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We investigate the mechanisms leading to acoustic whistling for a jet passing through
a circular hole in a thick plate connecting two domains. Two generic situations are
considered. In the first one, the upstream domain is a closed cavity while the downstream
domain is open, leading to a class of conditionally unstable modes. In this case, the
instability source lies in the recirculation region within the thickness of the plate, but
coupling with a conveniently tuned resonator is needed to select the conditional instability
range. In the second situation, the two regions, upstream and downstream of the hole,
are considered as open, leading to a class of hydrodynamic modes where instability of
the recirculation region is sufficient to generate self-oscillations without the need of any
resonator. A matched asymptotic model, valid in the low-Mach limit, is used to derive a
global impedance of the system, combining the impedance of the hole and the modelled
impedances of the upstream and downstream domains. It is shown that the knowledge
of this global impedance along the real ω−axis provides an instability criterion and a
prediction of the eigenvalues of the full system. Validations against the solutions of the
eigenvalue problem obtained from the linearized fully compressible formulation confirm
the accuracy of the approach. Then, it is subsequently used to characterize the range of
existence of instabilities as a function of the Reynolds number, the Mach number, the
aspect ratio of the hole, and (for the cavity configuration) the dimensionless volume of
the cavity.
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1. Introduction

Plates with orifices are very common elements adopted in numerous industrial appli-
cations, like for example silencers, fuel injectors or wind instruments. Under the effect
of a harmonic incident acoustic wave, the vortex sheet formed at the lip of the aperture
becomes periodically modulated and acts as an amplifier due to a Kelvin-Helmholtz
instability, reorganising the jet into an arrangement of vortex rings. The generation of
vorticity is an efficient mechanism to dissipate acoustic energy, as a consequence, the use
of multiple perforated plates traversed by a mean flow is widely employed as a sound
attenuator device for industrial applications, such as gas turbine combustion systems.
These systems may suffer from thermoacoustic instabilities because of the potential
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for unsteady heat release, which can damage the combustion system itself. The flow
through a perforated liner with bias flow has been studied experimentally by Heuwinkel
et al. (2007) while Hughes & Dowling (1990); Eldredge & Dowling (2003); Rupp et al.
(2012) have conducted both experimental and theoretical investigations. There are,
however, situations where the flow through a hole can lead to the opposite effect, namely
spontaneous self-oscillations and sound emissions. A particularly favourable situation
with respect to sound emission is the flow through two successive holes, as encountered
for instance in bird calls and tea kettle whistles (Henrywood & Agarwal 2013; Longobardi
et al. 2021). Although less common, the flow through a single hole can also lead to
powerful sound emissions. As in other related examples of aeroacoustic resonators,
(including for instance the ”edge-tone” encountered in the mouthpiece of a recorder or
organ pipe for instance), two situations may occur. In the first one, the frequency of the
whistling may be directly selected by that of an acoustic resonator located in the vicinity
of the hole. This is for instance the case for the so-called ”pipe tone” (or pfeifenton),
corresponding to a long cylindrical pipe terminated by an aperture of smaller section. In
this configuration, which was intensively investigated experimentally by Anderson (1954),
the frequency of the whistling directly corresponds to one of the resonance frequencies of
the pipe. In the second one, the frequency may be selected by the flow itself regardless of
the existence of any acoustic resonator. This situation was noted by Bouasse (1929), who
observed that the flow through a hole in a thick plate separating two large chambers leads
to a whistling with a frequency proportional to the thickness of the hole. This observation
was rediscovered by Jing & Sun (2000); Su et al. (2015) who, in an effort to improve the
performance of perforated plates as sound dampers, reported that, in some circumstances,
these devices could lead to self-sustained whistling. In music acoustics one observes the
interaction between the two type of mechanisms cf. (Coltman 1976). In the case of the
flue instrument, the so-called edge-tone oscillation can coexist with the pipe-tone and
under some specific circumstances, as for example during the attack transients, it may
be dominant, cf. (Castellengo 1999). Verge et al. (1997) proposed a lumped model for flue
instruments where these two feedback loops can coexist and interfere: a hydrodynamic
loop responsible for the edge-tone and a cavity loop responsible for the pipe-tone. On
the contrary, in the case of the flow past an aperture both mechanisms are associated
with the same feedback loop, which is modified by placing a cavity upstream of the
perforation. These two situations respectively correspond to the so-called class III and
class II categories of aeroacoustic resonators, following the classification of Chanaud
(1970).

Recently, Fabre et al. (2019) used the LNSE approach to investigate the unsteady
flow through a circular aperture in a thin plate subjected to harmonic forcing. A novel
non-reflecting boundary condition called complex mapping method (Sierra et al. 2020)
was introduced to overcome the numerical difficulties created by the strong spatial
amplification of the fluctuations. The approach allows computing in a rigorous way the
impedance of the hole, namely the ratio between unsteady pressure difference across
the orifice and unsteady volume flow rate through the orifice, a quantity which can
be directly introduced in more elaborate acoustical models. In that study, the authors
confirmed that the LNSE can be effectively adopted to predict the impedance even in
cases where the spatial evolution of the perturbations is rapidly dominated by nonlinear
effects. The same approach was subsequently used by Fabre et al. (2020) for the case
of a hole through a thick plate. An important result is that for sufficiently thick holes
the impedance can acquire a negative real part in some ranges of forcing frequencies,
indicating that energy can be extracted from the flow, thus providing a source for self-
oscillations. Investigation of the structural sensitivity also allowed to demonstrate that
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the hydrodynamic instability of the shear layer separating the jet from the recirculation
bubble is the driving motor for the observed phenomenon. This corresponds to the same
instability as in the jet of a flue instrument or the shear layer for a grazing flow along a
cavity, cf. Dai & Aurégan (2016, 2018). In this flow configuration, the sharpness of the
aperture corner creates a recirculation bubble that enhances the instability mechanism.

The response of a system to a harmonic forcing is naturally studied via a transfer
function: here it corresponds to the concept of impedance, which can also be used to obtain
important information regarding the stability properties of a system. First, plotting the
impedance in the form of Nyquist diagrams (namely a parametric representation of Z(ω)
in the complex plane for real values of ω) provides a direct way to determine the number
of unstable modes of the system, as a function of the number of times the Nyquist contour
encircles the origin. Secondly, when the system has a complex eigenvalue located close
to the real ω-axis, an approximation of the eigenvalue can be obtained from a Taylor
expansion of the impedance function around the real axis. Such methods are widely used
in several fields like in automatics or in electronics, but remain underemployed in the flow
instability community where eigenvalue computation remains the preferred approach.
Note, however, that the second idea was recently applied successfully by Ferreira Sabino
et al. (2020) for the problem of vortex-induced vibrations for a spring-mounted cylinder.

The links between impedance and stability properties were explored by Fabre et al.
(2020) for the jet flow through a hole. The discussion revealed the existence of two
different instability mechanisms leading to sound production: a purely hydrodynamic
instability characterised by spontaneous self-oscillations existing in the absence of any
incoming acoustic wave, and a conditional instability due to an over-reflection of acoustic
waves. Simple criteria formulated in terms of the impedance were given for both kinds of
instabilities, allowing to determine their range of existences as function of the hole aspect
ratio and the Reynolds number. Among the studies considering a multiply perforated
plate, Jing & Sun (2000); Su et al. (2015) measured experimentally the impedances for
several configurations with variable hole thickness parameter values, which are in good
accordance with the first branch of conditional unstable modes, cf Fabre et al. (2020,
Sec 8.). Moussou et al. (2007) studied experimentally a long pipe with a constriction for
a number of values of the constriction ratio and the thickness ratio. In this study, they
identified both the first and second branch of conditionally unstable modes.

In the approach of Fabre et al. (2020), the flow was assumed as locally incompressible,
a hypothesis which is expected to be valid for small values of the square of the Helmholtz
number (He2 = ω2M2), and which does not directly allow predicting the acoustic field.
Nevertheless, they suggested that the locally incompressible solution could be matched
to outer solutions incorporating compressibility effects, leading to more elaborate models
applicable in situations incorporating for instance acoustic resonators and radiation in
an open domain.

The object of the present paper is precisely to show how the impedance computations of
Fabre et al. (2020) based on locally incompressible solution can be used to build a model
applicable for a realistic situation involving compressibility. In addition, acoustic pres-
sure fields, obtained from full compressible LNSE computations complement the study.
Two generic situations are considered. In the first situation referred to as cavity/open
configuration, the domain located upstream of the hole is considered as a closed cavity of
finite volume, while the downstream domain is considered as open. We then show that
the presence of the upstream resonator can effectively lead to instabilities, as predicted
by the conditional instability criterion. The second situation, referred to as open/open
configuration, corresponds to the case where the two regions, upstream and downstream
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Figure 1: Sketch of the open/open configuration.

f the hole, are considered as open domains of large dimension. We show, in this case,
that an instability of purely hydrodynamic type can arise.
The paper is organized as follows. In Sec. 2, the two generic situations are introduced,

and the parameters are outlined. In Sec. 3, we show introduce an asymptotically matched
or lumped model which allows defining a global impedance for the selected configuration
by combining the hole impedance as computed by Fabre et al. (2020) and the impedances
of the upstream and downstream domains. We also show that a Taylor expansion of this
impedance around the real ω-axis can be used to obtain an instability criterion and
an estimation of the eigenvalue of the unstable modes in the fully compressible case.
In Sec. 4, we introduce a numerical resolution method for the eigenvalue problem in a
fully compressible setup. In Sec. 5 we present results for the cavity/open configuration.
We compare both approaches, demonstrating that the asymptotic model is effectively
accurate for low Mach numbers. We then provide a parametric study for both problems,
thanks to the asymptotic model. Section 6 presents results for the open/open configura-
tion. We particularly investigate the effect of compressibility on the purely hydrodynamic
instability mechanism identified by Fabre et al. (2020), and also consider the acoustic
directivity of far-field sound emission.

