
HAL Id: hal-04112846
https://hal.science/hal-04112846

Preprint submitted on 1 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New developments on (non-)normalized continuous
associated-kernel density estimators

Youssef Esstafa, Célestin C Kokonendji, Thi-Bao-Trâm Ngô

To cite this version:
Youssef Esstafa, Célestin C Kokonendji, Thi-Bao-Trâm Ngô. New developments on (non-)normalized
continuous associated-kernel density estimators. 2023. �hal-04112846�

https://hal.science/hal-04112846
https://hal.archives-ouvertes.fr


Submitted to the Annals of Statistics
2023 Vol. 0, No. 0, 1–27

NEW DEVELOPMENTS ON (NON-)NORMALIZED CONTINUOUS
ASSOCIATED-KERNEL DENSITY ESTIMATORS

By Youssef Esstafaa and Thi-Bao-Trâm Ngôb
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We consider the general modern notion of the so-called associated
kernels for smoothing density function on a given support T ⊆ R.
According to the recent and global properties of normalized dis-
crete associated-kernel estimators, we here investigate the continuous
associated-kernel contexts in a completely different way. Diverse and
numerous in the literature, the standard (non-)normalized density es-
timators by non-classical kernels have great interests, including mod-
ified versions for reducing the possible boundary bias. We first show,
under specific assumptions such the asymptotic unimodality on the
continuous associated kernel, that the normalizing random variable
also converges in mean square to 1. We then deduce the consistency
of the considered estimator. The comparison in favour of the standard
normalized estimator is obtained by the mean squared error. We con-
clude by providing, for the first time, the general asymptotic normal-
ities through some regularity assumptions for both (un)normalized
associated-kernel density estimators. The Gumbel, Weibull, gamma,
lognormal, and other associated kernels are required for illustrating
theoretically and numerically some of our results with an application
to original data of automobile claim amounts from Covéa Affinity.

1. Introduction. The associated kernels are the contemporary version of the so-
called classical kernels. Since the origin, classical kernels generally indicate continu-
ous and symmetric smoothers for functions on the whole real line, not depending on
the bandwidth and the target point, where the estimated probability density func-
tion (pdf) is evaluated; see, for instance, Parzen [20], Epanechnikov [6], Scott [25],
Wand and Jones [29] and Zougab et al. [34]. The associated kernels also contain the
family of non-classical (or asymmetric) kernels which can be discrete or continuous
smoothers according to the support of the unknown function to be estimated, with-
out edge effect. Hence, it reveals a choice of the associated kernels with respect to the
support (un)bounded T ⊆ R of the pdf f to be estimated. More generally, one can
select an associated kernel for each x ∈T, a target point inside or at an edge, to obtain
a combination ones. For discrete kernels, we need to refer to Esstafa et al. [7]. They
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have recently established that their standard normalized estimators of a probability
mass function admit very good behaviour under some general conditions than the
unnormalized ones. However, the classical kernels do not exist for discrete setup for
doing extensions.

With respect to continuous ones, multiple authors have worked on the topic in
these 2000s such as Chen [2, 3] for beta and gamma kernels, Jin and Kawczak [13] for
the Birnbaum-Saunders and lognormal kernels, Scaillet [24] for inverse and recipro-
cal inverse Gaussian kernels, Marchant et al. [18] for generalized Birnbaum-Saunders
kernel, Salha et al. [22, 23] for the Weibull and Erlang kernels, Hirukawa and Sakudo
[11] for a family of generalized gamma kernels, Libengué Dobélé-Kpoka and Koko-
nendji [17] for extended beta and lognormal kernels built by the mode-dispersion
method with some general comments, Ziane et al. [33] for the Birnbaum-Saunders
power-exponential kernel, Geenens [8] for the Mellin-Meijer kernel, Khan and Akbar
[14] for the Gumbel kernel, and Ouimet and Tolosana-Delgado [19] for the Dirich-
let kernel. See also Hirukawa [10], Igarashi [12] and Doho et al. [5] for their uses
and properties among many others. They are not too many general and unified
(asymptotic) results, including all the family of the classical kernels which are al-
ways provided normalized estimators of pdf. It is in this sense that we propose the
current new developments.

In this paper, and almost similar but completely different to the discrete situation
studied by Esstafa et al. [7], we mainly focus on the normalized phenomenon of the
continuous non-classical kernel estimator for any univariate pdf f , which has support
T ⊆R, bounded or not. It is very common but rarely considered in practice, except in
Wansouwé et al. [30], Kokonendji and Somé [16], Somé and Kokonendji [26] and Somé
et al. [27]. However, theoretical and comparative results are completely missing so
far. Let us first redefine the so-called (second-order of) continuous associated kernel
from, for instance, Kokonendji and Libengué Dobélé-Kpoka [15] and, then, recall two
basical asymptotic properties in Theorem 1.2 to be completed later.

Definition 1.1. Let T ⊆R be the support of the pdf f to be estimated, x ∈ T a target
point and h > 0 a bandwidth. A parameterized pdf Kx,h(·) on the support Sx or Sx,h ⊆ R is
called "continuous associated kernel" if the following conditions are satisfied:

(1.1) x ∈ Sx,h, E
[
Zx,h

]
− x =: A(x,h) −→

h→0
0 and Var(Zx,h) =: B(x,h) −→

h→0
0,

where Zx,h denotes the continuous random variable with pdf Kx,h(·).

Hence, to our knowledge, all continuous associated kernels satisfy Definition 1.1
even if their authors have made them through different artisanal approaches. See
Libengué Dobélé-Kpoka and Kokonendji [17] for the sophisticated mode-dispersion
method, which is the basical idea that several authors ignore or do not want to reveal.
In particular, a classical or symmetric continuous kernel K is derived as an associated
kernel in the following sense for holding (1.1):

(1.2) Sx,h = x + hSK and Kx,h(·) =
1
h

K
(
· − x

h

)
,

where SK ⊆R designates the symmetric support in 0 of K; e.g. Scott [25] and Wand
and Jones [29] for a list of classical kernels K as the standard Gaussian density. From
(1.1), one easily checks that the corresponding A(x,h) = 0 and B(x,h) = h2

∫
SK

u2K(u)du
for (1.2).
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Now, we consider the arbitrary sequence of positive smoothing parameters (hn)n≥1
which satisfies limn→∞ hn = 0, while Kx,hn(·) stands for a suitably chosen continuous
kernel function. Also, the n-sample (X1,X2, . . . ,Xn) of independent and identically
distributed (i.i.d.) continuous random variables has a pdf f on T ⊆R. With reference
to Esstafa et al. [7] but not Glad et al. [9], we express the standard normalized
estimator

(1.3) f̂n(x) =
f̃n(x)
Cn

,

with

(1.4) f̃n(x) =
1
n

n∑
i=1

Kx,hn(Xi) and Cn =

∫
x∈T

f̃n(x)dx > 0.

In general, and except for classical associated kernels (1.2) with f̃n = f̂n or Cn = 1,
any basical estimator f̃n of f in (1.4) seems improper density estimate by using a
non-classical kernel or 0 <

∫
f̃n(x)dx , 1. Indeed, from (1.4), it should be written

(1.5) Cn =
1
n

n∑
i=1

∫
x∈T

Kx,hn(Xi)dx

and Cn generally fails to be equal to 1 since the integral
∫

x∈TKx,hn(Xi)dx works on
a domain of the intrinsic parameter x of the pdf Kx,hn(·). See, e.g., Kokonendji and
Libengué Dobélé-Kpoka [15] and Wansouwé et al. [30] for numerical results. But,
how to explain that Cn is always around 1 from (1.5)? An attempt of understand
comes from inequalities of concentration. Alas, it is not possible in our knowledge.
The random variables Xi could be there of some things to follow. This phenomenon
leads to consider (1.3) the normalized estimator f̂n = f̃n/Cn for getting a true pdf
estimate of f , with the so-called random associated kernel K̂x,hn(·) = Kx,hn(·)/Cn.

Under general conditions, we shall prove the mean square convergence of Cn

to 1 and, therefore, discuss some asymptotic properties of f̂n and f̃n with the L2-
comparison between them. It is to be noted that, in the literature many results are
very specific to a given family of non-classical associated kernels; except the following
one that we shall complete and improve below.

