave band 4 kHz. About 240 modes have been found.184
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The inverse participation ratio is defined as the fourth-order moment of vibrational ve-185

locity u̇ or equivalently as the second-order moment of energy density e(r)186

Ip =
1
A

∫

e2(r) dr

( 1
A

∫

e(r) dr)2
. (8)

Its definition imposes Ip ≥ 1. When the vibrational energy is uniformly distributed over187

the subsystem (e(r) = cste), Ip goes to one. But when the vibrational energy distribution188

is not uniform and presents large fluctuations from one point to another one, Ip can take189

arbitrarily high values. We shall adopt the criterion Ip ≤ 2 to characterize a uniform190

distribution of energy.191

B. Diffuse field192

Fig. 3(a) shows the distribution of energy density in a lightly damped stadium-shaped193

plate with clamped edges excited by a random force at point S1. Fig. 3(b) shows the194

distribution of energy density in a lightly damped rectangular plate with simply supported195

edges excited by a random force.196

The values of Ip for stadium and rectangular plates are given in Table I. They are both197

lower than 2 (respectively 1.09 for the stadium and 1.38 for the rectangle) so that following198

this criterion, the vibrational field is uniformly distributed over the rectangular plate and199

the stadium.200

But even if the inverse participation ratio is low, the vibrational field is not fully spatially201

homogeneous. The energy distribution exhibits patterns with energy enhancement. For the202

stadium shape, four points with energy enhancement are visible. They are noted s1, s2, s3,203
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(a)

(b)

FIG. 3. (a) Numerical simulation of vibrational energy distribution (dB) in a stadium thin plate

lightly damped (η = 2× 10−3) with clamped edges and excited by a wide-band random force. The

cross indicates the force position. (b) Vibrational energy in dB along the black line.
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(a)

(b)

FIG. 4. (a) Numerical simulation of vibrational energy distribution (dB) in a rectangular thin plate

lightly damped (η = 2 × 10−3) with simply supported edges and excited by a wide-band random

force. The cross indicates the force position. (b) Vibrational energy in dB along the black line.
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TABLE I. Inverse participation ratio for the four plates excited by a random force in the octave

centred on 4 kHz.

Stadium η = 2× 10−3 Rectangle η = 2× 10−3 Circle η = 2× 10−3 Rectangle η = 0.2

IPR 1.09 1.38 8.89 4.61

and s4 in Fig. 3(a). The enhancement factor on these four points is equal to 2 (this effect204

at the source point is known as coherent backscattering effect34). In Fig. 3(b), we can see205

lines noted d1, d2, d3, and d4 which form a tic-tac-toe pattern with the driving point at one206

of the four intersections. In Fig. 4(a), we see a step of about 1.5 dB on points p1 and p2.207

In linear scale, the enhancement factor of energy on these four lines is equal to 3/2. On208

the four points noted s1, s2, s3, and s4 located at the intersections of the four lines, the209

enhancement factor is equal to 9/4 (3.4 dB on point s3 in Fig. 4(a)).210

Several works have shown that a symmetrical mechanical structure excited by a wideband211

random point force exhibits a pattern of points or lines where the vibrational response is212

enhanced (see for instance Ref.26 where a proof of these enhancement factor based on the213

image source method is provided). These enhancements may be explained in geometrical214

acoustics by considering the phase of pairs or quadruplets of rays arriving at the receiver215

points with same phase. They interfere constructively and therefore contribute to the local216

energy density more than the simple sum of their energies.217
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C. Non diffuse field218

Fig. 5(a) shows the distribution of energy density in a lightly damped circular plate219

with clamped edges excited by a random force at point S1. The damping loss factor is low220