2. Problem definition

2.1. Fluid parameters

The fluid is considered as a perfect gas with specific constant Rg and adiabatic index
γ = 1.4. We denote with ρ0 the reference density and with T0 the reference temperature
(both corresponding to the values in the upstream domain). The fluid is assumed to
have constant dynamic viscosity µ and heat conductivity α. The mass flow rate at the
inlet of the domain is denoted with ṁ0, while the mean velocity across the hole is UM =
ṁ0/(ρ0πR

2
h). Based on this velocity scale and the hole diameter Dh = 2Rh, the Reynolds

and Mach numbers of the flow are then defined as:

Re =
ρ0DhUM

µ
≡ 2ṁ0

πRhµ
; M =

UM

c0
with c0 =

√
γRgT0. (2.1)

The fluid is also characterized by a Prandtl number Pr = ρ0α/µ which is here assumed
to be Pr = 0.7.



Acoustic instability prediction via an Impedance Criterion 5

Figure 2: Sketch of the cavity/open configuration.

2.2. Open/open configuration

In the first configuration, termed open/open configuration and sketched in Fig. fig. 1,
we consider that a plate separates two semi-infinite ”open domains” of large dimensions.
By ”open domain” we mean that acoustic waves generated at either side of the hole
propagate towards infinity without reflection. Denoting with Lh the thickness of the
plate, the geometry is thus completely defined by a single dimensionless parameter, the
aspect ratio of the hole, defined as:

β =
Lh

2Rh
=

Lh

Dh
(2.2)

In the fully compressible simulations, boundary conditions have to be applied at the
boundary of the domain. For simplicity, a half-spherical boundary is considered upstream,
and a uniform radial velocity is imposed, as sketched in the figure. Non-reflective bound-
ary conditions used for the compressible computations are introduced and explained in
details in section 4.

2.3. Cavity/open configuration

The second considered configuration, termed cavity/open configuration, is sketched in
fig. 2. This configuration is selected here to study, in the simplest possible setting, the
coupling of the hole with a cavity acting as a resonator. The upper domain is considered
as a cavity of dimensions Lin, Rin which acts as a Helmholtz resonator. Therefore, only
its volume is relevant, not the exact dimensions Lin, Rin or the particular geometry.
Thus, in addition to the aspect ratio β defined above, a second geometrical parameter
enters the problem, namely the dimensionless volume defined as:

Vin =
LinπR

2
in

R3
h

.

The inlet condition is imposed at the leftmost boundary where, for simplicity, a constant
velocity profile is enforced, as sketched in the figure.

3. Matched Asymptotic model

Before considering the resolution of the problem in a fully compressible setting, we
detail here a matched asymptotic model which allows us to compute a total impedance
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characterising the behaviour of linear perturbations of the full system. We first explain
how the different regions of the flow domain can be described to obtain the model,
and then discuss how the derived total impedance can be used to predict the onset of
instabilities.

3.1. Matching principle

Under the hypothesis that the Mach number is small and that acoustic wavelengths
are much larger than the dimensions of the hole (acoustic compactness hypothesis), it
is possible to assume that the flow in the vicinity of the hole is locally incompressible,
while compressibility is only relevant in the upstream and downstream domains. This
hypothesis is at the origin of the asymptotically matched or lumped model. The in-
gredients required for matching are the pressure pin(t) just upstream of the hole, the
pressure pout(t) just downstream of the hole, and the volume flow rate q(t) across the
hole. Working in the frequency domain, all these quantities are expanded as a constant
value associated with the base flow, plus a perturbation with harmonic dependency e−iω̃t,
where ω̃ is a (possibly complex) dimensional frequency:

pin(t) = Pin + p′ine
−iω̃t, pout(t) = Pout + p′oute

−iω̃t,

q(t) = Q0 + q′e−iω̃t,. (3.1)

It is important to understand that here p′out corresponds to the level of the fluctuating
pressure field at distances ∥x∥ considered large in relation to the hole dimension but
small compared to the acoustic wavelength, i.e., Rh ≪ ∥x∥ ≪ λ̃ with λ̃ = 2πc0/ω̃.
Consequently, this pressure level corresponds both to the outer limit for the inner
solution, and to the inner limit for the outer solution of the classic matched asymptotic
expansion procedure. The same holds for p′in which is also used as a matching limit
between inner and outer solutions.

3.2. Impedance modelling

3.2.1. Inner region : hole impedance

The inner region, located in the vicinity of the hole (delimited by dotted lines in figures
1 and 2), is governed by the incompressible LNSE. A resolution method for this problem
was introduced and validated in Fabre et al. (2020): for the benefit of the reader, this
approach is also briefly summarised in appendix A. The cited method allows ultimately
to deduce the (dimensionless) hole impedance Zh(ω) defined as

Zh(ω) =

[
R2

h

ρ0UM

]
p′in − p′out

q′
(3.2)

Here the factor R2
h/(ρ0UM ) is introduced to turn the impedance into a dimensionless one,

since the dimensional impedance (p′in − p′out)/q
′ has physical units kg · s−1m−4 in the

international system, and it is a function of the dimensionless frequency ω = Rhω̃/UM .

The impedance is ultimately searched as Zh = P · (LNS + iωB)−1 · F , where F
represents a forcing of the LNSE by an imposed flow rate, (LNS + iωB)−1

is the linear
resolvent of the incompressible LNSE, and P is an operator allowing to extract the
overall pressure jump from the linear perturbation. After a convenient discretization,
computation of the impedance is thus straightforward and only requires inversion of a
single linear problem. It is thus much faster in comparison to eigenvalue computation,
which, using shift-and-invert method, typically requires numerous iterative resolutions
of such problems. Once Zh(ω) is computed and tabulated (Fabre et al. 2020) a complete



Acoustic instability prediction via an Impedance Criterion 7

parametric study in terms of Mach number and the cavity volume can be performed as
shown below.

3.2.2. Downstream region : radiation impedance

When observed from a large distance, the hole can be seen as a monopolar source,
which classically gives rise to spherical diverging waves. This is classically described by
a radiation impedance defined as the ratio between pressure p′out and flow rate q′. This
impedance can be obtained by asymptotically matching an acoustically compact inner
solution with a monopolar acoustic source, cf (Fletcher & Rossing 2012; Pierce 2019;
Rossing 2007). The computation is also reproduced in Fabre et al. (2020, App. A). When
expressed in dimensionless variables, the result is a purely real impedance Zrad given by

Zrad =

[
R2

h

ρ0UM

]
p′out
q′

=
Mω2

2π

3.2.3. Upstream region : case of an open domain

In a similar way, in the case of the ”open domain” (fig. 1), one can introduce the
impedance of the inlet domain Zin, which is defined as

Zin =

[
R2

h

ρ0UM

]
p′in
q′

= −Mω2

2π
= −Zrad.

3.2.4. Upstream region : case of a cavity

In the case where the upstream domain is considered as a closed cavity (fig. 2), we
assume that this cavity acts as a Helmholtz resonator, namely the pressure p′ = p′in, and
the density ρ′ = ρ′in are uniform. Then a mass budget leads to

Vinc
2
0

dρ′in
dt

= Vin
dp′in
dt

= ρ0q
′

which allows the introduction of the impedance of the cavity Zcav

Zcav =

[
R2

h

ρ0UM

]
p′in
q′

=
i

ωM2Vin
=

i

ωχ
, χ = M2Vin

Note that this expression indicates that the cavity acts as a capacitor for an electrical
circuit or as a spring in a mechanical system. Moreover, its characteristics only depend
upon the quantity χ = M2Vin which combines the Mach number and the dimensionless
volume of the cavity. Such a model could be complemented with the addition of two other
terms that have been neglected. In particular, one could include on the left-hand side of
the mass balance the deviation from isentropic pressure fluctuations due to, for instance,
the effects of the thermal boundary layer and on the right-hand side, the convective
term involving density fluctuations. These terms have been neglected based on the fact
that velocity and temperature gradients within the cavity are small as long as the ratio
between the height of the cavity and the radius of the hole is large. In our study, this
corresponds to Lin = Rin = (Vin/π)

1/3 ≫ Rh, which holds for the cavities analysed in
this study.

