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Abstract— It is crucial to protect the intellectual property
rights of DNN models prior to their deployment. The DNN should
perform two main tasks: its primary task and watermarking
task. This paper proposes a lightweight, reliable, and secure
DNN watermarking that attempts to establish strong ties between
these two tasks. The samples triggering the watermarking task
are generated using image Mixup either from training or testing
samples. This means that there is an infinity of triggers not
limited to the samples used to embed the watermark in the model
at training. The extensive experiments on image classification
models for different datasets as well as exposing them to a
variety of attacks, show that the proposed watermarking provides
protection with an adequate level of security and robustness.

Index Terms—DNN Watermarking, Intellectual Property
Rights, deep neural networks

I. INTRODUCTION

Deep Neural Networks (DNNs) became the de-facto stan-
dards for a plethora of computer vision tasks, including image
classification. It is imperative to protect DNN ownership
because they are regarded as valuable industrial assets [1].
The literature demonstrates that it is technically feasible to
watermark DNNs without spoiling its accuracy. Removing the
watermark from a model that happens to be equally difficult as
training a new network from scratch. This justifies that DNN
watermarking is a primary tool for ownership protection.

A popular watermarking of classification models is that the
Owner injects few inputs with unrelated labels in the training
set so that the model keeps a memory of them. Once deployed,
the Verifier submits these samples (a.k.a. triggers) and checks
whether their outputs corresponds to the unrelated labels.
A non-watermarked model would not classify these triggers
in the same surprising way. The first difficulty is that this
watermarking modifies very locally the behavior of the model
which might be partially erased if the Attacker transforms
the model. Another point is that the triggers play the role of
the secret watermarking key. Once disclosed, the Attacker can
remove the watermark by making the model forgetting about
these isolated inputs.

Our paper focuses on the latter threat. Our goal is to enforce
that the samples used to embed the watermark at training
time are different than the samples used for detecting the
watermark at verification time. Indeed, the secret key of our
watermarking scheme is no longer a small set of isolated inputs
but a manifold of inputs. There is thus an infinite number
of triggering samples and the Verifier never uses twice the
same samples. According to experimental analysis on image
classification with various datasets and DNN architectures,
our watermarking does not reduce the accuracy of the model

while being robust to classic post-processing. Indeed, strong
attacks remove the watermark at some point but also ruin the
classification accuracy.

II. PRIOR ART

The first DNN watermaking occurred in 2017, as per Uchida
et al. in [2]. It is a white box setting in the sense that the
watermark is embedded (detected) directly into (resp. from)
the host DNN parameters. This approach was improved in [3].
In the black box setting, the watermark modifies the behavior
of the host DNN and this can be testify just by querying inputs
and observing outputs at verification time. Backdooring is such
an example by forcing the DNN to overfit over a unusual
set of image-label pairs and thus, making them difficult to be
predicted by any other model. These pairs can be referred to as,
backdoors, triggers, watermarked samples or secret keys. They
can be synthetic or unnatural [4], adversarial [5], or benign
samples with either visible [6] or invisible [7], [8] overlay.

As for the attacks, the three most widely used post-
processing techniques for evaluating the robustness of DNN
watermarking are transfer learning, model pruning, and weight
quantization. Pruning and weight quantization are common
processing for lowering the memory footprint of the network.
Transfer learning typically involves replacing the fully con-
nected layers of a DNN with new layers adequate for the
task the knowledge is transferred to i.e. use a pretrained DNN
on ImageNet [9] to classify CIFAR10 [10]. A particular case
is fine-tuning in which a trained DNN is re-trained with a
lower learning rate. An attack is regarded as successful if and
only if it eliminates the watermark behavior while maintaining
the model accuracy on the main task descent. Otherwise, the
attacker ends up receiving a needless DNN model.

