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Abstract

Most of the time, real-world data sets are composed of classes with the
same number of samples. But sometimes, for example in the case of fraud
detection or rare disease diagnosis, the resulting dataset is composed of asym-
metric classes. These datasets are called imbalanced datasets. Classification
problems based on imbalanced datasets lead to errors and high variability.
Thus, methods to deal with have been developed. In this paper, we pro-
pose a novel oversampling method, called WSSMOTE, based on the water-
shed transformation. We demonstrate that WSSMOTE improves prediction
scores in some real-world datasets.

In addition, our main goal is to improve prediction scores of an imbalanced
dataset composed of sickle cell disease (SCD) biomarkers. SCD is a serious-
inherited disease, and patients with SCD can be affected by vaso-occlusive
crises, which are the main cause of hospitalization. During these hospitaliza-
tions, acute chest syndrome (ACS) is the leading cause of death. ACS occurs
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in approximately 20% of hospitalized patients. During two prospective stud-
ies (PRESEV1, 247 patients and PRESEV2, 393 patients) a predictive score
for ACS based on clinical and biological data has been developed. The ob-
tained negative predictive value (NPV) is high and relatively similar in both
studies (98.9% and 94%, respectively) but, the obtained positive predictive
value (PPV) is low and highly variable (44.7% and 27.9%, respectively).
Hence, we want to improve prediction performance while reducing its vari-
ability. We demonstrate that existing oversampling methods fail to improve
the PPV value, whereas WSSMOTE succeed in doing so. With WSSMOTE;,
the PPV increases from 24.6% to 28.9%, while maintaining a high NPV
(96.6%). In addition, the overfitting of the PPV value is reduced from 13.3
% to 1.2.

Keywords: Sickle cell disease, Imbalanced dataset, Oversampling method,
Mathematical morphology, Watershed clustering

1. Introduction

Analyzing datasets and solving classification problems can provide essen-
tial information for the future. Most of the time, these classification problems
are performed on datasets where the two classes are in equilibrium. In other
words, if our dataset is binary, i.e., containing two classes A and B, it will
have as many samples in class A as in class B. However, there are also many
datasets where there is a disequilibrium between classes. For example, in a
banking dataset, when the question is whether a transaction is fraudulent
or not, 99% of these transactions will be normal and 1% will be considered
fraudulent. These sets are called imbalanced datasets. The notion of imbal-
ance is really important to consider, especially in the case of classification.
An imbalanced dataset is defined through the notion of majority and minor-
ity classes where the ratio of the minority to the majority is usually between
1:1000 and 30:100.

An example of imbalanced dataset is the Predictive Severity Study (PRE-
SEV). PRESEV is a study on Sickle Cell Disease (SCD) biomarkers. SCD
was first described in the early 20th century by James Herrick, a Chicago
physician [19]. Tt is now considered the most common monogenic disease in
the world and has been recognized as a public health priority by UNESCO,
the World Health Organization and the United Nations. SCD is a severe
inherited monogenic disease caused by a mutation in the beta-globin gene on



chromosome 11 that results in the production of a pathological haemoglobin
called HbS. Under certain conditions, this haemoglobin has the particular-
ity of polymerizing within the red blood cells, which then become sickle-
shaped, difficult to deform and obstruct the blood capillaries [29]. These
vaso-occlusive crises (VOC) are extremely painful in the bones and represent
the first cause of emergency room (ER) visits and hospitalizations of SCD pa-
tients [2]. Acute chest syndrome (ACS) is the most feared complication and
the leading cause of mortality in patients hospitalized for VOC [33, 27, 35].
It is defined by clinical and/or radiological signs demonstrating the lung
damage during a VOC. It appears on average after 2.5 days of evolution
and affects about 17% of patients hospitalized for VOC [39]. The PRESEV
dataset is imbalanced, as the ACS patients represented around 17:100 of the
samples.

Prediction on imbalanced datasets, e.g., the PRESEV study, cannot be
achieved using standard machine learning methods. Indeed, standard ma-
chine learning focuses on majority class and prediction scores are therefore
biased. For this reason, methods, such as oversampling ones, have been devel-
oped. In this paper, we will first present an overview of existing oversampling
methods; then, we show that these existing methods do not improve the pre-
diction scores on the PRESEV study. Therefore, we have developed a novel
pre-processing method called WSSMOTE, based on watersheds. We demon-
strate that WSSMOTE improves prediction in some real-world datasets, and
notably in the PRESEV case. In addition, WSSMOTE reduces the overfit-
ting and cross-validation variability for ACS predictions.