3.2.5. Summary : total impedance of the problem

Regrouping all the regions, we are now able to obtain a single constitutive equation
for the total impedance of the system, denoted either Za or Zb for the two investigated
configurations, which allows us to determine the eigenfrequencies of the complete prob-
lem:
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(a): For the open/open configuration, Zh = −2Zrad, or equivalently :

Za(ω) = Zh(ω) +
Mω2

π
= 0 (3.3)

(b): for the cavity/open configuration, Zh = −Zcav − Zrad, or equivalently :

Zb(ω) = Zh(ω) +
Mω2

2π
+

i

M2Vinω
= 0 (3.4)

We emphasize that the total impedance defined here is designed mainly to be used to
detect eigenvalues, hence only the condition Z(ω) = 0 is significant. The complex zeros
ω = ωR + ωI of Z then correspond to the eigenmodes of the system, and the system is
therefore unstable if there exists such a zero with ωI > 0. When not zero, there is no
direct physical interpretation to the value Z(ω) associated with a given ω. Schematically,
1/Z it can be conceived of as a measure of the response of the system to an imposed
forcing, so that Z = 0 means that the response is infinite, or in other words that a
solution without forcing is possible. For instance, Fabre et al. (2020, App. A) considered
the case where the forcing corresponds to a spherically converging wave coming from
downstream; in this case the reflection coefficient is effectively proportional to Z−1 (see
Eq. A12 in this reference). Other kinds of forcing could be considered, leading to the
same conclusion. In the present paper we remain to an intuitive interpretation of Z−1

and do not elaborate on the link between the impedance and any specific forcing.

3.3. Predicting instability from a Taylor expansion of the impedance

As stated in the introduction, knowledge of the impedance function Z(ω) along the
real ω-axis allows obtaining important information regarding instability properties of
the system in two ways. First, Cauchy’s argument principle can be used as a graphical
method to determine whether or not an instability exists. This argument is developed
in appendix C. Second, eigenvalues located close to the real axis may be expected to
be accurately predicted from a Taylor expansion of the impedance around the real axis.
This argument is presented here.

3.3.1. Asymptotic prediction of eigenvalue for the cavity/open configuration

Following an idea previously used in Ferreira Sabino et al. (2020) for the problem
of vortex-induced vibrations of a spring-mounted cylinder, we assume here that the
impedance of the full system is mostly reactive. In the present case, this means that
the impedance is dominated by its imaginary part, while the real parts (i.e., Re(Zh) and
the radiation impedance) correspond to lower order terms. Such a hypothesis, together
with the fact that the flow is acoustically compact within the region of the hole, allow
the use of an asymptotic expansion truncated at first order to determine the zeros of the
impedance. We first elaborate this idea for the cavity/open configuration. The hypotheses
are as follows:

(i) |Re(Zh)| ≪ |Im(Zh)|, i.e. |Re(Zh)| ∼ ε |Im(Zh)|,

(ii)
Mω2

2π
≪ |Im(Zh)|, i.e.

Mω2

2π
∼ ε |Im(Zh)|.

where the real parameter 0 < ε ≪ 1. Note that hypothesis (i) is not justified for every
value of ω0 since from the results of Fabre et al. (2020) the real and imaginary parts of
Zh are generally of comparable order of magnitudes. However, this hypothesis can be
expected to be valid in the vicinity of the threshold of the instability. Hypothesis (ii) is
needed for the acoustic compactness and therefore directly satisfied.
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Consider the frequency expansion

ω = ω0 + εω1, ω0 ∈ R, ω1 ∈ C, ε ∈ R, (3.5)

and let substitute ω in eq. (3.4) by eq. (3.5) and by performing a Taylor expansion in
terms of the assumed small quantities leads to

Zb(ω) = i
[
Im

(
Zh(ω0)

)
+

1

M2Vinω0

]
+ε

[
Re

(
Zh(ω0)

)
+

Mω2
0

2π
+

((∂Zh

∂ω

)
ω=ω0

− i

M2Vinω2
0

)
ω1

]
+O

(
ε2
) (3.6)

where O
(
ε2
)
denotes higher order terms as function of the assumed small parameter.

The condition Zb = 0 then leads to the following results:
(i) The zeroth-order terms lead to the condition

− ω0Im
(
Zh(ω0)

)
=

1

M2Vin
=

1

χ
(3.7)

(ii) The first-order term leads to

Im(ω1) =

[
Re

(
Zh(ω0)

)
+

Mω2
0

2π

]((∂Im(
Zh(ω)

)
∂ωR

)
ω=ω0

− 1

χω2
0

)
((∂Re(Zh

(
(ω)

)
∂ωR

)
ω=ω0

)2

+
((∂Im(

Zh(ω)
)

∂ωR

)
ω=ω0

− 1

χω2
0

)2
,

Re(ω1) =
−
[
Re

(
Zh(ω0)

)
+

Mω2
0

2π

](∂Re(Zh)

∂ωR

)
ω=ω0((∂Re(Zh(ω)

)
∂ωR

)
ω=ω0

)2

+
((∂Im(

Zh(ω)
)

∂ωR

)
ω=ω0

− 1

χω2
0

)2

(3.8)

The imaginary part of the first-order correction directly provides a criterion of stability.
Provided that the imaginary part of ∂Zh/∂ω is negative (a condition which is found to
hold in all cases where the starting hypotheses are verified), then it is possible to conclude
that an instability is possible as soon as

Re
(
Zh(ω0)

)
< −Mω2

0

2π
.

We recognize here an improved version of the conditional instability criterion of Fabre
et al. (2020). Physically, this condition means that the energy extracted from the base-
flow −Re

(
Zh(ω0)

)
|q′|2/2 must be larger than the energy radiated Zrad|q′|2/2

Fabre et al. (2020) have documented the function Zh(ω) for real values of ω over a
wide range of parameters. Once the hole impedance function Zh(ω) is determined, these
results can be used to solve the coupled conditions eq. (3.7),eq. (3.8) and ultimately
to obtain an instability criterion and an estimate for the growth rate. Figure 3 explains
graphically these conditions. The resolution can be done in two ways. Via a direct method,
that is, given the parameters M and Vin, one first solves for eq. (3.7), which is an implicit
equation in ω0 as a function of the parameter χ (as sketched in fig. 3a). Then one may
deduce Im(ω1) which is an explicit function of ω0 and M (as sketched in fig. 3b) and it
ultimately provides a criterion of instability.
An alternative is to follow an inverse method. Given M , we first consider Im(ω1) as a

function of ω0 and deduce the ranges of ω0 where this function is positive (as indicated
in blue on fig. 3b). Once these unstable ranges are known, we deduce the corresponding
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(a) (b)

Figure 3: Linear scale representation of the zero computation of eq. (3.5) with the (a)
zeroth-order eq. (3.7) and the (b) first order eq. (3.8) approximations.

ranges for 1/(M2Vin) by using eq. (3.7) (as indicated by blue ranges in fig. 3a). The
approach thus indicates the ranges of Vin where, for the given M , the jet is unstable.
The great advantage of this inverse method is that the equation eq. (3.7) is explicit when
solving for Vin in terms of ω0.
The inverse method is a very efficient way to obtain an estimation of the eigenvalue

of the full problem ω = ω(Re, β,M, Vin) provided one disposes of a tabulation of the
function Zh(ω;Re, β) for real values of ω. It must be emphasised that the number of
parameters has been reduced from four to only two, as Vin and M only occur through the
modelled impedance of the upstream and downstream domains. However, the reduction
relies on a series of strong hypotheses: first M ≪ 1 and |ω| ≪ 1/M for the matched
asymptotic model to hold, and second the assumptions used to treat Re(Zh) as a
correction. The validity of the approach, therefore, have to be assessed by comparing
the results with those obtained using a fully compressible model in order to clarify the
range of validity of the used approximations, as detailed in section 5.1.

3.3.2. Asymptotic prediction of eigenvalue for the open/open configuration

Let us now follow a similar route to achieve an estimation of the eigenvalue ω for
the open/open configuration. In this case, the zeroth-order and first-order corrections
simplifies to

− ω0Im(Zh)(ω0) = 0 (3.9)

Im(ω1) =

[
Re

(
Zh(ω0)

)
+

Mω2
0

π

](∂Im(Zh)

∂ωR

)
ω=ω0

|
(∂Zh

∂ω

)
ω=ω0

|2
,

Re(ω1) =
−
[
Re

(
Zh(ω0)

)
+

Mω2
0

π

](∂Re(Zh)

∂ωR

)
ω=ω0

|
(∂Zh

∂ω

)
ω=ω0

|2

(3.10)

where the non-zero ω0 are the zeros of the imaginary part of the hole impedance function
Im(Zh) and the growth rate is estimated by eq. (3.10).
Note that this expression is identical to the one obtained for the cavity/open config-

uration when Vin → ∞, except for the radiation term, which is twice the value in the
previous case. This accounts for the fact that radiation occurs on both sides, so that total
radiation losses are twice larger.
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(a) (b)

Figure 4: Schematic representation of the computational mesh for both configurations,
(a) open/open case, (b) closed/open case: z−∞, z∞, r∞ are, respectively, the location
of the physical inlet, outlet and lateral boundaries. The physical domain is padded into
a complex mapping layer with a radial extension rCM (resp. axial zCM extension). The
inner domain corresponds to an inner region with the highest vertex density: z−, z+,
r+ are, respectively, the location of the left, right and lateral boundaries of this inner
domain; in the closed/open case the inner domain includes the cavity located upstream
of the hole.

4. Full compressible formulation

After detailing the matched asymptotic model, we now introduce in this section a
numerical method to resolve directly the eigenvalue problem in a fully compressible
setting.

