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Flux limite de paroi mobile

If a fluid is limited by a slowly variable structure with a small space displacement, it is possible at the first order of accuracy to replace a geometrical modelling of this movement by a so-called limiting flux of moving boundary on the faces between fluid and structure ; movement can be described in terms of algebra.

Résumé
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1)

Introduction.

• On cherche à modéliser numériquement l'écoulement de fluide parfait dans un domaine extérieur à un objet flexible limité par une paroi mobile Γ. Dans le cas d'une paroi rigide, le problème fluide est posé sous la forme d'un problème aux limites pour les équations d'Euler de la dynamique des gaz : équations d'Euler (stationnaires ? ) dans le volume fluide Ω, condition limite de non pénétration du fluide dans la paroi sur cette portion Γ de frontière ( u • n = 0 , où u est le champ de vitesse du fluide et n la normale à Γ extérieure au domaine Ω), condition d'écoulement uniforme à l'infini sur la partie Γ ∞ qui complète le bord ∂Ω (∂Ω = Γ ∪ Γ ∞ ; voir la figure 1.1).

• Dans le cas où la paroi est flexible, c'est en toute rigueur un problème d'interaction fluide-structure qu'il faut poser sur la réunion de la zone fluide Ω et de la zone solide Ω S (de frontière commune Γ) (voir par exemple Morand et Ohayon [START_REF] Morand | Interaction fluide-structure[END_REF]). Il convient toujours de poser un problème fluide dans le domaine Ω (avec condition limite fluide sur Γ ∞ ) mais également d'écrire les équations de l'élastodynamique dans le domaine solide Ω S , avec comme condition limite imposée sur Γ la donnée des efforts locaux du fluide sur la structure (σ • n + p n = 0 sur Γ où σ est le tenseur des contraintes solides, n la normale extérieure et p la pression du fluide sur la paroi Γ). De plus, les domaines Ω et Ω S sont mobiles et l'interface Γ est en fait une fonction du temps (figure 1.2) sur laquelle on doit toujours écrire la non pénétration du fluide à la paroi (u S • n = u • n, avec u S égale à la vitesse du solide, sans changer les notations précédentes). Cette mobilité de l'interface constitue une difficulté majeure dans le traitement numérique de ce problème : les logiciels de mécanique des fluides utilisent en général des maillages de référence fixes, (comme par exemple le code Flu3c de Borrel et al [START_REF] Borrel | Upwind scheme for computing supersonic flows around a tactical missile[END_REF] que nous considérons ici comme code de référence) et il en est de même pour les codes de mécanique des structures comme Nastran [START_REF] Neal | The evolution of lower order plate and shell elements in MSC/Nastran[END_REF] ou Samcef [START_REF] Samsef | Stabi-Dynam-Repdyn[END_REF] • Une approche possible pour résoudre ce problème lorsque le mouvement du solide est lent devant le temps de mise à l'équilibre du fluide (voir par exemple Destuynder [START_REF] Destuynder | Cours d'aéroélasticité[END_REF] pour une classification des problèmes d'interaction fluide-structure séparant clairement aéroélasticité et aéroacoustique), on découple les mouvements du fluide et de la structure à l'aide d'un algorithme de type "point fixe" (voir par exemple Piperno [START_REF] Piperno | Simulation numérique de phénomènes d'interaction fluide-structure[END_REF]) : le mouvement de la paroi mobile Γ (champ u S sur Γ) permet le calcul du fluide sur le domaine mobile Ω(t). Comme résultat de cette modélisation, on dispose du champ de pression paroi p(t) qui est une condition limite pour le problème d'élastodynamique posé dans le domaine Ω S (petites déformations), lequel permet la détermination du mouvement de la paroi mobile u S . Et on recommence !