η = 2× 10−3.221

From Fig. 5(a) we see that the vibrational energy fluctuates a lot and reaches a maximum222

on the circle C1 passing through the excitation point. Furthermore, the diameter passing223

through the source also shows a higher level of energy. The inverse participation ratio is224

high (8.89).225

The evolution of energy density along a diameter can can be explained again with ge-226

ometrical acoustics. Each ray starting from the source turns into the circle by conserving227

its angle of reflection. Excepted for periodic orbits, the ray forms a circular caustic that is228

never crossed by it. The ray does not explore the entire disk and the resulting distribution229

of energy is henceforth not uniform. The combination of large number rays emitted in all230

directions from the source point gives roughly the distribution of energy observed in Fig.231

5(b). It is not necessary to invoke interference of rays to explain this distribution.232

The enhancement of energy on the diameter passing through the source point stems from233

another phenomenon. This is again a phenomenon of constructive interference. The spatial234

symmetry of the circle imposes that each ray starting from the source and arriving at any235

point of this diameter, admits a symmetrical ray starting from the source and arriving at236

the same point. Both direct and symmetrical rays have same length and therefore have the237

same phase at arrival. They interfere constructively giving the observed enhancement.238
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(a)

(b)

FIG. 5. (a) Numerical simulation of vibrational energy distribution (dB) in a circular thin plate

lightly damped (η = 2× 10−3) with clamped edges and excited by a wide-band random force. The

cross indicates the force position. (b) Vibrational energy in dB along the radius d1.
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A last cause of breaking homogeneity is the influence of strong dissipation. Fig. 6(a)239

shows the distribution of energy density in a highly damped (η = 0.2) rectangular plate240

with simply supported edges excited by a random force at point S1. Fig. 6(a)a shows the241

maps of energy density and Fig. 6(b) shows the vibrational energy along the line d2 while242

the dashed line is obtained with a reference calculation.243

We observe that the distribution of energy is clearly not uniform which is confirmed by244

the high value (4.61) of the inverse participation. The maximum of energy is reached at the245

source point from which the energy strongly decreases in a axi-symmetrical way.246

We know that the attenuation per mean-free-path is high (m̄ = 3.6) and that rays loss247

98 % of their energy before the first reflection. The vibrational field is therefore dominated248

by the direct field and the reflected field remains negligible. For the direct field, the energy249

at distance R from the source is exp (−mR)/2πcgR. The exponential term is the dissipation250

while the second term is due to the geometric scattering. In Fig. 6(b), we observe that251

the dashed line (direct field) and the solid line (actual field including reverberation) well fit252

which confirms the domination of the direct field in the actual field.253

IV. NUMERICAL SIMULATION OF EXCHANGED POWER254

Let us now turn to the verification of the generalized coupling power proportionality (5)255

by a numerical approach.256
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(a)

(b)

FIG. 6. (a) Numerical simulation of vibrational energy distribution (dB) in a rectangular thin

plate highly damped (η = 0.2) with simply supported edges and excited by a wide-band random

force. The cross indicates the force position. (b) Vibrational energy in dB along the radius d2.
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A. Principle of the simulation257

We consider again the three geometries of plates introduced in Section III: the stadium,258

the rectangle, and the disk. But now, the plates are mechanically coupled by a spring259

of stiffness K. Each numerical test case consists in two similar plates among the three260

geometries coupled by the spring whose position may vary to explore zones with different261

levels of vibrational energy. The spring is attached at point r1 on plate 1 and at r2 centre of262

plate 2. Plate 1 is excited at point s always with a random force of power spectral density S0263

constant in the octave band ∆ω. The positions of the point force are the same as in Section264

III. The exact positions r1 of the spring will be specified in each numerical simulation.265

The expectation of vibrational energy density ei(r) in plates 1 and 2 is calculated again by266