4.1. Compressible Navier–Stokes equations

Let’s consider a compressible fluid motion of a perfect gas described in primitive
variables by q = [ρ,u, T, p]

T
, where the velocity vector field is u = (u, v, w), pressure

p, temperature T and fluid density ρ. Dimensional primitive variables have been made
dimensionless, as follows:

x =
x̃

Dh
, t =

t̃UM

Dh
, ρ =

ρ̃

ρref
, u =

ũ

UM
, T =

T̃

Tref
, p =

p̃− pref
ρrefU2

M

(4.1)

where dimensional values are designated by an upper tilde ·̃, and reference values
are indicated with the ·ref . Dynamics is governed by the compressible Navier–Stokes
equations, which are here written in terms of primitive dimensionless variables in the
compact vector notation:

M
(∂q
∂t

)
= NS

(
q
)
= L

(
q
)
+N(q) +C = 0 (4.2)

where C = [0,0, 0, 1]T , the mass matrix M and the linear operator L are defined as

M =


1 0 0 0
0 ρI 0 0
0 0 ρ 0
0 0 0 0

 , L =


0 0 0 0
0 −∇ · τ(·) 0 ∇
0 0 − γ

PrRe∆ 0
0 0 0 γM2

 (4.3)
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while the nonlinear operator is written as

N(q) =


u · ∇ρ+ ρ∇ · u

ρu · ∇u

(γ − 1)
[
ρT∇ · u− γM2τ(u) : D(u)

]
+ ρu · ∇T

−ρT

 , (4.4)

4.2. Compressible Navier Stokes – Base flow equations

The stability of a steady-state solution to infinitesimal perturbations can be analysed
using the classical approach based on linearization of the governing equations: the total
flow field is expanded into the sum of a steady-state term plus an infinitesimally small
unsteady harmonic perturbation as follows:

q(t) = q0 + ε
(
q̂e−iωt + c.c.

)
(4.5)

where ε ≪ 1. Inserting eq. (4.5) in the governing equations eq. (4.2) and neglecting
quadratic terms leads to two problems, one for the base flow and one for the perturbation.
In particular, at leading order, only steady terms are kept, which leads to the steady
Navier–Stokes equations:

NS
(
q0

)
= L

(
q0

)
+N(q0) +C = 0 (4.6)

complemented with appropriate boundary conditions. No-slip adiabatic boundary condi-
tions are used at the walls (eq. (4.7c)). At the axis of revolution, the radial component v0
is set equal to zero, and the radial derivative of the remaining terms is null eq. (4.7d)). At
the outlet we set stress-free and isothermal boundary conditions (eq. (4.7b)); in this way
the pressure at the outlet is equal to the thermodynamic pressure, i.e., p0 = 1. Finally,
at the inlet boundary Γin = Γin,0 ∪ Γin,1, a constant mass flow is enforced on the Γin,0

boundary, slip condition, constant density and zero thermal flux are imposed on the Γin,1

(eq. (4.7a)). Summarising,

ρ0|Γin
= 1,

∫
Γin,0

ρ0u0 · ndS =
π

4
,

(
u0 · n

)
|Γin,1

= 0,
(
∇T0 · n

)
|Γin

= 0 (4.7a)

T0|Γout
= 1,

(
− p0I + τ(u0)

)
· nΓout = 0 (4.7b)

u0|Γw = (0, 0, 0)T ,
(
∇T0 · n

)
|Γw = 0 (4.7c)

v0|Γw
= 0,

∂u0

∂r
=

∂w0

∂r
=

∂ρ0
∂r

=
∂T0

∂r
=

∂p0
∂r

= 0 on Γaxis (4.7d)

4.3. Linearized compressible Navier–Stokes equations – Homogeneous problem

The linearized compressible Navier–Stokes equations govern the evolution of the per-
turbation q̂:

− iωMq̂ = LNS0

(
q̂
)
=

[
L+DN

∣∣
q0

]
q̂, (4.8)

where DN
∣∣
q0

is the jacobian matrix of the nonlinear operator evaluated at the steady-
state q0.
With the purpose of modelling a large container upstream of the hole, for the

open/open case we have designed a computational domain, fig. 4 (a), composed of three
regions: an inner domain with the highest vertex density, the physical domain and an
absorbing layer to eliminate the appearance of spurious eigenvalues. The absorbing layer
corresponds to the complex mapping technique, cf. Sierra et al. (2020). The boundary
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conditions of the linearized full compressible formulation for the open/open case are as
follows

ρ̂|Γin
= 0,

(
− p̂I + τ(û)

)
· nΓout

= 0,
(
∇T̂ · n

)
|Γin

= 0 (4.9a)

ρ̂|Γout = 0,
(
− p̂I + τ(û)

)
· nΓout = 0,

(
∇T̂ · n

)
|Γout = 0 (4.9b)

û|Γw = (0, 0, 0)T ,
(
∇T̂ · n

)
|Γw = 0 (4.9c)

v̂|Γw
= 0,

∂û

∂r
=

∂ŵ

∂r
=

∂ρ̂

∂r
=

∂T̂

∂r
=

∂p̂

∂r
= 0 on Γaxis (4.9d)

In particular, in the far-field (inlet and outlet) we impose null density variations, stress-
free boundary condition and vanishing thermal flux (eqs. (4.9a) and (4.9b)); doing so the
mass flux, ρ0û · n, is allowed to vary. A no-slip adiabatic boundary condition is used at
the walls (eq. (4.9c)), while at the axis the radial component of the velocity v̂ is set to
zero, together with null radial derivative of the remaining terms (eq. (4.9d)).

For the purpose of modelling a closed cavity that acts as an acoustic resonator, we
have a computational domain, which is sketched in fig. 4 (b), where the complex mapping
layer is only present in the region placed downstream of the hole. The set of boundary
conditions are as follows

ρ̂|Γin = 0, û|Γin = (0, 0, 0)T ,
(
∇T̂ · n

)
|Γin = 0 (4.10a)

ρ̂|Γout
= 0,

(
− p̂I + τ(û)

)
· nΓout

= 0,
(
∇T̂ · n

)
|Γout

= 0 (4.10b)

û|Γw
= (0, 0, 0)T ,

(
∇T̂ · n

)
|Γw

= 0 (4.10c)

v̂|Γw
= 0,

∂û

∂r
=

∂ŵ

∂r
=

∂ρ̂

∂r
=

∂T̂

∂r
=

∂p̂

∂r
= 0 on Γaxis. (4.10d)

i.e. null density and velocity variations (eq. (4.10a)) at the inlet, stress-free condition,
null density variation and vanishing thermal flux (eq. (4.10b)) at the outlet; no-slip and
adiabatic walls (eq. (4.10c)); null radial velocity component and null radial derivative of
the remaining terms (eq. (4.10d)).

4.4. Numerical implementation

Following a usual route in global stability analysis, the nonlinear problem eq. (4.6)
for the base flow is solved using a Newton iteration method and the eigenvalue problem
eq. (4.8) is solved using a shift-invert Arnoldi method. Spatial discretization is done
using a finite-element method, using P2-elements for velocity components ux, ur and
P1-elements for thermodynamic variables P, ρ, T . Mesh generation and assembly of
matrix operators is performed using the FreeFem++ software (Hecht 2012). Resolution is
achieved using PETSc/SLEPc libraries, which are directly implemented in FreeFem++.
Monitoring of computation, loop over the parameters and post-processing are handled in
Matlab thanks to the StabFem suite (Fabre et al. 2018). Note that during the process,
mesh adaptation is used in a way similar as described in Fabre et al. (2018), to ensure
that the resolution is sufficient to ensure grid-independence when computing the base-
flow and the eigenmodes. Examples of codes reproducing sample results are shared on
the website of the StabFem project.
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5. Results – Cavity/open configuration

5.1. Validation of the asymptotic model – Comparison with compressible LNSE

In section 3.3.1, we introduced an asymptotic method which is able to predict the
eigenvalues ω = ω(Re, β,M, Vin) from a simple tabulation/computation of the function
Zh(ω;Re, β) for real values of ω, hence reducing the number of parameters from four to
two only. Before conducting a full parametric study of the instability with the proposed
matched asymptotic method, we have to assess its validity by comparing the predictions
with resolution of the full eigenvalue problem. This is done in fig. 5 which compares the
amplification rates (left column) and frequencies (right column) obtained with the two
approaches for values of M , Re and Vin spanning a large range of parameter values,
considering a hole with aspect ratio β = 0.3.
Consider, first, the predictions of the asymptotic model represented by coloured lines

in the figures. Thanks to the inverse method explained in section 3.3.1, the asymptotic
prediction allows us to plot ω as a continuous function of Vin. We use solid lines
for the segments of the curves corresponding to unstable modes and dotted lines for
those corresponding to stable modes. As identified by Fabre et al. (2020), for β = 0.3,
several modes of conditional instability, termed C1, C2, etc. . . are expected to arise as
the Reynolds number is increased. The corresponding frequencies are quantized, and an
argument to explain this quantification was proposed in terms of the dynamics of the
shear layer. An alternative argument, in terms of a forward shear wave and a backward
acoustic wave, is proposed in appendix D.
From the results of Fabre et al. (2020), for β = 0.3 (see also fig. 18 reproduced in

appendix D), the first mode C1 arises just below Re = 800 and the second mode C2 arises
for Re ≈ 1500. This is in good agreement with the observed results of the asymptotic
model, which effectively predicts two ranges of instability for Re = 1600 and Re = 2000,
at least, for the smallest considered values of M . The figure also shows that increasing
M results in a shifting of the instability ranges towards smaller values of Vin.