• Ce processus est a priori convergent lorsque la vitesse de la paroi u S est faible devant la vitesse c des ondes dans le fluide (| u S |<< c sur Γ) et lorsque l'extension géométrique des perturbations est faible, c'est-à-dire lorsque Ω(t) est "proche" du domaine fixe Ω. Pour fixer les idées, le mouvement d'un point de la paroi doit être tel que l'écart δ à la position nominale reste petit devant la taille d'une maille discrète (| δ |<< ∆x). La résolution du problème fluide demande l'emploi d'un maillage (partiellement mobile) avec une méthode de type Euler-Lagrange Arbitraire (ALE ; voir par exemple la synthèse proposée par Anderson [START_REF] Anderson | An overview of the theory of hydrocodes[END_REF]), ce qui est délicat mais fournit une solution satisfaisante (voir par exemple Ruffino et Coron [START_REF] Ruffino | Aéroélasticité des lanceurs, conditon limite de transpiration[END_REF]).

• Nous proposons ici une méthodologie qui permette, dans le cadre de la méthode numérique utilisée pour le code Flu3c, d'éviter d'effectuer un calcul sur un maillage mobile par l'emploi d'une condition limite équivalente, dite de "paroi mobile". Les travaux menés jusqu'ici et dont nous avons connaissance (voir par exemple Coron [START_REF] Coron | Compte-rendu de réunion "Conditions aux limites de transpiration[END_REF]) montrent que la mise en oeuvre de la condition classique de transpiration (voir par exemple Mortchéléwicz [START_REF] Mortchélévicz | Résolution des équations d'Euler instationnaires en maillages non structurés[END_REF]) ne suffit pas à modéliser correctement l'effet de la paroi mobile pour le calcul de la pression. Nous rappelons au paragraphe 2 (voir aussi [START_REF] Dubois | Quelques problèmes de couplage[END_REF]) l'étude du cas nonodimensionnel qui permet de traiter divers problèmes de calcul de pression avant de passer aux paragraphes 3 à 5 à un modèle bidimensionnel qui demande une description géométrique précise, un calcul non banal de flux transverses et des développements algébriques importants.

2)

Etude monodimensionnelle

• 2.1 • Volumes finis

• Nous étudions les équations d'Euler de la dynamique des gaz dans un domaine mobile Ω(t) :

(2.1) Ω(t) = ]0, X(t)[ , t ≥ 0, X(t) > 0 tel que le mouvement du point frontière X(t) est donné et reste voisin d'un point fixe d'abscisse L > 0 :

(2.2) X(t) L t ≥ 0.

Dans le domaine d'espace-temps Ξ défini par :

(2.3) Ξ = t≥0 Ω(t) × {t} nous cherchons un état fluide W (x, t) fonction de l'espace x et du temps t :

(2.4) 0 ≤ x ≤ X(t) , t ≥ 0.

L'état W (x, t) est le vecteur des variables conservées (écrit ici comme la transposée d'un vecteur ligne) :

(2.5) W = ρ, ρu, ρE t où ρ est la densité du fluide, u sa vitesse et E son énergie totale spécifique liée à l'énergie interne spécique e via la relation constitutive : (2.8) f (W ) = ρu, ρu 2 + p, ρuE + pu t qui introduit la pression comme une fonction de W via l'énergie interne e et le rapport γ (γ = 7/5 pour l'air) des chaleurs spécifiques (voir par exemple le livre de Courant et Friedrichs [START_REF] Courant | Supersonic flow and shock waves[END_REF]) :

(2.9) p = (γ -1) ρe.

• Le système (2.7) doit être "fermé" via deux conditions aux limites en x = 0 et x = X(t) et une condition initiale à t = 0 qu'on peut écrire :

(2.10) W (•, 0) = W 0 .

La condition limite en x = 0 consiste à se donner un état fluide W ∞ (t) via une condition faible d'entropie à la limite :

(2.11)

W (0, t) ∈ E W ∞ (t)
qui relie un ensemble d'états admissibles E(W ∞ (t)) à un état W (0, t) au bord du domaine d'étude (voir [START_REF] Dubois | Boundary conditions for nonlinear hyperbolic systems of conservation laws[END_REF]) ; dans le cas d'une étude linéarisé où W (0, t) est voisin de W ∞ (t), la condition d'entropie à la paroi limite (2.11) revient à écrire les "relations caractéristiques entrantes", dont Kreiss [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF] a démontré qu'elles conduisent à un problème linéaire bien posé. La condition sur la paroi mobile est de type non pénétration ; la "normale extérieure" au domaine Ω(t) est ici simplement égale à 1 et il suffit d'écrire que la vitesse du fluide u(X(t), t) sur la paroi mobile est égale à la vitesse (imposée) dX dt de ladite paroi :

(2.12) u(X(t), t) = dX dt , t ≥ 0.

