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We consider the general modern notion of the so-called associated-
kernels for smoothing density function on a given support. We first
show that the unnormalized estimator is consistent and that the nor-
malizing random variable converges in L4 to 1. Then, we deduce the
consistency of the considered normalized estimator. The comparison
in favor of the normalized estimator is obtained by the mean squared
error. We conclude by providing, for the first time, the general asymp-
totic normalities through some regularity assumptions for both un-
normalized and normalized associated-kernel density estimators. The
Gumbel, Weibull, lognormal, and other associated kernels are investi-
gated for illustrating theoretically and numerically some of our results
with an application to original data of automobile claim amounts from
Covéa Affinity.

1. Introduction. Classical kernels have been introduced for smoothing density
functions on an unbounded support. These kernels typically act as continuous and
symmetric smoothers for functions defined on R. They do not depend on the band-
width or the target point where the estimated probability density function (pdf) is
evaluated; see for example, Parzen [20], Epanechnikov [6], Scott [25], Wand and Jones
[29], and Zougab et al. [34]. Although the method using these classical kernels is ro-
bust for most general models, the symmetry of classical kernels introduces biases,
known as edge effects, in the estimation of densities with support bounded on at
least one side. These biases render the estimator inconsistent near the edges. Con-
sequently, many authors have investigated alternative kernels, known as associated
kernels or non-classical kernels.

Associated kernels, which can be either discrete or continuous smoothers depend-
ing on the support of the unknown function to be estimated, represent a modern ver-
sion of classical kernels. More importantly, they encompass a family of non-classical
(or asymmetric) kernels. This provides a variety of kernel choices for estimating the
probability density function f with support T ⊆R. Specifically, one can select an as-
sociated kernel for each x ∈T, whether the target point is inside the support or at an
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edge, thereby achieving estimation without edge effects. For discrete kernels, we re-
fer to the recent work of Esstafa et al. [7], which demonstrates that their normalized
estimators of a probability mass function exhibit superior behavior under certain
general conditions compared to unnormalized ones. Regarding continuous kernels,
many authors have contributed to this field in the 2000s. Notable works include Chen
[2, 3] on beta and gamma kernels, Jin and Kawczak [13] on Birnbaum-Saunders and
lognormal kernels, Scaillet [24] on inverse and reciprocal inverse Gaussian kernels,
Marchant et al. [18] on the generalized Birnbaum-Saunders kernel, Salha et al. [22, 23]
on Weibull and Erlang kernels, Hirukawa and Sakudo [11] on a family of general-
ized gamma kernels, Libengué Dobélé-Kpoka and Kokonendji [17] on extended
beta and lognormal kernels constructed using the mode-dispersion method, Ziane
et al. [33] on the Birnbaum-Saunders power-exponential kernel, Geenens [8] on the
Mellin-Meijer kernel, Khan and Akbar [14] on the Gumbel kernel, and Ouimet and
Tolosana-Delgado [19] on the Dirichlet kernel. Additional contributions include the
works of Hirukawa [10], Igarashi [12], and Doho et al. [5], which discuss their uses
and properties among many others. Despite the extensive research, there are few
general and unified (asymptotic) results related to continuous associated kernels
that encompass the family of classical ones. It is in this context that we propose the
current new developments.

In this paper, we primarily focus on the normalized continuous non-classical kernel
estimators for any univariate probability density function f , which has support T ⊆
R, whether bounded or not. These estimators are commonly used in the literature; see
for example, Wansouwé et al. [30], Kokonendji and Somé [16], Somé and Kokonendji
[26], and Somé et al. [27]. However, their theoretical and comparative results are
entirely missing so far. Let us first redefine the so-called (second-order) continuous
associated kernel, as discussed in Kokonendji and Libengué Dobélé-Kpoka [15].

Definition 1.1. Let T ⊆R be the support of the p.d.f. f to be estimated, x ∈T a target
point and h > 0 a bandwidth. A parameterized p.d.f. Kx,h(·) on the support Sx,h ⊆R is called
"continuous associated-kernel" if the following conditions are satisfied:

(1.1) x ∈ Sx,h, E
[
Zx,h

]
− x =: A(x,h) −→

h→0
0 and Var(Zx,h) =: B(x,h) −→

h→0
0,

where Zx,h denotes the continuous random variable with p.d.f. Kx,h(·).

Although many kinds of associated-kernels have been proposed to solve the prob-
lem of estimation, it is not always clear how they were constructed. Thanks to Liben-
gué Dobélé-Kpoka and Kokonendji [17], a basic idea for constructing these kernels
has been revealed through the mode-dispersion method. To our knowledge, all con-
tinuous associated-kernels satisfy Definition 1.1, even if their authors have developed
them through different artisanal approaches. For example, a classical or symmetric
continuous kernel K is derived as an associated-kernel in the following sense for
holding (1.1):

(1.2) Sx,h = x+ hSK and Kx,h(·) =
1
h

K
(
· − x

h

)
,

where SK ⊆ R designates the symmetric support of K centered at 0 (one can refer
to Scott [25] and Wand and Jones [29] for a list of classical kernels). It is easy to
verify that for the associated-kernel given in (1.2), the corresponding A(x,h) = 0 and
B(x,h) = h2

∫
SK

u2K(u)du.



CONTINUOUS ASSOCIATED-KERNEL DENSITY ESTIMATORS 3

For this work, we consider an n-sample (X1,X2, . . . ,Xn) of independent and iden-
tically distributed (i.i.d.) continuous random variables having a probability density
function f on T ⊆R. Referring to Esstafa et al. [7], we express the normalized esti-
mator as follows:

(1.3) f̂n(x) =
f̃n(x)
Cn
,

with

(1.4) f̃n(x) =
1
n

n∑
i=1

Kx,hn(Xi) and Cn =

∫
x∈T

f̃n(x)dx > 0.

In general, the basic estimator f̃n of f in (1.4) is usually an improper density estimate
since 0 <

∫
T

f̃n(x)dx , 1 for most associated-kernels. In fact, from (1.4), the normalizing
constant is defined as follows:

(1.5) Cn =
1
n

n∑
i=1

∫
x∈T

Kx,hn(Xi)dx

and generally fails to be equal to 1 since the integral
∫

x∈T
Kx,hn(Xi)dx from (1.5) op-

erates on the domain of the intrinsic parameter x of the p.d.f. Kx,hn(·). However, as
shown in Kokonendji and Libengué Dobélé-Kpoka [15] and Wansouwé et al. [30],
some numerical results indicate that Cn is typically close to 1. Under some general
conditions, we shall prove the convergence in L4 of Cn to 1.

