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Starting from coupled fluid-kinetic equations for the modeling of laden flows, we derive relevant viscous corrections to be added to asymptotic hydrodynamic systems, by means of Chapman-Enskog expansions and analyse the shock profile structure for such limiting systems. Our main findings can be summarized as follows. Firstly, we consider simplified models, which are intended to reproduce the main difficulties and features of more intricate systems. However, while they are more easily accessible to analysis, such toy-models should be considered with caution since they might lose many important structural properties of the more realistic systems. Secondly, shock profiles can be identified also in such a case, which can be proven to be stable at least in the regime of small amplitude shocks. Last, but not least, regarding at the temperature of the mixture flow as a parameter of the problem, we show that the zero-temperature model admits viscous shock profiles. Numerical results indicate that a similar conclusion should apply in the regime of small positive temperatures.

A particle-laden flow is a class of two-phase fluid flow composed of a carrier phase, the surrounding continuous medium, and a disperse phase, constituted of small, immiscible and dilute particles. Such flows occur in many natural phenomena and industrial processes: snow and rock avalanches [START_REF] Bouchut | A two-phase shallow debris flow model with energy balance[END_REF][START_REF] Mangeney | Analytical and numerical solution of the dam-break problem for application to water floods, debris and dense snow avalanches[END_REF], desert sandstorms, dispersions of pollutants, pollen and allergens in air [START_REF] Morawska | Environmental aerosol physics[END_REF], aerosols in respiratory flows [START_REF] Baranger | A modeling of biospray for the upper airways[END_REF][START_REF] Boudin | Modelling and numerics for respiratory aerosols[END_REF], fluidised beds [START_REF] Harris | Solitons, solitary waves, and voidage disturbances in gasfluidized beds[END_REF], fuel injector, chemical reactors, internal combustion engines [START_REF] Amsden | KIVA: A computer program for two-and three-dimensional fluid flows with chemical reactions and fuel sprays[END_REF][START_REF] Hylkema | Modélisation cinétique et simulation numérique d'un brouillard dense de gouttelettes[END_REF][START_REF] Williams | Combustion theory[END_REF], just to name a few.

The broad variety of applications, and the wide range of scales involved in these situations, make it difficult to develop a unified framework. Two main viewpoints have been adopted to model such flows. The so-called Eulerian approach considers all phases as a continuum so that one is led to hydrodynamic systems for the densities and velocities (at least) of the disperse phase and the carrier phase [START_REF] Batchelor | A new theory of the instability of a uniform fluidized bed[END_REF][START_REF] Gidaspow | Hydrodynamics of fluidization and heat transfer: supercomputer modeling[END_REF][START_REF] Ishii | One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes[END_REF]. In contrast, the Lagrangian approach describes the particles by means of their distribution function in phase space, the evolution of which is coupled to a hydrodynamic model, based on either Euler or Navier-Stokes equations, for the carrier fluid. This defines a fluid-kinetic framework for describing the laden flow under consideration [START_REF] O'rourke | Collective drop effects on vaporizing liquid sprays[END_REF][START_REF] Patankar | Modeling and numerical simulation of particulate flows by the Eulerian-Lagrangian approach[END_REF]. In both cases, the coupling is mainly achieved through the drag forces exerted by a phase on the other, which induces momentum exchanges between the two phases. A valuable approach consists in bringing out connections between these different settings, following the derivation of fluid equations from the kinetic equations of gas dynamics [START_REF] Raymond | Hydrodynamic limits of the Boltzmann equation[END_REF]: several asymptotic regimes have been identified and investigated, both on theoretical and numerical grounds [START_REF] Domelevo | A hierarchy of models for turbulent dispersed two-phase flows derived from a kinetic equation for the joint particle-gas pdf[END_REF][START_REF] Goudon | Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime[END_REF][START_REF]Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II. Fine particles regime[END_REF][START_REF] Hamdache | Global existence and large time behaviour of solutions for the Vlasov-Stokes equations[END_REF][START_REF] Höfer | The inertialess limit of particle sedimentation modeled by the Vlasov-Stokes equations[END_REF][START_REF] Jabin | Large time concentrations for solutions to kinetic equations with energy dissipation[END_REF][START_REF]Macroscopic limit of Vlasov type equations with friction[END_REF]. The present work is a contribution in this direction.

As stated above, an alternative to the continuum approach describes the disperse phase by means of a Fokker-Planck equation for the dimensionless particle distribution function

f ǫ : pt, x, vq Þ Ñ f ǫ pt, x, vq, that is 1 T ref B t f ǫ `Vref v L ref B x f ǫ " 1 T S V ref B v " V ref pv ´uǫ qf ǫ `V 2 th V ref B v f ǫ * ,
where 

'
c κ B Θ m ,
where a and m are the radius and mass of the particles, µ and Θ are the dynamic viscosity and temperature of the surrounding fluid, and κ B is the Boltzmann constant.

In the following, we concentrate on the flowing regime where T S " ǫ T ref and V ref " V th ? θ. The parameters ǫ and θ are the reminders of the process of making the equation dimensionless. Moreover, we focus on the regime ǫ small, viz. 0 ă ǫ ! 1. We refer the reader to [START_REF] Carrillo | Stability and asymptotic analysis of a fluid-particle interaction model[END_REF][START_REF] Carrillo | Simulation of fluid and particles flows: asymptotic preserving schemes for bubbling and flowing regimes[END_REF] for further details on this scaling.

The resulting equation for the unknown f ǫ , describing the particle distribution in the phase space, is (1.1)

B t f ǫ `vB x f ǫ " 1 ǫ L uǫ pf ǫ q ,
with the Fokker-Planck operator L u defined by (1.2) L u pf q :" B v pv ´uqf `θB v f ( Since u ǫ represents the velocity of the surrounding medium, the term B v tpv ´uǫ qf ǫ u describes the drag force exerted on the particles by the fluid, assumed to be proportional to the relative velocity between the two species. Taking the zero-th and first order moments over the velocity variable gives the apparent mass density of particles ρ ǫ and momentum of the disperse phase J ǫ , where ρ ǫ pt, xq :" ˆfǫ pt, x, vq dv, J ǫ pt, xq :" ˆvf ǫ pt, x, vq dv.

Equation (1.1) is coupled to a balance law for the momentum of the carrier phase

(1.3) B t pn ǫ u ǫ q `Bx n ǫ u 2 ǫ `ppn ǫ q ( " 1 ǫ pJ ǫ ´ρǫ u ǫ q,
where n ǫ and u ǫ are, respectively, the mass density and the velocity field of the fluid. We assume n ǫ is already dimensionless with respect to a reference density n ref and also make ρ ǫ dimensionless with respect to n ref .

In the same way, p, that describes the pressure of the carrier phase, is already supposed dimensionless being defined by ppnq :"

ppn ref nq n ref V 2 ref ,
where p is the dimensionalized pressure. The right-hand side in (1.3) accounts for the back-friction force exerted by the particles on the fluid. Some hypotheses are required on the function n Þ Ñ ppnq. Precisely, we assume that p P C 2 is a strictly increasing, convex and coercive function, i.e.

(1.4) p 1 , p 2 ą 0 in p0, 8q and lim nÑ`8 ppnq n " `8.

Since the pressure is determined up to an additive constant, we assume the additional condition pp0q " 0. Moreover, we focus on the case p 1 p0q " 0, a relevant case being the standard pure power form, usually referred to as γ-law,

(1.5) ppnq :" Cn γ with C ą 0, γ ą 1.

As ǫ Ñ 0 in ( ˙.

Since θB v M u " ´pv ´uqM u , the Fokker-Planck operator L u can be rewritten as

(1.8) L u pf q " θB v M u B v pM ´1 u f q ( ,
showing, in particular, that L u vanishes when computed at v Þ Ñ f pvq " ρM u pvq. As a consequence, we expect that the dynamics can be described by means of macroscopic quantities in such a regime. Indeed, integrating (1.1) with respect to velocity yields

B t ρ ǫ `Bx J ǫ " 0.
Next, we add the equation for the first order moment to (1.3) in order to get rid of the singular term by using the identity ˆv B v L uǫ pf ǫ q dv " ´ˆ pv ´uǫ qf ǫ `θB v f ǫ ( dv " ´Jǫ `ρǫ u ǫ .

Hence, we end up with

B t pJ ǫ `nǫ u ǫ q `Bx "ˆv 2 f dv `nǫ u 2 ǫ `ppn ǫ q * " 0.
Going back to the ansatz (1.6), we infer (1.9)

J ǫ » ρ ǫ u ǫ , ˆv2 f ǫ dv » ρ ǫ u 2 ǫ `θρ ǫ ,
and, dropping the dependence with respect to ǫ, we get the first order system (1.10)

" B t ρ `Bx pρuq " 0, B t pruq `Bx tru 2 `ppnq `θρu " 0.
where r :" ρ `n is called hybrid density, being the sum of the densities of the disperse and the carrier phases, denoted by ρ and n, respectively. From the modeling viewpoint, in some circumstances, it might be questionable to consider the diffusion with respect to the velocity variable as a stiff term in equation (1.1). Thus, it is equally relevant to consider the situation where θ " 0, which means that the Brownian velocity fluctuations are negligible. This situation is much more difficult for the analysis, since the formal ansatz becomes singular. Namely, as ǫ Ñ 0, denoting by δ v"u the Dirac delta centered at u, we formally infer

f ǫ pt, x, vq » ρ ǫ pt, xq δ v"uǫpt,xq
which leads to (1.9) with θ " 0. This approximation is often used in the modeling of laden flows, but depending on the considered coupling or asymptotic regime, this pressureless regime might lead to difficulties, both for the analysis [START_REF] Höfer | The inertialess limit of particle sedimentation modeled by the Vlasov-Stokes equations[END_REF][START_REF] Jabin | Large time concentrations for solutions to kinetic equations with energy dissipation[END_REF][START_REF]Macroscopic limit of Vlasov type equations with friction[END_REF] and for numerics, and possibly to physically irrelevant results [START_REF] Hank | A hyperbolic Eulerian model for dilute two-phase suspensions[END_REF]. Nevertheless, in this paper, we also consider the system (1.10) with θ " 0, regarded as a (formal) limiting regime.

Still inspired by the kinetic theory of gases, our objectives are the following. First, we formally derive diffusive corrections to system (1.10) coupled with (1.3), in the same spirit as the Chapman-Enskog procedure leads to the Navier-Stokes equations, keeping track of the Opǫq-viscosity terms. Second, we investigate the structure of viscous shock profiles for the obtained systems. Namely, following the pioneering work [START_REF] Gilbarg | The existence and limit behavior of the one-dimensional shock layer[END_REF], we wish to identify solutions of the diffusive equations with the form pρ, n, uqpt, xq " Wpyq where y :" x ´ct, for some given profile W with prescribed far-end states, that correspond to "admissible" discontinuous solutions of the diffusion-less system.

As a warm-up, we start with the case where (1.3) reduces to the mere Burgers equation: namely in (1.3), we (brutally) set n ǫ " 1. Hence, we firstly approach system (1.1)-(1.3) with the inviscid Burgers fluid-particle system, given by (iB)

B t ˆρ ru ˙`B x ˆρu ru 2 `θρ ˙" 0,
recalling that r " 1 `ρ, and its corresponding viscous correction, referred to as the viscous Burgers fluid-particle system, whose explicit form is

(vB) B t ˆρ ru ˙`B x ˆρu ru 2 `θρ ˙" ǫB x ˆDpρ, ruqB x ˆρ ru ˙˙,
where

(1.11) Dpρ, ruq " ρu r 3 ˆu ´1 0 0 ˙`θ r ˆ1{r 0 ´ρu ρ
(the formal derivation of the correction terms of order ǫ will be detailed later on). Even if both (iB) and (vB) possess an entropy ζ, defined by ζpρ, ruq :" 1 2 ru 2 `θρ ln ρ, such toy models are not fully physically meaningful, the main criticism being that they are not invariant under Galilean transformations. Nevertheless, they are considered here because they are amenable to detailed computations, which we consider illuminating. Next, we move to the coupling with the Euler equations, where the density of the carrier fluid is driven by the additional conservation law B t n ǫ `Bx pn ǫ u ǫ q " 0. In general, for both (vB) and (vE), the existence of an entropy ζ plays a pivotal role; specifically, it will be crucial to establish existence (and stability) of viscous shock profiles. The paper is organized as follows. Section 2 collects some useful notions and basic facts on general hyperbolic-parabolic systems. It can be safely skipped by the reader familiar with these topics. In Section 3, we consider the model (vB), establishing the existence of viscous profile for weak shocks with positive temperatures. Subsequently, in Section 4, we turn to analyze system (vE) where the diffusion correction term is degenerate. Nevertheless, we are still able to provide a rigorous proof for the existence of weak shock profiles, whose stability can be established by appealing to general results for small-amplitude profiles of hyperbolic-parabolic systems. We also investigate the case where θ " 0, which induces new degeneracies; in particular, the entropy of the system is not strictly convex. Finally, Section 5 is devoted to further studying the model (vE) starting from the basic observation that a more complete result can be obtained for the temperature-less system, proceeding by direct inspection of the corresponding ODE. Expressing the ODE in reduced variables allows us to show that there are in fact two parameters of interest. This leads to showing the existence of a shock profile, which is illustrated numerically. In the temperature case, the differential system is also expressed in these reduced variables and solved numerically for small temperatures. Finally, the numerical profile is compared to its temperature-less counterpart.