• La discrétisation numérique du problème (2.7), (2.10), (2.11), (2.12) s'effectue avec l'une des nombreuses variantes de l'approche Muscl de Van Leer [START_REF] Van Leer | Towards the ultimate conservative scheme V. A second order sequel to Godunov's method[END_REF] ; nous en donnons une version avec un schéma d'ordre 1 en temps et renvoyons le lecteur par exemple à [START_REF] Dubois | Guide méthodologique : Schémas numériques décentrés pour la mécanique des fluides[END_REF] pour une proposition d'implémentation du schéma explicite de Heun. On fixe un pas d'espace ∆x de sorte que :

(2.13) Fixons les notations pour le maillage, qui ne sont pas les plus simples pour ce problème monodimensionnel, mais sont les plus naturelles à transposer au cas multidimensionnel. On pose :

I
(2.15)

x i+1/2 = i ∆x 0 ≤ i ≤ I et (2.16)
x I+1/2 (t) = X(t) t ≥ 0, l'hypothèse (2.14) indique que la dernière maille reste quasiment de volume ∆x lorsque t varie.

• La discrétisation en temps introduit classiquement un paramètre de discrétisation ∆t > 0 (voir la figure 2.1) ; la vitesse moyenne de la paroi mobile entre les deux pas de temps n∆t et (n + 1)∆t est notée s n+1/2 :

(2.17)

s n+1/2 = 1 ∆t x n+1 I+1/2 -x n I+1/2 .
Par convention, la notation en exposant n qui fixe les variables au temps (n∆t). Cette vitesse s n+1/2 est faible devant la vitesse de mise à l'équilibre dans le fluide, donc en particulier la vitesse du son dans la dernière maille :

(2.18)

| s n+1/2 | << c n I , c n+1 I ; n entier ≥ 0 et la vitesse du son c(W ) satisfait à la relation : (2.19) c 2 = γp ρ .
• La méthode des volumes finis consiste à intégrer la loi de conservation (2.7) dans une boîte ] x I-1/2 , x I+1/2 [ × ] n∆t, (n + 1) ∆t [ , à introduire comme inconnue de base la valeur moyenne W n i au temps n∆t :

(2.20)

W n i 1 ∆x x i+1/2 x i-1/2 W (x, n∆t) dx ; 1 ≤ i ≤ I et à chercher à exprimer le flux d'interface f n+1/2
i+1/2 donné par l'expression :

(2.21)

f n+1/2 i+1/2 = 1 ∆t (n+1)∆t n∆t f W (x i+1/2 , t) dt
à l'aide de l'ensemble de variables W n l , 1 ≤ l ≤ I de façon à faire avancer d'un pas de temps ∆t les variables conservées :

(2.22) 1 ∆t W n+1 i -W n i + 1 ∆x f n+1/2 i+1/2 -f n+1/2 i-1/2 = 0 .
Pour les valeurs de i allant de 

f n+1/2 i+1/2 = Ψ W n i+1/2,-, W n i+1/2,+ .
Dans le cas de la première maille (i = 1) , le flux entrant

f n+1/2 1/2 est évalué en utilisant la donnée fluide W n ∞ à l'instant n∆t : (2.24) f n+1/2 1/2 = Ψ W n ∞ , W n 1/2,+ , n ≥ 0 .
• Pour être complet, rappelons que le logiciel Flu3mi utilise comme flux numérique Ψ(• , •) le flux-splitting de Van Leer [START_REF] Van Leer | Flux vector splitting for the Euler equations[END_REF] (à ne pas confondre avec le schéma Muscl de Van Leer !) défini par les relations suivantes :

(2.25)

Ψ(W g , W d ) = f + (W g ) + f -(W d ) .
Les flux partiels f ± (•) réalisent une décomposition de la fonction de flux f (•) donnée à la relation (2.8) :