It should be noted that in the literature, many results on the asymptotic properties
of these associated-kernel estimators are very specific to a given family of non-
classical associated-kernels. Regarding a general kernel defined in Definition 1.1, we
only have the following result, which we shall complete and improve in this work.

Theorem 1.2. [15, Theorem 2.2] Let f ∈ C2(T). For any x ∈T and under the conditions
in (1.1), we have f̃n(x) a.s.

−−→ f (x) as n→ ∞. Furthermore, if there exists a real number
r2 = r2(Kx,hn) > 0 such that

hr2
n

∫
Sx,hn∩T

K2
x,hn

(u)du ≤ c2(x) <∞ and lim
n→∞

nhr2
n =∞,

then f̃n(x) L
2

−→ f (x) as n→∞, where “ L2

−→ ” (resp. “ a.s.
−→ ”) stands for “mean square” (resp.

“almost sure”) convergence.

In this paper, we propose a unification of the asymptotic theory of continuous
associated-kernel estimators f̃n in (1.4) and f̂n in (1.3) under some regularity as-
sumptions on the density and the associated-kernel. In addition, we show that these
assumptions are satisfied by most kernels developed in the literature. Then, we study
the convergence and the asymptotic normality of the (non-)normalized estimators
and we provide an L2-comparison between them.

The rest of the paper is organized as follows. Section 2 presents the basic assump-
tions on continuous associated-kernels, which we illustrate with examples of non-
classical kernels. In Section 3, we show our main results on the asymptotic proper-
ties for both (non-)normalized associated-kernel estimators, in particular, pointwise
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consistency and asymptotic normality are proven, along with an L2-comparison of
both estimators. Section 4 provides numerical results that corroborate our theoret-
ical work, including an illustrative application to the original dataset from Covéa
Affinity, the expert entity in affinity insurance of the Covéa group (a French mutual
insurance company). Finally, Section 5 is devoted to the remaining proofs of the main
results and some theoretical tools.

2. Assumptions and settings. To simplify the notation, we use Sx instead of Sx,hn .
For any fixed x ∈T, we denote

|E
[
Zx,hn

]
− x| =A(x,hn), Var(Zx,hn) = B(x,hn) and max

y∈Sx

Kx,hn(y) = C(x,hn).

In what follows, we assume that the pdf f on T ⊆ R to be estimated satisfies the
following conditions:

(A0) f ∈ C1(T) square integrable with absolutely integrable derivative on T.

In addition, we suppose that the continuous associated random variable Zx,hn

having the density Kx,hn satisfies the following:

(Aα1 ) For some α > 0 and for any fixed x ∈T, we have

x ∈ Sx, A(x,hn) =O(hαn) and B(x,hn) =O(h2α
n ) as n→∞;(2.1)

max{A(x,hn)C(x,hn),B(x,hn)C2(x,hn)} ≤ c where c does not depend on x.(2.2)

Remark 2.1. Note that (2.1) is a refined version of Condition (1.1) in Definition
1.1. Furthermore, from (2.2), we can easily show that for any x ∈T∫

y∈Sx∩T

K2
x,hn

(y)dy =O(h−αn ) and
∫

y∈Sx∩T

K3
x,hn

(y)dy =O(h−2α
n ).(2.3)

Additionally, we require the following properties of Kx,hn when investigating the
normalized associated-kernel estimator.

(Aα2 ) There exists α > 0 such that for any y ∈T,∫
z∈T

Kz,hn(y)dz < c and
∫

z∈T

K2
z,hn

(y)dz ≤ h−αn q(y),

for n large enough. The constant c does not depend on y and q is some positive
function on T.

Conditions (Aα1 ) and (Aα2 ) are fulfilled by most of the associated kernels, including
the ones generated by classical kernels such as Epanechnikov (or Parabolic), Co-
sine, Triangular, Quartic (Biweight), Triweight, Tricube, Gaussian, Logistic, Double
Exponential, and Silverman kernels. In what follows, we point out some important
examples.

Example 2.2. The following continuous associated-kernels satisfy the Assump-
tions (Aα1 )-(Aα2 ) with α = 1.
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1. Lognormal kernel: for x ∈T ⊆R∗+ and hn > 0, the mode-dispersion lognormal kernel
on Sx =R∗+ yields

Kx,hn(y) =
1

yhn
√

2π
exp

{
−

1
2

( 1
hn

log (y/x)− hn

)2}
, y ∈ Sx =R

∗

+.

We can see that
∫

y∈Sx

Kx,hn(y)dy = 1 and that Equation (2.2) holds since max
y∈Sx

Kx,hn(y) =

Kx,hn(x) = (xhn
√

2π)−1 exp(−h2
n/2). Moreover, we have

E
[
Zx,hn

]
= x+ (e3h2

n/2 − 1)x and Var(Zx,hn) = x2e3h2
n(eh2

n − 1).

Then, the conditions in (2.1) are also satisfied. With regard to (Aα2 ), one obtains the
upper bounds∫

z∈R+
Kz,hn(y)dz = e−h2

n/2 and
∫

z∈R+
K2

z,hn
(y)dz =

e−3h2
n/4

2hny
√
π
, ∀y ∈R∗+.

It follows that the normalizing constant Cn = e−h2
n/2 , 1. Similar results with Cn , 1

hold for many other non-classical kernel estimators, such as (generalized) gamma,
(extended) beta, (reciprocal) inverse Gaussian, (generalized) Birnbaum-Saunders,
Erlang, and Mellin-Meijer.

2. Weibull kernel: for x ∈ T ⊆ R∗+ and 0 < hn < 1, the associated Weibull kernel is
defined on Sx =R+ by

Kx,hn(y) =
1

xhn

( y
x

)1/hn−1
exp

{
−

( y
x

)1/hn
}
, y ∈ Sx =R+.