The outline of this article is as follows: the first section explains the
imbalanced issue and methods developed to reduce them. The second one
is an in-depth presentation of the PRESEV study case. The third section
introduces how watershed structure can improve prediction scores and how
WSSMOTE has been designed. The last section shows the improvement in
scores after using WSSMOTE in some real-world datasets and in PRESEV.

2. Literature of Imbalanced Datasets

2.1. Issues caused by Imbalanced Datasets

Imbalanced datasets are encountered in several research areas and stud-
ies. A repository called KEEL [1] identifies and stores datasets from several
domains. Some of them are listed and explained in more details in the table 1.
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Table 1: Description of Imbalanced Datasets selected from the KEEL repository [1].

Classification problems are solved through scores. Typical scores used for
balanced classification are accuracy and error rate. They are defined using
the notion of confusion matrix, explained in figure 2.

Actual

Positive | Negative
. Positive | TP FP
Predicted = five | FN TN

Table 2: Confusion Matrix

The accuracy is thus determined as Acc = 7 +§C§i£% —7p and the error
rate as error = 1 — Acc. The accuracy, mixes the number of predicted
minority data points and the number of predicted majority ones. In the case
of a balanced dataset, where both have the same weight, there is no issue.
But, in the case of an imbalanced dataset, due to disproportionate weights,
both numbers cannot be combined: the number of predicted minority data
points is insignificant compared to the number of predicted majority data
points. Other scores, such as the following, are more accurate:

e Precision = Positive Predictive Value (PPV) = T}’i%
_ s TP
e Recall = Sensitivity = 757
_ Precisionx Recall
e F1 score = 2 x Precision+ Recall

e AUC Score = =L

FP+TN

OGMean:\/ TP, _IN

TP+FN  TN+FP

Once the score has been defined, many others issues can appear. Figure 1
shows some of them. The most common is the last one, the overlapping.
Indeed, as clusters composed of minority data points are smaller than those
composed of majority data points, ML algorithms are not able to detect them.
This is illustrated in figure 1c, where red triangles have a high probability to
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be considered as one cluster even though blue circles separate them. To avoid
this issue and improve prediction, the most common strategy is to transform
an imbalanced data set into a balanced one using oversampling methods.

o0 oA QA OAD A
RS 4ot AT,
@) A4 O AA oA A

o ALA A
Q %8 Q) A Qo9 A
o ‘AA Cg
(a) Disjunctions (b) Outliers (¢) Overlapping

Figure 1: Several types of issues that can occur when the data is imbalanced. The blue cir-
cles represent the majority dataset, while the red triangles represent the minority dataset.

2.2. Owversampling Methods

The objective of oversampling methods is to generate new minority data
points from the original data points in order to balance the data set. The
simplest method is to add new data points randomly by selecting existing
ones and generating their exact copies. However, by copying exactly the
same data points, noisy data points may become too many and disturb the
classification. To avoid this issue, several other methods based on different
concepts have been developed. The following list is not exhaustive.

e Ordinary sampling and interpolation concept:

— SMOTE [9]: It is the most popular oversampling method and
many methods are based on it. The SMOTE algorithm can be
decomposed into 3 steps. The first one is to construct the list of
the k£ nearest neighbors of each minority data point. In a second
time, n_added minority points are randomly chosen and for each
minority data point x; picked, a random nearest neighbor x5 of
x1 is chosen. The last step consists in building a new data point
x between x; and x5 with a linear interpolation:

X =z + a(zy — 1) (1)

where « is a scalar uniformly sampled in [0, 1].



e Selection based on significance, data distribution, density, or relation-
ships between data points:

— ProWSyn [4]: For each minority data point, ProWSyn defines a
proximity level. This proximity level assesses the relationship and
distance between the minority and majority points. This score
is then normalized and considered as a weight. Minority points
located at the borders, i.e., close to majority points, will have
a higher weight than those far from the borders. The minority
points are then selected in proportion to their weight, and a linear
interpolation (1) is used to create a new point .

e By defining the space where minority data points can be generated,
based on the data distribution and empty spaces. For example, by
using clustering:

— Geometric SMOTE [11]: Geometric SMOTE is a generalization
of SMOTE with the objective of reducing the number of minority
data points generated in the majority areas. Thus, geometric
SMOTE defines an elliptical area around the minority data points
and, by deformation and truncation, secures the area where the
new data points are generated.

— DBSMOTE [7]: DBSMOTE relies on the DBSCAN algorithm [37]
to construct minority class clusters. This pre-clustering is used to
estimate a local distribution of the data and to find the boundaries
between the classes. Then, new minority data points are added
using the equation (1) in the clusters.