More powerful attacks exist. Paper [11] demonstrates that
reforming the inputs (with an auto-encoder for instance)
removes the invisible overlay or the adversarial perturbation
because these signals are too fragile. The authors of [12] make
the analogy with classic media watermarking where security
is defined as the inability for the attacker to estimate the
secret key. For instance, a visible overlay can be easily copied
once disclosed, which opens the door to ownership usurpation.
Using natural images with random labels as triggers prevents
reforming or overlay copy attack. For instance, paper [13]
imposes a specific generation of the random labels so that
no Usurper can claim any existing model. Yet, these specific
natural inputs constitute the secret key which is used at the
embedding but also at the verification. Remember that a
small fine-tuning easily makes the model forget about them ifIC
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disclosed. As far as we know, only paper [14] protects these
secret inputs by drowning them into a large pool of queried
images at verification time to prevent their identification.

Our paper tackles this last pitfall because its secret key is
not a small finite set of trigger images but an infinite trigger
manifold. Therefore the triggers used at the verification are
always different than the ones used at the embedding. In a way,
this is equivalent of asymmetric media watermarking proposed
in [15]–[17].

III. PROPOSED METHOD

A. Image Mixup

Mixup is a data-agnostic data augmentation technique used
to construct new virtual training examples. Mixup is first
introduced in [18] and extended to aligned mixup in [19].
For instance, a new virtual example x̃ is constructed from two
inputs xi and xj that could belongs to the same or different
classes, as follows:

x̃ = λxi + (1− λ)xj , 0 < λ < 1. (1)

Mixup vicinal distribution is a type of regularization that
promotes the model to act linearly. This lowers the number
of unfavorable oscillations that occur when predicting outside
of training samples.

B. Mixup based watermark embedding

First, the proposed method extends the idea of mixup to
use two or more inputs to generate the trigger samples, and
moreover these inputs are random, denoted by capital letters:

X̃ = clip

(
C∑
i=1

λiXi + xo

)
(2)

where image Xi is one random input of class i ∈ {1, . . . , C},
λi > 0 is the weight assigned to the i-th class, and xo a visible
constant additive overlay. As for the associated class, we also
resort to a mixup with weighting vector µ:

ỹ =

C∑
i=1

µiyi, (3)

where yi is the one-hot vector corresponding to the i-th class.
The weighting vectors λ and µ are the secret key. They

both are randomly drawn from the key distribution which
is a compound of Dirichlet distributions. We first draw a
random vector from the Dirichlet distribution of parameter
α = (α1, . . . , αC), and then we apply a random permutation
to get λ. This means that λi ≥ 0 and

∑
i λi = 1. We repeat

this process independently to get µ. The profile α may contain
some null values which implies that some classes receive a null
weight. We denote by m the number of non zero values in α
which is in turn the number of non zero values in λ and µ.

The owner randomly generates a set Se of ne mixup images
associated with probability vector ỹ and inject them in the
training set.

C. Mixup based watermark detection

The Owner gives the keys (λ,µ, xo) to the Verifier who
crafts a set Sd of nd mixup images queried to the black box
model. Importantly, the set Sd is different than the set Se: The
model m under scrutiny is queried images not seen at training.
The Verifier computes the ratio

ρnd
= |{x ∈ Sd| argmaxµim(x)i = argmaxµi}|/nd, (4)

and decides that the model in the black box is watermarked
if ρnd

is bigger than a threshold τ which grants its ownership
to the claimed Owner.

D. Analysis

There are two hypotheses: the black box is or is not
watermarked with the key (λ,µ, xo). The Verifier crafts and
queries nd new mixup samples and compute ρnd

. This is
an empirical probability measured over nd trials. We denote
by ρP (resp. ρN ) the true probability in the positive (resp.
negative) case when the black box is (resp. is not) (λ,µ, xo)-
watermarked. We suppose that ρP > ρN . Simple Chernoff
bounds on binomial variables show that, ∀τ ∈ (ρN , ρP ):

False positive : P(ρnd
> τ) ≤ e−nd(τ−ρN )2 , (5)