It is clear that
∫

y∈Sx

Kx,hn(y)dy = 1 and that (2.2) is satisfied since max
y∈Sx

Kx,hn(y) =

Kx,hn((1− hn)hnx) = (xhn)−1(1− hn)1−hne−(1−hn). Furthermore, one verifies that

E
[
Zx,hn

]
= xΓ(1+ hn) and Var(Zx,hn) = x2[Γ(1+ 2hn)− Γ2(1+ hn)],

where Γ(·) is the gamma function.
Consequently, the conditions in (2.1) are satisfied. For (Aα2 ), one can easily check∫

z∈R+
Kz,hn(y)dz = Γ(1− hn) and

∫
z∈R+

K2
z,hn

(y)dz =
2hnΓ(2− hn)

4hn
, ∀y ∈R+.

The normalizing constant is then given by Cn = Γ(1− hn) , 1.
3. Gumbel kernel: given x ∈T ⊆R and hn > 0, the associated Gumbel kernel has been

proposed on Sx =R by

Kx,hn(y) =
1
hn

exp
[
−exp

(
−

y− x
hn

)
−

y− x
hn

]
, y ∈ Sx =R.

We easily check that
∫

y∈Sx

Kx,hn(y)dy = 1 and that Equation (2.2) holds, because

max
y∈R

Kx,hn(y) = Kx,hn(x) = 1/(ehn). In addition, we have

E
[
Zx,hn

]
= x+ hnγ and Var(Zx,hn) =

π2

6
h2

n,
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where γ = 0.577215... is the Euler-Mascheroni constant. Assumption (Aα2 ) holds
since we have∫

z∈R

Kz,hn(y)dz = 1 and
∫

z∈R
K2

z,hn
(y)dz =

1
4hn
, ∀y ∈T,

so Cn = 1. The Gumbel kernel corresponds to an asymmetric kernel and has its
mode at x. It is useful for estimating extreme value distributions.

For the rest of the paper, c (respectively cx) denotes a constant that does not depend
on x or hn (respectively depends on x), and may vary from one line to another.

3. Main results. We present our general results for the continuous associated-
kernel estimators, first unnormalized and then normalized, along with a comparison.

3.1. Non-normalized associated-kernel estimator. This section is divided into two
main parts. In the first, we prove the mean square convergence of the non-normalized
estimator f̃n to the unknown probability density function f . Building on this result,
the second part is dedicated to proving the corresponding central limit theorem.

Now, proceeding is the same ideas as in [15], we provide the next technical propo-
sition.

Proposition 3.1. Assume that (A0), (Aα1 ) and (Aα2 ) hold for some α > 0, then, for any
x ∈T and n large enough, we have∣∣∣∣E [

f̃n(x)− f (x)
]∣∣∣∣ ≤ gn(x) hα/2n

where (gn)n≥1 are positive integrable functions on T.

Proof. First, for any x ∈ T, let En
x = [ℓnx , rn

x] be the compact subset of T with

ℓnx =

{
x− hα/2n ,x ∈ int(T)∪ {∂(T)+}
x ,x = ∂(T)−

and rn
x =

{
x+ hα/2n ,x ∈ int(T)∪ {∂(T)−}
x ,x = ∂(T)+

where

∂(T)− (respectively ∂(T)+) denotes the lower (respectively the upper) bound of T
when there exists and int(T) denotes the interior of T. In addition, let the comple-
ment of a set A be denoted as Ac. Then, using the i.i.d. property of (Xi)1≤i≤n combined
with Tc

⊂ (En
x)c, we obtain

E
[

f̃n(x)− f (x)
]
=E

[
Kx,hn(X1)

]
− f (x) =

∫
y∈Sx∩T

f (y)Kx,hn(y)dy− f (x)

:=C1,n +C2,n +C3,n,

where

C1,n :=
∫

y∈Sx∩E
n
x

Kx,hn(y)( f (y)− f (x))dy,

C2,n :=
∫

y∈Sx∩T∩(En
x )c

Kx,hn(y)( f (y)− f (x))dy,

C3,n := − f (x)
∫

y∈Sx∩Tc
Kx,hn(y)dy.

(3.1)
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Considering C1,n: using Taylor’s theorem, there exists a constant θ ∈ (0,1) such that∣∣∣∣∣∣
∫

y∈Sx∩E
n
x

( f (y)− f (x))Kx,hn(y)dy

∣∣∣∣∣∣
≤

∫
y∈Sx∩E

n
x

| f ′(θx+ (1− θ)y)||y− x|Kx,hn(y)dy

≤ max
y∈Sx∩E

n
x

| f ′(θx+ (1− θ)y)| hα/2n .(3.2)

The last inequality in (3.2) is obtained from the continuity of f ′, the compactness of
the set En

x and the fact that Kx,hn is a probability density.
Considering C2,n and C3,n: first of all, using the fact that f is null on Tc, we have

|C2,n|+ |C3,n| ≤

∫
y∈Sx∩(En

x )c
| f (y)− f (x)|Kx,hn(y)dy.

Second, we can rewrite the formula on the r.h.s. of this inequality as follows∫
y∈Sx∩(En

x )c
| f (y)− f (x)|Kx,hn(y)dy := S1,n + S2,n + S3,n,

where

S1,n :=
∫

y∈Sx

| f (y)− f (x)|Kx,hn(y)1
|y−x|>hα/2n

dy,

S2,n :=
∫

y∈Sx

| f (y)− f (x)|Kx,hn(y)10≤y−x≤hα/2n
dy1x=∂(T)+ ,

S3,n :=
∫

y∈Sx

| f (y)− f (x)|Kx,hn(y)1
−hα/2n ≤y−x≤0dy1x=∂(T)− .

For S1,n: to begin with, from the Markov inequality and (Aα1 ), we have

P(|Zx,hn − x| > hα/2n ) ≤
B(x,hn)+A2(x,hn)

hαn
≤ cx hαn.

This implies that lim
n→∞
P(|Zx,hn − x| > hα/2n ) = 0. Then, for δ = hαn > 0 and n large enough,

using Cauchy-Schwarz’s inequality and the fact that Kx,hn is a density function, we
have

|S1,n| ≤

√∫
y∈Sx∩(En

x )c
( f (y)− f (x))2Kx,hn(y)dy×P(|Zx,hn − x| > hα/2n )

≤

√

δ

√∫
y∈T

f 2(y)Kx,hn(y)dy+
∫

y∈Sx

f 2(x)Kx,hn(y)dy

≤

√

δ

√∫
y∈T

f 2(y)Kx,hn(y)dy+ f 2(x).