Consider now, the eigenvalue calculations, represented by circles in the figures. Results
have been computed for a limited set of values of Vin where unstable modes were expected.
Recall that in the eigenvalue study, Vin is linked to the size of the numerical domain, so
that the whole process (mesh generation, base flow computation, resolution of eigenvalue
problem) has to be restarted for each new value of Vin. An excellent matching between
the two estimates may be appreciated even for large growth rates, the relative error
being less than 3% in most cases. Comparison seems poorer, at first sight, for the case of
Re = 800 reported in fig. 5 (a) but it must be reminded that the case is very close to the
threshold and amplification rates are very small, so that the absolute error is actually
of comparable order to the other cases. Not that an excellent agreement is still found in
cases where the amplification rate is not small, a range where the impedance criterion
should be a priori slightly less reliable due to its perturbative nature. The agreement
also remains excellent when the Mach number is raised to M = 2 · 10−2. Note that
for eigenvalue computations it has been only considered configurations with Vin > 102,
since for smaller values the cavity becomes very small and the modelling as a Helmholtz
resonator becomes questionable. This is why we did not attempt to draw any comparisons
for M > 2 · 10−2, with the exception of a case with M = 4 · 10−2 represented in plot (e).

5.2. Structure of some eigenmodes

Let us now illustrate the structure of a few eigenmodes computed with the full
compressible LNSE. Figure 6 displays the eigenmode computed for M = 5 · 10−3

and Vin = 104 for Re = 1200. This mode is correctly predicted by the asymptotic



Acoustic instability prediction via an Impedance Criterion 15

Figure 5: Growth rate (left) and frequency (right) of eigenmodes as a function of Vin, M
and Re for β = 0.3. Lines were obtained from the matched asymptotic model and points
with the compressible LNSE. Solid lines denote unstable regions, dashed lines are used
for stable zones.
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Figure 6: C1 eigenmode for Re = 1200 (real part in upper region and imaginary part in
the lower region) at M = 5 · 10−3. (a) Pressure, (b) temperature and (c) density.

model, and recognized to correspond to the branch C1 of conditional instability modes,
as defined by Fabre et al. (2020). As observed, the pressure level inside the cavity is
uniform, confirming that the cavity effectively acts as a Helmholtz resonator for this
mode so that the modelling hypotheses are correctly verified. Downstream of the hole,
the mode is characterized by an alternance of structures of opposite sign, localized along
the shear layer. This structure is characteristic of regions associated with negative real
part of impedance, as identified by Fabre et al. (2020). Note that very far away in the
downstream domain, the structure is expected to match with a spherical diverging wave
of the dimensionless wavelength λ = 2π/(MωR) . Here λ is of order 70, so this structure is
not visible on the figure. A characterization of the far-field acoustic radiation is described
in section section 6.3, see fig. 13.
In addition to eigenmodes of the kind presented in Figure 6 which are well predicted

by our asymptotic approach, one typically observes the existence of other families of
eigenmodes with a more complex structure. Figure 7 (b) displays a family of such modes,
computed for the set of parameters M = 2 · 10−1, Vin = 104 for Re = 1200. One clearly
observes that the pressure inside the cavity is no longer uniform, but characterised by
nodal lines in the radial and axial distributions. These modes are recognised as cavity
modes. They arise as soon as the acoustic compactness hypothesis fails, i.e., when the
acoustic wavelength is smaller than the characteristic length (Lin = (Vin/π)

1/3) of the
cavity.

5.3. Parametric study

In our previous work, the ranges of parameters corresponding to a conditional insta-
bility (requiring the presence of a correctly tuned resonator) were mapped in the Re− β
plane : see Fabre et al. (2020, Fig. 13), also reproduced in appendix D (see fig. 18).
We are now able to build upon these results a parametric study of the situation where
the resonator corresponds to the upstream cavity, as function of the four parameters
(Re, β,M, Vin). Figures 8 and 9 displays the dependence of the neutral curves on the
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Figure 7: Real part of the pressure component of higher order cavity modes for M =
2 · 10−1 and a cavity of Vin = 104.

(a) C1 (b) C2

Figure 8: Regions of conditional stability in the (Vin,M) plane for β = 0.3.

Mach number and Vin for several Reynolds numbers and values β = 0.3 and β = 1
respectively. Let us first explore the value β = 0.3 displayed in fig. 8; there exist only
two unstable modes, C1 and C2. The cavity is correctly tuned to trigger the instability
inside each of the bounded coloured region of the (Vin,M) plane. For the configuration
corresponding to β = 1 there exist four modes of conditional instability. As reported in
(Fabre et al. 2020), C1 and C4 instabilities only exist if the cavity connected upstream of
the aperture is correctly tuned, that occurs inside each of the bounded coloured region
of the (Vin,M) plane of fig. 9 (a,d). These regions of instability grow with the Reynolds
number, and they shrink with Vin. Contrary to instabilities C1 and C4, for a given value
of Vin instabilities C2 and C3 may exist for every M , for such a reason these instabilities
may be conceived as a degenerate situation of pure hydrodynamic instabilities H2 and
H3, which are discussed in section 6.
Finally, the dependence of this type of instability on the acoustic resonator is better

appreciated if we consider the effect of Vin and M together with the χ = VinM
2

parameter. This allows us to display neutral curves of stability in the (χ,Re) plane,
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(a) C1 (b) C2

(c) C3 (d) C4

Figure 9: Regions of conditional stability in the (Vin,M) plane for β = 1.

which is shown in fig. 10 for several values of β and M , where the explicit dependence
on the Mach number originates from the radiation term of eq. (3.4). Each bounded
region corresponds to a conditional instability Ci; neutral curves display the shape of a
“tongue” with the tip located at the lowest Reynolds number of the instability region
and a vertical asymptote located at the Reynolds number of the threshold of the Hi

instability (if it exists). From, fig. 10 we can appreciate how Ci conditional instabilities
are a generalization of the pure hydrodynamic instabilities Hi. Nevertheless, a connection
between hydrodynamic and conditional instabilities for limit values of χ is outside of the
range of validity of the methodology used for the closed/open case. In fact, one may
relate the characteristic cavity length (Lin) and the acoustic wavelength (λac) in terms
of the Strouhal number and the parameter χ,

(L3/2
in

λac

)2
= St2

χ

π
,

which implies that for cavities characterized by χ ≫ 1 one cannot rule out the existence
of higher cavity modes. Such a finding is only relevant for regions near the vertical
asymptotes of fig. 9. The methodology remains valid for the C1 mode, where the product
St2 χ

π < 1, even in the region of χ > 1 for β = 1, because the Strouhal number of the C1

mode is approximately one-fourth, cf. appendix D.
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(a) β = 0.3 (b) β = 0.6

(c) β = 1 (d) β = 2

Figure 10: Regions of conditional instability in the (χ,Re) plane.

6. Results – Open/open configuration

6.1. Parametric study

A purely hydrodynamic instability exists in the present configuration, for sufficiently
large values of the hole aspect ratios β. In this section we check that such instabilities are
effectively encountered in the open/open configuration and provide a parametric study
of their range of existence as function of the parameters Re, β,M .
Figure 11 (a) displays the range of existence of instabilities as function of Re and β

for three values of M . Two different modes, corresponding to the purely hydrodynamic
modes H2 and H3 as identified by Fabre et al. (2020), are documented. Note that higher
instability modes, called Hi with i = 4, 5, 6 . . . , exist in the studied interval of the
parameter β ; however, they arise at larger values of Re and are not considered. The
curves displayed in the figure for the smallest value of M , namely 10−2, are very close
to the predictions obtained by Fabre et al. (2020, Figure 15), which is represented by
dots in fig. 11 . One can see that compressibility has almost no effect on the instability
threshold of mode H2. On the other hand, it has a destabilising effect on mode H3.
Figure 11 (b) investigates the effect of compressibility on the oscillation frequency, here
represented as a Strouhal number Stβ = ωRβ

2π . One can see that compressibility decreases
the frequency for the shortest holes and has almost no effect on frequency for longer
ones. This behaviour is associated with the significant modification of the threshold of
instability (Re) for short holes (left asymptote of either H2 or H3 in fig. 11), which does
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Figure 11: (a) Neutral curves of instability of hydrodynamic modes H2 (solid lines) and
H3 (dashed lines) for M = 10−2, 5 · 10−2 and M = 10−1. (b) Strouhal evolution of the
H2 modes with β at the threshold of the instability. (c) The same as (b) for the H3

modes. Dots correspond to incompressible results of Fabre et al. (2020), also reported in
appendix D.

not occur for holes with larger β value. A substantial variation in the critical Reynolds
induces a modification of the vena contracta coefficient αvena, see e.g., fig. 16, which in
turn may be linked to the frequency of the instability, see the discussion in appendix D.