False negative : P(ρnd
< τ) ≤ e−nd(τ−ρP )2 . (6)

Given two maximum levels of errors Pfp (false positive) and
Pfn (false negative), there exists a threshold τ ∈ (ρN , ρP )
satisfying these requirements if

nd ≥

(√
− logPfp +

√
− logPfn

ρP − ρN

)2

. (7)

We consider the worst hypotheses: In the negative cas, the
Verifier faces a Usurper who created a fake key. The black box
is thus not watermarked with this fake key. The next section
measures ρN ≈ 0.5 at most. In the positive case, the black box
is a modified version of the watermarked model. The next
sections measures ρP ≈ 0.8. Say Pfp = Pfn = 0.05, these
probabilities of errors are met for nd ≈ 130.

IV. EXPERIMENTAL RESULTS

A. Setup

The evaluation of the method uses MNIST and CIFAR10
datasets plus ImageNet for transfer learning, and off-the-shelf
CNN network architectures (see App. VII). We divide the
training dataset into three parts: 80% for training, 10% for
validation, and 10% for fine-tuning in all of the experiments.

As for the attacks, we consider modifications of the model
(like pruning, weight quantization, and fine-tuning) and mod-
ifications of the inputs before submitting to the model (like
JPEG compression). We prune the DNN weights with rate
k ∈ (0, 1) by setting randomly selected weights value to
zero. Weight quantization are done in four different ways.
The weights are quantized into integers in dynamic range
quantization (Dyn. Quant.) or in full unsigned 8 bits integer
quantization (Full Uint8. Quant.), in full signed 8 bits integer
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quantization (Full Int8. Quant.), or converted to Float16 format
(Float16 Quant.). These operations reduce the size of the DNN
and speed up querying time. Fine-tuning uses the same algo-
rithm than training (see Sect. VII) but with a learning rate of
10−5, for 30 epochs and a batch size of 64. JPEG compresses
and decompresses the input image before forwarding it to the
CNN. We consider a low JPEG quality factor of 55.

The performance of the proposed method is evaluated with
four criteria: TA, Rectr, Rects, and USR. TA represents the
test accuracy of the model on the original task, Rectr is
the probability associated to (4) over 1,000 training mixup
samples of Se, and Rects over 1,000 new mixup samples Sd.
Finally, USR is the usurper success rate, i.e. is the probability
associated to (4) measured on mixup samples generated with
a fake key (picked by a Usurper). USR is measured over 1,000
random fake keys.

For a given number of classes m, the selected classes to
mixup and the mixup vector (λ,µ) are all generated randomly.
As for the trigger xo, it is an empty image with a white circle
fixed at the top left.

As for the Usurper, in all the experiments, we grant him
the knowledge of m, the statistical distribution of generating
λ and µ, and finally the overlay xo. Granting the Usurper
many secrets would validate the performance of the proposed
scheme in extreme cases and would provide more emphasize
to the Verifier about the value of the confidence of the proof.
It is difficult to know all the secrets in practice, unless for the
case of an insider (the Usurper is the same as the DNN trainer
or the outsource).

B. Experimental Results

1) Learning a secret manifold: Table I first shows that the
accuracy in recovering the watermark is very high either using
training (Rectr) or testing (Rects) mixup samples. The lowest
recovery accuracy is under transfer learning scenario with
Rectr = 88.29%. Most importantly, the difference between
Rectr and Rects is not statistically significant. It means that
we succeed in making the model learn a secret manifold and
not just a set of isolated points. This confirms that the Verifier
no longer needs the trigger samples used for embedding the
watermark. Also, from one verification to another, the queried
samples differ. As a scientific control, the probability (4) is
close to 1/C when verifying a vanilla unwatermarked model.

2) Robustness against attacks: From Table I, we can ob-
serve that our watermarking scheme is robust to different kinds
of post-processing that can be used to remove the watermark.