Theorem 1.2. [15, Theorem 2.2] Let f ∈ C2(T). For any x ∈ T and under conditions
(1.1), one has f̃n(x) a.s.

−−→ f (x) as n→∞; furthermore, if there is a real largest number r2 =
r2(Kx,hn) > 0 such that

hr2
n

∫
Sx,hn∩T

K2
x,hn

(u)du ≤ c2(x) <∞ and lim
n→∞

nhr2
n =∞

then f̃n(x) L2

−→ f (x) as n→∞, where “ L2

−→ ” (resp. “ a.s.
−→ ”) stands for “mean square” (resp.

“almost surely”) convergence.

Another important fact (and already solved) in the continuous non-classical ker-
nels for estimating a pdf (with bounded support) corresponds to the problem of
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boundary bias. In fact, from (1.1) and for f ∈ C2(T), the pointwise bias of f̃n is repre-
sented by

Bias
{

f̃n(x)
}
= A(x,h) f ′(x) +

1
2

{
A2(x,h) + B(x,h)

}
f ′′(x) + o(h2);

see, e.g., [15, Proposition 2.1]. Hence, for any non-classical kernel with A(x,h) , 0,
we need to eliminate the term A(x,h) in the largest region of the support T of f
for obtaining a second version of f̃n or the modified one, which is denoted by f̃ ∗n.
We refer for that, for instance, to Chen [2, 3], Zhang [31], Zhang and Karunamuni
[32] and, Kokonendji and Libengué Dobélé-Kpoka [15, Section 3.2] for a few and
general treatments. Also, we can consider again its modified normalized version as
Eq. (1.3) by f̂ ∗n = f̃ ∗n/C∗n with C∗n =

∫
f̃ ∗n(x)dx > 0; see Somé et al. [27, Section 4] for a

recent practical use of both standard and modified normalized gamma-kernel density
estimates. Consequently and through our new assumptions, we shall show that all
results of this paper hold too for both standard and modified (non-)normalized
estimators. Without loss of generality, we only retain the standard (non-)normalized
estimators from (1.3) and (1.4) for all the theoretical results below; especially, when
h tends to 0, then this region of the boundary becomes insignificant [15, Section 3.2].

The rest of the paper is laid out as follows. Section 2 presents basic assumptions
on all continuous associated kernels that we illustrate on some examples of (non-
)classical kernels. In Section 3, we show our main asymptotic results for both (non-
)normalized associated-kernel estimators; in particular, pointwise consistence and
central limit theorem are proven with L2-comparison of both estimators. Section 4
of numerical results points out some practical behaviour of our general results with
an illustrative application to the original dataset from Covéa Affinity, which is the
expert entity in affinity insurance of the Covéa group (a French mutual insurance
company). Finally, Section 5 is devoted to the remaining detailed proofs of the main
results.

2. Assumptions and settings. In what follows, we assume that the pdf f on
T ⊆R to be estimated satisfies:

(A0) f ∈ C1(T) with absolute integrable derivative f ′ on T and for any x ∈ T, there
exists positive constants r1,x and r2,x such that x− r1,x, x+ r2,x ∈T and f is increasing
on (−∞,x− r1,x]∩T and decreasing on [x + r2,x,∞)∩T.

Remark 2.1. From Assumption (A0) and for a fixed target x ∈ T, it obviously
appears that the two quantities f (x + r2,x) and f (x − r1,x) are finite. Moreover, since
f and f ′ are continuous on T, the interval [x − r1,x,x + r2,x] is included in T and,
therefore, max

z∈[x−r1,x,x+r2,x]
| f ′(z)| is bounded.

In addition, for any target point x ∈ T, we suppose on the asymptotic properties
of the continuous associated random variable Zx,hn having the density Kx,hn , that:

(A1) Assume that, for some α > 0, for any x ∈T, we have

x ∈ Sx, |E
[
Zx,hn

]
− x| =O(hαn) and Var(Zx,hn) =O(h2α

n );(2.1)

max
y∈Sx∩T

Kx,hn(y) =O(h−αn );(2.2) ∫
y∈Sx∩T

K2
x,hn

(y)dy =O(h−αn ) and
∫

y∈Sx∩T

K3
x,hn

(y)dy =O(h−2α
n ).(2.3)
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Notice that (2.1) is a refined version of Condition (1.1) in Definition 1.1.
Also, we shall need the following ones on Kx,hn when the normalized associated-

kernel estimator shall be explored.

(A2) Assume that, for a fixed y ∈T, there exists α > 0 such that∫
z∈Λy∩T

Kz,hn(y)dz <∞ and
∫

z∈Λy∩T

K2
z,hn

(y)dz =O(h−αn ),

with Λy = {z ∈T | y ∈ Sz}.

Eight examples of continuous associated kernels are proposed including classical
as well as non-classical with new ones.

Example 2.2. The following continuous associated kernels satisfy our Assump-
tions (A1) and (A2) with α = 1.

1. Lognormal kernel: for x ∈T =R+ and hn > 0, the mode-dispersion lognormal kernel
on Sx =R+ yields

Kx,hn(y) =
1

yhn
√

2π
exp

{
−

1
2

( 1
hn

log (y/x)− hn

)2}
, y ∈ Sx =R+.

Then, it is easy to see that
∫

y∈Sx

Kx,hn(y)dy = 1 and that Equation (2.2) holds since

max
y∈Sx∩T

Kx,hn(y) = Kx,hn(x) = (xhn
√

2π)−1 exp(−h2
n/2). In addition, one has

E
[
Zx,hn

]
= x + (e3h2

n/2 − 1)x and Var(Zx,hn) = x2e3h2
n(eh2

n − 1);

therefore, the conditions in (2.1) are also satisfied. Finally, we calculate∫
y∈Sx∩T

K2
x,hn

(y)dy =
e−3h2

n/4

2hnx
√
π

and
∫

y∈Sx∩T

K3
x,hn

(y)dy =
e−4h2

n/3

2π
√

3h2
nx2

which fulfill (2.3). With regard to (A2), one obtains∫
z∈R+

Kz,hn(y)dz = e−h2
n/2 and

∫
z∈R+

K2
z,hn

(y)dz =
e−3h2

n/4

2hny
√
π
, ∀y ∈R+;

and, therefore, one here gets the normalizing constant Cn = e−h2
n/2 , 1 by (1.5).

Similar results of Cn , 1 hold for many other non-classical kernel estimators such
for (generalized) gamma, (extended) beta, (reciprocal) inverse Gaussian, (gener-
alized) Birnbaum-Saunders, Weibull, Erlang and Mellin-Meijer.

2. Weibull kernel: for x > 0 and hn > 0, the mode-dispersion Weibull kernel is directly
defined on Sx =R+ =T by

Kx,hn(y) =
1

xhn

( y
x

)1/hn−1
exp

{
−

( y
x

)1/hn
}
, y ∈ Sx =R+.

Then, it is clear that
∫

y∈Sx

Kx,hn(y)dy = 1 and that (2.2) is satisfied since max
y∈Sx∩T

Kx,hn(y) =

Kx,hn((hn − 1)hnx) = (xhn)−1(hn − 1)1−hne−(hn−1). Further, one checks that

E
[
Zx,hn

]
= xΓ(1 + hn) and Var(Zx,hn) = x2[Γ(1 + 2hn)− Γ2(1 + hn)];
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consequently, the conditions in (2.1) are also satisfied and, where the gamma
function is known to be the improper integral:

Γ(v) =

∫
∞

0
sv−1 exp(−s)ds, v > 0.

Hence, we have∫
y∈Sx∩T

K2
x,hn

(y)dy =
Γ(2− hn)2hn−2

hnx
and

∫
y∈Sx∩T

K3
x,hn

(y)dy =
Γ(3− 2hn)32hn−3

h2
nxhn

,

which fulfills (2.3). With respect to (A2), one obtains∫
z∈R+

Kz,hn(y)dz = Γ(1− hn) and
∫

z∈R+

K2
z,hn

(y)dz =
2hnΓ(2− hn)

4hn
, ∀y ∈R+;

and, thus, one here has the normalizing constant Cn = Γ(1− hn) , 1 through (1.5).
3. Gamma kernel: for x > 0 and hn > 0, the well-known gamma kernel is given on
Sx =R+ as

Kx,hn(y) =
1

Γ(1 + x/hn)h1+x/hn
n

yx/hn exp(−y/hn), y ∈ Sx =R+.