6.2. Effect of Mach number – Sensitivity analysis

In order to explain these observed trends, we consider the sensitivity dω
dM of the complex

frequency ω with respect to M . This quantity may be split into two terms, corresponding
respectively to the sensitivity to base flow modifications and to the sensitivity to a Mach
number variation of the linearized equations:

dω

dM

∣∣∣
M

=
∂ω

∂M

∣∣∣
q0

+
∂ω

∂q0

∣∣∣
M

∂q0

∂M
(6.1)

We have employed two techniques, a continuous adjoint technique described in Meliga
et al. (2010) and a forward evaluation of the sensitivity. Provided the Mach number is
close to the incompressible limit, the continuous adjoint technique provides less accurate
results, for such a reason we have decided to perform a forward evaluation. The first
term ∂ω

∂M is evaluated using a first order finite difference, which requires the resolution of
two eigenvalue problems eq. (4.8) with the steady-state frozen at the Mach number M ,
and with a Mach number perturbation of a small magnitude ∆M ≪ M in the linearized
Navier–Stokes operator of the eigenvalue problem. The second term is also evaluated
by finite difference issued of the resolution of the eigenvalue problem at fixed Mach
number but with two different steady states computed at M and M + ∆M . Figure 12
displays the sensitivity computed in such a way, for a value of Re corresponding to the
thresholds of the instability for modes H2 (with β = 0.8) and H3 (with β = 2). The
figure also displays the value of ∂ω1/∂M obtained from the asymptotic model eq. (3.8),
which is a constant. Figure 12 (a) reports a linear variation of the two terms of the
sensitivity with respect to Mach number. A Mach number variation in the base flow has
a stabilizing effect, whereas the instability is triggered by small variations of the Mach
number of the linearized operator. The most dominant term for this kind of acoustically
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Figure 12: Sensitivity to Mach number variations of the complex frequency ω at the
threshold of instability. Dashed line denotes the impedance estimation. (a) Mode H2 for
β = 2. (b) Mode H3 for β = 0.8.

compact solutions seems to be the base flow effect, which has a small stabilizing effect. In
particular, it explains the almost insignificant variation of theH2 neutral curves in fig. 11.
Concerning the frequency, both terms have an almost opposite effect, which implies
an almost null variation of the instability frequency for the H2 mode. The impedance
criterion in this case predicts a stabilizing effect with small frequency increase, which
holds relatively well for M < 0.02. On the other hand, the variation with respect to the
Mach number of the growth rate and the frequency of instability of a configuration that
is no longer acoustically compact for Mach numbers of the order of M ∼ 10−2 such as
the H3 mode at threshold for β = 0.8 greatly differs with the estimations made with
the impedance criterion. Figure 12 (b) reports a similar stabilizing effect of the base flow
to the one of the H2 mode. However, in this case variations of the Mach number in the
linearized operator greatly destabilize the steady-state, which causes the large variations
in the neutral curves displayed in fig. 11. In terms of frequency variations, it is possible
to observe much larger excursions, which are negative and constant for M < 0.07 and
increase linearly for M > 0.07. So we may conclude that the impedance criterion holds
relatively well for large β and instability modes with low frequency, which are in turn
the most acoustically compact, but it fails to predict accurate trends even for low Mach
numbers for modes with higher frequencies and small length to thickness ratios.

6.3. Directivity of acoustic emission

Finally, we address the influence of parameters (β,M) on the directivity pattern
of instabilities of type H2 and H3. For that purpose, we evaluate the set of neutral
eigenmodes for each pair (β,M). Notice that the amplitude of the eigenmodes are
arbitrary, the pressure levels displayed in fig. 14 have been normalized with respect to the
monopole radiation (based on the oscillating volume flux through the perforation). Three
values of the Mach number M = {10−2, 2 · 10−2, 5 · 10−2} and two of the dimensionless
parameter β = {1, 2} are selected for this study. The configuration β = 1 corresponds
to a configuration less acoustically compact than β = 2 and it seems a priori more
likely that the radiation differs from the single monopole pattern. Figure 13 displays the
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(a) (b)

Figure 13: Real part of the pressure component of neutral eigenvalues H2 (upper part)
and H3 (lower part) at M = 5 · 10−2. (a) β = 1 and (b) β = 2.

acoustic pressure levels of the real part of the neutral eigenmodes, H2 in the upper part
and H3 in the lower part, for M = 5 · 10−2 and β = 1 (a) and β = 2 (b). Figure 13
(a) displays the pressure levels in logarithmic scale for β = 1. In that figure one can
appreciate a monopolar-like radiation for H3, however at M = 5 · 10−2 the H2 mode
displays a radiation pattern with a preferential direction aligned with the stream-wise
coordinate. In such a configuration, either the hole and the jet emit sound, which produces
an uneven radiation of sound downstream and upstream of the hole. These observations
can be better appreciated in fig. 14 (a), where it is clear the departure from a isotropic
radiation for M = 10−2 and the sound emission for M = 5 · 10−2. For β = 2 ( fig. 13
(b) and fig. 14 (c) ) the neutral eigenmodes display a fairly monopolar-like radiation; for
the H3 mode (fig. 14 (d)), higher pressure levels are measured downstream of the hole
for directions forming an angle less than 45 degrees with the axis of symmetry.

7. Conclusion

The objective of the present paper was to investigate how the instability potential of a
single jet passing through a hole in a thick plate, recently identified by (Fabre et al. 2020)
using linearized Navier Stokes equations (LNSE) in a strictly incompressible setting,
manifests in a more realistic configuration involving compressibility. For this sake, we
considered two generic situations. In the first situation, the upstream domain is a closed
cavity and the downstream domain is an open space. This situation was chosen to check
the conditional instability mechanism, requiring the existence of a conveniently tuned
resonator. In the second situation, the two regions, upstream and downstream of the
hole, are considered as open. This situation was chosen to check the purely hydrodynamical
instability which is expected to exist even in the absence of a resonator.
The two cases, has been analyzed with an asymptotic method, which provides an

instability criterion and an estimate for the amplification rate. The method consists,
in a first step, in writing an impedance of the global system incorporating the hole
impedance as computed by (Fabre et al. 2020) and modelling the impedance of the
upstream and downstream regions, and in a second step in performing a Taylor expansion
of this impedance around the real ω-axis to identify its zeros. The great advantage of the
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(a) (b)

(c) (d)

Figure 14: Directivity patterns, in logarithmic scale, measured at rx =
√
r2 + x2 = 150.

(a) H2 and β = 1; (b) H3 and β = 1; (c) H2 and β = 2; (d) H3 and β = 2. Colour legend:
M = 10−2, M = 2 · 10−2 and M = 5 · 10−2.

method is that the Mach number M and the cavity volume Vin appear as parameters in
the model, so that a parametric study of the problem can be done entirely in terms of
the Reynolds number and aspect ratio, therefore reducing the number of computational
parameters from four to two.
The potential to accurately predict the instability properties via the asymptotic model

is put into test in section 5.3 and section 6 for the conditional and pure hydrodynamic
cases, respectively. A cross-comparison with the results carried out with the compressible
Navier–Stokes equations shows a good matching between the two approaches. The
impedance criterion has been employed to identify the regions of existence in the
(Re, χ) plane of a series of Ci, i = 1, 2, 3, 4, . . . modes. In addition to these acoustically
compact modes, at larger Reynolds numbers, there exist unstable modes associated
with higher order modes of the cavity connected upstream (see fig. 7 for an example
of that phenomenon). The use of the impedance criterion for the characterisation of
the compressibility effect in the pure hydrodynamical case is less accurate. We have
observed that the estimations of the growth rate are relatively acceptable for the H2

mode, but they are faulty for the H3 mode, in particular for small length to diameter
ratios. The inadequacy of the criteria to characterise this case can be attributed to the
lack in the asymptotic model of the effect of the backward-travelling acoustic wave.
These results suggest that a better modelling of the hydrodynamic-acoustic interaction
is required to gain in accuracy. Finally, in section 6 we have examined the influence of the
Mach number on the directivity pattern of the family of the pure hydrodynamical modes.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Computation of the hole impedance thanks to
Incompressible linearized Navier Stokes equation

A.1. Incompressible Navier–Stokes equations

Under the hypothesis of acoustic compactness, discussed in section 2.3, the flow is
assumed to be locally incompressible in the region of the hole, where the fluid motion is
governed by the incompressible Navier–Stokes equations:

∂

∂t

[
u
0

]
= NS

([
u
p

])
=

[
−u · ∇u−∇p+ Re−1∇2u

∇ · u

]
(A 1)

The stability of the steady-state
[
u0, p0

]
is investigated by using the linearized ap-

proach, in which the total flow field is decomposed into the sum of a steady base flow
and a small time-harmonic perturbation as:[

u
p

]
=

[
u0

p0

]
+ ε

([
û
p̂

]
e−iωt + c.c.

)
(A 2)

A.2. Incompressible Navier–Stokes equations – Base-flow equations

The base flow is the solution of the steady version of the Navier-Stokes equations:

NS[u0; p0] = 0

with the following set of boundary conditions:∫
Γin

u0 · ndS = Q0 (A 3a)

p0 = 0 on Γout. (A 3b)

This problem is solved using a classical Newton iteration.

A.3. linearized incompressible Navier–Stokes equations – Forced problem

The linear perturbation is governed by the following equations:

− iωB[û, p̂]T = LNS0

(
[û, p̂]T

)
(A 4)

where LNS0 is the linearized Navier-Stokes operator around the base flow and B is a
weight operator defined as follows:

LNS0

[
û
p̂

]
=

[
− (u0 · ∇û+ û · ∇u0)−∇p̂+ Re−1∇2û

∇ · û

]
; B =

[
1 0
0 0

]
. (A 5)

Equation (A 5) is complemented with the following boundary conditions :∫
Γin

û · ndS = q′, (A 6)

p̂(x, r) = 0 on Γout, (A 7)

A nonzero perturbation of the flow rate q′ is imposed, fixed arbitrarily, to q′ = 1. A 6
thus leads to a non-homogeneous Dirichlet boundary condition at the inlet plane, treated
by imposing a constant axial velocity ûx. The problem can be symbolically written as

[LNS + iωB] [û; p̂] = F , (A 8)
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Figure 15: Contour plot of the baseflow q0 for β = 0.3, Re = 1400 and M = 5 · 10−2.
(a) Spatial evolution of the Mach number. (b) Spatial evolution of the sensitivity of the
axial velocity with respect to the Mach number ∇Mw0.

where LNS is the Linearized Navier-Stokes operator (implicitly containing the homo-
geneous boundary condition at the outlet), and F represents symbolically the non-
homogeneous boundary condition at the inlet. This problem is nonsingular and readily
solved. Since p̂ has been set to zero (without loss of generality) along the outlet boundary,
the pressure drop p′in−p′out can be extracted from [û; p̂] by retrieving the mean value of the
p̂ component along the inlet boundary Γin of the computational domain: such operation
can be written formally p′in = P[û, p̂], where P is a linear operator. The impedance is

then ultimately deduced as Zh = P · (LNS + iωB)−1 · F .