As mentioned, this list is not exhaustive, there are dozens of oversampling
methods that have been created over the years. But first, we will look at a
concrete example of imbalanced data sets.

3. Case Study: PRESEV

A perfect example of imbalanced dataset is the PRESEV study. Be-
cause predictors of the risk of developing ACS during hospitalization have
never been studied, a prospective single-center study (PRESEV 1 [3]) was
conducted at Henri Mondor Hospital (Créteil, France) to determine whether
ACS could be predicted from clinical and laboratory parameters assessed
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on arrival at the emergency department with an VOC. This score was then
validated in an international prospective study (PRESEV 2 [22]), including
patients from Africa and Europe. The PRESEV study aimed to identify clin-
ical and/or biological parameters predicting ACS at ER arrival. PRESEV
had two main objectives: to rapidly identify patients at risk of worsening
to ACS in order to offer them appropriate monitoring and care upon admis-
sion, and to rapidly identify patients who will not develop ACS in order to
offer them shorter hospitalizations or even outpatient management. It was
therefore necessary first to identify the clinical and/or biological features
associated with the occurrence of ACS, and then to use them to define a
predictive score for ACS.

3.1. Data Description

As mentioned, PRESEV is composed of two phases: PRESEV1 [3] and
PRESEV2 [22]. The objective of PRESEV2 was to validate the model devel-
oped on the PRESEV1 dataset. Both studies included only adult patients
with severe VOC. Severe VOC was defined as pain or tenderness affecting at
least one part of the body, not controlled by grade II analgesics, and requir-
ing opioids. The PRESEV1 study included 244 patients, but only 41 had
developed an ACS. The PRESEV2 study included 393 patients, of whom
76 developed ACS. Thus, 16.8% and 19.3% of patients in PRESEV1 and
PRESEV?2 respectively developed a secondary ACS after admission to the
emergency department. Each dataset is composed of several numerical fea-
tures but only one categorical, a pain score (CPS).

3.2. Previous results

As explained, PRESEV main goal is to identify ACS patients at ER
arrival with the lowest possible error. More precisely, we want to select,
on the one hand, patients with the highest negative predictive value (NPV)
and, on the other hand, patients with the highest positive predictive value
(PPV). A high NPV means patients of have a high probability to develop
ACS. A high PPV means patients with a low-risk of ACS; those patients can
be promoted to ambulatory management, which reduce the length of their
hospital stay, and so the cost to patients and communities [32]. Nevertheless,
the main priority is to identify ACS patients, so the NPV error need to be
less than 5%, i.e., a good NPV is an NPV above 95%.

In the previous studies, a predictive score for ACS on PRESEV1 [3] has
been established using the following features: CPS, Leuc, Ret and Hem.
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This score has a positive predictive value (PPV) of 44.7% for the high-risk
group and a negative predictive value (NPV) of 98.9% for the low-risk group,
which represented 39% of the study population. This score was then vali-
dated using PRESEV 2 [22], which found a PPV of 27.9% for the high risk
score and an NPV of 94% for the low risk score, which represented 12.7%
of the total population (results being published). Results are summarized
in table 3. Results indicate that PRESEV2 validates the results obtained in
PRESEV1. However, there is variability between the training (PRESEV1)
and the testing (PRESEV2) part, i.e., the overfitting is around 16.8 % for
the PPV value and around 5 for the NPV one.

PPV (%) | NPV (%)
PRESEV1 | 44,7 98,9
PRESEVZ | 27,9 94

Table 3: PPV and NPV obtained by the method developed in articles [3, 22]

3.3. Reproduction of results using usual Machine Learning methods

In order to reduce the overfitting and also to develop a cross variability
score, we decided to reproduce the previous score using machine learning
(ML) methods. The first step is to select features. The first idea to do it
will be to use some dimensional reduction methods, such as Principal Com-
ponent Analysis (PCA) or an auto-encoder. But, because of the imbalanced
criteria of our dataset, those methods will only focus on the majority class
and then highlights features important for the majority class without taking
care of the minority one. Thus, we select features by trying all the features
combinations, as shown in table 4. We therefore decided to put together the
PRESEV1 and PRESEV?2 datasets into one dataset called PRESEVC. Then,
we could define a training and a testing parts and apply on them standard
machine learning method. To generate results we select the following usual
ML methods: Random forest [5], Adaboost [15], MLP [20], SVM [34] and
Logistic Regression [41]. Results leads to the conclusion that the best feature
combination is the following one: Hem, Ret, Leuc, LDH, Urea and CRP.