Eq. (6). The only difference is concerned with the receptance H which is now the receptance267

of the coupled system. Thus, H(r, s;ω) denotes the deflection at point r (in plate 1 or 2) of268

the coupled system excited at point s (in plate 1).269

The expectation of exchanged power via the spring is P = K < (u2 − u1)u̇1 >= K <270

u2u̇1 >= −K < u̇2u1 > where ui is the deflection of plate i at the coupling point. In terms271

of receptance, this power becomes272

P =
KS0

π

∫

∆ω

Re[iωH(r1, s;ω)H(r2, s;ω)] dω (9)

where Re denotes the real part, the overbar the complex conjugate, and i the imaginary273

unit.274

The numerical simulation is conducted with the same modes of isolated plates calculated275

by MSC/NASTRAN in Section II. But instead of using Eq. (7) to calculateH, the receptance276
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(a)

(b)

(c)

FIG. 7. (a) The stadium-shaped plates, (b) the rectangular plates, and (c) the disk plates coupled

with a spring.

of coupled system is derived from the receptances of uncoupled subsystems by introducing277

the deflections u1, u2 at both ends of the spring as unknown and solving a set of two linear278

equations to determine them (the exact procedure is detailed in Appendix A).279

Once, we have computed the energies e1(r1), e2(r2) and the exchanged power P by the280

above procedure, the coupling coefficient β is estimated by281
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β =
P

e1(r1)A1

n1

− e2(r2)A2

n2

. (10)

In particular, we shall compare the numerical determination of β by Eq. (10) with its282

theoretical value given in Eq. (3).283

B. Test cases284

All numerical simulations of this Section are conducted on plates whose geometrical and285

mechanical parameters are those of Section III. In particular, the frequency of excitation is286

ωc = 2π × 4000 rad/s and the wavelength is 7 cm to be compared with a mean-free-path287

of 42 cm. The number of resonant modes is about 120 per subsystem that is 240 for the288

whole system. The spring stiffness is K = 1.105 N/m. To ensure that the weak coupling289

assumption is satisfied, the coupling loss factor defined as η12 = β/ωcn1 has to be lower than290

the damping loss factor η28. The coupling loss factors η12 = η21 are equal to 3.10−6 which is291

lower than the damping loss factor (2.10−3) and so the coupling is weak enough.292

Four simulations are carried out with the four types of diffuse and non-diffuse fields293

presented in Section III.294

1. Stadium plate295

The numerical simulation with two coupled stadium plates is presented in Fig. 8(a).296

In the inset of Fig. 8(a) the stadium is represented and the four points with an energy297

enhancement of 2 are noted s1 (the source), s2, s3, and s4. Four other points noted 1298
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to 4 are chosen at random inside the zone where the field is diffuse. Fig. 8(a) shows a299

comparison between the exchanged power P determined by Eq. (9) and the difference of300

local energies e1(r1)A1/n1 − e2(r2)A2/n2 where ei is determined by Eq. (6). The bold line301

with the crosses represents the power exchanged between the two plates. The thin line with302

the stars represents the difference of the local energies. Fig. 8(b) presents the relative error303

between β determined by Eq. (3) and by Eq. (10).304

First, the spring is successively attached at the four points 1 to 4 where the vibrational305

field is diffuse. It can be seen in Fig. 8(b) that the ratio of P and e1(r1)A1/n1−e2(r2)A2/n2306

(or difference in log-scale) is almost the same for the four points. Furthermore we see in Fig.307

8(b) that this ratio is close to the theoretical value of β given in Eq. (3).308

Secondly, the spring is successively attached at the four points s1, s2, s3, and s4. The309

exchanged power is increased by a step of 10 log(2) which corresponds exactly to the en-310

hancement factor of 2. Again, the ratio of P and e1(r1)A1/n1 − e2(r2)A2/n2 is close to the311

theoretical β.312

In all cases, the numerical coupling coefficient is found to be in fine agreement with the313

theoretical value. The mean relative error between the numerical and theoretical values is314

28.8 %.315

2. Rectangular plate with light damping316

The numerical simulation with two coupled rectangular plates is presented in Fig. 9(a).317

In the inset of Fig. 9(a) the rectangular plate is represented with the four lines presenting318

an energy enhancement of 3/2. The five points (d1, d2, d3, d4 and d5) are chosen randomly319
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(a)

(b)