Appendix B. Properties of the compressible steady-state

As illustrated in figure fig. 15, the base flow is characterized by a recirculation region
originating from the upper corner of the hole. The pressure jump due to this recirculation
can be represented by the so-called discharge coefficient (also called vena contracta

coefficient αvena =
R2

h

R2
J

where RJ is the effective radius of the jet. This function has

been tabulated by Fabre et al. (2020) as function of Re and β in the incompressible case.
When taking into account the compressibility effects, the discharge coefficient (Bragg
1960) can be written in term of the dimensionless variables introduced in section 4.1 as

αvena =
ṁ0

πR2
h
1+γM2Pin√

Tin

1
M

√
2

γ−1

[
( 1+γM2Pin

1+γM2Pout
)−2/γ − ( 1+γM2Pin

1+γM2Pout
)−(γ+1)/γ

] ,
which in the low Mach number limit can be approximated as

αvena =
ṁ0

πR2
h

√
ρin(2(Pin − Pout)− 3M2(Pin − Pout)2

and it coincides with the one employed by Fabre et al. (2020) at the incompressible limit.
Note that at large Reynolds numbers other simpler estimates exist, for instance see the
discussion by Gilbarg (1960) for the compressible Borda tube, which has been revisited
by Durrieu et al. (2001) and compared against experimental evidence.
Figure 16 (a) displays the effect of the Mach number on the discharge coefficient.

It shows a good quantitative agreement with the theoretical estimation, and it weakly
increases with the Mach number. Compressibility effects accelerate the bulk flow within
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(a) (b)

Figure 16: Discharge coefficient as a function of Mach number for several Re for β =
0.3. Dots correspond to computed values of αvena, lines correspond to the theoretical
estimation, cf. (Bragg 1960). (b) Axial velocity profile of the sensitivity with respect to
Mach number for β = 0.3, Re = 1600, M = 10−1 at z = 0.2.

the jet core, whereas the flow within the recirculation region hardly changes (see the
evolution of the sensitivity with respect to the Mach number of the streamwise velocity
in fig. 16 (b) and fig. 15 (b)). In addition, it has been observed that the shear layer
thickness remains unchanged with a weak Mach number increase (M < 0.2). In section 6
it is shown that an increase of the Mach number in the steady-state solution has a
stabilising effect, which can be attributed to an attenuated recirculation region.

Appendix C. Nyquist curve – Cauchy’s argument principle

Let us review the use of the Nyquist criterion together with the drawing of Nyquist
curves. In the absence of poles in the real axis, the Nyquist plot is drawn along the real
axis. However, in the presence of a pole of the impedance in the real axis, one must take
a contour that does not encircle the pole. In particular, the augmented system impedance
possess a pole at ω = 0, therefore a complex contour that does not encircle zero is
employed as the one depicted in fig. 17 (a). In the evaluation of the impedance, let us
consider here without loss of generality the augmented system impedance Z(a) (either
Z(a) = Za or Z(a) = Zb) along the contour Γ , i.e., Z(a)(Γ ), which provides a direct
evaluation of the stability of the system. Provided that the contour of integration does
not encircle any pole of the system, which is satisfied by construction, the number of times
that the curve Z(a)(Γ ) encircles the origin in the counter-clockwise direction determines
the number of zeros in the area surrounded by the contour Γ . In the condition that the
contour of integration Γ encloses the unstable complex plane, then any encirclement of
the origin implies that the system is unstable. To illustrate this, let consider the Nyquist
curve represented in fig. 17 (b), where the curve Z(a)(Γ ) is oriented counter-clockwise,
and it encircles twice the origin: this implies that the system has two unstable zeros. A
more careful evaluation reveals that this corresponds to a pair of conjugated complex
zeros.
Additionally, impedance values for real ω can also provide an estimation of the complex

zeros whenever Im(ω) is of small magnitude. Here, let us detail the procedure followed
in section 3.3.1. We consider the case where the Nyquist curve is found near the origin.
The first scenario corresponds to a complex frequency ω = ωR + iωI = ω0 + εω1, where
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Figure 17: (a) The complex contour Γ of integration enclosing the unstable complex
plane, where Cauchy’s argument principle is applied. (b) Nyquist curve for the augmented
system impedance along Γ .

ω0, ωR, ωI are real values, ω1 is considered to be complex and a small real parameter
ε ≪ 1.
Provided the impedance Z(a)(ω) = Re

(
Z(a)(ω)

)
+ iIm

(
Z(a)(ω)

)
= Z

(a)
R (ω) + iZ

(a)
I (ω)

is analytic, the first-order Taylor expansion at ω0 provides

0 = Z(a)(ω) = Z(a)(ω0) +
(dZ(a)

dω

)
ω=ω0

(ω − ω0) +R1(ω), (C 1)

where R1(ω) is the remainder of the Taylor expansion. The remainder of the expansion
can be shown to be bounded, for instance, using Cauchy’s integral formula and the
maximum principle (see, for instance, Rudin (1987)) yields

|R1(ω)| ⩽ Mr
|ω − ω0|2

r(r − |ω − ω0|)
⩽ Mr

η2

1− η
, with Mr ≡ max

|ω−ω0|=r
|Z(a)(ω)|

for |ω−ω0| < r and |ω−ω0|
r ⩽ η < 1, where we have assumed that the impedance function

is holomorphic in a closed disk of radius r of the complex plane. Therefore, the function
R1(ω)
ω−ω0

is also analytic within the disk. In such a way we can approximate the value of
zero ω as

ω−ω0 =
Z(a)(ω0)(dZ(a)

dω

)
ω=ω0

+
R1(ω)

ω − ω0

≈ Z(a)(ω0)(dZ(a)

dω

)
ω=ω0

=
Z

(a)
R (ω0) + iZ

(a)
I (ω0)(∂Z(a)

R (ω)
)

∂ωR

)
ω=ω0

+ i
(∂Z(a)

I (ω)
)

∂ωR

)
ω=ω0

,

(C 2)
where the error of the approximation is

ϵ ⩽

∣∣∣∣ Z(ω0)(dZ
dω

)
ω=ω0

∣∣∣∣ η′

1− η′

with η′ = |R1(ω)|
|ω−ω0| /|

(
dZ
dω

)
ω=ω0

|, because the radius of convergence of the rational complex

function 1(
dZ
dω

)
ω=ω0

+z
is equal to |

(
dZ
dω

)
ω=ω0

|. Thus, the approximation eq. (C 2) converges

uniformly far from the critical points of the impedance. Furthermore, it provides good
estimates whenever |Z(ω0)| ∼ ε ≪ 1 and |ω − ω0| ∼ ε ≪ 1, which is the motivation
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to the condition (i) and the expansion in frequency in section 3.3.1. Finally, note that
eq. (C 2) could be used as a step in a Newton iteration, whenever the initial guess ω0 is
far from the zero of the impedance.
Multiplication by the complex conjugate of the denominator in eq. (C 2) leads to

εω1 ≈

(
Z

(a)
R (ω0) + iZ

(a)
I (ω0)

)((∂Z(a)
R (ω)

)
∂ωR

)
ω=ω0

− i
(∂Z(a)

I (ω)
)

∂ωR

)
ω=ω0

)
((∂Z(a)

R (ω)
)

∂ωR

)
ω=ω0

)2

+
((∂Z(a)

I (ω)
)

∂ωR

)
ω=ω0

)2
. (C 3)

Finally, one could split eq. (C 3) in real and imaginary parts, this yields the following
expression for ωR

εRe(ω1) = ωR − ω0 ≈

(
Z

(a)
R (ω0)

(∂Z(a)
R (ω)

)
∂ωR

)
ω=ω0

+ Z
(a)
I (ω0)

(∂Z(a)
I (ω)

)
∂ωR

)
ω=ω0

)
((∂Z(a)

R (ω)
)

∂ωR

)
ω=ω0

)2

+
((∂Z(a)

I (ω)
)

∂ωR

)
ω=ω0

)2
. (C 4)

and for ωI

εIm(ω1) = ωI ≈

(
Z

(a)
I (ω0)

(∂Z(a)
R (ω)

)
∂ωR

)
ω=ω0

− Z
(a)
R (ω0)

(∂Z(a)
I (ω)

)
∂ωR

)
ω=ω0

)
((∂Z(a)

R (ω)
)

∂ωR

)
ω=ω0

)2

+
((∂Z(a)

I (ω)
)

∂ωR

)
ω=ω0

)2
. (C 5)