General properties of conservation laws

Let us collect here a series of definitions and basic statements that will be used throughout the paper. For further details, we refer the reader to the classical textbooks [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][START_REF] Smoller | Grundlehren der mathematischen Wissenschaften[END_REF]. Let M m pRq be the space of m ˆm matrices with real entries. Then, given functions F : R m Ñ R m and D : R m Ñ M m , we consider the system of conservation laws for the unknown function

W : r0, 8q ˆR Ñ R m (2.1) B t W `Bx F pW q " ǫB x tDpW qB x W u t ě 0, x P R,
for some ǫ ą 0 under the assumption that the formal limiting system ǫ Ñ 0

(2.2) B t W `Bx F pW q " 0 t ě 0, x P R,
is strictly hyperbolic, i.e. the Jacobian dF has real distinct eigenvalues for any W under consideration.

Definition 2.1. Let A, B P M n two matrices with B invertible. A (column) vector r 0 is said to be a right eigenvector of A with respect to B relative to the eigenvalue λ if there holds pA ´λBq r " 0. A left (row) eigenvector ℓ 0 of A with respect to B relative to the eigenvalue λ is defined as ℓ pA ´λBq " 0.

For shortness, we use the shortened names right/left eigenvector of A with respect to B whenever the eigenvalue λ is clear from the context.

To start with, we state and prove a straightforward Lemma showing that the directional derivatives of the eigenvalues of dF with respect to the corresponding right eigenvectors are invariant under diffeomorphisms. Lemma 2.2. Let F , G, H : R m Ñ R m be three differentiable functions such that dG is invertible and F " H ˝G´1 . Let λ be an eigenvalue of dF pW q, or, equivalently, an eigenvalue of dHpU q with respect to dGpU q, where W " GpU q. Let r be a right eigenvector of dF with respect to I. Then s " dGpU q ´1r is a right eigenvector of dH with respect to dG, also for the eigenvalue λ. Moreover, the scalar products ∇ W λ ¨r and ∇ U µ ¨s, where µpU q " λpGpU qq, coincide.

Proof. Let HpU q :" F ˝GpU q " F pW q. The statement is a consequence of the chain rule which leads to the identities dF pW q " dHpG ´1pW qq dpG ´1qpW q, dpG ´1qpW q " `dGpU q ˘´1 , with the former recast simply as dF pW q " dHpU q dGpU q ´1. For pλ, rq a left eigenpair of the matrix dF , we obtain 0 " `dF pW q ´λI ˘r " `dHpU qdGpU q ´1 ´λI ˘r " `dHpU q ´λdGpU q ˘s with s :" dGpU q ´1r. Similarly, if ℓ is a left eigenvector of dF pW q, we get 0 " ℓ `dF pW q ´λI ˘" ℓ `dHpU q ´λdGpU q ˘dGpU q ´1.

Thus, we infer that ℓ is a left eigenvector of dH with respect to dG. Next, we compute the gradient of the eigenvalue λpW q " λpGpU qq " µpU q with respect to the variables W (conservative) and U (non conservative) obtaining ∇ U µpU q " dGpU q ⊺ ∇ W λpGpU qq .

Hence, there holds ∇ W λpW q ¨r " ∇ U µpU q ¨dGpU q ´1r " ∇ U µpU q ¨s, which concludes the proof.

The condition ∇ W λ ¨r 0 characterizes genuinely nonlinear fields. It plays the same role as strict convexity for scalar conservation laws, see [START_REF] Smoller | Grundlehren der mathematischen Wissenschaften[END_REF]. Oppositely, linearly degenerate fields, defined as the ones for which ∇ W λ ¨r " 0 holds, correspond to linear transport equations with a pure motion of the initial datum without gain and loss of regularity. In particular, asymptotically stable shock solutions cannot be expected to appear into play.

2.1. Shock wave solutions. In the limiting regime ǫ " 0, we are specifically interested in discontinuous solutions that reach a specific state W ˚, which are required to satisfy the classical Rankine-Hugoniot conditions [START_REF] Hugoniot | Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits, I[END_REF][START_REF]Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits, II[END_REF][START_REF] Rankine | On the thermodynamic theory of waves of finite longitudinal disturbance[END_REF] (2. The above criterion is crucial because it can be used to select relevant solutions among all weak discontinuous solutions of the equation. We refer the reader to [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] for motivations and technical details about the conditions, which date back to [START_REF] Liu | The entropy condition and the admissibility of shocks[END_REF].

Stability concepts.

Next, let us switch on the diffusive term in system (2.1) by considering the case ǫ ą 0. As a starting point, we consider the initial value problem for the linearized system at the state W ˚, namely (2.5)

B t W ǫ `AB x W ǫ " ǫDB 2 x W ǫ , W ǫ p0, ¨q " W ǫ,0 p¨q ,
where A :" dF pW ˚q and D :" DpW ˚q. System (2.5) has constant coefficients and, consequently, it can be scrutinized by means of standard Fourier analysis, analysing the corresponding symbol P ǫ ˚pξq :" iξA `ǫ ξ 2 D. As it is well-known, the Fourier transform Ŵǫ of W ǫ solves B t Ŵǫ " ´P ǫ ˚pξq Ŵǫ with initial condition Ŵǫ p0q " Ŵǫ,0 , whose solution Ŵǫ " Ŵǫ pt; ξq is formally given by the operator t Þ Ñ expt´tP ǫ ˚pξqu Ŵǫ,0 .

In [START_REF] Majda | Stable viscosity matrices for systems of conservation laws[END_REF][START_REF] Pego | Stable viscosities and shock profiles for systems of conservation lawss[END_REF] different stability notions have been introduced, which turn out to be crucial for the existence of shock profiles. Definition 2.3. The linear system (2.5) is uniformly stable at W ˚with respect to ǫ, or simply stable at W ˚, if for any T ą 0 there exists C T ą 0, independent of ǫ, such that

sup " }W ǫ pt, ¨q} L 2 }W ǫ,0 } L 2 : 0 ă ǫ ă 1, t P r0, T s * ď C T .
for some initial datum W ǫ,0 with non-zero L 2 -norm. The set of stable linear systems (2.5) is denoted by S. The interior of such set is composed by strictly stable systems.

Stability of (2.5) can be rephrased by means of a property on the matrices A and D. Namely, according to [START_REF] Pego | Stable viscosities and shock profiles for systems of conservation lawss[END_REF], one has to check that the matrix D is uniformly stable with respect to A, meaning that for each T ą 0 there exists a constant C T such that (2.6) sup }expt´tP ǫ ˚pξqu} Mm : 0 ă ǫ ă 1, t P r0, T s, ξ P R

( ď C T ,
where } ¨}LpL 2 q denotes the operator norm from L 2 to L 2 . The latter is also equivalent to the existence of a universal constant C ą 0 such that sup tě0, ζPR

› › expt´tP 1 ˚pζ qu › › Mm ď C .
In [30, Theorem 2.1] a list of properties equivalent to strict stability is given. Among them, we recall the following one for readers' convenience.

Theorem 2.4. The linear system (2.5) is strictly stable if and only if there exists δ ą 0 such that the eigenvalues λ j pξq of the symbol P ǫ ˚pξq satisfy the condition Re λ j pξq ď ´δ|ξ| 2 for any ξ P R.

The above result induces a necessary and sufficient condition for strict stability which is more manageable with respect to the original (and more abstract) definition.

Entropy in the general setting.

A pivotal role is played by the notion of entropy, which provides very strong structural consequences on the underlying PDE system. Definition 2.5. Let U Ă R m be a neighborhood of some reference point W ˚. The C 2 functions ζ : U Ñ R and q : U Ñ R with ∇q ⊺ " ∇ζ ⊺ dF form an entropy/entropy flux pair for system (2.1) if, for any W P U, Incidentally, let us note that a necessary condition for the existence of a function q such that ∇q ⊺ " ∇ζ ⊺ dF is that the derivative of ∇ζ ⊺ dF is symmetric. In coordinates, this amounts to require

p d 2 qq ij " B j ´ÿ k B k ζ k B i F k ¯" ÿ k B k ζ k B 2 ji F k `ÿ k B 2 jk ζ k B i F k .
Hence, d 2 F k being symmetric, this is equivalent to requesting that d 2 ζ dF is symmetric.

Proposition 2.6. Assume system (2.1) admits a strictly convex entropy ζ. Then, the entropy variable U :" ∇ζpW q satisfies (2.7) B t GpU q `Bx HpU q " ǫB x tBpU qB x U u where W " GpU q, dG is symmetric positive definite, dH is symmetric, B is symmetric.

Proof. The change of coordinates W Ñ U " ∇ζpW q is globally invertible, since its Jacobian d 2 ζ is symmetric and positive definite. In turn, system (2.1) can be cast under the form (2.7), with dGpU q " pd 2 ζpW qq ´1 symmetric positive definite, since the entropy is strictly convex, where HpU q " pF ˝Gq pU q and BpU q " pD ˝Gq pU q dGpU q " DpW qpd 2 ζpW qq ´1. The symmetry of dH " dF pd 2 ζq ´1, and B follow from the symmetry of d 2 ζ dH and d 2 ζ D.

In addition, following [30, Corollary 2.2], it can be proved that a sufficient condition for strict stability at W ˚is the existence of a positive definite symmetric matrix X so that XA is symmetric and XD is positive definite (not necessarily symmetric). Later on, the matrix X will be chosen equal to the hessian d 2 ζ of the entropy ζ, i.e. X " d 2 ζ.

Energy estimates and viscous dissipation.

The existence of an entropy is crucial to develop some basic energy estimates holding for (2.1). For the sake of simplicity, let us explain the role of entropy by considering the linearized equations in (2.5).

Preliminarily, let us recall a standard property. Decomposing a (constant) matrix A as the sum of its symmetric and skew-symmetric parts A " A sym `Askew where A sym :" 1 2 pA `A⊺ q and A skew :" 1 2 pA ´A⊺ q, there holds

(2.8) ˆR W ¨pAB x W q dx " ˆR W ¨pA skew B x W q dx.
for any real-valued smooth function W such that W p˘8q " 0, Indeed for symmetric matrices S, there holds

ˆR W ¨pSB x W q dx " ˆR pS ⊺ W q ¨Bx W dx " ˆR pSW q ¨Bx W dx " ´ˆR pSB x W q ¨W dx so that (2.8) is zero for A symmetric, i.e. if A " A sym .
Such property suggests the following preliminary definition.

Definition 2.7. System (2.1) is said to be parabolic at W ˚if the (real) eigenvalues of the symmetric matrix D sym :" 1 2 pD `D⊺ q lie in p0, `8q. In such a case, assuming appropriate boundary conditions at 8 on W ǫ , it is possible to deduce an energy estimate for (2.5). Precisely, multiplying by W ǫ and integrating with respect to the space variable x, we end up with (after an additional integration by parts)

d dt ˆ1 2 }W ǫ pt, ¨q} 2 L 2 ˙`ǫ ˆR B x W ǫ ¨D B x W ǫ dx " ´ˆR W ǫ ¨pAB x W ǫ q dx which, taking into account (2.8), reduces to d dt ˆ1 2 }W ǫ pt, ¨q} 2 L 2 ˙`ǫ ˆR B x W ǫ ¨Dsym B x W ǫ dx " ´ˆR W ǫ ¨Askew B x W ǫ dx.
For any M ą 0, the above equality provides the estimate

d dt `1 2 }W ǫ pt, ¨q} 2 L 2 ˘`ǫ ˆR B x W ǫ ¨Dsym B x W ǫ dx ď C A }W ǫ pt, ¨q} L 2 }B x W ǫ pt, ¨q} L 2 ď 1 2 C A M 2 }W ǫ pt, ¨q} 2 L 2 `1 2 C A M ´2}B x W ǫ pt, ¨q} 2 L 2 ,
with C A depending only on A skew . In particular, if A is symmetric, then C A " 0 and parabolicity implies uniform stability.

In the general case, if system (2.1) is parabolic, denoting by λ 1 ą 0 the minimal eigenvalue of D sym , we have

B x W ǫ ¨Dsym B x W ǫ ě λ 1 }B x W ǫ } 2 , such that d dt }W ǫ pt, ¨q} 2 L 2 `2 `ǫλ 1 ´1 2 C A M ´2˘} B x W ǫ pt, ¨q} 2 L 2 ď C A M 2 }W ǫ pt, ¨q} 2 L 2 .
Then, choosing M 2 " C A {p2ǫλ 1 q, we infer the estimate

d dt }W ǫ pt, ¨q} 2 L 2 ď C 2 A 2ǫλ 1 }W ǫ pt, ¨q} 2 L 2 .
Hence, by a straightforward application of Grönwall's Lemma, we infer the bound

}W ǫ pt, ¨q} L 2 ď C ǫ,T }W ǫ p0, ¨q} L 2 where C ǫ,T " exp tC 2 A T {p4ǫλ 1 qu tends to `8 as ǫ Ñ 0 `if C A ą 0.
Hence, it is transparent that such bounds do not provide any information relative to the (eventual) uniform stability of system (2.5). In fact, some choices of (non-symmetric) A lead to the non uniform stability of (2.5).