(3.3)

For S2,n and S3,n: similarly as for C1,n, using simply Taylor’s theorem, there exist
t, s ∈ (0,1) such that

|S2,n| ≤ max
y∈[x,x+hα/2n ]

| f ′(tx+ (1− t)y)| hα/2n ,
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|S3,n| ≤ max
y∈[x−hα/2n ,x]

| f ′(sx+ (1− s)y)| hα/2n .

Therefore, the bias of the non-normalized estimator∣∣∣∣E [
f̃n(x)− f (x)

]∣∣∣∣ ≤ |C1,n|+ |C2,n|+ |C3,n| ≤ gn(x) hα/2n ,

where the functions gn(x), n ≥ 1, can be defined as

max

 max
y∈Sx∩E

n
x

| f ′(θx+ (1− θ)y)|,

√∫
y∈T

f 2(y)Kx,hn(y)dy+ f 2(x)

 .
Now, in the above definition of gn(x), on the one hand, since the function
max

y∈Sx∩E
n
x

| f ′(θx + (1 − θ)y)| is decreasing and converges to | f ′(x)| as n→ +∞, it is in-

tegrable with respected to x by monotone convergence theorem. On the other hand,
from square integrability of f in (A0) and the first inequality in (Aα2 ), the function∫

y∈T f 2(y)Kx,hn(y)dy+ f 2(x) is also integrable on x. This completes the proof. □

In what follows, we state that f̃n(x) is consistent and its proof is postponed in
Section 5.

Theorem 3.2. Assume that (A0) and (Aα1 ) with some α > 0 hold. Then, if the sequence
(hn)n≥1 is chosen such that nhαn −→n→∞

∞, we have, for any x ∈T,

f̃n(x) L2

−→
n→∞

f (x).

The limiting distribution of the non-normalized estimator is given in the following
theorem, and its proof is provided in Section 5. This is a novel result and the first
general theorem in the direction of continuous associated-kernel estimators.

Theorem 3.3. Assume that (A0) and (Aα1 ) with some α > 0 hold. Then, if the sequence
(hn)n≥1 is chosen such that

√
nhαn −→n→∞

0 and nhαn −→n→∞
∞, we have, for any x ∈T,√

nhαn
(

f̃n(x)− f (x)
)
L
−→
n→∞
N

(
0, f (x)λx,α

)
,

where λx,α = lim
n→∞

hαn
∫

y∈T∩Sx
K2

x,hn
(y)dy and “ L

−→ ” stands for “convergence in law".

3.2. Normalized associated-kernel estimator. As the discrete associated-kernel case
treated by Esstafa et al. [7], we prove in Section 5 the following proposition, which
relates to the normalizing random variable for the continuous estimator (1.3) from a
non-classical associated-kernel.

Proposition 3.4. Assume that (A0), (Aα1 ) and (Aα2 ) hold for some α > 0,
∫
T

q(x) f (x)dx <
∞ and nhαn→∞. Then, the normalizing random variable Cn converges in L4 to 1.

In what follows, we show that f̂n(x) is consistent.
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Theorem 3.5. Assume that (A0), (Aα1 ) and (Aα2 ) hold for some α > 0,
∫
T

q(x) f (x)dx <∞
and nhαn→∞. Then, for any x ∈T, we have

f̂n(x) P
−→
n→∞

f (x),

where “ P
−→ ” indicate “convergence in probability".

Proof. To begin with, we note that for any x ∈T, the estimation error is given by

f̂n(x)− f (x) =
1

Cn

{(
f̃n(x)− f (x)

)
+ (1−Cn) f (x)

}
.

Second, from Theorem 3.2, we recall that f̃n(x) converges in mean square to f (x).
Therefore, we complete the proof using Proposition 3.4 and the Slutsky theorem. □

In addition, within our context, we can use the asymptotic properties of f̃n(x) to
derive a central limit theorem for the normalized estimator f̂n(x).

Theorem 3.6. Assume that (A0) hold,
∫
T

q(x) f (x)dx <∞ , (Aα1 ) and (Aα2 ) hold for some
α > 0. Then, if the sequence (hn)n≥1 is chosen such that

√
nhαn −→n→∞

0 and nhαn −→n→∞
∞, we

have, for any x ∈T, √
nhαn

(
f̂n(x)− f (x)

)
L
−→
n→∞
N

(
0, f (x)λx,α

)
,

where λx,α = lim
n→∞

hαn
∫

y∈T∩Sx
K2

x,hn
(y)dy.

Proof. Let us rewrite our normalized error as follows

√
nhαn

(
f̂n(x)− f (x)

)
=

1
Cn

 f̃n(x)−E
[

f̃n(x)
]

√
Var( f̃n(x))


√

nhαnVar( f̃n(x))(3.4)

+
1

Cn

√
nhαn

{
E

[
f̃n(x)

]
− f (x)

}
+

f (x)
Cn

√
nhαn(1−Cn).

Then, the convergence of the first term in the r.h.s. (right hand side) of (3.4) is straight-
forward by Proposition 3.4, the inequality (5.9) from the proof of the central limit
theorem of the non-normalized estimator, and Slutsky’s theorem. More precisely, we
get

1
Cn

 f̃n(x)−E
[

f̃n(x)
]

√
Var( f̃n(x))


√

nhαnVar( f̃n(x)) L
−→
n→∞
N

(
0, f (x) lim

n→∞
hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy
)
.

The convergence to zero of the second term in the r.h.s. of (3.4) is also straightforward
through Proposition 3.1(or (5.10)) and Proposition 3.4. Therefore, it is left to show
the convergence in probability to zero of the last term in the r.h.s. of (3.4). First, let us
denote by

Sn =
√

nhαn(1−Cn) =

√
hαn
√

n

n∑
i=1

Yi,n, Yi,n =

∫
x∈T

{
f (x)−Kx,hn(Xi)

}
dx.
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Then, by Assumption (Aα2 ), there exists a positive constant c such that |Yi,n| < c a.s.
and by Hoeffding’s inequality, we get for any ε > 0,

P


∣∣∣∣∣∣∣

n∑
i=1

(Yi,n −E
[
Yi,n

]
)

∣∣∣∣∣∣∣ ≥ ε
 ≤ c exp

(
−
ε2

n

)
.