However, the obtained NPV and PPV are not really impressive, probably
because of the imbalanced nature of the PRESEV data. Thus, we decided
to modify the prediction output into probabilities ones. Results are shown
in table 5 and are closed to the one in the previous studies [3, 22]. However,
the PPV value decreased and the overfitting is still high, around 13.3% for
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Features ML method NPV PPV
Ret, Leuc, Hem, ASAT, LDH, Bili_C, CPS, Urea, CRP AdaBoost 32.1 £ 30 84 £ 1.3

Ret, Leuc, Hem, ASAT, LDH, Bili C, CPS, Urea KNN 37 £ 29 84+ 2
Ret, Leuc, Hem, ASAT, LDH, Bili C, CPS, CRP RF 2923 + 18.4 | 85.4 + 4.1
Ret, Leuc, Hem, ASAT, LDH, Bili_C, Urea, CRP RF 33.3 £29.7 | 83.5 £2.2
Ret, Leuc, Hem, ASAT, LDH, CPS, Urea, CRP SVM 45.7 £30.9 | 84.5 £ 1.6
Ret, Leuc, Hem, ASAT, Bili_C, CPS, Urea, CRP RF 37.3 +£283 | 8.1 +26
Ret, Leuc, Hem, ASAT, Bili_C, CPS, Urea, CRP RF 373 £28.3 | 8.1 +26
Ret, Leuc, Hem, LDH, Bili_C, CPS, Urea, CRP AdaBoost 33.9+£29.3 | 84.4+33
Ret, Leuc, Hem, ASAT, LDH, CPS, Urea KNN 325 £289 [ 83.3+19
Ret, Leuc, Hem, ASAT, CPS, Urea, CRP AdaBoost 44.6 + 30.6 | 8.1+ 1.5

Table 4: NPV and PPV values on the testing part obtained using different features.

the PPV and around 3.6% for the NPV value. Overfitting may be due to a
lack of data, or also to the imbalanced specification of the dataset.

PRESEVC
Hem, Ret, Leuc, LDH, PPV NPV
CPS, ASAT, Urea and CRP
Train 35,9 +£25.81994+ 1.6
Test 22.6 £ 15.8 | 95.8 +2

Table 5: NPV and PPV value obtained using probabilities output after feature selection.

3.4. Results using oversampling methods

To improve the predictions of PRESEV, we need to apply ML methods
designed specifically for imbalanced datasets. There are more than 85 over-
sampling methods. In order to try all the different methods, and to select the
best one for our classification problem, we use the smote_variants pipeline
designed in [23, 24]. This pipeline finds the best oversampling method that
optimizes the user-selected score on a user-provided imbalanced dataset. We
apply the pipeline on the PRESEVC dataset, and ranked the oversampling
methods with respect to (highest) PPV and NPV values, see table 6. We
then reproduced the same strategy as before, by transforming the output of
the binary ML algorithm into a probability one. We obtained the results in
table 7.

We notice a decrease in cross variability and overfitting, of around 1%
for the PPV value and 0.4% for the NPV. But, the overall value of PPV
and NPV decreased compare to those reported in the paper literature [3, 22]
and available in table 3. Nevertheless, the reduction of the cross variability
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Oversampling Classifier PPV NPV
Gaussian_SMOTE [25] SVM 52+ 277 | 83.7+£25
ROSE [28] SVM 48.7 £24.1 | 85.1 £ 3.1
SMOBD (8] SVM 48.3 £ 22.8 | 83.6 £ 2.4

Table 6: Ranking of oversampling methods for PRESEVC dataset on PPV and NPV
values.

Gaussian SMOTE PPV NPV
Train 246 £4.2]969+£ 29
Test 23.6 £3.5]96.5+£0.38

Table 7: PPV and NPV values obtained using Gaussian SMOTE [26] oversampling method
on PRESEVC dataset.

and of the overfitting are really important for the experiment reproducibility.
Therefore, the use of an oversampling method is relevant for better predic-
tions on the PRESEV dataset. Our aim is thus to develop a new oversampling
method that better fits the PRESEV c;assification problem.

4. Improve prediction: Materials and Method
4.1. Watershed

Watershed was originally designed in the context of images, and more
specifically to do image segmentation or object detection. But as watershed
can be based on edge weighted graphs, the algorithm can be extended to nu-
merical data and can be used for supervised and unsupervised classification
problems. For example, in image segmentation or object detection, where
the goal is to detect of a small amount of pixels in a background composed of
many pixels. If we considered the background as the majority class and the
object as the minority one, the idea of developing an oversampling method
based on watershed method seemed relevant. Two methods based on water-
shed have been developed to resolve clustering issues: Watershed Cut [10]
and Iterated Watershed [38].