FIG. 8. (a) Comparison between the exchanged power and the difference of local energies. The

bold line with the crosses represents the power exchanged between the two plates. The thin line

with the stars represents the difference of the local energies. In the insert: stadium plates excited

with a random white noise at point s1. Points with an energy enhancement equal to 2 are noted

s1, s2, s3, and s4. The spring is successively attached to the points noted s1, s2, s3, s4, 1, 2, 3

and 4. (b) Relative error between the coupling coefficient predicted theoretically with Eq. (3) and

numerically with Eq. (10) for two coupled stadium plates excited by a point force on plate 1.
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on these four lines. The four points of energy enhancement 9/4 (s1, s2, s3, and s4) are320

represented with a cross. Five points noted 1 to 5 are chosen at random inside the zone321

where the field is diffuse. Fig. 9(a) shows a comparison between the exchanged power P322

determined by Eq. (9) and the difference of local energies e1(r1)A1/n1 − e2(r2)A2/n2 where323

ei is determined by Eq. (6). Fig. 9(b) presents the relative error between β determined by324

Eq. (3) and by Eq. (10).325

First, the spring is successively attached at the five points 1 to 5 where the vibrational326

field is diffuse. It can be seen in Fig. 9(a) that the ratio of P and e1(r1)A1/n1−e2(r2)A2/n2327

is almost the same for the five points. Furthermore we see in Fig. 9(b) that this ratio is328

close to the theoretical value of β given in Eq. (3).329

Secondly, the spring is successively attached on a point located on a line (d1, d2, d3, and330

d4). The exchanged power is increased by a step of 10 log(3/2) which corresponds to the331

enhancement factor of 3/2. Once again, the ratio of P and e1(r1)A1/n1 − e2(r2)A2/n2 is332

almost the same for the four points and this ratio is close to the theoretical value of β.333

Thirdly, the spring is successively attached on a point located at the intersection of the334

lines (s1, s2, s3, and s4). The exchanged power is increased by a step of 10 log(9/4) which335

corresponds to the enhancement factor of 9/4. The ratio of the exchanged power P and336

e1(r1)A1/n1 − e2(r2)A2/n2 is almost the same for the four points and this ratio is close to337

the theoretical value of β.338

Whatever the position of the spring attachment, the value of β is found to be in fine339

agreement with the theoretical value. The mean error is 31.02%.340
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(a)

(b)

FIG. 9. (a) Comparison between the exchanged power and the difference of local energies. The

bold line with the crosses represents the power exchanged between the two plates. The thin line

with the stars represents the difference of the local energies. In the insert: Rectangular plate

excited with a random white noise at point s1. Lines with an energy enhancement equal to 3/2 are

represented with lines and the energy enhancement at these lines intersections is 9/4. The spring

is successively attached to the points noted s1, s2, s3, s4,d1, d2, d3, d4, d5, 1, 2, 3, 4 and 5. (b)

Relative error between the coupling coefficient predicted theoretically with Eq. (3) and numerically

with Eq. (10) for two coupled rectangular plates excited by a point force on plate 1.
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3. Circular plate341

The numerical simulation with two coupled circular plates is presented in Fig. 10(a).342

The circular plate is shown in the inset Fig. 10(a). The source is located at point s1.343

The energy enhancement is represented with the dashed circle noted C1. Fig. 10(a) shows a344

comparison between the exchanged power P and the difference of local energies e1(r1)A1/n1−345

e2(r2)A2/n2. Fig. 10(b) shows the relative error between β determined by Eq. (3) and by346

Eq. (10).347

The exchanged power P and the difference of local energies e1(r1)A1/n1 − e2(r2)A2/n2348

are calculated for 108 points along the radius d1. It can be seen in Fig. 10(a) that the energy349

is higher on the circle passing through the excitation point and decreases inside and outside350

of this circle. The ratio of the exchanged power P and the difference of the local energies351

e1(r1)A1/n1− e2(r2)A2/n2 is almost the same for all the points and this ratio is very similar352

to the theoretical value of β.353

The coupling coefficient is found to be in fine agreement with the theoretical value. The354

mean relative error between the numerical and theoretical value of β is 36.8%.355