Hence, it is obvious to have
∫

y∈Sx

Kx,hn(y)dy = 1 and Equation (2.2) holds since

max
y∈Sx∩T

Kx,hn(y) = Kx,hn(x) = 1
Γ(1+x/hn)h1+x/hn

n
xx/hn exp(−x/hn). Moreover, one has

E
[
Zx,hn

]
= x + hn and Var(Zx,hn) = (x + hn)hn;

thus, the conditions in (2.1) are also verified. Finally, we calculate∫
y∈Sx∩T

K2
x,hn

(y)dy =
2−1−2x/hn Γ (1 + 2x/hn)

hn Γ2 (1 + x/hn)

and ∫
y∈Sx∩T

K3
x,hn

(y)dy =
3−1−3x/hn Γ (1 + 3x/hn)

h2
n Γ3 (1 + x/hn)

,

which fulfill (2.3) from the Stirling formula. Concerning (A2), one gets∫
z∈R+

Kz,hn(y)dz = e−y/hn

∫
∞

0

(y/hn)t

Γ(1 + t)
dt <∞

and ∫
z∈R+

K2
z,hn

(y)dz =
e−2y/hn

2hn

∫
∞

0

(y/hn)t

Γ2(1 + t/2)
dt <O(h−1

n ), ∀y ∈R+,

since these integrals are finite by using the Stirling asymptotic formula

(y/hn)t

Γ(1 + t)
∼

1
√

2πtet log [ye/(thn)]
and

(y/hn)t

Γ2(1 + t/2)
∼

1
πt

et log [2ye/(thn)]

as t→∞. Hence, one cannot explicitly get the normalizing constant Cn, which is
not equal to 1 via (1.5).
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4. Gumbel kernel: given x ∈ T =R and hn > 0, the Gumbel kernel has been proposed
on Sx =R by

Kx,hn(y) =
1
hn

exp
[
−exp

(
−

y− x
hn

)
−

y− x
hn

]
, y ∈ Sx =R.

Then, we easily check
∫

y∈Sx

Kx,hn(y)dy = 1 and also Equation (2.2) holds, because

max
y∈Sx∩T

Kx,hn(y) = Kx,hn(x) = 1/(ehn). Next, we have

E
[
Zx,hn

]
= x + hnγ and Var(Zx,hn) =

π2

6
h2

n,

where γ = 0.577215... is the Euler-Mascheroni constant. One also verifies that∫
y∈Sx∩T

K2
x,hn

(y)dy =
1

4hn
(1 + 2e(x−y)/hn)e−2 exp[(x−y)/hn]

∣∣∣∣∣∞
−∞

=
1

4hn

and∫
y∈Sx∩T

K3
x,hn

(y)dy =
1

27h2
n

(2 + 6e(x−y)/hn + 9e2(x−y)/hn)e−3 exp[(x−y)/hn]
∣∣∣∣∣∞
−∞

=
2

27h2
n
.

Assumption (A2) holds since we substitute x to −y in both∫
z∈R

Kz,hn(y)dz = 1 and
∫

z∈R
K2

z,hn
(y)dz =

1
4hn

, ∀y ∈R;

and, then, one easily obtains Cn = 1 by (1.5). The Gumbel kernel corresponds to
an asymmetric one and has its mode at x. It is useful to estimate extreme value
distribution on T =R.

5. Generalized extreme value (GVE) kernel: for the position x ∈ T =R, the scale hn > 0
and the shape ξ = −1, the GVE kernel is defined on Sx,hn = (−∞,x + hn] as

Kx,hn(y) =
1
hn

exp
[
−

(
1 +

x− y
hn

)]
, y ∈ Sx,hn = (−∞,x + hn].

Then, one has
∫

y∈Sx,hn

Kx,hn(y)dy = 1 and the condition (2.2) is satisfied, since

max
y∈Sx,hn∩T

Kx,hn(y) = Kx,hn(x + hn) = 1/hn. Also, we have

E
[
Zx,hn

]
= x and Var(Zx,hn) = h2

n;

and, one can check that∫
y∈Sx,hn∩T

K2
x,hn

(y)dy =
1

2hn
and

∫
y∈Sx,hn∩T

K3
x,hn

(y)dy =
1

3h2
n
.

Notice that y ∈ Sx,hn ∩T⇔ x ≥ y − hn. Thus, Assumption (A2) here holds because
of ∫

[y−hn,∞)

Kz,hn(y)dz = 1 and
∫

[y−hn,∞)
K2

z,hn
(y)dz =

1
2hn

, ∀y ∈R;

and, one here deduces Cn = 1 by (1.5). The GVE kernel appears to be an asymmetric
one and has its mode at x. It can be used to estimate extreme value distribution
from the extreme left −∞ to the target point x on T =R.
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6. Logistic kernel: let x ∈T =R and hn > 0, we introduce the logistic kernel on Sx =R
as

Kx,hn(y) =

(
1 + exp(− y−x

hn
)
)−2

hn
exp

(
−

y− x
hn

)
, y ∈ Sx =R.

Thus, one easily has
∫

y∈Sx

Kx,hn(y)dy = 1 and Equation (2.2) is satisfied, since

max
y∈Sx∩T

Kx,hn(y) = Kx,hn(x) = 1/(4hn). Also, we have

E
[
Zx,hn

]
= x and Var(Zx,hn) =

π2

3
h2

n.

Furthermore, direct calculations give∫
y∈Sx∩T

K2
x,hn

(y)dy =
1

6hn
and

∫
y∈Sx∩T

K3
x,hn

(y)dy =
1

30h2
n
.

Therefore, Assumption (A2) holds too since we have here∫
z∈R

Kz,hn(y)dz = 1 and
∫

z∈R
K2

z,hn
(y)dz =

1
6hn

, ∀y ∈R,

and also Cn = 1 via (1.5). However, the logistic kernel is a symmetric one and has
its mode at x. It is in the family of classical kernels (1.2) such as the below Gaussian
one.

7. Gaussian kernel: as the most common example of (1.2), let x ∈T =R and hn > 0. The
classical associated Gaussian kernel is defined on Sx =R by

Kx,hn(y) =
1

hn
√

2π
exp

(
−

(y− x)2

2h2
n

)
, y ∈ Sx =R.

Then, it is trivial that
∫

y∈Sx

Kx,hn(y)dy = 1 and that (2.2) is satisfied, with max
y∈Sx∩T

Kx,hn(y) =

Kx,hn(x) = 1/(hn
√

2π). Next, one has

E
[
Zx,hn

]
= x and Var(Zx,hn) = h2

n;

and, one obtains∫
y∈Sx∩T

K2
x,hn

(y)dy =
1

2hn
√
π

and
∫

y∈Sx∩T

K3
x,hn

(y)dy =
1

2
√

3πh2
n

.

Concerning (A2), we here have∫
z∈R

Kz,hn(y)dz = 1 and
∫

z∈R
K2

z,hn
(y)dz =

1
2
√
πhn

, ∀y ∈R,

and finally Cn = n−1 ∑n
i=1

∫
z∈R

Kz,hn(Xi)dz = 1 by (1.5).

8. Associated kernel generated from a classical kernel of (1.2): because of boundary biais
we consider T =R and, for x ∈T =R and hn > 0, Sx,hn = x + hnSK, where SK ⊆R is
the symmetric support around 0 of the classical kernel K with

Kx,hn(y) =
1
hn

K
( y− x

hn

)
, ∀y ∈ Sx,hn ,
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and it satisfies ∫
R

K2(u)du <∞ and
∫
R

K3(u)du <∞.

