
HAL Id: hal-04112634
https://hal.science/hal-04112634

Submitted on 31 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Have Foundational Models Seen Satellite Images?
Akash Panigrahi, Sagar Verma, Matthieu Terris, Maria Vakalopoulou

To cite this version:
Akash Panigrahi, Sagar Verma, Matthieu Terris, Maria Vakalopoulou. Have Foundational Models
Seen Satellite Images?. IGARSS 2023 - International Geoscience and Remote Sensing Symposium,
IEEE, Jul 2023, Pasadena, United States. �hal-04112634�

https://hal.science/hal-04112634
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


HAVE FOUNDATIONAL MODELS SEEN SATELLITE IMAGES?

Akash Panigrahi 1, Sagar Verma1,2, Matthieu Terris1, and Maria Vakalopoulou2

1 Granular AI, MA, USA
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ABSTRACT

This paper presents an investigation into the zero-shot
performance of pre-trained foundation models on re-
mote sensing tasks. Recent advances in self-supervised
learning suggest that these models, when trained on
vast amounts of unsupervised data, could potentially
improve generalization across a number of downstream
tasks. Our study offers an empirical evaluation of these
models on standard remote-sensing benchmarks such as
EuroSAT and BigEarthNet-S2, with the intent to con-
firm whether these models have encountered satellite
imagery during their training phase. Moreover, we ex-
amine the impact of adding a geospatial domain-specific
textual description of classes, contrasting it with the
standard class-based prompts. Our findings indicate
that the fine-tuned BLIP models exhibit superior zero-
shot performance on these benchmarks compared to
their standard counterparts, signifying that fine-tuning
on standard benchmarks enhances performance. Fur-
thermore, the addition of geospatial context variably in-
fluences performance depending on the specific model
and dataset. This work provides crucial insights into
the applicability of foundation models in remote sens-
ing tasks and lays the groundwork for further research.

1. INTRODUCTION

Recent progress in self-supervision shows that pre-
training large neural networks on vast amounts of un-
supervised data can increase generalization for down-
stream tasks [1, 2]. Such models, recently coined as
foundation models, have been transformational to com-
puter vision and natural language processing. In this
work, we analyze the zero-shot performance of these

models on standard remote sensing image classification
datasets as shown in Figure 1. This work aims to es-
tablish empirical evidence of whether these foundational
models have seen satellite imagery during their training.
We believe this can enable the remote sensing commu-
nity to effectively utilize these models in different down-
stream tasks like classification, segmentation, object de-
tection, and change detection.

2. RELATED WORKS

Radford et al.[1] jointly trained image and text en-
coders (CLIP), using contrastive losses to maximize co-
sine similarity between image and text representations.
Jia et al.[3] curated an exascale, noisy dataset to train
a simple dual-encoder architecture to align image and
text embeddings using a contrastive loss. Li et al.[2]
observe that noise in data leads to sub-optimal model
training and attempt to alleviate the same through Cap-
Filt, a bootstrapping mechanism that employs a cap-
tioner to synthesize captions, and a filter to remove noisy
ones. Yuan et al.[4] try to unify image-text learning by
pre-training a combination of hierarchical vision trans-
former (image encoder) and modified CLIP (language
encoder) on web-scale image-label-description triplets.
The resultant model demonstrates the outstanding per-
formance of a number of transfer types, including few-
shot and zero-shot transfers. Lacost et al.[5] proposed
to use foundational models like CLIP to leverage satel-
lite images for climate change problems. However, they
focus on fine-tuning instead of zero-shot to overcome
problems like the availability of small datasets, license
issues, and distributional shifts. They do not show em-
pirical evidence on why foundational models are better
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Fig. 1: Captions show ground truth and top-5 predicted labels by CLIP (ViT-B/32) from BigEarthNet-S2 Dataset.

suited. To the best of our knowledge, our work is the
first to show empirically how good foundational models
are in the case of remote sensing problems.

3. EXPERIMENTS

We obtain zero-shot performance of two pretrained
foundation models: CLIP and BLIP, and their image-
encoder based variants on remote sensing datasets: Eu-
roSAT [6] and BigEarthNet-S2 [7]. EuroSAT is a
toy LULC classification dataset consisting of 27000
geo-referenced Sentinel-2 patches categorized into ten
classes. BigEarthNet is a large-scale multi-label dataset
with 590,326 Sentinel-2 patches. We observe the per-
formance of these architectures in a standard setting and
compare the same with a context-based setting wherein
we provide a geospatial domain-specific textual de-
scription of classes in contrast to standard class-based
prompts in the standard setting. These datasets and
experiments performed here are available in the Geo-
Engine platform [8, 9].