Differently, let us explore the case in which there exists a symmetric positive definite matrix X such that XA is symmetric and pXDq sym is positive definite. Then, multiplying the linear system in (2.5) by X, we obtain the modified system (2.9)

X B t W ǫ `XAB x W ǫ " ǫXDB 2 x W ǫ .
Next, let us proceed as before: multiplying by W ǫ and integrating over R,

d dt }X 1{2 W ǫ pt, ¨q} 2 L 2 `2ǫ ˆR B x W ǫ ¨pXDq sym B x W ǫ dx ď 0
having used the identity (2.8) to the symmetric matrix XA which provides a corresponding starting energy estimates for }X 1{2 W ǫ } L 2 which is also uniform with respect to ǫ. Uniform stability is thus guaranteed under the assumption of the existence of a symmetrizer X with the properties described above.

When the system of conservation laws (2.1) possesses an entropy ζ, it can be proved that d 2 ζ is indeed a symmetrizer for (2.1) and, thus, plays the role of X previously used to deduce an energy estimate uniform in ǫ. Entropy and its compatibility with the diffusion matrix thus allow us to derive stability estimates that are stronger than the ones obtained by using the parabolicity of the matrix D. This issue will be further illustrated later on.

If the matrix pXDq sym is only positive semi-definite, additional assumptions are required. Among others, a well-established approach posits that the celebrated Kawashima-Shizuta condition holds, consisting in the request that the linear equation in (2.5) is such that no eigenvectors of A are in the kernel of D (see [START_REF] Kawashima | Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics[END_REF][START_REF] Shizuta | Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation[END_REF]). Difficulties relative to the case in which the above condition is not satisfied are explored in details in [START_REF] Beauchard | Large time asymptotics for partially dissipative hyperbolic systems[END_REF][START_REF] Mascia | On relaxation hyperbolic systems violating the shizuta-kawashima condition[END_REF].

Flowing regime for the Burgers fluid-particle system

Let us assume that the carrier fluid is incompressible in the sense that n ǫ " 1 in p0, 8qR , so that the dimensionless hybrid density of the mixture becomes r " 1`ρ. Incidentally, let us observe that this is not the standard incompressibility assumption required in fluiddynamics giving rise to Euler and Navier-Stokes equations for incompressible media. Indeed, assuming that the carrier fluid keeps a constant homogeneous density is a quite crude assumption. Even if controversial in principle, it makes some computations easier and more explicit, allowing to bring out interesting structural properties of the model. It is worth pointing out the analysis of traveling wave solutions and their stability has been already performed in [START_REF] Domelevo | Existence and stability of travelling wave solutions in a kinetic model of two-phase flows[END_REF] for a variant of this toy-model with temperature θ " 0 and non-zero fluid viscosity. 

# B t f ǫ `vB x f ǫ " ǫ ´1B v tpv ´uǫ qf ǫ `θB v f ǫ u , B t u ǫ `Bx u 2 ǫ " ǫ ´1pJ ǫ ´ρǫ u ǫ q
, where ρ ǫ pt, xq " ˆfǫ pt, x, vq dv and J ǫ pt, xq " ˆvf ǫ pt, x, vq dv, As explained in the Introduction, the expected limit as ǫ Ñ 0 is system (iB). Remark 3.1. As stated before, system (iB) is not invariant under Galilean transformations. Indeed, let us consider the change of variables ps, yq " pt, x ´u0 tq, with u 0 P R a constant velocity, corresponding to pB t , B x q " pB s ´u0 B y , B y q and set v :" u ´u0 . Applying the transformation to the first equation in (iB), we infer B t ρ `Bx pρuq " B s ρ ´u0 B y ρ `By ρpv `u0 q ( " B s ρ `By pρvq.

Concerning the second equation, we deduce upon computation

B t pruq `Bx pru 2 `θρq " B s prvq `By prv 2 `θρq `u0 B y v.
In particular, in the new reference frame ps, yq, system (iB) becomes

# B s ρ `By pρvq " 0, B s prvq `By prv 2 `θρq `u0 B y v " 0,
with v :" u ´u0 , coinciding with the previous system if and only if u 0 " 0. Differently, system (iB) is invariant under space reversal: indeed, applying the transformation ps, yq " pt, ´xq and v " ´u, we obtain In the following computations, let us drop the subscript ˚for the sake of shortness. By definition, system (2.2) is strictly hyperbolic at W if and only if the polynomial ppλq :" det `dF pW q ´λI ˘" 0 has distinct real roots. Upon substitution, we obtain

# B t ρ `Bx
λ 2 ´2 ˆ1 `1 2r ˙uλ `2 `ρ r u 2 ´θρ r " 0
whose solutions are

(3.3) λ ˘pW q :" u ˘?u 2 `θδ 2 ˘u 2r
with δpρq :" 2 ? ρ r .

Given θ ą 0, the function ρ Þ Ñ δpρq is invertible for ρ P r0, `8q. Indeed, the relation defining χ :" δ 2 " 4ρ r " 4ρp1 `ρq can be rewritten as a second order polynomial in ρ, viz. 4ρ 2 `4ρ ´χ " 0. Taking the positive root in the standard formula for the roots of second order polynomials, we infer

ρ " ϕpχq :" ? 1 `χ ´1 2 " 1 2 χ ? 1 `χ `1 .
If ρ is strictly positive, so are δ and χ, thus the system is strictly hyperbolic for θ ą 0.

To classify the type of hyperbolic system we are dealing with, we analyse the scalar product ∇ W λ ˘¨r ˘where r ˘are right eigenvectors of the matrix dF ´λI relative to λ ˘. Proposition 3.2. For θ ą 0, system (iB) is strictly hyperbolic with two genuinely nonlinear fields for pρ, ruq P p0, 8q ˆR.

Proof. System (2.2) can be also written as a system in U :" pρ, uq:

(3.4)
B t GpU q `Bx HpU q " 0 where the functions GpU q " pρ, ruq ⊺ and HpU q " pρu, ru 2 `θρq ⊺ are such that

dGpU q :" ˆ1 0 u r ˙, dHpU q :" ˆu ρ u 2 `θ 2ru ˙.
Let us set µ ˘pU q " λ ˘pGpU qq. In particular, µ ˘ˇu "0 " ˘aθρ{r. By Lemma 2.2, it is equivalent to compute ∇ U µ ˘¨s ˘where pdH ´µ˘d Gqs ˘" 0. In turn, this reduces to finding s ˘such that pu ´µ˘, ρq ¨s˘" 0. Let us choose s ˘" pρ, µ ˘´uq ⊺ , so that the functions U Þ Ñ s ˘pU q are smooth on p0 `8q ˆR.

The auxiliary function σ : R Ñ p´1, 1q, defined by σpxq :" x{ ? 1 `x2 , see Fig. 1, is continuous, odd and such that Moreover, σ is invertible with inverse ψ : p´1, 1q Ñ R given by x " ψpyq :" y{ ? 1 ´y2 . In term of σ, the eigenvalues µ ˘can be represented as

(3.5) 0 ď |σpxq| ď min t1, |x|u , σ 1 pxq " p1 `x2 q ´3{2 .
µ ˘pU q " u ˘1 2r p1 ˘σq ? u 2 `θδ 2
with σ computed at u{ ? θδ 2 . Since the gradient ∇ U µ ˘" pB ρ µ ˘, B u µ ˘q is given by

B ρ µ ˘pU q " ´p1 ˘σqu 2r 2 ˘θ r ? u 2 `θδ 2 , B u µ ˘pU q " 1 `1 ˘σ 2r ,
there holds Since r " 1 `ρ and σ " u{ ? u 2 `θδ 2 , the three terms in braces can be recast as

∇ U µ ˘pU q ¨s˘" ˆ´p1 ˘σqu 2r 2 ˘θ r ? u 2 `θδ 2 ,
? u 2 `θδ 2 `p1 ˘σq ? u 2 `θδ 2 2r ¯ρu r " ˆ1 `1 ˘σ 2r ¯ρσ r ˙?u 2 `θδ 2 " " 1 `1 ˘σ 2 `ρp1 ¯σq * ? u 2 `θδ 2 r ě ? u 2 `θδ 2 r ě 0 ,
with the equality holding only for U " 0 in the case θ ą 0. Hence, for ρ ą 0, there hold

∇ W λ ´¨r ´" ∇ U µ ´¨s ´ă 0 ă ∇ U µ `¨s `" ∇ W λ `¨r `,
where we make use of Lemma 2.2.

3.2. Shock solutions. Shock waves of system (2.2) are special solutions W px, tq " Wpyq depending only on the variable y :" x ´ct with the form of a pure jump W px, tq " Wpyq :"

# W ˚if y ă 0, W if y ě 0.
where W ˚:" pρ ˚, r ˚u˚q and W :" pρ, ruq. In presence of Galilean invariance, we could focus without loss of generality on stationary solutions W , i.e. c " 0 and y " x. Unfortunately, as observed in Remark 3.1, system (iB) does not possess such a symmetry and the corresponding reduction cannot be considered. In order to be weak solutions, such functions are forced to satisfy the Rankine-Hugoniot conditions (2.3). For system (iB), they take the specific form

(3.6) # ´c ρ ` ρu " 0, ´c ru ` ru 2 `θρ " 0,
where g " g ´g˚.

Given ρ ˚and u ˚, let us show that these relations lead to u being a function of ρ. If ρ " 0, then from the first equation in (3.6), we infer ρ ˚ u " 0. Hence, assuming ρ ˚ą 0, we are forced to have u " 0, so that the solution is actually a constant state. Being interested in non constant profiles, we assume ρ 0. Then, the propagation speed can be expressed as

(3.7) c " ρu ρ .
Next, we are going to use the two following relations, valid for any functions f and g,

(3.8) f g " f g ˚`f g and f g 2 " f g 2 ˚`2f g ˚ g `f g 2 . Substituting (3.7) in the identity (3.6), we obtain ρu u ` ρu 2 " ρu ru " ρ ru 2 `θ ρ 2 ,
and, taking advantage of (3.8), we infer

ρ ˚r u 2 ´ ρ u ˚ u ´θ ρ 2 " 0.
Considering the form (3.4) of the original system (2.2), the set of admissible shocks H Wo f a given state W ˚" pρ ˚, r ˚u˚q , usually called Hugoniot locus, is given by the union of two distinct branches, here denoted by H W˚,`a nd H W˚,´( see Figure 2)

(3.9) H W˚,˘" # pρ, ru ˘q : ρ ą 0, u ˘pρq " u ˚˘ ρ ρ ˚¨a u 2 ˚`θ∆ 2 ˘u2 r + ,
with ∆pρ, ρ ˚q :" 2 ? ρ ˚r. Accordingly, along each branch, the shock speed is given by (3.7), that becomes, using again (3.8), (3.10)

c ˘pρ; W ˚q " u ˚`ρ u ρ " u ˚˘ρ ρ ˚¨a u 2 ˚`θ∆ 2 ˘u2 r .
Note that we can equally write

c ˘pρ; W ˚q " u `ρ˚ u ρ " u ˘au 2 ˚`θ∆ 2 ˘u2 r .
With the sign p`q, respectively p´q, c ˘is larger, resp. smaller, than both the left velocity u ˚and the right velocity u. Specifically, we regard at the curves defined by (3.9) and (3.10) as parametrizations of the states W that can be connected to W ˚by a pure discontinuity providing a weak solution to system (2.2) with corresponding parameter given by the density ρ P p0, `8q.

As a matter of fact, we observe that (3.10) satisfies c ˘pρ ˚; W ˚q :" lim ρÑρ˚c ˘pρ; W ˚q " λ ˘pW ˚q for ρ ˚ą 0 and c ˘p0; W ˚q " u ˚.

Moreover, since

B ρ c ˘pρ; W ˚q " ˘1 2ρ ˚r # a u 2 ˚`θ∆ 2 ˘ur `2θρ ˚ρ a u 2 ˚`θ∆ 2 + .
there hold, for ρ ˚ą 0,

B ρ c ´pρ; W ˚q ă 0 ă B ρ c `pρ; W ˚q.
As a consequence, we infer the equivalences valid for any ρ between ρ ˚and ρ

(3.11) c `p ρ; W ˚q ´c`p ρ; W ˚q " ˆρ ρ B ρ c `pξ; W ˚q dξ ă 0 ðñ 0 ď ρ ă ρ , c ´p ρ; W ˚q ´c´p ρ; W ˚q " ˆρ ρ B ρ c ´pξ; W ˚q dξ ă 0 ðñ 0 ď ρ ă ρ .
In particular, the (strict) Liu's entropy criterion is satisfied for ρ ă ρ ˚in the case of sign `and for ρ ˚ă ρ in the case of sign ´(see [START_REF] Liu | The entropy condition and the admissibility of shocks[END_REF]). Since the system is genuinely nonlinear, this is equivalent to Lax's entropy condition for weak shocks [9, Theorem 8. 