Thus, on the one hand, for any δ > 0, taking ε =
√

n
√

hαn
δ > 0, we get

P(|Sn −E [Sn] | ≥ δ) ≤ c exp
(
−
δ2

hαn

)
−→
n→∞

0.

On the other hand, by Proposition 3.1, for n large enough, we obtain

|E [Sn] | ≤
√

nhαn |E [1−Cn] | ≤
√

nhαn

∫
x∈T

∣∣∣∣E [
f (x)− f̃n(x)

]∣∣∣∣dx ≤ hαn
√

n
∫

x∈T
gn(x)dx.

(3.5)

Then, as
√

nhαn −→n→∞
0, we deduce the convergence in probability to zero of

√
nhαn (1−

Cn) and also of the last term in the r.h.s. of (3.4). This completes the proof. □

3.3. L2-comparison. In order to make a global comparison between f̂n and f̃n,
we use the L2 error rather than the L1 in Esstafa et al. [7] for discrete case. The
following proposition emphasizes that, in terms of the L2 error, the normalized
estimator outperforms the unnormalized one. Similar conclusions have been drawn
in the continuous setting of estimating a probability density function with classical
kernels; see for instance, Devroye and Lugosi [4, Section 5.6] and Glad et al. [9] for
results based on the L2 criterion.

Note that we require the convergence of Cn to 1 in L4 to obtain the following
analogous comparison between f̂n and f̃n. From Proposition 3.4, we can easily de-
rive the comparison between the mean integrated squared error of the normalized
continuous estimator f̂n and that of the unnormalized associated version f̃n in the
following proposition.

Proposition 3.7. Assume that (Aα1 ) and (Aα2 ) hold for some α > 0, nhαn→∞, f ∈ C1(T),∫
T

q(x) f (x)dx <∞ and T is compact. Then, for any ε > 0, there exists N ∈N such that for
all n ≥N,

E

[∫
T

∣∣∣∣ f̂n(x)− f (x)
∣∣∣∣2 dx

]
<E

[∫
T

∣∣∣∣ f̃n(x)− f (x)
∣∣∣∣2 dx

]
+ ε.

Proof. First, we successively have

E

[∫
T

| f̂n(x)− f (x)|2dx
]
=E


∫
T

∣∣∣∣∣∣∣ f̃n(x)
Cn
− f (x)

∣∣∣∣∣∣∣
2

dx


=E


∫
T

∣∣∣∣∣∣∣ f̃n(x)
Cn
−

f (x)
Cn
+

f (x)
Cn
− f (x)

∣∣∣∣∣∣∣
2

dx


=E

[
1

C2
n

∫
T

| f̃n(x)− f (x)|2dx
]
+

∫
T

f 2(x)dx E
[∣∣∣∣∣Cn − 1

Cn

∣∣∣∣∣2]
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+ 2E
[
C−2

n

∫
T

( f̃n(x)− f (x))(1−Cn) f (x)dx
]

=E

[∫
T

| f̃n(x)− f (x)|2dx
]
+E

[
1−C2

n

C2
n

∫
T

| f̃n(x)− f (x)|2dx
]

+E

[∣∣∣∣∣Cn − 1
Cn

∣∣∣∣∣2]∫
T

f 2(x)dx+ 2E
[
C−2

n (1−Cn)
∫
T

( f̃n(x)− f (x)) f (x)dx
]
.

We note that, on T compact, f ∈ C1(T) satisfies Assumption (A0). Now, since f and
{K.,hn(Xi)}i∈{1,...,n} are everywhere bounded on the compact set T,

∫
T

f 2(x)dx ≤ c and∫
T

f̃n
2
(x)dx ≤ c a.s., one can use the Jensen and Cauchy-Schwarz inequalities in order

to obtain

E

[∫
T

| f̂n(x)− f (x)|2dx
]

≤E

[∫
T

| f̃n(x)− f (x)|2dx
]
+ c E


∣∣∣1−C2

n

∣∣∣
C2

n

+ c E
[∣∣∣∣∣Cn − 1

Cn

∣∣∣∣∣2]
+ c E

[
C−2

n |1−Cn|(Cn + 1)
]

≤E

[∫
T

| f̃n(x)− f (x)|2dx
]
+ c E

[∣∣∣∣∣Cn − 1
Cn

∣∣∣∣∣2]+ c E
[∣∣∣∣∣∣ (1−Cn)(Cn + 1)

C2
n

∣∣∣∣∣∣
]

≤E

[∫
T

| f̃n(x)− f (x)|2dx
]
+ c

√
E

[
(Cn − 1)4]E [

C−4
n

]
+ c

√
E [(1−Cn)2]E

[
(Cn + 1)2

C4
n

]
≤E

[∫
T

| f̃n(x)− f (x)|2dx
]
+ c

√
E

[
(Cn − 1)4]E [

C−4
n

]
+ c

√
E [(1−Cn)2]

{
E

[
C−2

n

]
+E

[
C−3

n

]
+E

[
C−4

n

]}
.

(3.6)

Then, on the one hand, from the almost sure absolute boundedness of Cn and
C−1

n combined with Proposition 3.4, there exists n0 ∈ N such that for all n ≥ n0,
E(C j

n) with j ∈ {−4,−3,−2} are bounded by a finite constant M > 0. On the other
hand, for some arbitrarily small ε > 0, from the proof of Proposition 3.4, there exists
n1 ∈N such that for all n ≥ n1, we respectively have E[(Cn − 1)2] < ε2/(12Mc2) and
E[(Cn − 1)4] < ε2/(4c2M). Therefore, taking N =max{n0,n1}, for all n ≥ N, the upper
bound (3.6) provides the desired result of the proposition. □

4. Simulation studies and an illustrative application. In this section, all nu-
merical studies are performed in the context (non-)normalized associated-kernel
estimators. Thus, we provide simulation results which are conducted for evaluat-
ing the performance of the proposed approaches. Computations have been done by
using the R software of R Core Team [21]. The following numerical studies have
two objectives concerning the simulation schemes and an application to original real
data. We shall use the support of lognormal and Weibull kernel estimators.
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4.1. Numerical simulations. Three following scenarios denoted by A, B and C are
considered for the simulation studies.