4. Rectangular plate with high damping356

The numerical simulation with two rectangular plates with high damping is presented357

in Fig. 11(a). The rectangular plate is shown in the inset of Fig. 11(a). Fig. 11(a)358

shows a comparison between the exchanged power P and the difference of local energies359
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(a)

(b)

FIG. 10. (a) Comparison between the exchanged power and the difference of local energies. The

bold line with the crosses represents the power exchanged between the two plates. The thin line

with the stars represents the difference of the local energies. In the insert: Circular plate excited

with a random white noise at point s1 on the plate 1. The circle with an energy enhancement is

noted C1. The spring is successively attached to 108 points along the line d1. (b) Relative error

between the coupling coefficient predicted theoretically with Eq. (3) and numerically with Eq.

(10).
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e1(r1)A1/n1 − e2(r2)A2/n2. Fig. 11(b) presents the relative error between β determined by360

Eqs. (3) and (10).361

The spring is successively attached at the 108 points along the line d1. We see in Fig.362

11(a) that the exchanged power evolves proportionally to the difference of the local energies.363

The difference of local energies and the exchanged power are very high at the vicinity of the364

source point and decrease rapidly. The ratio of P and e1(r1)A1/n1 − e2(r2)A2/n2 is almost365

the same for the 108 points. Furthermore we see in Fig. 11(b) that this ratio is close to the366

theoretical value of β given in Eq. (3). The mean relative error between the numerical and367

the theoretical value of β is 14.06%. This proves that the coupling coefficient is still valid368

with non diffuse field caused by high damping.369

V. MEASUREMENT OF EXCHANGED POWER370

Finally, we present measurements of the power exchanged between two rectangular plates371

coupled with a spring to verify the generalized coupling power proportionality (Eq. 5).372

A. Principle of the experiment373

The experimental set-up is shown in Fig. 12. The plates are suspended from a rigid374

frame with bungee cords attached to the plates by small holes. The two plates are coupled375

with a spring of stiffness K=431 N.m−1 held by magnets. The plates are made of stainless376

steel. The mechanical characteristics of the plates are exactly the same as in Section III377

excepted that the boundary conditions are now free.378
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(a)

(b)

FIG. 11. (a) Comparison between the exchanged power and the difference of local energies. The

bold line with the crosses represents the power exchanged between the two plates. The thin line

with the stars represents the difference of the local energies. In the insert: Rectangular plates with

high damping excited with a random white noise at point s1. The spring is successively attached

to 108 points along the line d1. (b) Relative error between the coupling coefficient predicted

theoretically with Eq. (3) and numerically with Eq. (10).

30



JASA/Sample JASA Article

The excitation signal is a white noise with a cut-off frequency of 7 MHz generated via a379

Agilent 33210A signal generator. The signal is then filtered with an SR650 bandpass filter380

between 10 Hz and 8 kHz and amplified by a Brüel & Kjaer power amplifier type 2718. This381

filtered signal drives a shaker Brüel & Kjaer type 4810 which applies a transverse force to382

plate 1.383

Two accelerometers PCB 352C67 are attached with wax to the two plates at the position384

of the spring attachment but on the opposite side. These accelerometers have a sensitivity of385

100 mV/g and allow measurements from 0.5 Hz to 10 kHz. The mass of these accelerometers386

is 2 g which is negligible compared to the mass of the plate which is 2 kg. To measure387

the force injected into the system, a Brüel & Kjaer impedance head type 8001 is screwed388

on the shaker. The impedance head is connected to a Brüel & Kjaer type 2635 charge389

amplifier. The data acquisition is done with a National Instruments NI 9234 acquisition390

board with a sampling frequency of 12.8 kHz per channel. The averaging is performed with391