B t f ǫ `vB x f ǫ " θ ǫ B v M uǫ B v pM ´1 uǫ f ǫ q ( ,
which involves the maxwellian M u defined in (1.7), to be considered coupled with

B t u ǫ `Bx u 2 ǫ " θ ǫ ˆ M uǫ B v pM ´1 uǫ f ǫ q ´Bv f ǫ ( dv " θ ǫ ˆMuǫ B v pM ´1 uǫ f ǫ q dv.
since f ǫ is assumed to vanish at 8. Next, setting G pf, uq :" 2 3 u 3 `ˆvf `1 2 v 2 `θ ln f ˘dv , we infer, integrating by parts,

B t H " ˆ 1 2 v 2 `θpln f ǫ `1q ( B t f ǫ dv `uǫ B t u ǫ " ´Bx G `θ ǫ ˆuǫ M uǫ B v pM ´1 uǫ f ǫ q dv `θ ǫ ˆ 1 2 v 2 `θpln f ǫ `1q ( B v " M uǫ B v pM ´1 uǫ f ǫ q ‰ dv " ´Bx G `θ ǫ ˆBv pM ´1 uǫ f ǫ q M uǫ pu ǫ ´vq ´θM uǫ f ´1 ǫ B v f ǫ ( dv " ´Bx G ´θ2 ǫ ˆf ´1 ǫ B v pM ´1 uǫ f ǫ q tM uǫ pB v f ǫ q ´pB v M uǫ qf ǫ u dv ,
since, as previously seen, M u pu ´vq " θB v M u . Therefore, we deduce the estimate

B t H `Bx G " ´θ2 ǫ ˆM2 uǫ f ´1 ǫ B v pM ´1 uǫ f ǫ q ( 2 dv ď 0 .
Next, let us focus on the regime ǫ Ñ 0 `for which the formal ansatz (1.6) is assumed to hold. As a consequence, inspired by the kinetic representation of conservation laws [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF], we guess an entropy for the limit system by evaluating the functional H at the equilibrium ρ ǫ M uǫ .

Preliminarly, let us observe that, knowing that

(3.13) ˆMu dv " 1, ˆpv ´uqM u dv " 0, ˆ|v ´u| 2 M u dv " θ , there holds ˆv2 M u dv " ˆ u 2 `2upv ´uq `|v ´u| 2 ( M u dv " u 2 `θ
Hence, inspired by the kinetic representation of conservation laws [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF], the formal identity

H pf ǫ , u ǫ q » H pρ ǫ M uǫ , u ǫ q " 1 2 u 2 ǫ `ˆρ ǫ M uǫ 1 2 v 2 `θ lnpρ ǫ M uǫ q ( dv " 1 2 r ǫ u 2 ǫ `1 2 θρ ǫ `ρǫ ˆMuǫ θ ln ρ ǫ ´1 2 θ lnp2πθq ´1 2 pv ´uq 2 ( dv " 1 2 r ǫ u 2 ǫ `θρ ln ρ ǫ ´1 2 lnp2πθq
( suggests the (simplified) choice ηpU q " 1 2 ru 2 `θρ ln ρ, obtained by disregarding the linear term in ρ (since we already know that ρ satisfies a convection equation), with corresponding entropy flux given by qpU q " `2 3 `1 2 ρ ˘u3 `θρpln ρ `1qu. The pair pη, qq is an entropy/entropy flux pair for (3.4). Indeed, let us set Q :" B t pρM u q `vB x pρM u q.

Using again (3.13), we infer for any (smooth) solution pρ, uq of (3.4)

ˆˆ1 v ˙Q dv " ´ˆ0 B t u `Bx u 2
ṡince integration with respect to v yields the system of conservation laws. It follows that

B t η `Bx q " B t `1 2 u 2 ˘`B x `2 3 u 3 ˘`ˆQ 1 2 v 2 `θ lnpρM u q ´1 2 θ lnp2πθq `1( dv " B t `1 2 u 2 ˘`B x `2 3 u 3 ˘`1 2 ˆQ `v2 ´|v ´u| 2 ˘dv " B t `1 2 u 2 ˘`B x `2 3 u 3 ˘`u ˆv Q dv " 0.
In terms of the variables W " pρ, wq, the entropy ζ is given by

(3.14) ζpW q " w 2 2r `θρ ln ρ.
Upon differentiation, denoting by the same symbols ∇ W ζ and d 2 W ζ the corresponding vector/matrix computed both at W , we obtain the following expressions that will be useful later on (3.15) ∇ W ζpW q ⊺ " `´w 2 {p2r 2 q `θp1 `ln ρq, w{r ˘" `´u 2 {2 `θp1 `ln ρq, u ˘,

d 2
W ζpW q " ˆw2 {r 3 `θ{ρ ´w{r 2 ´w{r 2 1{r ˙" ˆu2 {r `θ{ρ ´u{r ´u{r 1{r

˙.

In addition, ζ is a convex function, since the hessian d 2 W ζ is positive definite. The function ζ defined in (3.14) furnishes an entropy for system (2.2). Hence, the matrix X :" d 2 W ζ is a symmetrizer for the flux F as can be directly checked (in fact, such property holds true for general hyperbolic systems, see [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][START_REF] Mock | A topological degree for orbits connecting critical points of autonomous systems[END_REF]). (vB). We now use the Chapman-Enskog expansion to get the diffusive correction associated to system (iB). Specifically, we search for a hydrodynamic model with an appropriate modification, namely pρ ǫ , u ǫ q (where the dependence on ǫ is explicitly stated) satisfies

Viscous corrections leading to

B t ˆρǫ r ǫ u ǫ ˙`B x ˆρǫ u ǫ r ǫ u 2 ǫ `θρ ǫ ˙" Opǫq.
In order to define the correction term, we expand the solution of the kinetic equation as

f ǫ " ρ ǫ M uǫ `ǫg ǫ , ˆfǫ dv " ρ ǫ , ˆgǫ dv " 0,
where M u is the Maxwellian distribution defined in (1.7). Recalling the identity (1.8), the system can be rewritten as pB t `vB x qpρ ǫ M uǫ `ǫg ǫ q " L uǫ pg ǫ q, coupled with the equation for u ǫ B t u ǫ `Bx u 2 ǫ " ˆpv ´uǫ qg ǫ dv.

Note that the integration of the kinetic equation yields (3.16) B t ρ ǫ `Bx pρ ǫ u ǫ q `ǫB x ˆpv ´uǫ qg ǫ dv " 0, and (3.17)

B t ˆρǫ u ǫ `ǫ ˆvg ǫ dv ˙`B x ˆρǫ u 2 ǫ `θρ ǫ `ǫ ˆv2 g dv ˙" ´ˆpv ´uǫ qg ǫ dv. " ´Bt u ǫ ´Bx u 2 ǫ . We compute pB t `vB x qpρ ǫ M uǫ q " M uǫ B t ρ ǫ `Bx pρ ǫ u ǫ q ( `pv ´uǫ qM uǫ B x ρ ǫ ´Muǫ ρ ǫ B x u ǫ `pv ´uǫ q θ ρ ǫ M uǫ pB t u ǫ `uǫ B x u ǫ q `ρǫ M uǫ |v ´uǫ | 2 θ B x u ǫ " pv ´uǫ q θ ρ ǫ M uǫ "ˆp v ´uǫ qg ǫ dv `θ 1 ρ ǫ B x ρ ǫ ´uǫ B x u ǫ * `ρǫ M uǫ ˆ|v ´uǫ | 2 θ ´1˙B x u ǫ
" L uǫ pg ǫ q ´ǫ pB t `vB x q g ǫ .

From now on, we neglect the last Opǫq terms and thus obtain a relation that defines g ǫ by inverting L uǫ as we are going to detail now. Multiplying and integrating over v, we find

(3.18) ˆvg ǫ dv " ˆpv ´uǫ qg ǫ dv " 1 r ǫ pρ ǫ u ǫ B x u ǫ ´θB x ρ ǫ q .
Hence, we are led to

L uǫ pg ǫ q " θpv ´uǫ qM uǫ r ǫ pθB x ρ ǫ ´ρǫ u ǫ B x u ǫ q `ρǫ M uǫ `df rac|v ´uǫ | 2 θ ´1˘B x u ǫ .
Observe that the integral with respect to v of all terms in the right-hand side vanishes.

Bearing in mind that

L 0 pvM 0 q " ´vM 0 and L 0 ˆˆv 2 θ ´1˙M 0 ˙" ´2 ˆv2 θ ´1˙M 0 ,
we obtain

g ǫ " ´1 2 ˆ|v ´uǫ | 2 θ ´1˙ρ ǫ M uǫ B x u ǫ ´1 θ pv ´uǫ qM uǫ r ǫ pθB x ρ ǫ ´ρǫ u ǫ B x u ǫ q .
For further purposes, observe that

(3.19) ˆv2 g ǫ dv " ˆpv ´uǫ q 2 g ǫ dv `2u ǫ ˆvg ǫ dv " 2u ǫ r ǫ pρ ǫ u ǫ B x u ǫ ´θB x ρ ǫ `q ´θρ ǫ B x u ǫ .
We are now going back to the hydrodynamic system (3.16)-(3.17), where we similarly get rid of terms of order higher than Opǫq. To this end, we introduce a convenient change of variables by setting

w ǫ :" r ǫ u ǫ `ǫ ˆvg ǫ dv.
Moreover, we shall replace the quantities arising in the previous expression by their first order approximations:

B x u ǫ ´wǫ r 2 ǫ B x ρ ǫ `1 r ǫ B x w ǫ , u ǫ B x u ǫ w ǫ r 2 ǫ B x w ǫ ´w2 ǫ r 3 ǫ B x ρ ǫ ,
and

ǫ ˆvg ǫ dv I 1,ǫ " ǫ r ǫ ˆρǫ w ǫ r 2 ǫ B x w ǫ ´ρǫ w 2 ǫ r 3 ǫ B x ρ ǫ ´θB x ρ ǫ ˙, ǫ ˆv2 g ǫ dv I 2,ǫ " ´ǫθρ ǫ ˆ1 r ǫ B x w ǫ ´wǫ r 2 ǫ B x ρ ǫ ˙`2w ǫ r ǫ I 1,ǫ ,
where the last two expressions should be compared to (3.18) and (3.19), respectively. Therefore, based on these approximations, equality (3.16) leads to

(3.20) B t ρ ǫ `Bx ˆρǫ w ǫ r ǫ ˙" ǫB x "ˆρ ǫ r ǫ ´1˙I 1,ǫ * " ǫB x "ˆρ ǫ w 2 ǫ r 5 ǫ `θ r 2 ǫ ˙Bx ρ ǫ ´ρǫ w ǫ r 4 ǫ B x w ǫ * .
Next, for relation (3.17), approximating u 2 ǫ by

w 2 ǫ r 2 ǫ ´2ǫ w 2 ǫ r 2 ǫ I 1,ǫ , we get (3.21) B t w ǫ `Bx ˆw2 ǫ r ǫ `θρ ǫ ˙" ´ǫ ˆI2,ǫ ´2w ǫ r ǫ I 1,ǫ " ǫB x ˆ´θρ ǫ w ǫ r 2 ǫ B x ρ ǫ `θρ ǫ r ǫ B x w ǫ ˙.
Dropping for shortness the dependence with respect to ǫ, we end up with the second-order system in the variable W " pρ, wq which is

(3.22) B t W `Bx F pW q " ǫB x DpW qB x W (
with the flux F given in (3.2) and the diffusion matrix D defined as (3.23) DpW q :" D 0 pW q `θ D 1 pW q, where D 0 pW q :" ρw r 5 ˆw ´r 0 0

˙" ρu r 3 ˆu ´1 0 0 ȧnd D 1 pW q :" 1 r 2 ˆ1 0 ´ρw ρ r ˙" 1 r
ˆ1{r 0 ´ρu ρ Ṙemark 3.3. Since system (3.4) is not invariant under Galilean transformations, the same curse occurs for the extended model (3.22). Moreover, it can be easily checked that invariance with respect to space reversal also holds for such a higher order system.

Once more, recalling [30, Corollary 2.2] and having already verified that d 2 η dF is symmetric, it is enough to show that, choosing X :" d 2 η, the modified diffusion term XD is positive definite. Indeed, using the shorthand notation χ " 1 `ρr, we compute the composition XD " 1 ρ r 4 ˆρ2 u 4 `θp1 `χqρ ru 2 `θ2 r 2 ´ρupρu 2 `θχrq ´ρupρu 2 `θχrq ρ 2 pu 2 `θ r 2 q ẇhich we observe to be symmetric too. Moreover, the trace trpXDq is clearly strictlypositive for ρ ą 0 and θ ą 0. By the Binet Theorem for determinants, there holds det `XD ˘" det X ¨det D " θ ρr

ˆθ ρ 2 u 2 r 3 `θ2 ρ r 2 ´θ ρ 2 u 2 r 3
˙" θ 3 r 3 , having used the explicit form of D given in (3.23). Therefore, we infer that XD is symmetric and positive-definite for θ ą 0. We summarize our findings in a concise statement. We summarize our result in a synthetic statement whose proof follows from the results taken from [START_REF] Majda | Stable viscosity matrices for systems of conservation laws[END_REF] together with the discussion relative to the validity of Liu's entropy condition (3.11). Theorem 3.5. Let the triple pW ˚, W ˆ, cq be such that the Rankine-Hugoniot conditions (3.6) is satisfied. The strictly stable system (vE) supports weak shock profiles -i.e. there exists δ ą 0 such that if |W ˆ´W ˚| ď δ there exists a function y Þ Ñ W ǫ pyq with sup yPR |W ǫ pyq ´W˚| ď δ, solution to (3.24) with asymptotics (3.25)-if and only Liu's criterion (3.11) is satisfied, that is, ρ ă ρ ˚for the sign `in the choice of c, and ρ ˚ă ρ for the sign

´.