• Scenario A is generated by using the gamma distribution

fA(x) = xe−x, x ∈R+;

• Scenario B comes from the Weibull distribution

fB(x) =
3
2

(x
2

)2
exp

(
−

(x
2

)3
)
, x ∈R+;

• Scenario C is from the lognormal distribution

fC(x) =
1

0.25x
√

2π
exp

(
−8(log x)2

)
, x ∈R∗+.

We evaluate the performances of these continuous associated-kernel estimators
with the cross-validation selections of the optimal bandwidth parameter. In fact, for
all the considering associated-kernel estimators, α = 1 and the optimal bandwidth of
h by the cross-validation method is determined by

h̃cv = arg min
h>0

∫
x∈T

{
f̃n(x)

}2
dx−

2
n

n∑
i=1

f̃n,h,−i(Xi)

 ,
where f̃n,h,−i(Xi) = (n − 1)−1 ∑n

ℓ=1,ℓ,i KXi,h(Xℓ) is being computed as f̃n(Xi) without the
observation Xi.

The efficiency of these estimators is examined via the empirical estimates of Ĉn,
the integrated squared errors ÎSEn (in normalized case) with

Ĉn :=
1

Nsim

Nsim∑
t=1

∫
x∈T

f̃n(x)dx

and

ÎSEn :=
1

Nsim

Nsim∑
t=1

∫
x∈T

{
f̂n(x)− f (x)

}2
dx,

where Nsim represents the number of replications and n corresponds to the sample
size which shall be chosen to be small, medium and large.

Table 1 reports some empirical mean values of Ĉn and ÎSEn with their standard
deviations using Nsim = 750 replications from Scenarios A, B and C to the correspond-
ing sample sizes n = 100,500,1000 having the support of lognormal and Weibull ker-
nel estimators. For each given subsample and the continuous associated-kernel, we
need to compute the related bandwidth h̃cv through the cross-validation method in
advance and use it to produce f̃n, Ĉn, f̂n and, therefore, ÎSEn. With regard to the three
scenarios, the estimate of Ĉn converges to 1 and ÎSEn decreases when the sample size
increases. However, it is to be noticed that the lognormal kernel estimator is more
accurate than the one based on the Weibull one; especially, when the sample size is
relatively large.
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Table 1
Empirical mean values of Ĉn and ÎSEn with their standard deviations in parentheses for lognormal and the

Weibull kernels under Scenarios A, B and C.

n Ĉn,Lognormal ÎSEn,Lognormal Ĉn,Weibull ÎSEn,Weibull
100 0.9504 (0.0197) 0.0106 (0.0083) 1.1774 (0.0585) 0.0161 (0.0098)

A 500 0.9754 (0.0091) 0.0031 (0.0035) 1.0893 (0.0331) 0.0060 (0.0033)
1000 0.9818 (0.0081) 0.0020 (0.0034) 1.0669 (0.0285) 0.0038 (0.0019)
100 0.9866 (0.0065) 0.0159 (0.0145) 1.0721 (0.0202) 0.0233 (0.0145)

B 500 0.9938 (0.0030) 0.0043 (0.0032) 1.0406 (0.0129) 0.0080 (0.0037)
1000 0.9956 (0.0026) 0.0026 (0.0020) 1.0321 (0.0111) 0.0050 (0.0022)
100 0.9879 (0.0065) 0.0337 (0.0299) 1.0364 (0.0113) 0.0554 (0.0396)

C 500 0.9930 (0.0028) 0.0093 (0.0073) 1.0207 (0.0069) 0.0186 (0.0106)
1000 0.9940 (0.0025) 0.0055 (0.0042) 1.0160 (0.0054) 0.0116 (0.0059)

Now, we illustrate both empirical distributions of
√

nhn

{
f̃n(3)− fA(3)

}
(Figure 1)

and
√

nhn

{
f̂n(3)− fA(3)

}
(Figure 2) for the lognormal and Weibull kernels over 5,000

replications of Scenario A with the sample size n = 1,000 and the choice of bandwidth
hn = n−2/3. It is to observe that we have a similarity of behavior of the pointwise empir-
ical distribution to both normalized and non-normalized estimators. This confirms
the results of Theorems 3.3 and 3.6.

Histogram with Lognormal associated−kernel estimator
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Histogram with Weibull associated−kernel estimator

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Fig 1: Empirical distributions of
√

nhn

{
f̃n(3)− fA(3)

}
using the non-normalized log-

normal (left) and Weibull (right) kernel estimators. The smoothed kernel density is
displayed in full line, and the centered Gaussian density with the limit variance of
Theorem 3.3 is plotted in the dotted line.

4.2. An example of application on original data. In this subsection, we compare
the performance of our estimators on data of automobile claim amounts occurring
between 2016 and 2020 provided by Covéa Affinity. This dataset is composed of
n = 76,414 observations distributed between 3.6 and 6,985.51 EUR.

In Figure 3, we fit the empirical distribution of claim amounts using the normalized
estimators, which are computed from the lognormal (solid line) and Weibull (dotted
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Histogram with Lognormal associated−kernel estimator
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Histogram with Weibull associated−kernel estimator
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Fig 2: Empirical distributions of
√

nhn

{
f̂n(3)− fA(3)

}
using the normalized lognormal

(left) and Weibull (right) kernel estimators. The smoothed kernel density is displayed
in full line, and the centered Gaussian density with the limit variance of Theorem 3.6
is plotted in the dotted line.

line) kernels. The optimal bandwidth h is selected by the cross-validation method.
It is pointed out that the lognormal kernel is more appropriate and provides a very
satisfactory adjustment of the distribution of claim amounts (see also the below panel
of Figure 3 for a zoom on the distribution of claim amounts between 3.6 and 800 EUR).

Table 2 confirms this finding for which other kernels (given in Section 2) have been
implemented. Here, practical performances are examined via the cross-validation
method and the empirical criterion of ISE: ÎSE0 :=

∫
∞

0 { f̂n(x)− f0(x)}2dx, where f0(·) is
the empirical or naive estimator. Recall that the estimators corresponding to the last
three kernels of Table 2 are normalized by construction (their Cn is equal to 1). We
notice by referring to their ÎSE0 that they remain less efficient than the estimator with
the lognormal kernel but do slightly better than the one computed from the Weibull
kernel.