(2.26) 

f (W ) = f + (W ) + f -(W ) , ∀ W ∈ IR 3 et la fonction f + (•) est paramétrée par le nombre de Mach M = u c de l'état W . On a : (2.27) f + (W ) =    0 si M ≤ -1 f + m , f + x , f + e t si | M |≤ 1 f (W ) si M ≥ 1 avec les relations suivantes : (2.28) f + m (W ) = ρc M + 1 2 2 (2.29) f + x (W ) = f + m (W ) (γ -1) u + 2c γ (2.30) f + e (W ) = f + m (W ) ((γ -1) u + 2c) 2 2(γ 2 -1)
(2.33) f - m (W ) = -ρc M -1 2 2 (2.34) f - x (W ) = f - m (W ) (γ -1) u -2c γ (2.35) f - e (W ) = f - m (W ) ((γ -1) u -2c) 2 2(γ 2 -1) .
Dans ces conditions, le choix d'un foncteur "miroir" µ(•) est donné par :

(2.36)

µ(W ) = ρ , -ρu, ρE t qui assure que pour | M (W ) | ≤ 1, on a :
(2.37)

f + (W ) + f -(µ(W )) = 0 , 2 f + m (W ) (γ -1) u + 2c γ , 0 t .

Nous avons démontré la

Proposition 2.1 Pression paroi à vitesse nulle. Lorsque la vitesse s n+1/2 de la paroi (définie à la relation (2.17)) est nulle, la pression p n+1/2 * (0) définie en (2.31) est calculée par l'expression :

(2.38) p (0) est a priori différente de la pression de l'état extrapolé W n I+1/2,-car la vitesse u n * près de la paroi, lorsqu'elle est non nulle, introduit une sur-pression (ou une sous-pression). On renvoie à la figure 2.2 où l'on a représenté les ondes du problème de Riemann entre l'état extrapolé et son miroir.

• 2.2 • Bilan spatio-temporel (2.39)

s n+1/2 -u n * + 2 γ -1 c n * p n+1/2 I+1/2 p n * -1 = 0 si s n+1/2 -u n * ≥ 0 (2.40) s n+1/2 -u n * + √ 2 p n+1/2 I+1/2 -p n * ρ n * (γ + 1) p n+1/2 I+1/2 + (γ -1) p n * = 0 si s n+1/2 -u n * ≤ 0.
Si dans la méthode Muscl, on résout exactement le problème de Riemann, c'està-dire si la fonction Ψ(• , •) de la relation (2.23) est calculée à l'aide du flux de Godunov (voir par exemple [START_REF] Dubois | Guide méthodologique : Schémas numériques décentrés pour la mécanique des fluides[END_REF]), alors le flux F n+1/2 I+1/2 relatif à la condition limite de paroi mobile est évalué grâce à l'expression algébrique suivante :

(2.41) W ν t + f (W ) ν x dγ = 0 et il suffit de détailler le calcul des quatre termes de cette intégrale de contour.

         F n+1/2 I+1/2 = ∆x ∆x + x n+1 I+1/2 -x I+1/2 0 , p n+1/2 I+1/2 , p n+1/2 I+1/2 s n+1/2 t + + x n+1 I+1/2 -x I+1/2 ∆x f n+1/2 I-1/2 + s n+1/2 W n I . Remarque 2.2 • Lorsque s n+1/2 =
• On a d'abord, pour le segment "horizontal" AB :

(2.43)

AB W ν t dγ = -∆x + x n I+1/2 -x I+1/2 W n I puisque x n I+1/2 -x I-1/2 = x I+1/2 -(x I+1/2 -∆x .
• Le segment BC de la frontière mobile a une direction normale ν qui satisfait aux relations :

(2.44)

ν x = 1 1 + s n+1/2 2
(2.45)

ν t = - s n+1/2 1 + s n+1/2 2
et la "longueur spatio-temporelle" est telle que :

(2.46) BC ν x dγ = ∆t .