Watershed Cut — A watershed cut of an edge-weighted graph is a way
of partitioning the graph vertices based on the "drop of water” principle. In
this paradigm, the weight of an edge represents elevation in a topological
relief. If you drop a drop of water on a vertex, it will flow towards the
adjacent vertex that follows the edge with the lowest weight. This drop will
then flow until it finds a local minimum. All the vertices whose flow go into
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the same minimum form a catchment basin. A watershed cut is then the
partitioning of the graph vertices into such catchment basins.

We illustrate this algorithm using a simple example (See figure 2) of a 2
nearest neighbors graph. This graph is weighted by the Euclidean distances
between each point, figure 2a. We follow a first drop on a descending path,
until a minimum edge is found (yellow arrows in figure 2b). If this minimum
does not belong to any cluster, as in figure 2b, all vertices belonging to this
path are marked with the same labels. We then repeat this operation until
all vertices belong to a cluster, as in figure 2c.

(c) Step 3

Figure 2: Obtaining two clusters using the Watershed Cut technique from an edge weighted
graph of 2 nearest neighbors. The numbers on the edges represent the distance between
two vertices, i.e., between two data points. There are two minima edges on this graph:
one at 1 in yellow, and one at 2 in blue. At step 3, the graph is separated in two clusters
by the paths descending to either the yellow or the blue minimum (see text).

Iterated Watershed — Watershed cut is not the only clustering method
based on watershed. Iterated Watersheds [38] is a method close to KMeans [21]
based on watershed. The difference between KMeans and Iterated Water-
sheds is the preservation of connectivity between data points. In fact, both
the KMeans clustering and the Iterated Watershed algorithm can be de-
scribed in two steps. But first, the user will have to choose a parameter k
that corresponds to the number of desired clusters. Omnce this choice has
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been made, the first step in both algorithms is called the maximization step.
It consists of assigning each of the data points to one of the k centers. Here
is the difference between the two algorithms. Indeed, in the case of KMeans,
a point will be connected to its nearest center if the latter is closest to it in
terms of distance. Whereas, the Iterated Watershed algorithm will work at
path level. A point can only be linked to a center if there is a path between
that point and the center and that path is minimal for a function, for exam-
ple a distance function. In the Iterated Watershed, this step will be carried
out by applying a shortest-path algorithm, the IFT [13], on the graph. Thus,
the Iterated Watershed algorithm takes into account a connectivity criterion.
Once this first step is completed, a partition of the data points is obtained.
Then, a second step, the expectation step, is performed. This step consists of
calculating the new center for each of the groups obtained by the partition.
Thus, k new centers are obtained. We are then able to repeat the maximiza-
tion and expectation steps, until convergence. Figure 3 compared KMeans
and Iterated Clustering on a toy example.

100
075
050
025
0.00
025
050
075
100
700 ~0.75 050 —025 000 0325 050 075 100

(a) Toy example: two cir- (b) Clusters obtained using (¢) Clusters obtained using
cles. KMeans. Iterated Watershed.

Figure 3: Clusters obtained on a toy example using two clustering methods: KMeans and
Iterated Watershed.

4.2. Watershed Clustering vs Usual Clustering methods: Impact on Imbal-
anced Datasets.

Even if the idea of using image methods seem to be interesting, we need
to compare results of these methods with usual ones and study their im-
pact in same imbalanced datasets. For this purpose, we select two standard
clustering methods often used in oversampling methods: KMeans [21] and
DBSCAN [37] and 6 imbalanced datasets from table 1. Thus, our goal is to
compare prediction scores. Since clustering methods are unsupervised meth-
ods, we define a procedure to generate predictions using them. First, we
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generate clusters on the training part and the testing part using clustering
methods. Secondly, we consider that all data points in the same cluster be-
long to the same class. Thus, unlabeled data points, i.e., data points from the
testing part, will be labelled with the majority label of the cluster to which
they belong. Using this method, we can compare the different clustering

methods. We obtain the results presented in tables 8, 9, 10 and 11.
PPV Paw Pima Segment0 VowelO Yeastl Glassl
Kmeans 63,7+ 16,5 | 432 £ 52 | 842 £ 3,0 | 87,7 £ 10,1 | 495 £ 11,5 | 483 £ 7,6
DBSCAN 26,6 +7 |381+36] 41,3+6,5 | 50,0+ 14,3 | 53,2 + 26,5 | 59,5 & 13,7
Watershed Cut 34+ 42 H45+£17| ThE14 | 68408 |428 £ 114 61 £ 37,3
Iterated Watershed | 40,8 + 10,5 ‘ 421+ 1,2 83,1 +38 33,1 +5 |364+£152 | 427+£71

Table 8: Comparing precision scores obtained of Watershed Cut, Iterated Watershed and
some usual clustering methods on Imbalanced datasets. Highlighted in blue is the best

score obtained for a given dataset.