Using the appropriate unknowns (specifically, the entropy variables) is crucial to obtain the existence result stated in Theorem 3.5. Different coordinates could support incorrect conclusions. Among others, a detailed discussion on stability properties of weak propagation fronts proved in Theorem 3.5 can be found in [START_REF] Zumbrun | Pointwise semigroup methods and stability of viscous shock waves[END_REF].

A few remarks on the stability estimate.

Let us go back to the discussion in subsection 2.4 to further illustrate some relevant implications in the case of the viscous Burgers fluid-particle problem (vB). At first sight, even if tempting, requiring D in (1.11) to be parabolic in the sense of Definition 2.7 involves (unphysical) limitations on the temperature, as shown in the following claim. 

θ P # pθ 1 , `8q if 0 ď Λ ď 2, pθ 1 , θ 2 q if Λ ą 2,
with θ 1 " θ 1 pU q :" r ´2Λ{pΛ `2q and θ 2 " θ 2 pU q :" r ´2Λ{pΛ ´2q. This has to be compared to Proposition 3.4, concluding that the notion of parabolicity provided in Definition 2.7 is not the appropriate notion to investigate the stability of viscous perturbations of hyperbolic problems. On the one hand, as explained in Section 2.4 it is not enough to obtain stability estimates which are uniform with respect to ǫ. On the other hand, it might involve irrelevant restrictions on the parameters of the problem.

Proof. It is readily seen that the trace of the matrix D sym , that is tr pD sym q " tr pDq " r ´3 ρu 2 `θrp1 `ρ rq ( , is positive for any ρ ě 0 and θ ą 0. The determinant of the symmetric part D sym can be regarded as a second-order polynomial with respect to θ: P pθq " 1 4 ρr ´3Qpθq where Qpθq :" p4 ´Λ2 qθ 2 `2r ´2Λ 2 θ ´r´4 Λ 2 .

Since the reduced discriminant of Q is ∆{4 " 4Λ 2 {r 4 , we infer the factorization Qpθq " p2 ´Λqθ `Λ{r 2 ( p2 `Λqθ ´Λ{r 2 ( .

In particular, the symmetric matrix D sym is strictly definite positive if and only if Qpθq ą 0 providing the above restrictions on the parameter θ.

Flowing regime for the Euler fluid-particle system

A more realistic model couples the evolution of the particles, with the Euler equation for the carrier fluid. Namely, we consider (4.1)

B t f ǫ `vB x f ǫ " 1 ǫ L uǫ pf ǫ q , coupled to (4.2) $ & % B t n ǫ `Bx pn ǫ u ǫ q " 0 , B t pn ǫ u ǫ q `Bx n ǫ u 2 ǫ `ppn ǫ q ( " ´1 ǫ ˆvL uǫ pf ǫ q dv " 1 ǫ pJ ǫ ´ρǫ u ǫ q ,
still with the notation ρ ǫ " ˆfǫ dv and J ǫ " ˆvf ǫ dv .

Here the unknown n ǫ stands for the density of the carrier fluid, and u ǫ for its velocity field. The pressure function p " ppnq obeys the standard principles of thermodynamics: it is increasing and strictly convex, a typical example being the γ-law given in (1.5).

4.1. Derivation and hyperbolicity. Again, as ǫ goes to 0, we infer heuristically that

f ǫ pt, xq » ρ ǫ M uǫpt,xq pvq ,
where M u is the Maxwellian distribution introduced in (1.7). Hence, setting r :" n `ρ and w :" ru, the limiting quantity W " pr, ρ, wq satisfies at leading order the extended nonlinear system (iE), which has the form (2.2) where the flux F is given by (4.3) F pW q :" `w, ρw{r, w 2 {r `ppnq `θρ ˘.

We refer the reader to [START_REF] Carrillo | Stability and asymptotic analysis of a fluid-particle interaction model[END_REF] for the introduction of this model; further numerical investigation can be found in [START_REF] Carrillo | Simulation of fluid and particles flows: asymptotic preserving schemes for bubbling and flowing regimes[END_REF]. Following again the standard approach, we verify that the extended system (iE) is hyperbolic, i.e. the Jacobian dF " dF pW q, explicitly given by dF "

¨0 0 1 ´ρw{r 2 w{r ρ{r ´w2 {r 2 `p1 ´p1 `θ 2w{r '" ¨0 0 1 ´ρu{r u ρ{r ´u2 `p1 ´p1 `θ 2u
' is such that detp dF ´λIq " ´pλ ´uq pλ ´uq 2 ´pnp 1 `θρq{r ( so that the eigenvalues are real, being explicitly given by (4.4) λ " λ 0 " u and λ ˘" u ˘apnp 1 `θρq{r .

Remark 4.1. Set py, sq " px ´u0 t, tq, corresponding to pB x , B t q " pB y , B s ´u0 B y q and set v :" u ´u0 . The first two equations in (iE) are invariant with respect to Galilean transformations. Indeed, there holds B t r `Bx pruq " B s r ´u0 B y r `By rpv `u0 q ( " B s r `By prvq, with an analogous computations for the unknown ρ. Concerning the third equation, introducing the total pressure P :" p `θρ, there holds B t pruq `Bx pru 2 `P q " B s rpv `u0 q ( ´u0 B y rpv `u0 q ( `By rpv `u0 q 2 `P ( " B s prvq `u0 B s r ´u0 B y prvq ´u2 0 B y r `By rpv 2 `2u 0 v `u2 0 q `P ( " B s prvq `By prv 2 `P q ´2u 0 B y prvq ´u2 0 B y r `2u 0 B y prvq `u2 0 B y r " B s prvq `By prv 2 `P q, showing that the hyperbolic system (iE) is invariant with respect to Galilean transformations. In addition, it can also be shown that the above system is invariant under space reversal, the proof being very similar to the one for the reduced system (iB).

In parallel with Proposition 3.2, we are now interested in a more precise classification of the characteristic fields for the conservation law system (iE). Proposition 4.2. Let assumption (1.4) be satisfied. Then, for any θ ě 0, system (iE) is strictly hyperbolic with one linearly degenerate field and two genuinely nonlinear fields whenever n ą 0 and ρ, θ ě 0 or n " 0 and ρ, θ ą 0.

Proof. To start with, let us compute ∇ W λ for λ P tλ 0 , λ ˘u. Upon computations, we infer

∇ W λ 0 " ˆ´w r 2 , 0, 1 r ˙and ∇ W λ ˘" ˆ´w r 2 ˘np 2 r `ρpp 1 ´θq 2dr 2 , ¯p1 `np 2 ´θ 2dr , 1 r ˙,
where d :" a pnp 1 `θρq{r. Relying on the Galilean invariance, we may reduce to the case u " 0 (corresponding to w " 0), hence upon computations, we infer λ 0 " 0 and λ ˘" ˘d together with

∇ W λ 0 " ˆ0, 0, 1 r ˙and ∇ W λ ˘" ˆ˘np 2 r `ρpp 1 ´θq 2dr 2 , ¯p1 `np 2 ´θ 2dr , 1 r ˙.
Right eigenvectors relative to λ 0 are proportional to the vector r 0 :" pp 1 ´θ, p 1 , 0q ⊺ . Since ∇ W λ 0 ¨r0 " 0 ¨pp 1 ´θq `0 ¨p1 `1 r ¨0 " 0, the field λ 0 is linearly degenerate. Right eigenvectors relative to eigenvalues λ ˘are proportional to r ˘:" p1, ρ{r, ˘dq ⊺ . Therefore, there holds

∇ W λ ˘¨r ˘" ˘np 2 r `ρpp 1 ´θq 2dr 2 ¨1 ¯p1 `np 2 ´θ 2dr ¨ρ r ˘1 r ¨d " ˘"np 2 r `ρpp 1 ´θq ´pnp 2 `p1 ´θqρ 2dr 2 `d r * " ˘n2 p 2 `2np 1 `2θρ 2dr 2 0 ,
for any n ą 0 and ρ, θ ě 0 or n " 0 and ρ, θ ą 0. In particular, the characteristic fields λ ˘are genuinely nonlinear in such a regime.

Shock solutions.

To investigate discontinuous solutions, we again take advantage of relations (3.8). Having fixed a state pρ, n, uq pρ ˚, n ˚, u ˚q, the Rankine-Hugoniot conditions associated to system (iE) read i. If one among the quantities ρ , n , r and c ´u˚i s zero then u " 0.

ii. If u " 0 and ` ρ , n , r ˘ p0, 0, 0q, then c " c 0 :" u ˚.

Proof. i. There holds c ρ " ρu " ρ u ˚`ρ u , hence ρ pc ´u˚q " ρ u , and the conclusion follows. A similar proof holds for n and r " ρ `n, observing that, summing up the equations for ρ and n, there holds B t r `Bx pruq " 0 and c r " ru .

ii. Since c ρ " ρu " ρ u ˚, the conclusion is trivial if ρ 0. A similar argument can be invoked if n 0 and r 0 using the analogous relation for n and r.

If ρ 0 and n 0, then, equations (4.5) are equivalent to

(4.6) c " ρu ρ " nu n " ru 2 `θρ `ppnq ru .
As proved in the following result, such shock solutions enjoy Liu's entropy condition under appropriate standard assumptions on the pressure p. Proof. From the second equality in (4.6), we infer nu ρ " n ρu , which, after a straightforward computation, gives nuρ ˚`n ˚u˚ρ " nρ ˚u˚`u˚ρ u. In turn, the latter reduces to pnρ ˚´n ˚ρq u " 0 so that nρ ˚" n ˚ρ. Therefore, we obtain (4.7)

ρ " nρ ˚{n ˚and ρ " n ρ ˚{n ˚.

Recalling the identity r " n `ρ, from (4.6) it also follows ru 2 `θρ `p ρ " ρu ru with a similar relation holding for n in place of ρ, so that, summing up, (4.8) ru 2 `θρ `p r " ru 2 .

The first term on the lefthand side of (4.8) can be rewritten as

ru 2 `θρ `p " r u 2 `2ru ˚ u ` r u 2 ˚`θ ρ ` p .
Similarly, there holds ru 2 " `r u ` r u ˚˘2 . Hence, plugging into (4.8), we infer

r r u 2 `2r r u ˚ u ` r 2 u 2 ˚` r tθ ρ ` p u " r 2 u 2 `2r r u ˚ u ` r 2 u 2 ˚,
that is,

u 2 " r r ˚r `θ ρ ` p ˘.
Taking advantage of (4.7), we infer (4.9)

u 2 " n 2 r ˚n ˆθρ n˚` p n ˙.
The right-hand side is non-negative provided p is a non-decreasing function, which makes this relation consistent. In particular, there holds

ˇˇˇ u n ˇˇˇ" " 1 r ˚n ˆθρ n˚` p n ˙*1{2
and, as a consequence,

c " u ˚`n u n " u ˚˘" n r ˚ˆθρ n˚` p n ˙*1{2 ": c ˘pnq.
Differentiating c `with respect to n, we deduce In particular, Liu's condition is satisfied for c `since p 2 ą 0.

B n c `"
A similar computation can be used to prove the same property for c ´.

4.3.

Entropy for the inviscid Euler fluid-particle system. Similarly to the (vB) case, the kinetic-fluid formulation suggests the functional ζpW q " w 2 2r `Πpnq `θρ ln ρ with Πpnq :" ˆn 0 ˆs 0 1 ς dp dς pςq dς ds as an entropy for system (iE), see [START_REF] Carrillo | Stability and asymptotic analysis of a fluid-particle interaction model[END_REF]. For later use, we stress the identity Π 2 " p 1 {n.

In the special case of isentropic flows with pressure p given by the standard γ-law, i.e. ppnq " Cn γ with γ ą 1, there holds Πpnq " Cγ ˆn 0 ˆs 0 ς γ´2 dς ds " Cγ γ ´1 ˆn 0 s γ´1 dς ds " Cn γ γ ´1 .

The gradient ∇ W ζ of the entropy ζ is explicitly given by ∇ W ζpW q ⊺ " `´w 2 {2r 2 `Π1 , ´Π1 `θp1 `ln ρq, w{r " `´u 2 {2 `Π1 , ´Π1 `θp1 `ln ρq, u ˘,

while the hessian d 2 W ζ is d 2 W ζpW q " ¨w2 {r 3 `Π2 ´Π2 ´w{r 2 ´Π2 Π 2 `θ{ρ 0 ´w{r 2 0 1{r
'" ¨u2 {r `p1 {n ´p1 {n ´u{r ´p1 {n p 1 {n `θ{ρ 0 ´u{r 0 1{r

'.