• On fait l'hypothèse que ce flux est calculé en utilisant un problème de Riemann partiel (voir [START_REF] Dubois | Boundary Conditions and the Osher Scheme for the Euler Equations of Gas Dynamics[END_REF], [START_REF] Dubois | Conditions aux limites fortement non linéaires pour les équations d'Euler, cours Cea-Edf-Inria "Méthodes de différences finies et équations hyperboliques[END_REF], [START_REF] Dubois | Boundary Conditions for Nonlinear Hyperbolic Systems of Conservation Laws[END_REF]) ayant comme état à gauche W n I+1/2,-de façon à couvrir dans l'espace-temps le secteur angulaire des vitesses v qui vérifient v ≤ s n+1/2 . Si u n * ≤ s n+1/2 , il se produit une détente à partir de l'état W (2.47) 

BC W ν t + f (W ) ν x dγ = ∆t f W n+1/2 I+1/2 -s n+1/2 W n+1/2 I+1/
1 ∆t ∆x + x n+1 I+1/2 -x I+1/2 ∆x W n+1 I - ∆x + x n+1 I+1/2 -x I+1/2 ∆x W n I + 1 ∆x ∆x + x n+1 I+1/2 -x I+1/2 ∆x F n+1/2 I+1/2 - ∆x + x n+1 I+1/2 -x I+1/2 ∆x f n+1/2 I-1/2 = 0 , la relation : - 1 ∆t∆x x n+1 I+1/2 -x n I+1/2 W n I + ∆x + x n+1 I+1/2 -x I+1/2 ∆x 2 F n+1/2 I+1/
F n+1/2 I+1/2 =                      p n+1/2 * (0) 0 , 1 , s n+1/2 t + + s n+1/2 W n I + 0 , -ρ n * c n * , 0 t + + 1 ∆x x n+1 I+1/2 -L f n+1/2 I-1/2 -0 , p n+1/2 * (0) , 0 t + + O x n+1 I+1/2 -L ∆x 2 + s n+1/2 c n * 2 .
Preuve de la proposition 2.4 3)

F n+1/2 I+1/2 = 1 - x n+1/2 I+1/2 -x I+1/2 ∆x 0 , p n+1/2 * (0) -p n * c n * s n+1/2 , p n+1/2 * (0) s n+1/2 t + x n+1 I+1/2 -x I+1/2 ∆x f n+1/2 I-1/2 + s n+1/2 W n I + ordre ≥ 2 c'est à dire : (2.61) F n+1/2 I+1/2 =                0 , p n+1/2 * (0) , 0 t + + s n+1/2 W n I + 0 , -ρ n * c n * , p n+1/2 * (0) s n+1/2 t + + 1 ∆x x n+1 I+1/2 -L f n+1/2 I-1/2 -0
Etude bidimensionnelle

• 3.1 • Géométrie discrète
• Le domaine d'étude Ω(t) , mobile avec le temps t, est maintenant inclus dans le plan IR 2 . Nous le supposons composé d'une réunion de quadrangles K i,j avec i ≤ I, j ∈ Z Z ; chaque quadrangle K i,j est délimité par des sommets M l+1/2, m+1/2 (l ≤ I, m ∈ Z Z) :

(3.1) ∂K i, j = M i+1/2, j-1/2 , M i+1/2, j+1/2 ∪ M i+1/2, j+1/2 , M i-1/2, j+1/2 ∪ ∪ M i-1/2, j+1/2 , M i-1/2, j-1/2 ∪ M i-1/2, j-1/2 , M i+1/2, j-1/2
comme explicité à la figure 3.1. Nous supposons de plus que les sommets sur la frontière, de numéro avec un premier indice égal à I + 1/2, sont mobiles au cours du temps, et nous posons :

(3.2) M I+1/2, j+1/2 (t) = M I+1/2, j+1/2 + δ j+1/2 (t) , j ∈ Z Z
et avec des notations "évidentes", illustrées figure 3.2 :

(3.3) ∂K I, j (t) =        M I, j (θ, ξ, t) ≡ θ ξ M i+1/2, j+1/2 (t) + + (1 -θ) ξ M I-1/2, j+1/2 + (1 -θ) (1 -ξ) M I-1/2, j-1/2 + + θ (1 -ξ) M I+1/2, j-1/2 , θ , ξ ∈ [0 , 1] .
Nous avons :

(3.4) Ω(t) = j ∈ Z Z i ≤ I -1 K i, j ∪ K I, j (t)
et le domaine Ω(t) a une frontière ∂Ω(t) composée de segments de droite :