Recall Paw Pima Segment0 VowelO Yeastl Glassl
Kmeans 428 £ 7,6 | 448 +0 | 732+12 | 71,7+ 10,1 | 43,1 £ 11,5 | 46,3 £ 84
DBSCAN 292 +6,2 [26,1£3,7]232+37 | 336+68 | 146+64 | 31,1 £9,8
Watershed Cut 580+78 | 6,015 | 872+79 | 899+ 76 | 43,1 +99 | 63+ 46
Iterated Watershed | 44,0 £ 10,0 46,3 +6 | 60,4 £4,3 | 71,8 £ 10,6 | 25,4 £+ 13,8 | 39,5 &+ 12,1

Table 9: Comparing recall scores for Watershed Cut, Iterated Watershed and some usual
clustering methods on Imbalanced datasets. Highlighted in blue is the best score obtained

for a given dataset.

Gmean Paw Pima Segment0 | VowelO Yeast1l Glassl
Kmeans 63,8 £ 5,5 | 54,9 +28 | 84,5+ 04 84 +6 63,4 + 8,8 | 56,4 + 6,8
DBSCAN 50,4 + 5,7 | 444 + 1,2 | 46,7 £ 3,9 | 56,6 = 5,6 | 35,6 £ 12,9 | 54 £ 71
Watershed Cut 694+4 |230+32| 91+£38 |926=+42| 63+£8 | 16=+139
Iterated Watershed | 62,6 £ 7,4 | 55,1 £ 2,4 | 76,9 £2,9 | 7180 £ 6,3 | 45,8 £ 18 | 474+ 6,4

Table 10: Comparing GMean scores for Watershed Cut, Iterated Watershed, and some
usual clustering methods on Imbalanced datasets. Highlighted in blue is the best score
obtained for a given dataset.

We note and observe that Watershed Cut method improves predictions
for some specific scores, e.g., recall or NPV scores. However, the iterated
watershed method is less effective. In fact, except in special cases, results
obtained using Iterated Watershed method can be compared with those ob-
tained using KMeans. Thus, we decided to consider only the Watershed Cut
method as an interesting method to develop a new oversampling method.
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NPV Paw Pima Segment0 | VowelO Yeast1 ‘ Glassl
Kmeans 922 4+1 |694£21]956+02 | 972+1 [ 939+£12 712+42
DBSCAN 89,71 |658+09|8,1+06 |935+06 91,305 71,2£28
Watershed Cut 9331 |659+06|97,8+1,3|989+08|938=+1,1]651=£0,9
Iterated Watershed ‘ 91,9+ 14 69,7 £ 15| 93,7+ 0,7 | 96,8 £ 1,2 922+ 1,3 | 64,9 + 3,6

Table 11: Comparing NPV scores for Watershed Cut, Iterated Watershed, and some usual
clustering methods on Imbalanced datasets. Highlighted in blue is the best score obtained
for a given dataset.

In addition, we also want to compare the size and aspects of clusters
obtained using Watershed Cuts, with those obtained using KMeans and DB-
SCAN methods. Thus, we made and studied clusters on 2D datasets. We
observe (an example is done in figure 4) that Watershed Cut builds very small
clusters compared to those obtained with KMeans and DBSCAN. But these
clusters are very stable, unlike those obtained by DBSCSAN or KMeans.
This could be explained because Watershed Cuts has no parameters related
to the data structure.
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(¢) KMeans Clustering:
nb_clust:50

(a) Watershed Cut
Clustering: n_nei:10

(b) DBSCAN Clustering:
eps:0.05, min_s:5

Figure 4: Imbalanced Chessboard clustered by different methods: Watershed Cut, DB-
SCAN and KMeans. Crosses correspond to majority data points, whereas circles corre-
spond to minority ones.

4.8. Conclusion

The Watershed Cut seems to be an interesting method to deal with im-
balanced datasets because of the typical shape of its clusters, and also due to
the good scores obtained directly on the datasets compared to other cluster-
ing methods. Thus, we decided to build a new oversampling method based
on Watershed Cut. We call this new approach WSSMOTE.
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4.4. A novel oversampling method: WSSMOTE

WSSMOTE is an oversampling method based on the Watershed cut algo-
rithm. Inspired by other oversampling methods, two different strategies have
been developed in WSSMOTE. The first one is based on the ability of the
watershed clustering algorithm to obtain small clusters that really match the
data distribution. While the second one is based on the article [23], which
states that the best oversampling methods based on clustering are those with
large clusters, where new data points can thus easily be added far from each
other. It therefore seems important to develop a solution where clusters
can be concatenated into larger clusters, also called super clusters. We now
examine these two strategies in detail.