Relying upon practical reasons, we evaluate the right tail of the distribution (from
1,000 EUR) of claim amounts using the different kernels of Table 2. These tail prob-
abilities are estimated to be 0.1331, 0.1321, 0.1615, 0.1342, 0.1337 and 0.1344 for the
empirical estimator f0, lognormal, Weibull, Gaussian, Gumbel and Laplace kernel
estimations, respectively. Again, the lognormal kernel appears to be competitive and
provides a very good fit to the tail distribution of this data set.

Table 2
Empirical values of Ĉn and ÎSE0 of the normalized estimator of the distribution of claim amounts using different

associated-kernels.

Associated-kernel Ĉn ÎSE0 (×104)
Lognormal 0.9967 8.5482
Weibull 1.0700 9.1646
Gaussian 1.0000 9.0724
Gumbel 1.0000 9.0822
Laplace 1.0000 9.0383
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Fig 3: Empirical distribution of Covéa data and its estimates using both normalized
lognormal (solid line) and Weibull (dotted line) kernel estimators. The graph below
depicts a zoom of the region of claim amounts from 3.6 to 800 EUR of the graph on
the top.
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5. Proofs of Theorems 3.2 and 3.3 and of Proposition 3.4.

Proof of Theorem 3.2. In order to obtain the theorem, for any x ∈ T, we demon-
strate the point-wise convergence to zero of the following mean-squared error

(5.1) E
[(

f̃n(x)− f (x)
)2
]
=

(
E

[
f̃n(x)− f (x)

])2
+Var

(
f̃n(x)

)
.

Considering the bias term in the r.h.s. of (5.1): from Proposition 3.1, we have

Bias :=E
[

f̃n(x)
]
− f (x) =O(hα/2n )(5.2)

and the convergence to zero of the bias.
Considering the variance term in the r.h.s. of (5.1): we have

Var( f̃n(x)) =
1
n

Var(Kx,hn(X1)) ≤
1
n
E

[
K2

x,hn
(X1)

]
.

In order to prove the convergence of this variance term, we demonstrate that

E
[
K2

x,hn
(X1)

]
= f (x)

∫
y∈T∩Sx

K2
x,hn

(y)dy+O(h−α/2n ).(5.3)

Indeed, using the second Part (2.2) of Assumption (Aα1 ), combined with the same
arguments as for C1,n and C2,n in the proof of Proposition 3.1, we obtain∣∣∣∣∣∣E [

K2
x,hn

(X1)
]
− f (x)

∫
y∈T∩Sx

K2
x,hn

(y)dy

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

y∈Sx∩T

K2
x,hn

(y)( f (y)− f (x))dy

∣∣∣∣∣∣
≤ max

y∈T∩Sx

Kx,hn(y)
∫

y∈Sx∩T

Kx,hn(y)| f (y)− f (x)|dy ≤ cx h−α/2n .

Therefore, Equation (5.3) is verified. From this, combined with (Aα2 ), one gets

1
n
E

[
K2

x,hn
(X1)

]
≤ cx

1
nhαn

which leads to the convergence to zero of the variance since we assume that nhαn goes
to infinity.
The proof is completed. □

Proof of Theorem 3.3. To begin with, let us rewrite our error as follows

(5.4)
√

nhαn( f̃n(x)− f (x))

=

 f̃n(x)−E
[

f̃n(x)
]

√
Var( f̃n(x))


√

nhαnVar( f̃n(x))+
√

nhαn
{
E

[
f̃n(x)

]
− f (x)

}
.

Concerning the first term in the r.h.s. of (5.4): first, let us identify the limit of the
normalized variance using the results in (5.3) and (5.2). In particular, we have

nhαnVar( f̃n(x)) = hαnVar(Kx,hn(X1))

= hαn
{
E

[
K2

x,hn
(X1)

]
−

(
E

[
Kx,hn(X1)

])2
}
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= f (x)hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy+O(hαn)− hαn
(
E

[
f̃n(x)

])2

= f (x)hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy+O(hαn).(5.5)

Therefore, Part (2.3) of Assumption (Aα1 ) implies

nhαnVar( f̃n(x)) −→
n→∞

f (x) lim
n→∞

hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy <∞.(5.6)

Now, let (Yn,i) be the row-wise i.i.d. triangular array defined by

Yn,i =
Kx,hn(Xi)−E

[
Kx,hn(Xi)

]√
nVar(Kx,hn(Xi))

, i ∈ {1, . . . ,n}.

It is clear that for all n ≥ 1 and any i ∈ {1, . . . ,n},

E
[
Yn,i

]
= 0 and

n∑
i=1

E
[
Y2

n,i

]
= 1.

Moreover, the Jensen inequality allows to write

n∑
i=1

E
[
|Yn,i|

3
]
=
E

[∣∣∣Kx,hn(X1)−E(Kx,hn(X1))
∣∣∣3]

n1/2 {Var(Kx,hn(X1))
}3/2

≤

cE
[
|Kx,hn(X1)|3

]
n1/2 {Var(Kx,hn(X1))

}3/2
=

ch3α/2
n E

[
K3

x,hn
(X1)

]
n1/2

{
nhαnVar( f̃n(x))

}3/2
.(5.7)

Similar arguments as in (5.3) lead to

E
[
K3

x,hn
(X1)

]
= f (x)

∫
y∈T∩Sx

K3
x,hn

(y)dy+O(h−3α/2
n ).(5.8)

More precisely, using again the second Part (2.2) of Assumption (Aα1 ), combined with
the same arguments as for C1,n and C2,n in the proof of Proposition 3.1, we can write∣∣∣∣∣∣E [

K3
x,hn

(X1)
]
− f (x)

∫
y∈T∩Sx

K3
x,hn

(y)dy

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

y∈Sx∩T

K3
x,hn

(y)( f (y)− f (x))dy

∣∣∣∣∣∣
≤ ( max

y∈T∩Sx

Kx,hn(y))2
∫

y∈Sx∩T

Kx,hn(y)| f (y)− f (x)|dy ≤ cx h−3α/2
n .