Starting by MNIST, by comparing the different metrics
under attacks to the baseline, we observe that, under fine-
tuning, the drop in TA is negligible and the recovery accura-
cies Rectr, Rects remain almost intact. The same conclusion
holds for Dynamic Quantization, full unsigned 8 bits integer
quantization, Float16 quantization, and JPEG55. The worst
attack is full signed 8 bits integer quantization which resets
Rectr and Rects to absolute 0%. This huge drop in the the
watermark recovery does not go without affecting the accuracy
TA which is approximately to random guess with a value of

Fig. 1. Accuracy vs. Pruning rate

8.9% with MNIST, 9% with CIFAR10, 9.1% with transfer
learning. This means that the attacker was not able to induce
an error in the watermark recovery without ruining the main
task the DNN is intended to perform, which simply makes the
attacked DNN useless. JPEG compression with a quality factor
of 55 has more severe effect on the performance. With the low
jpeg quality factor considered, for MNIST case, TA drops by
0.17%, while Rectr and Rects remains the same. The losses
increases with CIFAR10, with a drop in TA drops by 7.68%,
in Rectr by 9.2%, and in Rects by 9.8%. Even that CIFAR10
suffers more than MNIST from JPEG55, in the worst case, the
watermark recovery remains above 89%. For transfer learning,
TA drops by 3.18%, Rects by 5.89%, while Rectr increases
by 5.41%. Therefore, also for JPEG55 compression, recovery
rates does not drop without a heavy loss in the DNN main
task accuracy.

Pruning the DNN has similar effect on the performance
metrics compared to Table I attacks as illustrated in Figure 1.
Nonetheless, the drop in the accuracies is smoother for MNIST
compared to CIFAR10 and transfer learning. MNIST TA
resists above 60% until k = 0.45, while both Rectr and Rects
remains above 70%. On the other hand, for CIFAR10, TA,
Rectr and Rects take a steep drop after k = 0.4, while for
transfer learning k = 0.15 is sufficient to decrease all the
metrics below 70%. Likewise, Rectr and Rects always follow
any degradation in TA.

As a conclusion, JPEG55, Full Uint8. Quant. and pruning
have more severe effect on the performance compared to other
attacks. This is particularly correct for deeper networks with
more complex tasks. Yet, this performance drop does not go
without degrading the performance on the main task of the
DNN which is, for the DNN owner is very beneficial as
he can assure that his DNN will be only useful in the case
where he can prove his ownership. This intertwine between the
performance losses is due to the fact that the mixup strategy
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TABLE I
PERFORMANCE RESULTS OF MIXER

Metric Host DNN Watermarked DNN Fine-Tune Dyn. Quant. Full Uint8. Quant. Full Int8. Quant. Float16 Quant. JPEG55

MNIST
TA 99.34 99.29 99.32 99.3 99.29 8.9 99.29 99.12
Rectr - 100 100 100 100 0.0 100 100
Rects 10.0 99.9 100 99.9 99.9 0.0 99.9 99.9

CIFAR10
TA 83.99 84.69 84.59 84.57 84.51 9 84.6 77.01
Rectr - 100 100 100 100 0.0 100 90.8
Rects 10.0 98.9 99.19 98.9 98.8 0.0 98.9 89.1

Transfer Learning
TA 86.54 86.07 85.5 86.0 85.9 9.1 86.07 82.89
Rectr - 88.29 95.9 98.1 98.2 0.0 98.3 93.7
Rects 10.0 88.59 84.6 88.6 88.6 0.0 88.6 82.7

embeds the watermark within the same features the DNN is
intended to learn for its main task.

3) Facing an Usurper: The measured USR are relatively
high: 51.1% for MNIST, 38.4% for CIFAR10, and 39.5% for
transfer learning. This is due to the fact that, in the adopted
scenario, we granted the attacker the knowledge of m, the
statistical distribution for generating λ and µ, and the overlay
xo. We consider such an unrealistic threat model to show that,
in the extreme case, it is difficult for the Usurper to have
confidence as high as those reported in Rectr and Rects even
under attack (provided the attacked model keeps a useful TA).