These conditions are fulfilled by most of the well-known kernels such as Epanech-
nikov or Parabolic, Cosine, Triangular, Quartic (Biweight), Triweight, Tricube,
Gaussian, Logistic, Double Exponentielle and Sylverman. Then, it is easy to see
that

∫
y∈Sx,hn

Kx,hn(y)dy = 1 and that (2.2) is satisfied from max
y∈Sx,hn∩T

Kx,hn(y) = Kx,hn(x) =

K(0)/hn. Next, we have

E
[
Zx,hn

]
= x and Var(Zx,hn) = h2

n

∫
R

u2K(u)du =O(h2
n).

One gets ∫
y∈Sx,hn∩T

K2
x,hn

(y)dy =
1
hn

∫
R

K2(u)du =O(h−1
n )

and ∫
y∈Sx,hn∩T

K3
x,hn

(y)dy =
1
h2

n

∫
R

K3(u)du =O(h−2
n ).

Since the classical kernel K is symmetric, Assumption (A2) is automatically satis-
fied with Cn = n−1 ∑n

i=1

∫
z∈R

Kz,hn(Xi)dz = 1 by (1.5).

3. Results on (non-)normalized estimators. We here provide our general results
of the continuous associated-kernel estimators, which are first unnormalized and
then normalized with a comparison.

3.1. Unnormalized associated-kernel estimator. This section consists of two main
parts. In the first one, we prove the convergence in mean square of the non-
normalized estimator f̃n to the unknown pdf f . From this result, the second main
part is dedicated to demonstrating its corresponding central limit theorem. Here, it
should be noticed that, from now on, we denote c as some generic constant that can
change from line to line.

First of all, and using Assumption (A1), we need the following lemma. It will be
very important for showing many results below, since the behaviour of the contin-
uous associated kernels (implicitly) can be built by the mode-dispersion method of
Libengué Dobélé-Kpoka and Kokonendji [17].

Lemma 3.1. Under Parts (2.1) and (2.2) of Assumption (A1) and considering the target
point x ∈T, we have that for any compact subset Cx ⊂ Sx\{x}

sup
y∈Cx

Kx,hn(y) −→
n→∞

0.(3.1)

Proof. It is straightforward from the fact that, for any β > 0, we have

P(|Zx,hn − x| > β) ≤
1
β2E

[
|Zx,hn − x|2

]
=

1
β2

{
Var(Zx,hn) +

(
E

[
Zx,hn − x

])2
}
−→
n→∞

0.
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This entails that Zx,hn converges in distribution to x. It means that we get the result
(3.1) from the equicontinuity of Kx,hn ; see, e.g., [1, Lemma 1] or [28]. �

Now, proceeding is the same ideas as in [15], we provide the next technical propo-
sition.

Proposition 3.2. Under Assumptions (A0) and (A1), we have

E
[

f̃n(x)− f (x)
]
=O(max{ f (x + r2,x), f (x− r1,x), max

z∈[x−r1,x,x+r2,x]
| f ′(z)|}).

Proof. Using the i.i.d. property of (Xi)1≤i≤n, we get

(3.2) E
[

f̃n(x)
]
=

1
n

n∑
i=1

E
[
Kx,hn(Xi)

]
=E

[
Kx,hn(X1)

]
=: An

x + Bn
x

with

An
x :=

∫
y∈Sx,hn∩T

Kx,hn(y) f (y)1{y∈[x−r1,x,x+r2,x]}dy

and

Bn
x :=

∫
y∈Sx,hn∩T

Kx,hn(y) f (y)1{y∈R\[x−r1,x,x+r2,x]}dy.

For An
x : from the mean value theorem, we successively obtain

An
x ≤

∫
y∈Sx,hn∩T\{x}

Kx,hn(y)| f (y)− f (x)|1{y∈[x−r1,x,x+r2,x]}dy + f (x)

≤ (r2,x + r1,x)
∫

y∈Sx∩T\{x}

Kx,hn(y) max
z∈[x−r1,x,x+r2,x]∩T

| f ′(z)|1{y∈[x−r1,x,x+r2,x]}dy + f (x)

≤ (r2,x + r1,x) max
z∈[x−r1,x,x+r2,x]

| f ′(z)|
∫

y∈Sx

Kx,hn(y)dy + f (x)

= (r2,x + r1,x) max
z∈[x−r1,x,x+r2,x]

| f ′(z)|+ f (x).

(3.3)

For Bn
x : since f is increasing on (−∞,x− r1,x] under (A0), and from (A1), we have

∫
y∈(−∞,x−r1,x]∩Sx∩T

Kx,hn(y) f (y)dy =E
[

f (Zx,hn)1{Zx,hn≤x−r1,x}

]
≤E

[
f (x− r1,x)1{Zx,hn<x−r1,x}

]
= f (x− r1,x)P(x−Zx,hn ≥ r1,x) ≤ f (x− r1,x).

(3.4)

In the same way, f decreasing on [x + r2,x,∞) provides

∫
y∈[x+r2,x,∞)∩Sx∩T

Kx,hn(y) f (y)dy =E
[

f (Zx,hn)1{Zx,hn≥x+r2,x}

]
≤E

[
f (x + r2,x)1{Zx,hn≥x+r2,x}

]
= f (x + r2,x)P(Zx,hn − x ≥ r2,x) ≤ f (x + r2,x).

(3.5)
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The proof is now completed with (3.2)-(3.5). �

In what follows, we state that f̃n(x) is consistent and its proof is reported in Section
5. It improves a part of Theorem 1.2.

Theorem 3.3. Under Assumptions (A0)-(A1) with some α ≥ 1, if the sequence (hn)n≥1
is chosen such that nhαn −→n→∞

∞, then, for any x ∈T, we have

f̃n(x) L2

−→
n→∞

f (x).

Eventually, we state the following central limit theorem and its proof is established
in Section 5. That is a novelty and a first general result in the direction of continuous
associated-kernel estimators.

Theorem 3.4. Under Assumptions (A0)-(A1) with some α ≥ 1, if the sequence (hn)n≥1

is chosen such that
√

nh(3/2)α
n −→

n→∞
0 and nhαn −→n→∞

∞, then, for any x ∈T, we have

√
nhαn

(
f̃n(x)− f (x)

)
L
−→
n→∞
N

(
0, f (x) lim

n→∞
hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy
)
,

where “ L
−→ ” stands for “convergence in law".

3.2. Standard normalized associated-kernel estimator. Relying on the discrete associated-
kernel case treated by Esstafa et al. [7], we demonstrate in Section 5 the following
proposition related on the normalizing random variable for continuous estimator
(1.3) from a non-classical associated kernel.

Proposition 3.5. Under Assumptions (A0)-(A2) for some α ≥ 1, assume that T ⊆ Sx
and nhαn→∞, then the normalizing random variable Cn converges in mean square to 1.

In what follows, we show that f̂n(x) is consistent.

Theorem 3.6. Under Assumptions (A0)-(A2), for any x ∈T, we have

f̂n(x) P
−→
n→∞

f (x),

where “ P
−→ ” indicate “convergence in probability".

Proof. To begin with, we note that for x ∈T, the error is performed by

f̂n(x)− f (x) =
1

Cn

{(
f̃n(x)− f (x)

)
+ (1−Cn) f (x)

}
.

From Theorem 3.3, we recall that f̃n(x) converges in mean square to f (x). Therefore,
Proposition 3.5 and the Slutsky theorem complete the proof. �

In addition, with our hypotheses, we are able to obtain a general central limit
theorem for this normalized estimator f̂n(x) from the unnormalized one.



12 Y. ESSTAFA ET AL.

Theorem 3.7. Under Assumptions (A0)-(A2) with some α ≥ 1, considering T ⊆ Sx and
if the sequence (hn)n≥1 is chosen such that

√
nh(3/2)α

n −→
n→∞

0 and nhαn −→n→∞
∞, then, for any

x ∈T, we have√
nhαn

(
f̂n(x)− f (x)

)
L
−→
n→∞
N

(
0, f (x) lim

n→∞
hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy
)
.

Proof. Let us rewrite our normalized error as follows

√
nhαn

(
f̂n(x)− f (x)

)
=

1
Cn


f̃n(x)−E

[
f̃n(x)

]
√

Var( f̃n(x))


√

nhαnVar( f̃n(x))(3.6)

+
1

Cn

√
nhαn

{
E

[
f̃n(x)

]
− f (x)

}
+

f (x)
Cn

√
nhαn(1−Cn).