Then, from Equation (5.8) and Part (2.3) from Assumption (Aα1 ), we get
E[K3

x,hn
(X1)] =O(h−2α

n ) which is combined with (5.6) and nhαn→∞ give

h3α/2
n E

[
K3

x,hn
(X1)

]
n1/2

{
nhαnVar( f̃n(x))

}3/2
−→
n→∞

0

and, the Lyapunov condition in (5.7) holds. According to the Lindeberg theorem, we
obtain

f̃n(x)−E
[

f̃n(x)
]

√
Var( f̃n(x))

L
−→
n→∞
N(0,1).
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Consequently, from (5.6) and using the Slutsky theorem, we get f̃n(x)−E
[

f̃n(x)
]

√
Var( f̃n(x))


√

nhαnVar( f̃n(x)) L
−→
n→∞
N

(
0, f (x) lim

n→∞
hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy
)
.(5.9)

As for the second term in the r.h.s. of (5.4): directly followed from (5.2) and the
assumption that

√
nhαn −→ 0 as n→∞, we have√

nhαn
∣∣∣∣E [

f̃n(x)− f (x)
]∣∣∣∣ ≤ c

√
nhαn −→n→∞

0,(5.10)

which concludes the convergence to zero for the second term in the r.h.s. of (5.4)
when n goes to infinity. This completes the proof. □

Proof of Proposition 3.4. For the proof of this proposition, first we prove the
convergence in L2, then we deduce its extension to the convergence in L4. For this
purpose, we rewrite the considered mean square error as the sum of two terms

E
[
(Cn − 1)2

]
=Var(Cn)+ (E [Cn]− 1)2 .(5.11)

Considering the first term Var(Cn) in (5.11), we have the following development
under the i.i.d. property of (Xi)1≤i≤n:

Var(Cn) =E


∫

x,y∈T

f̃n(x) f̃n(y)dxdy

−E

∫

x∈T

f̃n(x)dx

E

∫

y∈T

f̃n(y)dy


=

∫
x,y∈T

{
E

[
f̃n(x) f̃n(y)

]
−E

[
f̃n(x)

]
E

[
f̃n(y)

]}
dxdy

=
1
n2

∫
x,y∈T

Cov

 n∑
i=1

Kx,hn(Xi),
n∑

i=1

Ky,hn(Xi)

dxdy

=
1
n2

∫
x,y∈T

n∑
i=1

n∑
j=1

Cov
(
Kx,hn(Xi),Ky,hn(X j)

)
dxdy

=
1
n2

∫
x,y∈T

n∑
i=1

Cov
(
Kx,hn(Xi),Ky,hn(Xi)

)
dxdy

=
1
n

∫
x,y∈T

Cov
(
Kx,hn(X1),Ky,hn(X1)

)
dxdy

=
1
n

∫
x∈T

Var
(
Kx,hn(X1)

)
dx+

1
n

∫
x,y∈T
x,y

Cov
(
Kx,hn(X1),Ky,hn(X1)

)
dxdy.

(5.12)
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By (Aα2 ) and
∫
T

q(x) f (x)dx <∞, the first term in (5.12) satisfies

1
n

∫
x∈T

Var(Kx,hn(X1))dx ≤
1
n

∫
y∈T

∫
x∈T

K2
x,hn

(y)dx f (y)dy

≤
1

nhαn

∫
y∈T

q(y) f (y)dy ≤
c

nhαn
,

(5.13)

where c denotes our generic constant that can change from line to line. Similarly,
using Assumption (Aα2 ), one easily see that the second term in (5.12) is bounded as
follows

1
n

∣∣∣∣∣∣∣∣∣∣∣∣
∫

x,y∈T
x,y

Cov
(
Kx,hn(X1),Ky,hn(X1)

)
dxdy

∣∣∣∣∣∣∣∣∣∣∣∣ ≤
1
n

∫
z∈T

∫
x,y∈T
x,y

Kx,hn(z)Ky,hn(z)dxdy f (z)dz

+
1
n

∫
z∈T

∫
z′∈T

∫
x,y∈T
x,y

Kx,hn(z)Ky,hn(z′)dxdy f (z′)dz′ f (z)dz

≤
c
n

∫
z∈T

f (z)dz+
c
n

∫
z∈T

∫
z′∈T

f (z′) f (z)dz′dz ≤
c
n
.

(5.14)

Therefore, we conclude from (5.13) and (5.14) that Var(Cn) −→
n→∞

0.

As for the second term (E[Cn]−1)2 in the right hand side of (5.11): from Proposition
3.1, for n large enough, |E[ f̃n(x)− f (x)]| is bounded by gn(x) hα/2n for any x ∈T and gn
is an integrable function on T. Therefore, we get

|E[Cn − 1]| ≤
∫

x∈T
|E[ f̃n(x)− f (x)]|dx ≤ c hα/2n −→

n→∞
0.

This completes the prove for the convergence in L2 of Cn to 1.
Now, by the convergence in L2, there exists a constant M > 0 such that P(|Cn| ≤

M) = 1 for n large enough. In view of the almost sure absolute boundedness of Cn, one
gets E

[
|Cn|

k
]
≤Mk for any k ∈N∗. Combined with the Cauchy-Schwarz inequality,

we successively have

Var(C2
n) =E

[
C4

n − 1
]
−

{(
E

[
C2

n

])2
− 1

}
≤

∣∣∣∣E [
(Cn − 1)(Cn + 1)(C2

n + 1)
]∣∣∣∣+ (

E
[
C2

n

]
+ 1

)
|E [(Cn − 1)(Cn + 1)]|

≤

√
E [(Cn − 1)2]

{√
E

[
(Cn + 1)2(C2

n + 1)2
]
+

(
E

[
C2

n

]
+ 1

) √
E [(Cn + 1)2]

}
≤ c

√
E [(Cn − 1)2]

and

Cov(C2
n,Cn) =E

[
C2

n (Cn −E [Cn])
]
≤

√
E

[
C4

n

]
Var(Cn) ≤ c

√
Var(Cn),
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where c denotes our generic constant that can change from line to line. Write again
the considering fourth-moment as follows

E
[
(Cn − 1)4

]
=Var

{
(Cn − 1)2

}
+

(
E

[
(Cn − 1)2

])2

=Var(C2
n)+ 4Var(Cn)− 4Cov(C2

n,Cn)+
(
E

[
(Cn − 1)2

])2
.

From the above arguments, when n is large enough, we obtain

E
[
(Cn − 1)4

]
≤ c

√
E [(Cn − 1)2]+ 4Var(Cn)+ 4c

√
Var(Cn)+

(
E

[
(Cn − 1)2

])2
.

Hence, using the convergence in L2 proven above, Var(Cn) and E[(Cn− 1)2] converge
to zeros as n approaches infinity, we complete the proof of the Proposition 3.4. □
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