Appendix D. Frequency selection argument

This appendix provides an argument explaining the quantification of the eigenvalues
observed for the cavity/open configuration.
The frequency of the sound generated is selected by considering the two elements

that compose the feedback loop of a Class III aerodynamic whistle: the hydrodynamic-
acoustic wave interaction and the acoustic resonator. In this kind of mechanism, we can
distinguish two feedback loops, a first loop composed of the interaction of a hydrodynamic
instability with an acoustic wave and a second one which accounts for the interaction
of the first feedback loop with the acoustic resonator. A hydrodynamic-acoustic wave
interaction develops whenever the shear layer of the jet is unstable and the jet acts as
a source of energy, which occurs when the resistance of the hole is negative. The shear
layer instability is triggered at the leftmost corner of the hole, disturbances grow along
the hole, however in the case when the shear layer is not sufficiently unstable (so self-
sustained oscillations arise by pure hydrodynamical arguments) it requires an acoustic
wave to close the loop, which is an instantaneous process in the low Mach number limit.
For acoustically compact source regions, the frequency selection of this mechanism is
dominated by the hydrodynamic instability, because the travel time of the acoustic wave
is of lower order of magnitude. Secondly, the cavity acts a resonator, selecting a set of
discrete frequencies among those associated with a negative resistance.
In the present configuration, there exist four branches of instability, each of them

denoted as Cn for n = 1, 2, 3, 4, which are characterised by a nearly constant Strouhal
number:

St
(n)
β =

ω(n)β

2π
(D 1)
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Figure 18: a) Thresholds of the conditional instabilities C1, C2, C3 and C4 as a function of
β and Re. b) Strouhal evolution with β. Solid lines are the boundaries of the conditional
stability computed with incompressible LNSE and dashed lines are the estimation with
αvena = 0.76

Figure 19: Diagram of the non-local interaction leading to global instability.

as β is varied. The characteristic frequency of Cn branches is related by a frequency shift

St
(n)
β = St

(n−1)
β +∆Stβ , where ∆Stβ ≈ [0.6, 0.7]. This frequency shift may be estimated

if one realizes that the global instability is the result of the constructive interaction
between two travelling waves: a downstream-travelling wave, which is excited about the
hole lip and propagates around the jet core position, and an upstream travelling wave
that propagates backward. The non-local constructive interaction of such waves gives
rise to a self-sustained global in time instability, which, in some circumstances, is able to
radiate an intense acoustic field.
In the following analysis, we reconsider the discharge coefficient coefficient αvena =√

ρU2
M

2(Pin−Pout)
, which can be thought as a measure of the vena contracta phenomenon,

assuming that the jet contracts to a top-hat jet with constant velocity UJ and radius

RJ . Then applying Bernouilli law, one obtains αvena = UM

UJ
=

πR2
J

πR2
h
that was introduced

in (Fabre et al. 2019) in the discussion of the work of (Howe 1979), which is classically
associated with the pressure loss across the aperture, and it relates the mean velocity
UM with the jet velocity UJ . In Fabre et al. (2019, Sec. 2.5 & App. A) it is argued
the importance of the vena contracta coefficient αvena and the actual value of the phase
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velocity of the Kelvin Helmholtz instability, which depends on the frequency ω but which
is around Uc = UJ/2 for sufficiently high ω. The value of the discharge coefficient tends
asymptotically to αvena → 0.61 for large Re, however in the range of Reynolds numbers
where transition occurs αvena is maximal and takes values αvena ∈ [0.7, 0.76]. In the
following, we consider a constant discharge coefficient αvena = 0.76, which was the value
reported in Fabre et al. (2020, Fig. 6) for most of β in the range of Reynolds numbers
where the transition occurs.

In order to estimate the frequency shift ∆Stβ let consider the travel time of each
travelling wave past the hole. The hydrodynamic travelling wave takes ∆τKH = Lh

Uc
=

2αvenaLh

UM
and the acoustic wave ∆τac =

MLh

UM
: therefore the total travelling time

∆τ = ∆τKH +∆τac =
Lh(2αvena +M)

UM
≈ 2αvena

Lh

UM
, f (n) =

2n− 1

2∆τ
, ∆f =

1

∆τ
(D 2)

where it is considered that M ≪ 1 and the convective velocity of the hydrodynamic
perturbation is 2αvena

UM
as it is displayed in fig. 19. Thus, the associated Strouhal shift

∆Stβ =
∆fLh

UM
≈ 1

2αvena
. (D 3)

Similarly, the Strouhal frequency of each Cn branch is estimated as

St
(n)
β =

2n− 1

4αvena
, n = 1, 2, 3 . . . (D 4)

In the previous reasoning, it has been implicitly assumed that only odd mode structures
as those depicted in Fabre et al. (2020, Fig. 9) lead to a conditional instability. The
superposition of the base flow with odd modes (resp. even) at the instant of the cycle
where the flow rate through the hole is maximum results in an upward (resp. downward)
displacement of the shear layer, thus pressure is increased (resp. decreased) in the
presence of odd modes (resp. even). This implies that the hole impedance is negative,
which is the criterion of existence of conditional stability.
Finally, let us discuss the influence of compressibility regarding modifications in frequency
at the threshold of instability for each of the unstable modes. Compressibility induces
a weak variation in the vena contracta coefficient, see fig. 16 (a), while the threshold
of instability is significantly modified for a given value of β near the left asymptote
for conditional instabilities (fig. 18 (a)) and hydrodynamic instabilities (fig. 11 (a)).
Thus, for short holes β (here short refers to a value of β near a vertical asymptote of
the corresponding instability), the critical Reynolds number is considerably modified by
compressible effects, which in turn induces a change in the vena contracta coefficient
(more important than the variation of the vena contracta by compressibility at constant
Reynolds number). For those cases, one could evaluate the shift in frequency δ|M∆Stβ =
∆Stβ(M +∆M )−∆Stβ(M) as

δ|M∆Stβ = −
2
(
αvena(Rec(M +∆M),M +∆M)− αvena(Rec(M),M)

)
+∆M(

2αvena(Rec(M),M) +M
)2 (D 5)

where the first term, the variation in the vena contracta due to a variation in Mach,
is negligible with respect to the variation in Mach number for long holes, and thus, the
variation of frequency for those instabilities is of lesser importance.
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Zmax Rmax Z0 Lc γz,c R0 Rc γr,c ntri

M1 50 50 10 2.5 0.3 5 2.5 0.3 42460 tri.
M2 300 300 10 5 0.3 10 2.5 0.3 165841 tri.
M3 600 600 10 5 0.3 10 2.5 0.3 235874 tri.
M4 600 600 170 5 0.3 170 5 0.3 314525 tri.
M5 1500 1500 10 5 0.3 10 2.5 0.3 413356 tri.

Table 1: Meshes used for cases where the complex mapping technique is adopted. Note:

the smooth transition functions are defined as gz(Z) = tanh

([
Z−Z0

Lc

]2)
and gr(R) =

tanh

([
R−R0

Rc

]2)
. In the following Lmax = z−∞ + zCM = z∞ + zCM and Rmax =

r∞ + rCM (fig. 4).

Appendix E. Computational domains & and absorbing boundary
layer

This section discusses the design of computational domains used for the computation
of steady-states and eigenmodes with the full compressible formulation, and steady-
states and the forced harmonic response with the incompressible formulation. The com-
putational strategy must be designed in such a way to avoid the presence of spurious
eigenvalues/eigenmodes. The creation of meshes for the full compressible formulation
follows a block-structured strategy, similar to the one sketched in fig. 4. The domain is
divided into three regions: an inner region with the highest vertex density, a mid region
with intermediate vertex density, and a coarser region for the absorbing layer. Meshes
employed for the incompressible case are composed of two regions, a physical domain
with the highest vertex density and a coarser region for the absorbing layer. Table 1 lists
a number of computational meshes employed in this study (M2, M3, M4 and M5 for
the full compressible case, and M1 for the incompressible case). However, such a list is
not exhaustive because in addition to the block-strategy refinement, the computational
domain has been locally refined following an adaptive local refinement (AMR) procedure,
where the metric for the refinement is based on the steady-state and on the eigenmodes
(resp. steady-state and forced harmonic response in the incompressible case), cf Hecht
(2012); Fabre et al. (2018).
The absorbing boundary layer corresponds to the complex mapping technique (Sierra

et al. 2020) where a coordinate transformation G is defined as follows:

Gz : R → C such that z = Gz(Z) =
[
1 + iγz,cgz(Z)

]
Z

Gr : R → C such that r = Gr(R) =
[
1 + iγr,cgr(R)

]
R

(E 1)

Here gz(Z) (resp. gr(R)) has to be chosen as a smooth function such as gz(Z) = 0 for
Z < Z0 and gz(Z) ≈ 1 for Z > Z0 + Lc up to Zmax . The complex mapping acts
on a finite region of length zCM = Zmax −

(
Z0 + Lc

)
. The function gz is defined as

gz(Z) = tanh

([
Z−Z0

Lc

]2)
. The application of this map to the linearized Navier–Stokes

requires that each spatial derivative, within the complex mapped region, is modified as
follows:

∂

∂z
≡ Hz

∂

∂Z
with Hz(Z) =

(
∂Gz

∂Z

)−1

. (E 2)
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An example of parameters for the usage of the complex mapping layer for the incom-
pressible case is listed in table 1 (M1). In the full compressible formulation, one must
pay particular attention about the extension of the complex mapping region, which here
is selected to cover at least two acoustic wavelengths, i.e. zCM = rCM > 1

StM . For
instance, the largest acoustic wavelength in this study corresponds to the validation case
in section 5.1, where λac ≈ 600 (St ≈ 1/3 and M = 5 · 10−3), for which M5 is an
appropiate choice.
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