(3.5) ∂Ω(t) = j ∈ Z Z M I+1/2, j-1/2 (t) , M I+1/2, j+1/2 (t)
qui par hypothèse reste voisine de la frontière de référence ∂Ω 0 , avec :

(3.6) ∂Ω 0 = j ∈ Z Z M I+1/2, j-1/2 , M I+1/2, j+1/2 , comme illustré figure 3.3.
• La discrétisation temporelle introduit un pas de temps ∆t > 0 , des temps discrets t n , (3.7) t n = n ∆t , n ≥ 0 et on pose par convention :

M n I+1/2, j+1/2 = M I+1/2, j+1/2 (n∆t) (3.8) M n I+1/2, j+1/2 = M I+1/2, j+1/2 + δ n j+1/2
, n ≥ 0 , j ∈ Z Z .

La vitesse du point d'indice ( I + 1/2, j + 1/2 ) entre deux instants n∆t et ( n + 1)∆t est un vecteur s n+1/2 j+1/2 calculé comme quotient aux différences finies :

(3.9)

s n+1/2 j+1/2 = 1 ∆t M n+1 I+1/2, j+1/2 -M n I+1/2, j+1/2 = 1 ∆t δ n+1 j+1/2 -δ n j+1/2
et entre les instants t n et t n+1 la cellule K I, j (t) décrit un volume d'espace-temps

V n+1/2 I, j
qu'on peut définir par :

(3.10) V n+1/2 I, j =        (n + 1)∆t -t ∆t K n I, j + t -n∆t ∆t K n+1 I, j , t , n ∆t ≤ t ≤ (n + 1) ∆t . La cellule V n+1/2 I, j
appartient à un espace-temps tridimensionnel avec un espace bidimensionnel donc est topologiquement de forme cubique (Figure 3.4). Son bord ∂V n+1/2 I, j est composé de six faces d'espace-temps à deux dimensions spatiales : la paroi mobile CBFG, les deux faces latérales BCDA et GFEH, la paroi fixe ADHE de premier indice I -1/2 qui fait face à la paroi mobile, la cellule

K n I, j = BAEF à l'instant n∆t et la cellule K n+1 I, j
= DCGH à l'instant (n + 1)∆t, comme le suggère la figure 3.4.

• Dans la suite de cette troisième section, nous notons Σ i+1/2, j (respectivement

Σ i, j+1/2 ) l'interface M i+1/2, j-1/2 , M i+1/2, j+1/2 entre K i, j et K i+1, j (respec- tivement l'interface M i-1/2, j+1/2 , M i+1/2, j+1/2 entre K i, j et K i, j+1 ) : (3.11) Σ i+1/2, j = M i+1/2, j-1/2 , M i+1/2, j+1/2 = ∂K i, j ∩ ∂K i+1, j Σ i, j+1/2 = M i-1/2, j+1/2 , M i+1/2, j+1/2 = ∂K i, j ∩ ∂K i, j+1 .
La normale orientée dans le sens des indices croissants ente K i, j et K i+1, j est notée ν i+1/2, j ; celle entre K i, j et K i, j+1 est notée ν i, j+1/2 . Elle est définie par intégration de la normale ν le long de l'interface Σ i+1/2, j ou de l'interface Σ i, j+1/2 . On a algébriquement :

ν i+1/2, j = Σ i+1/2, j ν (1 -ξ)M i+1/2, j-1/2 + ξ M i+1/2, j+1/2 dγ(ξ) (3.12) ν i+1/2, j = y i+1/2, j+1/2 -y i+1/2, j-1/2 -x i+1/2, j+1/2 -x i+1/2, j-1/2
où l'on a explicité les coordonnées planes du point courant :

(3.13) M I+1/2, j+1/2 = x i+1/2, j+1/2 , y i+1/2, j+1/2 .
De façon analogue, les relations permettant de calculer ν i, j+1/2 s'explicitent par :

ν i, j+1/2 = Σ i, j+1/2 ν (1 -θ)M i-1/2, j+1/2 + θ M i+1/2, j+1/2 dγ(θ) (3.14) ν i, j+1/2 = -y i+1/2, j+1/2 -y i-1/2, j+1/2 x i+1/2, j+1/2 -x i-1/2, j+1/2 ,
en remarquant que le signe a changé car la normale ν i+1/2, j pointe à droite de Σ i+1/2, j alors que la normale ν i, j+1/2 pointe à gauche de Σ i, j+1/2 .