20 measurements with an overlap factor of 25 % representing an acquisition time of 25.6 s.392

A Hamming window is applied to each measurement. With the software M+P Analyzer, the393

time signal is processed and the frequency response function is obtained with the estimator394

H2.395

To ensure that the energy is transmitted only through the coupling spring and not through396

the frame, the spring is first disconnected plate 1 being always excited. The energy of plate397

2 without the coupling is found 35 dB less than with the coupling. This gives the part of398

energy transmitted through the frame or the air.399
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FIG. 12. Experimental set-up. Both plate 1 and 2 are coupled with a spring. The shaker excites

plate 1 through the stinger, which is bonded to the plate. The force injected is measured with

a force transducer. The acceleration of both plates is measured at the coupling point with the

accelerometers.

B. Measurement protocol400

The different steps performed to measure the plate energy, the power exchanged and the401

coupling coefficient are the followings. The excitation is located at point s0 (x= 0.12 m;402
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y=0.2 m). The origin of the reference frame is the centre of the plate. The coordinates403

of the different measurements and coupling points are presented in Table II. s1 and s2 are404

points with an energy enhancement equal to 9/4, d1, d2 and d3 are points with an energy405

enhancement of 3/2.406

TABLE II. Attachment points of spring on plate 1 (m).

s1 s2 d1 d2 d3 1 2 3

(0.1; 0,5) (0.1; 0.1) (0.1; 0.35) (0.22; 0.5) (0.1; 0.25) (0.25; 0.35) (0.2; 0.25) (0.25; 0.2)

For each attachment point of the spring, the measurements are performed five times and407

the average is calculated. Between each measurement the two accelerometers are taken off408

and then put back at the same point. A slight variation in measurement is observed due409

to the thickness of the wax and the slight variation in the measurement position. In order410

to quantify this uncertainty, 100 measurements are made for measurement point 1 and the411

standard deviation is calculated and is equal to 0.71 dB.412

From accelerometers measurements, the local energy at the coupling points eexp1 and the413

exchanged power P exp are calculated. Finally the coupling coefficient is calculated with414

βexp =
P exp

eexp1 (r1)A1/n1 − eexp2 (r2)A2/n2

. (11)

with Ai the surface of the plate and ni the modal densities of the plate i determined numer-415

ically.416
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C. Results417

The experimental results with two coupled rectangular plates are shown in Fig. 13(a).418

Fig. 13(a) shows the difference in local energies at the coupling point eexp1 (r1)A1/n1 −419

eexp2 (r2)A2/n2 and the exchanged power P exp. Looking at Fig. 13(a), we see that the lines420

and the points with energy enhancement appear well because the energy on the lines (di)421

and on the points (si) is higher than the energy on the rest of the plate. These experimental422

enhancement factors are very close to the theoretical values. Moreover, the exchanged power423

evolves in a proportional way to the difference of the local energies.424

Fig. 13(b) presents the relative error between the experimental coupling coefficient and425

the coupling coefficient β given in Eq. (3). The two values agree well and the average error426

is equal to 25.2%. This validates experimentally for this case the proposed Eq. (5) in cases427

of inhomogeneous vibrational fields.428

VI. THERMODYNAMIC INTERPRETATION429

In statistical energy analysis, we use the modal energy E/N where N = n∆ω is the430

number of resonant modes in the frequency band ∆ω and E the total vibrational energy431

of the subsystem. The subsystem is assumed to be in equilibrium in the sense that the432

energy E is equally shared between a large number of modes N . In thermodynamics, the433

temperature is defined for a system at equilibrium (all points of the system have the same434

energy) as the total energy divided by the number of molecules (or atoms or degrees of435
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(a)

(b)

FIG. 13. (a) Comparison between the exchanged powers and the difference of the local energies

obtained experimentally. (b) Relative error between the theoretical (βth) and the experimental

(βexp) coupling coefficient.

freedom). It is rather common in SEA literature35 to define the vibrational temperature as436