As before, tedious computations confirm that X :" d 2 W ζ symmetrizes the Jacobian dF of the flux dF of the hyperbolic system of conservation laws (iE). (vE). Again, we derive the second-order corrections associated to (iE) by using the Chapman-Enskog expansion. Namely, the function

Viscous corrections leading to

g ǫ :" 1 ǫ pf ǫ ´ρǫ M uǫ q satisfies (4.10) L uǫ pg ǫ q " ǫtB t `vB x ug ǫ `Muǫ tB t ρ ǫ `Bx pρ ǫ u ǫ qu `ˆ|v ´uǫ | 2 θ ´1˙ρ ǫ M uǫ B x u ǫ `v ´uǫ θ ρ ǫ M uǫ ρ ǫ pB t u ǫ `uǫ B x u ǫ q `θB x ρ ǫ ( .
Integrating the kinetic equation yields

(4.11) B t ρ ǫ `Bx pρ ǫ u ǫ q `ǫB x ˆvg ǫ dv " 0.
Hence the first two terms in the right-hand side of (4.10) contributes only to the Opǫq correction. Next, by using system (4.2), we get

ρ ǫ pB t u ǫ `uǫ B x u ǫ q " ρ ǫ n ǫ B t pn ǫ u ǫ q `Bx pn ǫ u 2 ǫ q ( " ρ ǫ n ǫ " ´Bx p `ˆpv ´uǫ qg ǫ dv * .
Therefore, we arrive at

L uǫ pg ǫ q " ˆ|v ´uǫ | 2 θ ´1˙ρ ǫ M uǫ B x u ǫ `v ´uǫ θ ρ ǫ M uǫ ˆ´ρ ǫ n ǫ B x p `ρǫ n ǫ ˆvg ǫ dv `θB x ρ ǫ ˙`Opǫq.
Again, let us set r ǫ :" ρ ǫ `nǫ . Next, we multiply by v and integrate in order to obtain a simple relation for ´vg ǫ dv, deducing

ˆvg ǫ dv " n ǫ r ǫ ˆρǫ n ǫ B x p ´θB x ρ ǫ ˙`Opǫq
and, consequently, (4.12)

g ǫ " ´1 2θ `|v ´uǫ | 2 ´θ˘ρ ǫ M uǫ B x u ǫ ´v ´uǫ θ r ǫ ρ ǫ M uǫ tθn ǫ B x ρ ǫ ´ρǫ B x pu `Opǫq.
As a matter of fact, we have

(4.13) ˆv2 g ǫ dv " ´θρ ǫ B x u ǫ `2u ǫ ˆvg ǫ dv `Opǫq.
Finally, we express the conservation of the total momentum

(4.14) B t w ǫ `Bx " r ǫ u 2 ǫ `p `θρ ǫ `ǫ ˆv2 g ǫ dv * " 0 ,
where

w ǫ :" r ǫ u ǫ `ǫ ˆvg ǫ dv .
We are now going to write the hydrodynamic system, which arises by getting rid of the terms of order higher than Opǫq. Thus, in the previous expressions we make use of the following approximations:

u ǫ w ǫ r ǫ ´ǫn ǫ r 2 ǫ ˆρǫ n ǫ B x p ´θB x ρ ǫ ˙, B x u ǫ B x ˆwǫ r ǫ ˙" 1 r ǫ B x w ǫ ´wǫ r 2 ǫ B x r ǫ ,
and

u 2 ǫ w 2 ǫ r 2 ǫ ´2ǫn ǫ w ǫ r 2 ǫ ˆρǫ n ǫ B x p ´θB x ρ ǫ ˙, ˆv2 g ǫ dv ´θρ ǫ B x ˆwǫ r ǫ ˙´2n ǫ w ǫ r 2 ǫ ˆρǫ n ǫ B x p ´θB x ρ ǫ ˙.
Based on these approximations, we obtain a second-order system for W ǫ " pr ǫ , ρ ǫ , w ǫ q in the form (2.1), that is

(4.15) B t W ǫ `Bx F pW ǫ q " ǫB x DpW ǫ qB x W ǫ ( ,
where the flux F is given in (4.3) and the diffusion matrix D is given by (1.12), which can also be decomposed as (4.16) DpW q " D 0 pW q `θ D 1 pW q , where, setting ν :" n{r P p0, 1q, there holds (4.17)

D 0 :" νp1 ´νqp 1 ¨0 0 0 ´1 1 0 0 0 0 ' and D 1 :" ¨0 0 0 0 ν 2 0 ´p1 ´νqu 0 1 ´ν' .
The eigenvalues tβ 0 , β 1 , β 2 u of the (triangular) diffusion matrix D are the element of its principal diagonal, viz.

β 0 :" 0 , β 1 :" νp1 ´νqp 1 `θν 2 and β 2 :" θp1 ´νq.

In particular, they are non-negative and, differently from system (vB), do not depend explicitly on the velocity u.

We can check the invariance with respect to the Galilean change of coordinates of system (4.15). Reformulating with respect to the variable U " pr, ρ, uq, we end up with (4.18)

B t GpU q `Bx HpU q " ǫB x tEpU qB x U u with GpU q " pr, ρ, ruq, HpU q " pru, ρu, ru 2 `p `θρq and EpU q :" ν

¨0 0 0 ´1 1 0 0 0 0 '`θp1 ´νq ¨0 0 0 0 1 `ν 0 0 0 r ' .
Introducing the variables py, sq and u as in Remark 4.1, where we proved that the lefthand side is invariant with respect to Galilean transformations, we can also show that the whole system (4.18) preserve the same property, as a consequence of the independence of E with respect to the velocity variable u.

Since one of the eigenvalue of D is zero, the induced dissipation is partial and some additional stability is required. In the present setting, the Kawashima-Shizuta condition -stating that there is no right eigenvector of dF in the kernel of D-holds (see [START_REF] Kawashima | Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics[END_REF][START_REF] Shizuta | Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation[END_REF]). Indeed, focusing without loss of generality on the case u " 0, the eigenvectors are proportional to r " p1, ρ{r, λq ⊺ where λ is a non-zero eigenvalue of dF or to r " p1, 1 ´θ{p 1 , 0q ⊺ when λ " 0. Computing Dr for λ 0 gives pDrq 3 " θλp1 ´νq 0 for θ ą 0 and ν ă 1. Similarly, for λ " 0, there holds pDrq 2 " ´θ2 ν 2 {p 1 0 for θ ą 0 and ν ą 0. Summarizing, (vE) satisfies the Kawashima-Shizuta stability condition for strictly positive temperature θ and ν in the open interval p0, 1q corresponding to ρ and n strictly positive.

For later use, let us also explore in more details the temperature-less regime θ "0. In the case λ 0, the third component pDrq 3 is null. Nevertheless, the second component pDrq 2 is equal to ´ν2 p1 ´νqp 1 which is strictly negative if ν P p0, 1q. Hence the Kawashima-Shizuta condition holds for λ 0. Differently, for λ " 0, there holds Dr 0 " p0, ´νp1 ´νqp 1 `νp1 ´νqp 1 , 0q ⊺ " 0 and the condition is not satisfied.

Going further, we aim to show that the matrix d 2 W ζ D is symmetric. With this target, we rewrite the hessian d 2 W ζ of the entropy ζ (again with u " 0, thanks to the Galilean invariance) in terms of the scalar quantity ν " n{r, obtaining d 2 W ζ " X 0 `θX 1 where

X 0 :" 1 n ¨p1 ´p1 0 ´p1 p 1 0 0 0 νp1 ´νq ' and X 1 :" θ ρ ¨0 0 0 0 1 0 0 0 0 '.
Then, we compute the matrix product

XD " pX 0 `θX 1 qpD 0 `θD 1 q " X 0 D 0 `θpX 0 D 1 `X1 D 0 q `θ2 X 1 D 1 .
Tedious computations bring the following final formulas

X 0 D 0 " νp1 ´νqpp 1 q 2 n ¨`1 ´1 0 ´1 `1 0 0 0 0 ' and X 1 D 1 " ν 2 ρ ¨0 0 0 0 1 0 0 0 0 ' , together with X 1 D 0 `X0 D 1 " 1 r ¨0 ´νp 1 0 ´νp 1 2νp 1 0 0 0 1 ´ν' ,
showing the symmetry of the matrix D.

4.5.

The temperature-less case. As stated in the Introduction, the case where the Brownian velocity fluctuations are neglected is relevant in many applications. Therefore, let us briefly discuss how the discussion adapts to handle the case θ " 0: we consider system (4.1)-(4.2) where the Fokker-Planck operator in the right-hand side of (4.1) is replaced by B v tpv ´uǫ qf ǫ u. This does not modifiy the coupling term in (4.2) which is still given by J ǫ ´ρǫ u ǫ . The "equilibrium state" that makes the stiff terms vanish is now a Dirac mass with respect to the velocity variable

f ǫ pt, x, vq » ρ ǫ pt, xqδ v"uǫpt,xq .
Theorem 4.5 (Theorem 4.1, [START_REF] Pego | Stable viscosities and shock profiles for systems of conservation lawss[END_REF]). Let ℓ `and r `denote left and right eigenvectors of the matrix A relative to the eigenvalue λ `, respectively. In addition, let us assume i. DpW q has constant rank in a neighborhood of W ˚;

ii. there holds ℓ `Dr `pW ˚q 0; iii. the operator Bpξq :" iξpA ´λ`I q ´D is one-to-one on CZ for all ξ P R, i.e. Ker Bpξq ˇˇCZ " t0u, where Then, the following are equivalent I. there holds ℓ `Dr `pW ˚q ą 0; II. there exists δ ą 0 so that if W ˚and W ˆare such that |W ˚´W ˆ| ă δ and the Rankine-Hugoniot condition holds for some speed c, there exists a shock profile connecting W ˚to W ˆif and only if Liu's entropy criterion (2.4) is satisfied.

Verification of the above assumptions leads to the proof of existence of shock profiles in the small amplitude regime. Theorem 4.6. Let θ ě 0 and let W ˚and W ˆare such that the Rankine-Hugoniot condition is satisfied for some speed c. Then there exists δ ą 0 so that there exists a shock profile solution to (4.15) connecting W ˚to W ˆwith |W ˚´W ˆ| ă δ.

Proof. The result is proved if the assumption of Theorem 4.5 are satisfied. Without loss of generality, we consider the case u " 0 by using once more the invariance with respect to Galilean transformations.

Case θ " 0. For zero temperature, the matrix D reduces to D 0 defined in (4.17). Also, a triple of right/left eigenvectors of A relative to the eigenvalue λ k is given by r k " p1, 1 ´ν, λ k q and ℓ k " pp 1 , ´p1 `θ, λ k q where k P t0, ˘u. Condition i. in Theorem 4.5 is clearly satisfied since Ran DpW q coincides with Spante 2 u for any W where te 1 , e 2 , e 3 u is the canonical basis of R 3 . As a consequence, Ran DpW q has rank one.

Next, we state that Z coincides with Spantr `u. Indeed, let us consider the vector v " px, y, zq P R 3 such that pA ´λ`I qv P Ran D. Then there holds pA ´λ`I qv "

¨´λ `0 1 0 ´λ`ρ {r p 1 ´p1 ´λ`' ¨x y z '" ¨´dx `z ´dy `ρz{r p 1 x ´p1 y ´dz '" αe 2 ,
for some α P R. Plugging the relation z " dx, into the third component, we deduce the identity y " ρx{r. Finally, we insert both equations for z and y, into the second component getting ´dy `1 r ρz " ´1 r dρx `1 r dρx " α which implies α " 0. In particular, the set Z coincides with the one-dimensional eigenspace of the eigenvalue λ `, that is, Z " KerpA ´λ`I q. Thus, we are required to analyze the kernel of the operator Bpξq restricted to Z, that is, we look for vectors v " αr `for some α P C such that Bpξqv " ´αDr `" 0. Since the Kawashima-Shizuta condition is satisfied also for θ " 0, Dr ` 0 and, therefore, α " 0. As a consequence, hypothesis iii. is satisfied.

Finally, let us show that conditions iii./I. are also verified. Indeed, there holds ℓ `Dr `" νp1 ´νqp 1 `p1 ´p1 λ `˘¨0 0 0 ´1 1 0 0 0 0 '¨1 1 ´ν λ `' " ν 2 p1 ´νqpp 1 q 2 ą 0 .

Case θ ą 0. For strictly positive temperatures, it is readily verified that Ran DpW q " Span te 2 , e 3 u for any W . Hence, hypothesis i. holds.

A vector v " px, y, zq lies in Z if and only if z " λ `x. Therefore the action of the linear operator Bpξq is described by Bpξqv " iξ ¨0 p1 ´νqλ `x ´λ`y pp 1 ´λ2 `qx `p´p 1 `θqy '`¨0 ´νp1 ´νqp which is strictly negative for any θ ą 0 and ν P p0, 1q. Hence, the linear transformation M is a one-to-one correspondence, exhibiting the validity of iii.

Finally, we compute explicitly the value of ℓ `Dr `ą 0. Since

Dr `" ¨0 0 0 ´νp1 ´νqp 1 νp1 ´νqp 1 `θν 2 0 0 0 θp1 ´νq '¨1 1 ´ν λ `' " p1 ´νq ¨0 ´ν2 pp 1 ´θq θλ `' ,
there holds ℓ `Dr `" p1 ´νqν 2 pp 1 ´θq 2 `θ2 λ `ě θ 2 λ `ą 0.

Thus, since Liu's entropy condition is satisfied (see Proposition 4.4), we deduce the existence of small amplitude shock profiles as a consequence of Theorem 4.1 in [START_REF] Pego | Stable viscosities and shock profiles for systems of conservation lawss[END_REF].

Furthermore, conditions described in [START_REF] Humpherys | Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic-parabolic systems[END_REF] and [START_REF] Mascia | Stability of small-amplitude shock profiles of symmetric hyperbolicparabolic systems[END_REF] are satisfied, so that the small amplitude shock profiles are also asymptotically stable in some appropriate Sobolev space.