For CLIP, pretrained ResNet and Transformer vari-
ants are available in the public domain. We gener-
ated inferences on EuroSAT and BigEarthNet-S2 for
all these pretrained CLIP versions. For BLIP, standard
base and large ViT weights, along with their variants

fine-tuned on the large web-scale dataset bootstrapped
through CapFilt, and other standard benchmarks like
MS-COCO and Flickr30k, are available in the public
domain. BLIP employs cross-attention between textual
and visual representations instead of standard metrics
like cosine similarity for image-text alignment. Such
metrics for similarity computation will lead to an inac-
curate measurement of its zero-shot performance on Eu-
roSAT and BigEarthNet-S2 datasets. Instead, we repur-
posed the image-text retrieval mode of BLIP variants for
image classification on the remote-sensing benchmarks.

4. RESULTS

We report our findings on the zero-shot performance
of variants of foundation models like CLIP and BLIP
on EuroSAT and BigEarthNet benchmarks in standard-
and context-based settings in Table 1. We observe that
CLIP has a near-random performance on BigEarthNet-
S2 owing to large image-encoder activations for (almost)
all classes that lead to many false positives. We no-
tice that fine-tuned BLIP models have a better zero-shot
performance on EuroSAT and BigEarthNet benchmarks
than standard variants and can safely conclude that fine-
tuning on standard benchmarks improves performance.
We observe that zero-shot performance on EuroSAT



CLIP

Backbone EuroSAT BigEarthNet-S2

Standard Context Standard Context

ResNet-50 25.31 28.03 6.82 6.80
ResNet-50x4 22.04 28.79 6.82 6.76
ResNet-50x16 43.13 41.74 6.78 6.71
ResNet-50x64 35.86 17.20 6.80 6.76
ResNet-101 26.74 23.96 6.81 6.82
ViT-B/16 38.86 41.02 6.82 6.84
ViT-B/32 32.67 33.58 6.85 6.82
ViT-L/14 52.43 50.59 6.82 6.83
ViT-L/14@336px 51.05 45.40 6.82 6.82

BLIP

Backbone EuroSAT BigEarthNet-S2

Standard Context Standard Context

ViT-B/16 36.87 42.35 86.97 84.34
On CapFilt-L 38.55 34.81 87.31 86.41
On MS-COCO 36.87 41.20 89.69 84.34
On Flickr30 42.67 46.20 88.47 82.30
ViT-L/16 45.78 45.06 81.05 83.74
On MS-COCO 48.11 52.23 86.21 77.43
On Flickr30 42.35 50.42 87.25 77.03

Table 1: Zero-Shot Performance of CLIP and BLIP on EuroSAT and BigEarthNet-S2. Supervised training from
scratch gives best results for ResNet-101 (93.72%) and ViT-B/16 (77.21%) for EuroSAT and BigEarthNet-S2

respectively.

improves with the addition of remote-sensing context
for smaller CLIP variants like ResNet50, ResNet101,
and ViT-B/32, and degrades for larger architectures
like ViT-L/14 and EfficientNet-based scaled versions of
ResNet50. No such visible patterns could be observed in
CLIP’s performance on context-addition for BigEarth-
Net labels. Adding geospatial priors leads to a marked
improvement in zero-shot performance for most of the
BLIP variants on EuroSAT. On BigEarthNet-S2, the ad-
dition of context leads to a degradation in performance
for most of the BLIP variants.

5. CONCLUSION

In summary, our study presents an empirical examina-
tion of the zero-shot performance of pre-trained foun-
dation models on standard remote-sensing datasets like
EuroSAT and BigEarthNet-S2. Our findings reveal that
fine-tuned BLIP variants outperform the standard ver-
sion on these benchmarks, and incorporation of geospa-
tial context during the inference stage can lead to mixed
outcomes depending on model and dataset selected.

In the future, we intend to expand the scope of
our investigation by involving more task types and
datasets. We will be incorporating more foundational
models, such as ALBEF [10], ViLD[11], and ZSI[12].
These models have been trained on different large pri-
vate datasets, which may or may not have satellite and
aerial images. Our larger experiment set will consist of
BigEarthNet-S1, SynthWakeSAR[13] in case of classifi-
cation. SeeDroneSeaV2[14], xView[15] and DOTA[16]

in case of object detection. Houston UAV[17, 18] in case
of semantic segmentation. We also plan to utilize these
models in a very naive way for change detection prob-
lems on OSCD BiDate[19], OSCD MultiDate[20], and
QFabric[21] datasets.
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