T =
E

kBN
(12)

where kB is Boltzmann’s constant. But, E = eA where e is the energy density and A the437

system area, andN = Aω∆ω/2πcpcg with cp and cg the group and phase velocities. The ratio438
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E/N no longer depends on the area and is therefore a local quantity. It may be interpreted439

as the local vibrational temperature. When the system is no longer in equilibrium (or when440

the vibrational field is no longer diffuse), Eq. (5) reads441

P = βkB∆ω(T1 − T2). (13)

where now T1 and T2 are the local vibrational temperatures at the exchange point. It is now442

apparent that Eq. (13) states that the power transmitted from subsystem 1 to subsystem 2 is443

proportional to the difference of local temperatures similarly to the thermal conduction. The444

coupling power proportionality is similar to Clausius’ principle which states that thermal445

energy always flows from high temperature to low temperature.446

VII. CONCLUSION447

In this paper, we have highlighted that the requirement of diffuse field in statistical energy448

analysis may be by-passed provided that the local energies are known at the coupling points.449

The key result is that a local form of the coupling power proportionality turns out to remain450

valid even at points where the local energy is not equal to the spatial average of energy.451

In order to reach this result, four different systems have been studied with mainly three452

causes of non-diffuseness. First, spatial symmetries induce energy enhancement by coherence453

of rays at some particular lines or points (lightly damped rectangular plate or stadium).454

Second, non-ergodicity may induce a heterogeneity of field due to the presence of caustics455

(circular plate). Third, high damping frustrates the homogeneity of field by imposing a456

domination of the direct field (higly damped rectangular plate).457
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Of course, this result does not presume the way by which the information of local energy458

is obtained. Within the framework of a strict application of statistical energy analysis, this459

seems to be out of range. However, direct measurements of local energy or application of460

theoretical enhancement factors can offer insights to improve the predictability of statistical461

energy analysis. In all other cases, it might also be possible to implement more advanced462

theories such as ray-tracing or geometrical theory of diffraction for predicting interference463

effects, dynamical energy analysis or radiative energy transfer to account for non homo-464

geneity in wave propagation, statistical modal energy distribution analysis for non uniform465

modal distribution, or even any other theory capable of delivering an information on the466

distribution of vibrational energy.467

APPENDIX A: CALCULATION OF RECEPTANCE468

The calculation of the receptance H of the coupled plates used in equations (6) and (9)469

is presented in this Appendix.470

The coupling spring of stiffness K is attached at points r1 on plate 1 and r2 on plate 2.471

A unit harmonic force exp (iωt) is applied to plate 1 at s as shown in Fig. 1. We denote by472

H(r, s;ω) the receptance of the coupled plates with a receiver at r in plate 1 or 2 and a unit473

harmonic force at point s in plate 1. We also denote by Hi(r, s;ω) the receptance of plate i474

isolated from the other plate.475

Plate 1 is submitted to two forces: the external force F = 1 applied at s and the force476

K(u2(r2)− u1(r1)) exerted by the spring at r1. The receptance H at any receiver r in plate477
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1 is therefore478

H(r, s;ω) = H1(r, s;ω) +K(u2(r2)− u1(r1))H1(r, r1;ω); (A1)

Plate 2 is excited by only one force, the spring reaction at point r2. The receptance H at479

any receiver in plate 2 is therefore480

H(r, s;ω) = −K(u2(r2)− u1(r1))H2(r, r2;ω) (A2)

But the receptance H at r1 is the deflection u1(r1) and at r2 the deflection u2(r2).481

Substituting r = r1 in equation (A1) and r = r2 in equation (A2) gives482

u1(r1) = H1(r1, s;ω) +K(u2(r2)− u1(r1))H1(r1, r1;ω);

u2(r2) = −K(u2(r2)− u1(r1))H2(r2, r2;ω)

(A3)

This gives a set of two linear equations on the unknowns u1(r1) and u2(r2). Then, the483

receptance H is obtained with equations (A1) and (A2).484
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