Then, the convergence of the first term in the r.h.s. of (3.6) is direct by Proposition 3.2,
Inequation (5.12) from the proof of the central limit theorem of the non-normalized
error, and Slutsky’s theorem. More precisely, we get

1
Cn

 f̃n(x)−E
[

f̃n(x)
]

√
Var( f̃n(x))


√

nhαnVar( f̃n(x)) L
−→
n→∞
N

(
0, f (x) lim

n→∞
hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy
)
.

The convergence to zero of the second term in the r.h.s. of (3.6) is also straightforward
through Proposition 3.2 and (5.13). Therefore, it is left to show the convergence in
probability to zero of the last term in the r.h.s. of (3.6). First, on the one hand, let us
denote

Sn =
√

nhαn(1−Cn) =

n∑
i=1

Yi,n, Yi,n =

√
hαn
√

n

∫
T

{
f (x)−Kx,hn(Xi)

}
dx.

From Assumption (A2) with T ⊆ Sx, there exists a positive constant c such that
|Yi,n| < c. Then, by Hoeffding’s inequality, we get for any ε > 0,

P(|Sn −E [Sn] | ≥ ε) ≤ c exp
(
−
ε2

n

)
−→
n→∞

0.

On the other side, as
√

nh(3/2)α
n −→

n→∞
0, by (5.2) and (5.3), we obtain

E [Sn] ≤
√

nhαn |E [1−Cn] | ≤ h(3/2)α
n

√
n

∫
x∈T

g(x)dx −→
n→∞

0,(3.7)

where the integrable function g is defined for any x ∈T as

g(x) = max
{

max
z∈[x−r1,x,x+r2,x]

| f ′(z)|,
max{| f (x− r1,x)− f (x)|, | f (x + r2,x)− f (x)|, f (x)}

(min{r1,x, r2,x})2

}
.

Thus, we deduce the convergence in probability to zero of
√

nhαn (Cn− 1) and also the
one of the last term in the r.h.s. of (3.6). This completes the proof. �
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3.3. L2-comparison. For making a global comparison between f̂n and f̃n, we here
use the L2 error instead of L1 in Esstafa et al. [7] of discrete cases. The next proposition
highlights the fact that our estimator outperforms, in the sense of the L2 error, the
unnormalized one. In the continuous framework of estimating a pdf with classical
kernels, similar conclusions have been reached; see, for example, Devroye and Lugosi
[4, section 5.6] and, also, Glad et al. [9] for L2 criterion.

Notice that we need the convergence in L4 of Cn to 1 for getting the following
similar comparison between f̂n and f̃n.

Lemma 3.8. Under Assumptions (A0)-(A2), assume that T ⊆ Sx, we have

E
[
(Cn − 1)4

]
−→
n→∞

0.

Proof. First, by (A2) and from the definition of Cn, one has P(|Cn| ≤M) = 1. In
view of the almost sure absolute boundedness of Cn when n is large enough, one
gets E

[
|Cn|

k
]
≤Mk for any k ∈N∗. Combined with the Cauchy-Schwarz inequality,

we successively have

Var(C2
n) =E

[
C4

n − 1
]
−

{(
E

[
C2

n

])2
− 1

}
≤

∣∣∣∣E [
(Cn − 1)(Cn + 1)(C2

n + 1)
]∣∣∣∣ + (

E
[
C2

n

]
+ 1

)
|E [(Cn − 1)(Cn + 1)]|

≤

√
E [(Cn − 1)2]

{√
E

[
(Cn + 1)2(C2

n + 1)2
]
+

(
E

[
C2

n

]
+ 1

) √
E [(Cn + 1)2]

}
≤ c

√
E [(Cn − 1)2]

and

Cov(C2
n,Cn) =E

[
C2

n (Cn −E [Cn])
]
≤

√
E

[
C4

n

]
Var(Cn) ≤ c

√
Var(Cn),

where c denotes our generic constant that can change from line to line. Write again
the considering fourth-moment as follows

E
[
(Cn − 1)4

]
= Var

{
(Cn − 1)2

}
+

(
E

[
(Cn − 1)2

])2

= Var(C2
n) + 4Var(Cn)− 4Cov(C2

n,Cn) +
(
E

[
(Cn − 1)2

])2
.

From the above arguments, when n is large enough, we obtain

E
[
(Cn − 1)4

]
≤ c

√
E [(Cn − 1)2] + 4Var(Cn) + 4c

√
Var(Cn) +

(
E

[
(Cn − 1)2

])2
.

Hence, using the results from Proposition 3.5 that Var(Cn) and E[(Cn − 1)2] converge
to zeros as n approaches infinity, we complete the proof. �

Departing from Lemma 3.8, we obtain easily the comparison between the mean
integrated squared error of the normalized continuous estimator f̂n with the one of
the unnormalized associated version f̃n in the below proposition.

Proposition 3.9. Under Assumptions (A0)-(A2), assume that T is compact, for any
ε > 0, there exists N ∈N such that for all n ≥N,

E

[∫
T

∣∣∣∣ f̂n(x)− f (x)
∣∣∣∣2 dx

]
<E

[∫
T

∣∣∣∣ f̃n(x)− f (x)
∣∣∣∣2 dx

]
+ ε.
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Proof. First, we successively have

E

[∫
T

| f̂n(x)− f (x)|2dx
]

=E


∫
T

∣∣∣∣∣∣∣ f̃n(x)
Cn
− f (x)

∣∣∣∣∣∣∣
2

dx


=E


∫
T

∣∣∣∣∣∣∣ f̃n(x)
Cn
−

f (x)
Cn

+
f (x)
Cn
− f (x)

∣∣∣∣∣∣∣
2

dx


=E

[
1

C2
n

∫
T

| f̃n(x)− f (x)|2dx
]
+

∫
T

f 2(x)dx E
[∣∣∣∣∣Cn − 1

Cn

∣∣∣∣∣2]
+ 2E

[
C−2

n

∫
T

( f̃n(x)− f (x))(1−Cn) f (x)dx
]

=E

[∫
T

| f̃n(x)− f (x)|2dx
]
+E

[
1−C2

n

C2
n

∫
T

| f̃n(x)− f (x)|2dx
]

+E

[∣∣∣∣∣Cn − 1
Cn

∣∣∣∣∣2]∫
T

f 2(x)dx + 2E
[
C−2

n

∫
T

( f̃n(x)− f (x))(1−Cn) f (x)dx
]
.

Since f is bounded on T, one can use successively the Jensen and Cauchy-Schwarz

inequalities combined with the fact that
∫
T

f̃n
2
(x)dx ≤ c C2

n in order to obtain:

E

[∫
T

| f̂n(x)− f (x)|2dx
]

≤E

[∫
T

| f̃n(x)− f (x)|2dx
]
+ c E


∣∣∣1−C2

n

∣∣∣ (C2
n + 1)

C2
n

 + c E
[∣∣∣∣∣Cn − 1

Cn

∣∣∣∣∣2]
+ c E

[
C−2

n |1−Cn|(Cn + 1)
]

≤E

[∫
T

| f̃n(x)− f (x)|2dx
]
+ c E

[∣∣∣∣∣Cn − 1
Cn

∣∣∣∣∣2] + c E
[∣∣∣∣∣∣ (1−C2

n)(C2
n + 1)

C2
n

∣∣∣∣∣∣
]

≤E

[∫
T

| f̃n(x)− f (x)|2dx
]
+ c E

[∣∣∣∣∣Cn − 1
Cn

∣∣∣∣∣2] + c E
[∣∣∣∣∣∣ (1−Cn)(Cn + 1)(C2

n + 1)
C2

n

∣∣∣∣∣∣
]

≤E

[∫
T

| f̃n(x)− f (x)|2dx
]
+ c

√
E

[
(Cn − 1)4]E [

C−4
n

]
+ c

√
E [(1−Cn)2]E

[
(Cn + 1)2(C2

n + 1)2

C4
n

]
≤E

[∫
T

| f̃n(x)− f (x)|2dx
]
+ c

√
E

[
(Cn − 1)4]E [

C−4
n

]
+ c

√
E [(1−Cn)2]

{
E

[
C2

n

]
+E [Cn] + 1 +E

[
C−1

n

]
+E

[
C−2

n

]
+E

[
C−3

n

]
+E

[
C−4

n

]}
.