e The small cluster strategy: this strategy was developed because of the
problems described in figure 1 and more particularly for disjunction
(Fig. 1a) and overlapping issues (Fig. 1c). Indeed, in some datasets, it
is really important to define small clusters that really correspond to the
data distribution, in order not to add minority data points too far away,
and thus to generate them on majority clusters. We therefore use wa-
tershed clustering to define small regions, and then generate data points
in these regions. Using polynomial fit interpolation [16], minority data
points can be added using one of the two following schemes. The first
one is to use two random data points from the clusters (“mesh” option).
The second one is to use the average data points from the clusters, and
another random data point from that cluster (“star” option). These
two options lead to different distributions of the final data (initial data
points and newly generated minority data points).

e The super-cluster strategy: As explained above, the clusters created
by watershed clustering are generally small; as a consequence, they
may fail to capture large scale structures in the data. For example, in
Figure 1b, each of the three red triangles on the left is considered a
cluster using the watershed algorithm. Thus, the watershed clustering
strategy will lead to three clusters, and we will therefore copy exactly
these red triangles without adding any new information. In contrast, if
we first concatenate the three clusters into one and then generate new
minority data points, we capture information, and thus improve future
prediction. This point was also made in [23]. This is why we developed
this second strategy. We first generate our clusters using watershed
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clustering, and then obtain a region adjacency graph, also called a rag.
Each vertex of this rag represents a cluster, and each edge of the rag
corresponds to a link between two clusters. Then we concatenate each
cluster to its k nearest clusters. In this way, we obtain larger clusters
that preserve well the original data distribution. The final step simply
adds data points to the clusters, using the mesh option.

Pseudocode 1 describes the WSSMOTE algorithm. WSSMOTE has two
different strategies. The first one, the small cluster one, can be called with
the strategy parameter “star” or “mesh”. This strategy consists of adding
new data points directly inside the watershed clustering. The “star” option
adds these data points using a notion of average, while the “mesh” option
adds these data points by selecting two random data points within the clus-
ter. The second strategy, the super-cluster one, called with the strategy
parameter “concat_k”, adds a step before generating new data points. It
first concatenates k nearest clusters to create larger ones, and then adds new
data points. So, to use this option, we also need to select a parameter k,
which, in practice, is between 2 and 50.

The WSSMOTE algorithm is available on the following github url https:
//github.com/yamnao/WSSMOTE. WSSMOTE visualization on imbalanced
datasets are shown in figure 5 and figure 6

(a) ChessBoard without (b) ChessBoard with (¢) ChessBoard with
oversampling WSSMOTE oversampling: WSSMOTE oversampling:
parameter “mesh” parameter “concat_5”

Figure 5: Application of WSSMOTE on ChessBoard dataset[14]. Blue circles correspond
to majority data points, red triangles to minority ones, and yellow crosses to data points
added by the WSSMOTE method.
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Algorithm 1: WSSMOTE
Data:
imbalanced data D and its labels L
nb_add: percentage of data points to be added
strategy choice: choice between ’star’, 'mesh’, 'concat_k’
k: parameter k, number of concatenate clusters

1 nb_to_add: (nb min data pts - nb maj data pts)*nb_add ;
2 graph, edge_weights: Generate the KNN graph;
3 Clusters: Watershed Clustering(graph, edge_weights) ;

a if strategy choice == ’star’ then

5 for C in Clusters do

6 X_mean: Calculate the mean of all the data pts in C ;

7 D_C: Select random data points in C;

8 Generate new data points between D_C and X_mean

equidistantly ;

9 if strategy choice == 'mesh’ then

10 for C in Clusters do

11 D_C: Select random data points in C;

12 L Generate new data points between two D_C data points ;
13 if strategy choice == ’concat_k’ then
14 ClustersConcat: Concatenate Clusters using Region Adjacency

Graph and parameter k;

15 for C'in ClustersConcat do

16 D_C: Select random data points in C;
17 Generate new data points between two D_C data points ;

Riesult: Data D_C

5. Results and Discussion

5.1. Results on some datasets using WSSMOTE

To test our novel oversampling method, we used the datasets described
in Table 1. We compared the rank of WSSMOTE with others oversampling
methods implemented in smote_variant [24]. Table 12 summarizes the rank
of WSSMOTE compared to other 50 oversampling methods. Table 13 sum-
marizes the rank of Gaussian SMOTE method [25] compared to other 50
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Figure 6: Application of WSSMOTE on Paw dataset [1].