V. CONCLUSION AND FUTURE WORKS

This paper presents a new DNN watermarking protocol that
uses image mixup for the construction and the injection of
the watermark samples into the DNN. The main properties
of the proposed method is that it does not impair the DNN
performance on the main task, it is robust against a wide range
of attacks, and it creates a crucial inter-connection between the
DNN main task and the watermarking task. Future research
directions are the security against more complex attacks,
such as watermark overwriting, investigating the effect of the
selection of the secrets in a predefined and precise manner.
The theoretical investigation of the learning capacity of the
network, and the input space dimension to understand the
watermarking algorithm’s limitations and capabilities would
be another interesting direction.
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VII. APPENDIX

1) MNIST: The network for MNIST is as follows: 1 conv.
layer (64 filters); a max pooling; 1 conv. (128 filters); a max
pooling; 2 f.c. layers (256 and 10 neurons). For all the conv.
layers, the kernel size is 5 with ReLU activation. The network
is trained for 100 epochs with a batch size of 64.

2) CIFAR10 CNN: The network for CIFAR10 is structured
as follows: 2 conv. layers (32 filters); 2 conv. layers (64 filters);
2 conv. layers (128 filters); 2 conv. layers (256 filters) (each
block of two conv. layers is followed by a 2× 2 max-pooling
and a dropout layer of rate 0.2); two f.c. layers (128 and 256
neurons) separated by a 0.2 dropout; final layer (10 neurons)
with softmax activation. For all the conv. layers, the kernel
size is 3 with ReLU activation, initialized using He Uniform.
The network is trained for 200 epochs with a batch size of 64.

3) Transfer learning with ImageNet: VGG19 pre-trained
model on ImageNet is the base model for transfer learning.
The network’s decision part is replaced by two ReLU f.c.
layers (1024 and 512 neurons) and the final layer (10 neurons)
with softmax activation. Transfer learning is performed over
CIFAR10 for 200 epochs with a batch size of 64.

During training, the cross entropy loss function is used
in all cases. MNIST uses the Adam algorithm with default
parameters, while CIFAR10 and transfer learning use SGD
with learning rate 0.001 and momentum 0.9.
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[12] M. Barni, F. Pérez-González, and B. Tondi, “DNN watermarking: Four
challenges and a funeral,” in ACM Workshop on Information Hiding and
Multimedia Security, 2021.

[13] K. Kallas and T. Furon, “Rose: A robust and secure dnn watermarking,”
arXiv preprint arXiv:2206.11024, 2022.

[14] K. Kapusta, V. Thouvenot, O. Bettan, H. Beguinet, and H. Senet, “A
protocol for secure verification of watermarks embedded into machine
learning models,” in ACM Workshop on Information Hiding and Multi-
media Security, IH&MMSec ’21, 2021.

[15] T. Furon and P. Duhamel, “An asymmetric public detection water-
marking technique,” in International Workshop on Information Hiding,
pp. 88–100, Springer, 1999.

[16] T. Furon and P. Duhamel, “An asymmetric watermarking method,” IEEE
Transactions on Signal Processing, vol. 51, no. 4, pp. 981–995, 2003.

[17] G. Boato, F. G. De Natale, and C. Fontanari, “An improved asymmetric
watermarking scheme suitable for copy protection,” IEEE transactions
on signal processing, vol. 54, no. 7, pp. 2833–2834, 2006.

[18] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[19] S. Venkataramanan, E. Kijak, L. Amsaleg, and Y. Avrithis, “Alignmixup:
Improving representations by interpolating aligned features,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 19174–19183, June 2022.

Authorized licensed use limited to: INRIA. Downloaded on June 01,2023 at 08:09:18 UTC from IEEE Xplore.  Restrictions apply. 