Large amplitude profiles for viscous Euler fluid-particle system

In this final Section, we continue the analysis relative to the existence of shock profiles for (vE) in the large amplitude regime. Such a choice is dictated by the fact that the model has the additional feature of being invariant with respect to Galilean transformations. As a consequence, we can assume, without loss of generality, that the chosen reference frame is comoving with the wave, i.e. the speed c is equal to zero. Hence, after the straightforward rescaling x Þ Ñ y :" x{ǫ, we search for a solution W " pr, ρ, wq of where the flux F has been introduced in (4.3) and the diffusion matrix D " D 0 `θD 1 with D 0 and D 1 defined in (4.17). Moreover, we assume that the solution W is subjected to far-end states, denoted by W ˚and W ˆ, which are related by the Rankine-Hugoniot conditions (4.5). Whether the far-end state of the asymptotic values W ˚and W ˆis reached at ´8 or at `8 will be made precise further on. Since the first row of D vanishes, the first equation in (5.1) imposes that w is constant:

w " w ˚:" r ˚u˚.

We are thus led to a 2 ˆ2 differential system for the pair pr, ρq given by where p ˚:" ppn ˚q. We bear in mind that the function r " n `ρ has the meaning of a hybrid density, being the sum of the densities of the carrier and the disperse phases, denoted by n and ρ, respectively. The system degenerating to a single equation, we replaced ρ by r ´n in (5.3). Accordingly, r is required to satisfy the admissibility constraint r ą n for any n P p0, 8q, since ρ " r ´n ą 0. Under this constraint, one sees at once that the equilibrium states of (5.3) satisfy r ˚{r " n ˚{n.

$ ' ' & ' ' % ´np 1 pnqρ
To make our computations on system (5.3)-(5.4) easier to follow, we will introduce rescaled variables. However, we will formulate our main theorem in the natural variables. Let (5.5) n κpnq " `8.

In addition, n Þ Ñ κpnq is differentiable with respect to n for n 1 with derivative κ 1 pnq " npn ´1qp 1 pnq `1 ´ppnq pn ´1q 2 .

Then, applying de l'Hôpital rule, we infer

lim nÑ1 κ 1 pnq " lim nÑ1 2p 1 pnq `np 2 pnq 2 " κ ˚`1 2 p 2 p1q ą 0 ,
showing that κ P C 1 p0, `8q. Moreover, the numerator in the expression for the derivative κ 1 pnq is positive, since it vanishes at n " 1 and a further differentiation gives d dn tnpn ´1qp 1 pnq `1 ´ppnqu " pn ´1q t2p 1 pnq `np 2 pnqu which is of the same sign as n ´1 and so n Þ Ñ κpnq is increasing. Finally, thanks to the strict positivity of p 1 , ppnq ´1 is of the same sign as n ´1 and, since κpnq can be rewritten as

κpnq " ppnq ´1 `ppnq ´1 n ´1 ,
we deduce that κpnq ą ppnq ´1. Therefore, n ă npκpnqq and we conclude that there exists a unique κ such that g κ pnq " 0. Let the function h be defined by (5.13) hpnq :" tnppnqu 1 " ppnq `np 1 pnq .

In particular, because h 1 " 2p 1 `p2 ą 0, the function h is strictly increasing together with its inverse h ´1. Then, the following function is well-defined for any κ ą 0 (5.14) n # pκq :" h ´1p1 `κq P p1, 8q .

Being hp1q " pp1q `p1 p1q " 1 `κ˚, there holds n # pκ ˚q " 1.

Lemma 5.2. Given κ ą 0, let n # " n # pκq be defined as in (5.14). The function

(5.15) τ # pκq :" κ n 2 # p 1 pn # q is such that 0 ă τ # pκq ď 1 for all κ ą 0 and τ # pκq " 1 if and only if κ " κ ˚.
Moreover, τ # " τ # pκq tends to 0 as κ Ñ 0 `and as κ Ñ `8.

Proof. To begin, let us observe that n # pκ ˚q " 1 and p 1 p1q " κ ˚so that τ # pκ ˚q " 1. The positivity of τ # being obvious, let us show that τ # ď 1 for κ ą 0, with the equality holding only if κ " κ ˚. Indeed, the above inequality is equivalent to (5.16) fpκq :" n 2 # p 1 pn # q ´κ ě 0 @ κ ą 0 .

Note that fpκ ˚q " p 1 p1q ´κ˚" 0. Differentiating with respect to κ, we infer

f 1 pκq " t2p 1 pn # q `n# p 2 pn # qu n # n 1 # ´1 " t2p 1 pn # q `n# p 2 pn # qu n # h 1 ph ´1p1 `κqq ´1 " n # ´1 .
Differentiating again, since n 1 # " 1{h 1 pn # q ą 0, we conclude that f is strictly convex, its unique minimum being 0 at κ " κ ˚. As a consequence, inequality (5.16) holds.

Next, let us observe that n # p0q " h ´1p1q ą h ´1p0q " 0 since hp0q " pp0q " 0 and h ´1 is strictly increasing. Hence, τ # pκq κ tends to a strictly positive number as κ Ñ 0 `and the limit of τ # at κ " 0 is identified.

Concerning the behavior at `8, since hp`8q " `8, there holds n # p`8q " `8, Then, applying de l'Hôpital rule, we obtain lim κÑ`8

τ # pκq " lim κÑ`8 1 tn 2 # p 1 pn # qu 1 " lim κÑ`8 1 n # h 1 2p 1 `n# p 2 " lim κÑ`8 1 n # " 0,
completing the proof.

Theorem 5.3. Given κ ą 0 with κ κ ˚, let n ˆ" n ˚nˆp κq n ˚be the equilibrium value defined thanks to n ˆpκq the solution given by Lemma 5.1. Then, if τ ă τ # pκq, problem (5.3)-(5.4) admits monotone solutions y Þ Ñ npyq connecting asymptotically n ˆto n ˚with monotonicity related to the sign of u ˚.

Remark 5.4. The definition of the parameters has practical consequences, for instance for numerical purposes. Choosing u ˚, τ and κ leads to inverting n Þ Ñ n ppnq in order to retrieve n ˚, which might require additional assumptions on the pressure law, hopefully satisfied by the γ-law. Small shocks are concentrated in a neighborhood of κ " κ ˚" 2.

Proof. For r ´τ n 0 and introducing the new variable z such that (5.17 where g κ is defined as in Lemma 5.1. A straightforward argument, based on the analysis of the sign of function g κ , shows the existence of the heteroclinic connection between 1 and n ˆfor (5.18) for κ κ ˚, whenever r ´τ n ą 0. The threshold level τ # appears as a consequence of the constraint r ą τ n, indicating that the curve pn, r κ q lies above pn, τ nq. Differentiating r κ with respect to n, we infer dr κ dn " κp 1 pnq t1 `κ ´ppnqu 2 , which is positive and increasing for the properites of p. In particular, r κ is convex in p0, npκqq where npκq has been introduced right after (5.10).

Next let us look for the pair pn # , τ # q such that the tangent to the graph of the functions r κ is given by the straight line r " τ # n. This amounts to searching the solutions of r κ pn # q " κ 1 `κ ´ppn # q " τ # n # and r 1 κ pn # q " κp 1 pn # q t1 `κ ´ppn # qu 2 " τ # .

Replacing the first identity into the second and simplifying, we get ppn # q `n# p 1 pn # q " 1 `κ. Then, we immediately recognize that n # " h ´1p1 `κq and τ # " r κ pn # q{n # " r 1 κ pn # q which corresponds to the value defined in (5.15). Note also that g κ pn # q " p1´τ # q{n # ě 0. Summarizing, for τ P p0, τ # q the constraint r κ ą τ n is always satisfied and the change of variables is legit.

Conversely, for τ P pτ # , 1q there exist two values n ℓ , n r P p0, nq with n ℓ ă n r and r κ pn ℓ,r q " τ n ℓ,r , such that the condition r κ ą τ n holds if and only if n P p0, n ℓ q or n P pn r , nq. In addition, for τ ą τ # , we have g κ pn ℓ,r q " 1 r κ pn ℓ,r q ´1 n ℓ,r " 1 `κ ´ppn ℓ,r q κ ´1 n ℓ,r " 1 ´τ τ n ℓ,r ą 0 , so that for κ ă κ ˚, there holds 0 ă n ˆă n ℓ ă n r ă 1 ă n. In particular, for τ ą τ # and κ ă κ ˚, the function ϕpnq :" r κ pnq ´τ n is negative in the interval pn ℓ , n r q Ă pn ˆ, 1q.

Similarly, for κ ą κ ˚, ϕ is negative in pn ℓ , n r q Ă p1, n ˆq. In both cases, the change of variables (5.17) is not applicable and existence of the connection is precluded since the phyisical requirement ρ ą 0 is violated.

Remark 5.5. Figure 6 shows the profiles n (respectively, r) connecting 1 to n ˆ(resp. 1 to r κ pn ˆq) associated to several values of κ for the choice ppnq " n 2 , illustrating the increasing character of the equilibrium map n ˆ" n ˆpκq. This point is emphasized in Figure 7 in the phase portrait corresponding to the same values of κ, showing that the orbits are convex. Also, note that n ˆand r κ pn ˆq do not depend on τ , but the profiles n and r do, through r ˚" n ˚{τ . The condition r ´n " r ˚pr ´τ nq ą 0, with τ ă τ # , shows as n Þ Ñ τ # n is tangent to the orbit at the point pn # , r κ pn # qq.

Let us also observe that, since pp1q " 1, there holds r κ p1q ´τ " 1 ´τ ą 0. Hence, small shocks are always admissible also in the case of zero-temperature.

Example 5.6. For the sake of concreteness, let us again consider the pressure given by the γ-law (1.5). Incidentally, let us note that κ ˚" γ for any positive constant C. Then, 0.4 0.5 0.6 0.7 0.8 0.9 Heteroclinic orbits Figure 7. Orbits connecting pn ˆ, r κ pn ˆqq to p1, 1q for several values of κ for the γ-law (1.5) with exponent γ " 2. The straight line n Þ Ñ τ # pκqn is plotted for each value of κ, and the tangent point with the corresponding orbit is indicated. The markers are the same as in Figure 6.

most auxiliary functions can be determined giving the explicit expressions ppnq " n γ , hpnq " p1 `γqn γ , h ´1prq " ˆr 1 `γ ˙1{γ .

Moreover, there holds n # pκq " ˆ1 `κ 1 `γ ˙1{γ and τ # pκq " p1 `γq 1`1{γ γ κ p1 `κq 1`1{γ In the special case γ " 2, the function g κ is a rational function whose factorization is g κ pnq "

1 `κ ´n2 κ ´1 n " ´n3 ´p1 `κqn `κ κn " ´1 n pn `n´q pn ´1qpn ´nˆq ,

where n ´and n ˆare given by n ´:" 1 2 p1 `4κq 1{2 `1( , n ˆ:" 1 2 p1 `4κq 1{2 ´1( .

Corresponding graphical representations of the function ϕ (defined at the very end of proof of Theorem 5.3) for different choices of τ are given in Figure 8. Here, the limiting value τ # is equal to 1 at κ " γ " 2 and is explicitly represented to show tangency of the graph with the horizontal axis. Above this κ-dependent threshold value, the still existing heteroclinic connection from n ˆand 1 (corresponding to the connection from n ˆand n ˚)

is not physically admissible since the carrier phase ρ is negative in a neighborhood of both asymptotic states. γ " κ " 2 and various choices of τ . The graph of g κ (with opposite convexity) has been superposed for comparison, as well as the maps n Þ Ñ r κ pnq{n and n Þ Ñ r 1 pnq that intersect at pn # , τ # q.

5.2. Further scrutiny for positive temperature. Next, we focus on the case θ ą 0 with the intention of grasping information from the singular limit behavior θ " 0. System (5.2) can be equivalently written as Note that B ǫ , varying linearly with respect to ε, depends also on p (through B 0 ), on τ (through B 1 ) and on κ (through both B 0 and B 1 ). In addition, we remark that the parameter ǫ is small also in cases where θ is of order 1 and κ{u Preliminarily, observe that, since pp1q " 1 and thus B ǫ p1, 1q " 0, the pair pn, rq " p1, 1q defines an equilibrium solution for (5.21) for any ε, τ and κ.

(
Proposition 5.7. Let κ ą 0 and τ P p0, 1q. Then, for any ǫ ą 0 there exists a unique equilibrium point pn ǫ ˆ, r ǫ ˆq pn ˚, r ˚q of system (5.19). Denoting n ǫ ˆ" n ǫ ˆ{n ˚and r ǫ ˆ" r ǫ ˆ{r ˚, we have T pn ǫ ˆ, r ǫ ˆq " B ǫ pn ǫ ˆ, r ǫ ˆq " 0. Moreover, the two coefficients n ˆ,0 and n ˆ,1 of the first order Taylor expansion of n ǫ ˆat ǫ " 0, viz. n ǫ ˆ" n ˆ,0 `ǫn ˆ,1 `Opǫ 2 q, are (5.22) n ˆ,0 " n ˆand n ˆ,1 " 1 ´τ κ n ˆ´1 g 1 κ pn ˆq ă 0 , where n ˆis the equilibrium of system (5.10) (as described in Lemma 5.1).