majority data points, red triangles to minority ones, and yellow crosses to data points
added by WSSMOTE method.
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sensitivity

accuracy specificity | ppv | npv | gacc f1 auc
rank rank rank rank | rank | rank | rank | rank

yeastl 48 1 50 49 1 16 38 10
ecolil 34 1 47 46 1 10 16 8
harbeman 27 2 43 24 1 6 11 6
wisconsin 11 3 33 32 4 8 8 12
vehiclel 25 2 46 46 1 19 13 1
glassl 22 2 45 44 2 6 10 11
subcl35 20 29 14 6 26 3 27 5

Blue circles correspond to

Table 12: Comparison of WSSMOTE with 50 other oversampling methods, using the
smote pipeline. Each number corresponds to the rank of WSSMOTE;, for a specific score,
and for an imbalanced data set. The best rank is 1, the worst is 50.

accuracy | sensibility | specificity | ppv | npv | gacc f1 auc
rank rank rank rank | rank | rank | rank | rank

yeast1 8 2 9 6 2 43 42 9
ecolil 3 2 3 2 2 17 5 3
haberman 37 1 7 3 41 12 10 7
wisconsin 42 30 19 27 33 35 42 2

vehiclel 43 1 3 2 33 42 42 47
glassl 31 2 1 14 44 42 42 37
subcl3b 2 1 37 8 4 39 2 15

Table 13: Comparison of Gaussian SMOTE with 50 other oversampling methods, using
the smote pipeline. Each number corresponds to the rank of Gaussian SMOTE, for a

specific score, and for an imbalanced data set. The best rank is 1, the worst is 50.

Results show that WSSMOTE is competitive, especially for NPV and
sensitivity scores. In addition, since we want to maximize the value of the
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NPV in the prediction of the ACS using PRESEVC, WSSMOTE seems to
be an appropriate method.

5.2. Results on the PRESEYV dataset

Driven by the good results obtained with WSSMOTE, we tested this
method for the prediction of ACS. Our goal, as explained in section 3, is
to maximize both the NPV and the PPV scores, in order to identify ACS
patients at ER arrival, but also to detect low-risk patients (to offer them
shorter hospitalizations). By sorting results with their NPV score, we obtain
that the best method is the combination of WSSMOTE and SVM, follow by
the combination of Gaussian SMOTE and SVM and then of ROSE and SVM
(results are available in the github). To illustrate the complete approach, we
thus compare results obtained with the combination of WSSMOTE and SVM
with previous results (See table 14).

Prediction Method PRESEVC | PPV (%) | NPV (%)

Traim | 350 = 258 | 994 + 1.6
SVM Test 226 £15.8| 958 £2
Train 23.1£1.1 | 96.5 £ 0.8

Gaussian SMOTE + SVM

Test 24.6 £4.2 | 96.9 £ 29
Train 2774+ 19 | 96.6 + 04
WSSMOTE + SVM Test 28.9 + 3.1 | 96.6 + 2.5

Table 14: PPV and NPV scores obtained on PRESEVC using WSSMOTE, and comparison
with previous results.

5.8. Discussion

Results demonstrated that WSSMOTE method improves the PPV score
by 4.5% compared to the one obtained using Gaussian SMOTE method,
which is significant. In addition, the overfitting decreases with WSSMOTE
from 13.3% to 1.2% for PPV score and from 3.6% to 0 for the NPV one, com-
pared to the overfitting obtained using usual machine learning method. Fur-
thermore, the cross-validation variability also decreases from around 20.8%
without oversampling, to 2.5% with WSSMOTE.

Thus, WSSMOTE improves the prediction of ACS for SCD patients.
Better predictions mean a better identification of high-risk patients, and
thus, better, more appropriate, monitoring and care. In addition, better
prediction also means a better identification of low-risk patients, and thus
shorter hospitalization stay. Moreover, as WSSMOTE decreases variability
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of results, this method seems robust, and can be applied to new patients with
more confidence.

6. Conclusion

WSSMOTE, an oversampling method based on watershed-cuts, improves
the prediction of ACS for patients with SCD. PPV increases from around
4%, compared to the one obtained using other oversampling methods. This
increase means better identification of ACS patients and thus better care
and hospital management. Furthermore, overfitting decreases from 13.3 %
to 1.2%, which means better reproducibility for future studies.

WSSMOTE also obtains competitive scores in other real-world datasets.
Even if it is unrealistic to hope for a silver-bullet oversampling algorithm
(36, 18, 12], this paper shows that improving classification scores on general
data can be done thanks to algorithms that were originally designed for image
segmentation, especially for imbalanced datasets.
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