(3.8)

Then, on the one hand, from the almost sure absolute boundedness of Cn and C−1
n

combined with Proposition 3.2, there exists n0 ∈N such that for all n ≥ n0,E(C j
n) with
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j ∈ {−4,−3, . . . ,2} are bounded by a finite constant M > 0. On the other hand, for some
arbitrarily small ε > 0, from the proof of Theorem 3.5 and Lemma 3.8, there exists
n1 ∈N such that for all n ≥ n1, we respectively have E[(Cn − 1)2] < ε2/(28Mc2) and
E[(Cn − 1)4] < ε2/(4c2M). Therefore, taking N = max{n0,n1}, for all n ≥ N, the upper
bound (3.8) provides the desired result of the proposition. �

4. Simulation studies and an illustrative application. In this section, all nu-
merical studies are performed in the context with standard and (non-)normalized
associated-kernel estimators. Thus, we provide simulation results which are con-
ducted for evaluating the performance of the proposed approaches. Computations
have been done by using the R software of R Core Team [21]. The following numer-
ical studies have two objectives with respect to the simulation schemes and to an
application to original real data. We shall use the support of lognormal and Weibull
kernel estimators.

4.1. Numerical simulations. Three following scenarios which are denoted by A, B
and C are considered for the simulation studies.

• Scenario A is generated by using the gamma distribution

fA(x) = xe−x, x ∈R+;

• Scenario B comes from the Weibull distribution

fB(x) =
3
2

(x
2

)2
exp

(
−

(x
2

)3
)
, x ∈R+;

• Scenario C is from the lognormal distribution

fC(x) =
1

0.25x
√

2π
exp

(
−8(log x)2

)
, x ∈R+.

We evaluate the performances of these continuous associated-kernel estimators
with the cross-validation selections of the optimal bandwidth parameter. In fact, for
all the considering associated-kernel estimators, α = 1 and the optimal bandwidth of
h by the cross-validation method is determined by

h̃cv = arg min
h>0

∫
x∈T

{
f̃n(x)

}2
dx−

2
n

n∑
i=1

f̃n,h,−i(Xi)

 ,
where f̃n,h,−i(Xi) = (n − 1)−1 ∑n

`=1,`,i KXi,h(X`) is being computed as f̃n(Xi) without the
observation Xi.

The efficiency of these estimators is examined via the empirical estimates of Ĉn,
the integrated squared errors ÎSEn (in normalized case) with

Ĉn :=
1

Nsim

Nsim∑
t=1

∫
x∈T

f̃n(x)dx

and

ÎSEn :=
1

Nsim

Nsim∑
t=1

∫
x∈T

{
f̂n(x)− f (x)

}2
dx,

where Nsim represents the number of replications and n corresponds to the sample
size which shall be chosen to be small, medium and large.
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Table 1 reports some empirical mean values of Ĉn and ÎSEn with their standard
deviations using Nsim = 750 replications from Scenarios A, B and C to the correspond-
ing sample sizes n = 100,500,1000 having the support of lognormal and Weibull ker-
nel estimators. For each given subsample and the continuous associated-kernel, we
need to compute the related bandwidth h̃cv through the cross-validation method in
advance and use it to produce f̃n, Ĉn, f̂n and, therefore, ÎSEn. With regard to the three
scenarios, the estimate of Ĉn converges to 1 and ÎSEn is decreasing when the sample
size increases. However, it is to be noticed that the lognormal kernel estimator is
more accurate than the one based on the Weibull one; especially, when the sample
size is relatively large.

Table 1
Empirical mean values of Ĉn and ÎSEn with their standard deviations in parentheses for lognormal and the

Weibull kernels under Scenarios A, B and C.

n Ĉn,Lognormal ÎSEn,Lognormal Ĉn,Weibull ÎSEn,Weibull
100 0.9504 (0.0197) 0.0106 (0.0083) 1.1774 (0.0585) 0.0161 (0.0098)

A 500 0.9754 (0.0091) 0.0031 (0.0035) 1.0893 (0.0331) 0.0060 (0.0033)
1000 0.9818 (0.0081) 0.0020 (0.0034) 1.0669 (0.0285) 0.0038 (0.0019)
100 0.9866 (0.0065) 0.0159 (0.0145) 1.0721 (0.0202) 0.0233 (0.0145)

B 500 0.9938 (0.0030) 0.0043 (0.0032) 1.0406 (0.0129) 0.0080 (0.0037)
1000 0.9956 (0.0026) 0.0026 (0.0020) 1.0321 (0.0111) 0.0050 (0.0022)
100 0.9879 (0.0065) 0.0337 (0.0299) 1.0364 (0.0113) 0.0554 (0.0396)

C 500 0.9930 (0.0028) 0.0093 (0.0073) 1.0207 (0.0069) 0.0186 (0.0106)
1000 0.9940 (0.0025) 0.0055 (0.0042) 1.0160 (0.0054) 0.0116 (0.0059)

Now, we illustrate both empirical distributions of
√

nhn

{
f̃n(3)− fA(3)

}
(Figure 1)

and
√

nhn

{
f̂n(3)− fA(3)

}
(Figure 2) for the lognormal and Weibull kernels over 5,000

replications of Scenario A with the sample size n = 1,000 and the choice of bandwidth
hn = n−2/3. It is to observe that we have similarity of behavior of the pointwise empir-
ical distribution to both normalized and non-normalized estimators. This confirms
the results of Theorems 3.4 and 3.7.
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Histogram with Lognormal associated−kernel estimator
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Histogram with Weibull associated−kernel estimator
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Fig 1: Empirical distributions of
√

nhn

{
f̃n(3)− fA(3)

}
using the non-normalized log-

normal (left) and Weibull (right) kernel estimators. The smoothed kernel density is
displayed in full line, and the centered Gaussian density with the limit variance of
Theorem 3.4 is plotted in dotted line.

Histogram with Lognormal associated−kernel estimator
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Histogram with Weibull associated−kernel estimator
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Fig 2: Empirical distributions of
√

nhn

{
f̂n(3)− fA(3)

}
using the normalized lognormal

(left) and Weibull (right) kernel estimators. The smoothed kernel density is displayed
in full line, and the centered Gaussian density with the limit variance of Theorem 3.7
is plotted in dotted line.

4.2. An example of application on original data. In this subsection, we compare
the performance of our estimators on data of automobile claim amounts occurring
between 2016 and 2020 provided by Covéa Affinity. This dataset is composed of
n = 76,414 observations distributed between 3.6 and 6,985.51 EUR.

In Figure 3, we fit the empirical distribution of claim amounts using the normalized
estimators, which are computed from the lognormal (solid line) and Weibull (dotted
line) kernels. The optimal bandwidth h is selected by the cross-validation method.
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It is pointed out that the lognormal kernel is more appropriate and provides a very
satisfactory adjustment of the distribution of claim amounts (see also the below panel
of Figure 3 for a zoom on the distribution of claim amounts between 3.6 and 800 EUR).

Table 2 confirms this finding for which other kernels (given in Section 2) have been
implemented. Here, practical performances are examined via the cross-validation
method and the empirical criterion of ISE: ÎSE0 :=

∫
∞

0 { f̂n(x) − f0(x)}2dx, where f0(·)
is the empirical or naive estimator. Recall that the estimators corresponding to the
last three kernels of Table 2 are normalized by construction (their Cn is equal to 1).
We notice by referring to their ÎSE0 that they remain less efficient than the estimator
with lognormal kernel but do slightly better than the one computed from the Weibull
kernel.

Relying upon practical reasons, we evaluate the right tail of the distribution (from
1,000 EUR) of claim amounts using the different kernels of Table 2. These tail prob-
abilities are estimated to be 0.1331, 0.1321, 0.1615, 0.1342, 0.1337 and 0.1344 for the
empirical estimator f0, lognormal, Weibull, Gaussian, Gumbel and Laplace kernel
estimations, respectively. Again, the lognormal kernel appears to be competitive and
provides a very good fit to the tail distribution of this data set.