Proof. The pair pn ǫ ˆ, r ǫ ˆq solves T pn ǫ ˆ, r ǫ ˆq " B ǫ pn ǫ ˆ, r ǫ ˆq " 0 which is equivalent to (5.23)

$ & % r ǫ ˆ" n ǫ ˆ,
g κ pn ǫ ˆq " ǫp1 ´τ q κ pn ǫ ˆ´1q , referring to the notation in Lemma 5.1. Since g κ pn ˆq " 0, the zero-th order n ˆ,0 in the expansion with respect to ǫ of the solution n ǫ ˆcoincides with n ˆ. Moreover, the first order coefficient n ˆ,1 can be obtained from (5.23) by substitution of the expansion and cancellation of the common coefficient ǫ, that is (5.24) n ˆ,1 g 1 κ pn ˆq " 1 ´τ κ pn ˆ´1q .

which gives the desired equality. Note that g 1 κ pn ˆq cannot vanish simultaneously with g κ pn ˆq since g 1 κ is strictly decreasing -see (5.11)-and g κ p1q " g κ pn ˆq " 0. Finally, g 1 κ being decreasing yields g 1 κ pn ˆq n ˆ´1 " g 1 κ pn ˆq ´g1 κ p1q n ˆ´1 ă 0, and thus n ˆ,1 is negative.

Remark 5.8. The formation of viscous profiles joining monotonically the equilibrium values is shown in Figure 9, while Figure 10 represents the corresponding heteroclinic orbits in the pn, rq plane. The fact that n ǫ ˆă n ˆfor small values of ǫ is showing well. These numerical results are given with a purpose reduced to an illustration of the previous discussion, showing a computational evidence for the existence of viscous shock profiles. However, the apparent convexity of the orbits is worth investigating, as is the fact that the sign of n 1 seems to imply that, if κ " 3, τ might be chosen closer to τ # . Heteroclinic orbits Figure 10. Orbits connecting pn ˆ, rpn ˆqq to p1, 1q for several values of ǫ for the γ-law (1.5) with exponent γ " 2. The straight line n Þ Ñ τ # pκqn is plotted for reference, and the tangent point with the corresponding orbit is indicated (markers as in Figure 9).

  t ą 0, x P R and v P R are the dimensionless time, position and velocity variables, respectively; ' T ref , L ref and V ref :" L ref {T ref are the time, position and velocity dimensions, respectively; ' u ǫ is the velocity of the surrounding medium (dimensionless with respect to V ref ); ' the Stokes settling time T S and the thermal speed V th are defined by T S :" m 6πµa and V th :"

  i. (entropy convexity) d 2 ζ is positive definite; ii. (dissipativity) d 2 ζ D has a positive definite symmetric part.

3. 1 .

 1 Derivation and hyperbolicity. Given θ, ǫ ą 0, let us consider the coupled fluidkinetic system(3.1) 

Figure 1 .

 1 Figure 1. Graph of the function x Þ Ñ |σpxq| (continuous line) compared to the one of x Þ Ñ min t1, |x|u (dotted line) for x P R.

Figure 2 .

 2 Figure 2. Hugoniot locus for several states U ˚" pρ ˚, u ˚q. Plots are given of several curves ρ Þ Ñ u " upρq defined by (3.9), U ˚being the intersection point of the two curves drawn with the same line-specification (dotted, dashed or dot-dashed).

4 . 2 ]. 3 . 3 .

 4233 Entropy for the inviscid Burgers fluid-particle system. The quantity (3.12) H pf, uq :" 1 2 u 2 lo omo on f luid `ˆHpf, vq dv loooooomoooooon particles where Hpf, vq :" f `1 2 v 2 `θ ln f defines an entropy for the fluid-kinetic model (3.1). Indeed, as previously observed, the kinetic equation in (3.1) can be rephrased as

Proposition 3 . 4 .

 34 For any θ ą 0, then system(3.22) with the flux F given in (3.2) and the diffusion matrix D as in(3.23) is strictly stable in the sense of Definition 2.3.Next, having already verified the validity of Liu's entropy conditions, we directly apply[START_REF] Majda | Stable viscosity matrices for systems of conservation laws[END_REF] Corollary 2] to establish the existence of weak viscous shocks, i.e. a solution to the two-dimensional ODE system (3.24) ǫDpWq dW d y " F pWq ´F pW ˚q ´cpW ´W˚q , c given by the Rankine-Hugoniot conditions (3.6) and W ŝufficiently close to W ˚.

Proposition 3 . 6 .

 36 Let D be defined in (3.23) and set Λ :" ? ρ ru 2 . The symmetric part D sym of D is strictly positive definite if and only if

Figure 3 .

 3 Figure 3. Admissible region in the pΛ, θq´plane where D sym is strictly positive definite for the choice ρ " 1.

(4. 5 )Lemma 4 . 3 .

 543 c ρ " ρu , c n " nu , c ru " ru 2 `θρ `ppnq . The following implications hold true.

Proposition 4 . 4 .

 44 If u 0 then the speed c, given in the equalities (4.6), satisfies Liu's entropy condition.

(4. 22 )

 22 Z :" v P R 3 : pA ´λ`I qv P Ran D ( ;

(5. 1 )

 1 DpWq dW dy" F pWq ´F pW ˚q,

6 Graph of g κ Figure 4 .

 6κ4 Figure 4. The graph of the function g κ in (5.18) for the γ-law (1.5) with exponent γ " 2. The markers are the same as in Figures 6 and 7.

Figure 5 .

 5 Figure 5. The graph of the function τ # in the case of the γ-law (1.5) with γ " 2.

) d dz " u ˚pr ´τ nq p 1 pnq κr 2

 2 

6 Figure 6 .

 66 Figure 6. Graphs of n{n ˚(plain) and r{r ˚" r κ pn{n ˚q (dotted) where n solves problem (5.3)-(5.4) for several values of κ such that τ ă τ # . The pressure law p is the γ-law (1.5) with exponent γ " 2.

1 Exploration of the case κ " 2 Figure 8 .

 128 Figure 8. Graphs of functions ϕpnq " r κ pnq ´τ n in the case of γ-law (1.5) with

Figure 9 .

 9 Figure 9. Graphs of n (plain) and rpnq (dotted) where n solves problem (5.21) forseveral values of ǫ, n ˚being fixed and τ " n ˚{r ˚being chosen strictly less than τ # pκq (here, τ " 0.3 τ # ). The pressure law is the γ-law (1.5) with exponent γ " 2.

  1 x `νtp1 ´νqp 1 `θνuy Ṫhe real part of the determinant of M is Repdet Mq " ´θλ `tνp1 ´νqp 1 `θν 2 up1 ´νq ă ´θλ `νp1 ´νq 2 p 1

		'
	θλ `p1 ´νqx which can be rewritten as a reduced two dimensional system with coefficient matrix
	M :"	" ´iξλ ``νp1 ´νqp 1 `θν 2 ˆiξp1 ´νqλ `´νp1 ´νqp 1 ´iξλ ``νp1 ´νqp 1 `θν 2 iξpp 1 ´λ2 `q `θλ `p1 ´νq ´iξpp 1 ´θq ˆiξp1 ´νqλ `´νp1 ´νqp 1 iξp1 ´νqpp 1 ´θq `θλ `p1 ´νq ´iξpp 1 ´θq

  ˚" r ˚u˚. Next, with same notation as before for n, r, τ , κ, p (see (5.5)-(5.6)) and observing that ρ " r ˚pr ´τ nq, we set T as in (5.10) and B ǫ :" B 0 `ǫB 1 where

	5.19)	$ ' ' & ' ' % θ ρ p 1 `θn r 2 dr dy " ´w˚r dn dy " 2 ρ " 1 w n ˆn r r ´1 r ˚`p ´p˚`θ pρ ´ρ˚q ´nr ˚˙´w ˚n ρ " 1 r ´1 r ˚`p ´p˚`θ pρ ´ρ˚q w 2 ˚* , w 2 ˚* .
	where w B 0 pn, rq :"	1 `κ ´ppnq κ	´1 r	" g κ pnq ´T pn, rq,	B 1 pn, rq :"	1 ´τ ´pr ´τ nq κ	.
	and ǫ :" κθ{u 2 ˚" r ˚θ{p ˚. Then, the renormalized version of system (5.19) is
		$ ' ' & ' ' %	u ˚dn dy ǫu ˚dr dy	" "	κr 2 pr ´τ nqp 1 pnq `ετ 2 n κr 2 r ´τ n B ǫ pn, rq ,	" T pn, rq	`τ n r ´τ n	B ǫ pn, rq	*	,

This modifies the limit equation: since ´v2 f ǫ dv » ρ ǫ u 2 ǫ , there is no pressure term induced by the kinetic part of the equation and the limit equation becomes (4.19) $ ' & ' % B t n `Bx pnuq " 0, B t ρ `Bx pρuq " 0, B t pruq `Bx ru 2 `ppnq ( " 0, instead of (iE). Therefore, we can simply use the formula for the flux F and the Jacobian matrix dF by setting θ " 0. In particular, the eigenvalues of dF become (4.20) λ " λ 0 " u, λ ˘" u ˘anp 1 {r.

Accordingly we can set θ " 0 in the expressions of subsection 4.2.

We shall see that the conclusion is essentially the same for the viscous correction, but the computation should be performed with some caution. The rationale consists in using the fact that M u , defined in (1.7), converges to a Dirac mass δ v"u as θ Ñ 0 `in the sense of distributions. Accordingly, we also have

both being weak limits. Thus, as θ Ñ 0 `in the right-hand side of (4.10) and in the remainder in (4.12), we infer that g ǫ :" ´ρǫ r ǫ B x ppn ǫ qδ 1 v"uǫ is such that

Furthermore, the second order moment becomes

By using the above formula, we obtain the closed equation (4.15) with the diffusion matrix (4.16) where we simply set θ " 0, i.e. D " D 0 . Let us stress that when θ " 0 the entropy ζ is convex but not strictly convex, since we can easily check that X " X 0 is a singular matrix. In particular, this precludes the possibility of applying the symmetrization method presented in Proposition 2.6. 4.6. Small-amplitude shock profiles analysis. As in the previous computations, we may consider, without loss of generality, a co-moving frame such that u ˚" 0. To apply the result [START_REF] Pego | Stable viscosities and shock profiles for systems of conservation lawss[END_REF]Theorem 4.1], we focus on a genuinely nonlinear field λ for system (vE), hence excluding the field λ 0 (see Proposition 4.2). For definiteness, let us concentrate on the case λ " λ `, the case λ " λ ´being similar. For later convenience, let us recall the identity (4.21) λ 2 `" νp 1 `θp1 ´νq with ν " n{r P p0, 1q . We are going to use the following result, stated and proved in [START_REF] Pego | Stable viscosities and shock profiles for systems of conservation lawss[END_REF], reported here for reader's convenience in a variation fitting the present context (see [START_REF] Freistühler | Existence, bifurcation and stability of profiles for classical and non-classical shock waves[END_REF] for an alternative formulation).

where p 1 ˚" p 1 pn ˚q. The parameter τ describes the ratio between the density of the disperse phase and the corresponding total density. In particular, in term of the rescaled variables, the discussion about the sign of ρ will then concern the one of r ´τ n. The dimensionless number κ is reminiscent of the Eckert number in fluid mechanics and it compares the kinetic energy of the mixture to the pressure of the carrier phase. The value κ ˚is a given threshold separating different behaviors for the solution of problem (5.3)-(5.4). Note that, once n ˚is fixed, κ ˚is completely determined. Moreover, if τ is fixed, r ˚is also given. Finally, if additionally κ is fixed, the absolute value of u ˚is determined by the formula (5.7) |u ˚| " a p ˚τ κ{n ˚.

Finally, let us introduce the rescaled pressure (5.8) ppnq :" ppn ˚nq p ˚. Note that the function p shares the same monotonicity and convexity of p and that (5.9) pp0q " 0 , pp1q " 1 ,

Taking advantage of the previous definitions, the differential equation ( 5.3) with constraint (

where the function n Þ Ñ r κ pnq is defined for n P p0, npκqq with npκq :" p ´1p1 `κq.

Lemma 5.1. For any κ ą 0 with κ κ ˚there exists a unique npκq 1 solution to g κ pnq :" T pn, r κ pnqq " 0. Moreover, the function κ Þ Ñ npκq is one-to-one from p0, 8qztκ ˚u to p0, 8qzt1u with npκq ă 1 if and only if κ ă κ ˚.

Proof. For κ κ ˚, the function g κ is such that lim nÑ0 `gκ pnq " ´8, g κ p1q " 0, g 1 κ p1q " 1 ´κκ 0, g κ pnq " ´1 n ă 0. Moreover, the derivative (5.11) g 1 κ pnq "

´p1 pnq κ is decreasing in n, hence the function g κ is concave. (Graphs of the function g κ for several values of κ are depicted in Fig. 4, in the case of the pressure law (1.5) with γ " 2.) In particular, for κ ă κ ˚, respectively κ ą κ ˚, there exists a unique value n P p0, 1q, respectively n P p1, nq, such that g κ pnq " 0.

Conversely, given n P p0, `8qzt1u, let κpnq be such that g κ pnq " 0. The latter identity can be equivalently written as n " r κ pnq " κ{t1 `κ ´ppnqu. As a consequence, we infer (5.12) κpnq " n tppnq ´1u n ´1 for n 1 .

Capturing viscous profiles is very sensitive because it requires the determination of the equilibrium value with high accuracy. Again, the resolution of the differential system should be performed with a high-order method in order to capture the profile. A thorough numerical investigation will be presented elsewhere, addressing in further details the computational difficulties and the role of the parameters of the model.