Table 2
Empirical values of Ĉn and ÎSE0 of the normalized estimator of the distribution of claims amounts using

different associated kernels.

Associated kernel Ĉn ÎSE0 (×104)
Lognormal 0.9967 8.5482
Weibull 1.0700 9.1646
Gaussian 1.0000 9.0724
Gumbel 1.0000 9.0822
Laplace 1.0000 9.0383
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Fig 3: Empirical distribution of Covéa data and its estimates using both normalized
lognormal (solid line) and Weibull (dotted line) kernel estimators. The graph on the
below depicts a zoom of the region of claims amounts from 3.6 to 800 EUR of the
graph on the top.



20 Y. ESSTAFA ET AL.

5. Proofs of Theorems 3.3 and 3.4 and of Proposition 3.5.

Proof of Theorem 3.3. In order to obtain the theorem, for any x ∈ T, we demon-
strate the pointwise convergence to zero of the following mean-squared error

(5.1) E
[(

f̃n(x)− f (x)
)2
]
=

(
E

[
f̃n(x)− f (x)

])2
+ Var

(
f̃n(x)

)
.

Considering the first term in the r.h.s. of (5.1): using [x − r1,x,x + r2,x] ⊂ T from
Remark 2.1, we have

E
[

f̃n(x)− f (x)
]
=: C1,n + C2,n,

with

C1,n :=
∫

y∈Sx∩[x−r1,x,x+r2,x]\{x}
Kx,hn(y)( f (y)− f (x))dy

and

C2,n :=
∫

y∈Sx∩T\{x}∩[x−r1,x,x+r2,x]c
Kx,hn(y)( f (y)− f (x))dy + f (x)

∫
y∈Sx∩Tc

Kx,hn(y)dy.

For the term C1,n: using the mean-value theorem and the Cauchy-Schwarz inequality,
one has

|C1,n| ≤ max
z∈[x−r1,x,x+r2,x]

| f ′(z)|
∫

y∈Sx∩[x−r1,x,x+r2,x]\{x}
Kx,hn(y)|y− x|dy

≤ max
z∈[x−r1,x,x+r2,x]

| f ′(z)| E
[
|Zx,hn − x|

]
≤ max

z∈[x−r1,x,x+r2,x]
| f ′(z)|

√
E

[
(Zx,hn − x)2]

≤ max
z∈[x−r1,x,x+r2,x]

| f ′(z)|
√

Var(Zx,hn) +
(
E

[
Zx,hn

]
− x

)2.(5.2)

For the term C2,n: we successively use Remark 2.1, the fact that f is monotone on
[x− r1,x,x + r2,x]c from Assumption (A0) and the Markov inequality to obtain

|C2,n| ≤

∫
y∈Sx∩T\{x}∩[x−r1,x,x+r2,x]c

Kx,hn(y)| f (y)− f (x)|dy + f (x)
∫

y∈Sx∩[x−r1,x,x+r2,x]c
Kx,hn(y)dy

≤max{| f (x− r1,x)− f (x)|, | f (x + r2,x)− f (x)|, f (x)}
∫

y∈Sx∩[x−r1,x,x+r2,x]c
Kx,hn(y)dy

≤max{| f (x− r1,x)− f (x)|, | f (x + r2,x)− f (x)|, f (x)} P(|Zx,hn − x| >min{r1,x, r2,x})

≤
max{| f (x− r1,x)− f (x)|, | f (x + r2,x)− f (x)|, f (x)}

(min{r1,x, r2,x})2

{
Var(Zx,hn) +

(
E

[
Zx,hn

]
− x

)2
}
.(5.3)

Therefore, through Remark 2.1 from Assumption (A0), we get∣∣∣∣E [
f̃n(x)− f (x)

]∣∣∣∣ ≤ |C1,n|+ |C2,n|

≤ c
{√

Var(Zx,hn) +
(
E

[
Zx,hn

]
− x

)2 + Var(Zx,hn) +
(
E

[
Zx,hn

]
− x

)2
}
.(5.4)
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It follows

E
[

f̃n(x)
]
= f (x) +O(hαn)(5.5)

from Part (2.1) of Assumption (A1), which leads to the convergence to zero of the
bias.

Considering the second term in the r.h.s. of (5.1): we have

Var( f̃n(x)) =
1
n

Var(Kx,hn(X1)) ≤
1
n
E

[
K2

x,hn
(X1)

]
.

In order to prove the convergence of this variance term, we demonstrate that

E
[
K2

x,hn
(X1)

]
= f (x)

∫
y∈T∩Sx

K2
x,hn

(y)dy +O(1).(5.6)

Indeed, from Remark 2.1, we can write

E
[
K2

x,hn
(X1)

]
− f (x)

∫
y∈T∩Sx

K2
x,hn

(y)dy =: D1,n + D2,n

with

D1,n :=
∫

y∈Sx∩[x−r1,x,x+r2,x]\{x}
K2

x,hn
(y)( f (y)− f (x))dy

and

D2,n :=
∫

y∈Sx∩T∩[x−r1,x,x+r2,x]c
K2

x,hn
(y)( f (y)− f (x))dy.

For the term D1,n: using the mean-value theorem, Part (2.2) of Assumption (A1) and
the Cauchy-Schwarz inequality, we have

|D1,n| ≤ max
z∈[x−r1,x,x+r2,x]

| f ′(z)| max
y∈Sx∩T

Kx,hn(y)
∫

y∈Sx∩[x−r1,x,x+r2,x]\{x}
Kx,hn(y)|y− x|dy

≤ ch−αn E
[
|Zx,hn − x|

]
≤ ch−αn

√
Var(Zx,hn) +

(
E

[
Zx,hn

]
− x

)2
≤ c.

The last inequality is obtained through Part (2.1) of Assumption (A1).
For the term D2,n: Part (2.2) of Assumption (A1) and the Markov inequality entail
that

|D2,n| ≤ max
y∈Sx∩T

Kx,hn(y)
∫

y∈Sx∩T\{x}∩[x−r1,x,x+r2,x]c
Kx,hn(y)| f (y)− f (x)|dy

≤max{| f (x− r1,x)− f (x)|, | f (x + r2,x)− f (x)|} h−αn

∫
y∈Sx∩[x−r1,x,x+r2,x]c

Kx,hn(y)dy

≤ ch−αn P(|Zx,hn − x| >min{r1,x, r2,x})

≤ ch−αn
1

(min{r1,x, r2,x})2

{
Var(Zx,hn) +

(
E

[
Zx,hn

]
− x

)2
}
≤ chαn.

Once Again, the last inequality holds via Part (2.1) of Assumption (A1).
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Therefore, Equation (5.6) is verified. And from Part (2.3) of Assumption (A1), one
gets

1
n
E

[
K2

x,hn
(X1)

]
=

1
n

f (x)
∫

y∈T∩Sx

K2
x,hn

(y)dy +O(1/n) ≤ c
max(h−αn ,1)

n
,

which leads to the convergence to zero of the variance. The proof is completed. �

Proof of Theorem 3.4. To begin with, let us rewrite our error as follows

(5.7)
√

nhαn( f̃n(x)− f (x))

=

 f̃n(x)−E
[

f̃n(x)
]

√
Var( f̃n(x))


√

nhαnVar( f̃n(x)) +
√

nhαn
{
E

[
f̃n(x)

]
− f (x)

}
.

Concerning the first term in the r.h.s. of (5.7): first, let us identify the limit of the
normalized variance using the results in (5.6) and (5.5). In particular, we have

nhαnVar( f̃n(x)) = hαnVar(Kx,hn(X1))

= hαn
{
E

[
K2

x,hn
(X1)

]
−

(
E

[
Kx,hn(X1)

])2
}

= f (x)hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy +O(hαn)− hαn
(
E

[
f̃n(x)

])2

= f (x)hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy +O(hαn).(5.8)

Therefore, Part (2.3) of Assumption (A1) implies

nhαnVar( f̃n(x)) −→
n→∞

f (x) lim
n→∞

hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy <∞.(5.9)

Now, let (Yn,i) be the rowwise i.i.d. triangular array defined by

Yn,i =
Kx,hn(Xi)−E

[
Kx,hn(Xi)

]√
nVar(Kx,hn(Xi))

, i ∈ {1, . . . ,n}.

It is clear that for all n ≥ 1 and any i ∈ {1, . . . ,n},

E
[
Yn,i

]
= 0 and

n∑
i=1

E
[
Y2

n,i

]
= 1.

Moreover, the Jensen inequality allows to write

n∑
i=1

E
[
|Yn,i|

3
]
=
E

[∣∣∣Kx,hn(X1)−E(Kx,hn(X1))
∣∣∣3]

n1/2 {Var(Kx,hn(X1))
}3/2

≤

cE
[
|Kx,hn(X1)|3

]
n1/2 {Var(Kx,hn(X1))

}3/2
=

ch3α/2
n E

[
K3

x,hn
(X1)

]
n1/2

{
nhαnVar( f̃n(x))

}3/2
.(5.10)
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Similar arguments as in (5.6) lead to

E
[
K3

x,hn
(X1)

]
= f (x)

∫
y∈T∩Sx

K3
x,hn

(y)dy +O(max(h−αn ,1)).(5.11)

Hence, we can write

E
[
K3

x,hn
(X1)

]
− f (x)

∫
y∈T∩Sx

K3
x,hn

(y)dy =: E1,n + E2,n

with

E1,n :=
∫

y∈Sx∩[x−r1,x,x+r2,x]\{x}
K3

x,hn
(y)( f (y)− f (x))dy

and

E2,n :=
∫

y∈Sx∩T∩[x−r1,x,x+r2,x]c
K3

x,hn
(y)( f (y)− f (x))dy.

For the term E1,n: by the mean-value theorem, Part (2.2) of Assumption (A1) and the
Cauchy-Schwarz inequality, we have

|E1,n| ≤ max
z∈[x−r1,x,x+r2,x]

| f ′(z)|( max
y∈Sx∩T

Kx,hn(y))2
∫

y∈Sx∩[x−r1,x,x+r2,x]\{x}
Kx,hn(y)|y− x|dy

≤ c h−2α
n E

[
|Zx,hn − x|

]
≤ c h−2α

n

√
Var(Zx,hn) +

(
E

[
Zx,hn

]
− x

)2
≤ c h−αn .

The last inequality is obtained via Part (2.1) of Assumption (A1).
For the term E2,n: Part (2.2) of Assumption (A1) and the Markov inequality allow to
infer

|E2,n| ≤

{
max

y∈Sx∩T
Kx,hn(y)

}2 ∫
y∈Sx∩T\{x}∩[x−r1,x,x+r2,x]c

Kx,hn(y)| f (y)− f (x)|dy

≤max{| f (x− r1,x)− f (x)|, | f (x + r2,x)− f (x)|} h−2α
n

∫
y∈Sx∩[x−r1,x,x+r2,x]c

Kx,hn(y)dy

≤ c h−2α
n P(|Zx,hn − x| >min{r1,x, r2,x})

≤ c h−2α
n

1
(min{r1,x, r2,x})2

{
Var(Zx,hn) +

(
E

[
Zx,hn

]
− x

)2
}
≤ c.

Then, from Equation (5.11) and Part (2.3) of Assumption (A1), we get E[K3
x,hn

(X1)] =

O(max(h−2α
n ,1)) which is combined with (5.9) and nhαn→∞ give

h3α/2
n E

[
K3

x,hn
(X1)

]
n1/2

{
nhαnVar( f̃n(x))

}3/2
−→
n→∞

0

and, the Lyapunov condition in (5.10) holds. According to the Lindeberg theorem,
we obtain

f̃n(x)−E
[

f̃n(x)
]

√
Var( f̃n(x))

L
−→
n→∞
N(0,1).
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Consequently, from (5.9) and using the Slutsky theorem, we get f̃n(x)−E
[

f̃n(x)
]

√
Var( f̃n(x))


√

nhαnVar( f̃n(x)) L
−→
n→∞
N

(
0, f (x) lim

n→∞
hαn

∫
y∈T∩Sx

K2
x,hn

(y)dy
)
.(5.12)

As for the second term in the r.h.s. of (5.7): directly followed from (5.5) and the
assumption that

√
nh(3α)/2

n −→ 0 as n→∞, we have√
nhαn

∣∣∣∣E [
f̃n(x)− f (x)

]∣∣∣∣ ≤ c
√

nh(3α)/2
n −→

n→∞
0,(5.13)

which concludes the convergence to zero for the second term in the r.h.s. of (5.7)
when n goes to infinity. This completes the proof. �

Proof of Proposition 3.5. To prove this proposition, we rewrite the considered
mean square error as the sum of two terms

E
[
(Cn − 1)2

]
= Var(Cn) + (E [Cn]− 1)2 .(5.14)

Considering the first term Var(Cn) in (5.14), we have the following development
under the i.i.d. property of (Xi)1≤i≤n:

Var(Cn) =E


∫

x,y∈T

f̃n(x) f̃n(y)dxdy

−E

∫

x∈T

f̃n(x)dx

E

∫

y∈T

f̃n(y)dy


=

∫
x,y∈T

{
E

[
f̃n(x) f̃n(y)

]
−E

[
f̃n(x)

]
E

[
f̃n(y)

]}
dxdy

=
1
n2

∫
x,y∈T

Cov

 n∑
i=1

Kx,hn(Xi),
n∑

i=1

Ky,hn(Xi)

dxdy

=
1
n2

∫
x,y∈T

n∑
i=1

n∑
j=1

Cov
(
Kx,hn(Xi),Ky,hn(X j)

)
dxdy

=
1
n2

∫
x,y∈T

n∑
i=1

Cov
(
Kx,hn(Xi),Ky,hn(Xi)

)
dxdy

=
1
n

∫
x,y∈T

Cov
(
Kx,hn(X1),Ky,hn(X1)

)
dxdy

=
1
n

∫
x∈T

Var
(
Kx,hn(X1)

)
dx +

1
n

∫
x,y∈T
x,y

Cov
(
Kx,hn(X1),Ky,hn(X1)

)
dxdy.

(5.15)
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Using Assumption (A2), the first term in (5.15) satisfies

1
n

∫
x∈T

Var(Kx,hn(X1))dx ≤
1
n

∫
y∈T

∫
x∈T

K2
x,hn

(y)dx f (y)dy

≤
1

nhαn

∫
y∈T

f (y)dy ≤
c

nhαn
,

(5.16)

where c denotes our generic constant that can change from line to line. Similarly,
using Assumption (A2), one easily see that the second term in (5.15) is bounded as
follows

1
n

∣∣∣∣∣∣∣∣∣∣∣∣
∫

x,y∈T
x,y

Cov
(
Kx,hn(X1),Ky,hn(X1)

)
dxdy

∣∣∣∣∣∣∣∣∣∣∣∣ ≤
1
n

∫
z∈T

∫
x,y∈T
x,y

Kx,hn(z)Ky,hn(z)dxdy f (z)dz

+
1
n

∫
z∈T

∫
z′∈T

∫
x,y∈T
x,y

Kx,hn(z)Ky,hn(z′)dxdy f (z′)dz′ f (z)dz

≤
c
n

∫
z∈T

f (z)dz +
c
n

∫
z∈T

∫
z′∈T

f (z′) f (z)dz′dz ≤
c
n
.

(5.17)

Therefore, we conclude from (5.16) and (5.17) that Var(Cn) −→
n→∞

0.

As for the second term (E[Cn]−1)2 in the right hand side of (5.14): on the one hand,
our analyses above gives that for any x ∈T and from (5.5), E[ f̃n(x)]− f (x) converges
to zero as n tends to infinity. On the other hand, from Proposition 3.2, |E[ f̃n(x)− f (x)]|
is bounded by c max{ f (x + r2,x), f (x− r1,x), max

z∈[x−r1,x,x+r2,x]
| f ′(z)|} for any x ∈T and n ∈N.

Furthermore, this upper bound is integrable on T with respect to variable x from
Assumption (A0). Therefore, we get

|E[Cn − 1]| ≤
∫

x∈T
|E[ f̃n(x)− f (x)]|dx −→

n→∞
0,

where the last convergence to zero is obtained from the dominated convergence
theorem. This completes the proof. �
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