• Le volume | K i, j | de la cellule K i, j se calcule par intégration de la représentation proposée en (3.3). Nous introduisons d'abord la notation α × β pour deux vecteurs de IR 2 notés α = (α x , α y ) et β = (β x , β y ) :

(3.15) 3.5. On a alors :

α × β = α x β y -α y β x . C'est un nombre (α × β ∈ IR) qui permet d'exprimer simplement la surface du quadrangle (α, β) . Bien entendu, si α et β appartiennent à IR 3 , α × β désigne toujours le produit vectoriel usuel. Proposition 3.1 Volume de la cellule K i, j . La cellule K i, j étant définie à la relation (3.3), on pose (3.16) δ + i, j = M i+1/2, j-1/2 -M i-1/2, j+1/2 (3.17) δ - i, j = M i+1/2, j+1/2 -M i-1/2, j-1/2 comme illustré à la figure
(3.18) | K i, j | = 1 2 δ + i, j × δ - i, j
si le quadrangle K i, j n'est pas une maille croisée.

Preuve de la proposition 3.1.

• Compte-tenu de la représentation (3.3), le point courant M (θ, ξ) de K i, j est paramétré par la relation :

(3.19) M (θ, ξ) = θ ξ M i+1/2, j+1/2 + (1 -θ) ξ M i-1/2, j+1/2 + + (1 -θ) (1 -ξ) M i-1/2, j-1/2 + θ (1 -ξ) M i+1/2, j-1/2 ce qui entraîne : ∂M ∂θ = ξ M i+1/2, j+1/2 -ξ M i-1/2, j+1/2 -(1-ξ) M i-1/2, j-1/2 + (1-ξ) M i+1/2, j-1/2 ∂M ∂ξ = θ M i+1/2, j+1/2 + (1-θ) M i-1/2, j+1/2 -(1-θ) M i-1/2, j-1/2 -θ M i+1/2, j-1/2
donc ∂M ∂θ ne dépend pas de θ et de même ∂M ∂ξ ne dépend pas de ξ. Nous avons par ailleurs :

| K i, j | = ]0, 1[×]0, 1[ ∂M ∂θ × ∂M ∂ξ dθ dξ = ]0, 1[×]0, 1[ ∂M ∂θ × ∂M ∂ξ dθ dξ si la maille n'est pas croisée = 1 0 ∂M ∂θ dξ × 1 0 ∂M ∂ξ dθ vu la remarque précédente = 1 2 δ - i, j + δ + i, j × 1 2 δ - i, j -δ + i, j = 1 4 δ + i, j × δ - i, j -δ - i, j × δ + i, j = 1 2 δ + i, j × δ - i, j
ce qui montre la propriété.

• Dans la suite, nous notons ν la normale extérieure à la cellule d'espace-temps

V n+1/2 I, j
. Compte-tenu des relations (3.3) et (3.10), un point M (θ, ξ, ζ) de cette cellule est défini par le paramétrage suivant, qui sépare espace et temps

t = t n + ζ∆t : (3.20) M (θ, ξ, ζ) = (1 -ζ)M n (θ, ξ) + ζM n+1 (θ, ξ) , t n + ζ∆t avec M n (θ, ξ) calculé comme à la relation (3.19), mais pour l'instant t n : (3.21) M n (θ, ξ) = θ ξ M n i+1/2, j+1/2 + (1 -θ) ξ M n i-1/2, j+1/2 + + (1 -θ) (1 -ξ) M n i-1/2, j-1/2 + θ (1 -ξ) M n i+1/2, j-1/2 .
La normale extérieure a donc trois composantes : .

ν = ν x ,
On pose, compte-tenu de (3.9), (3.12) et (3.14) :

(3.23)

s n+1/2 j = 1 2 s n+1/2 j-1/2 + s n+1/2 j+1/2 , j ∈ Z Z (3.24) ν n+1/2 j = 1 2 ν n I+1/2, j + ν n+1 I+1/2, j , j ∈ Z Z (3.25) ν n+1/2 j+1/2 = 1 2 ν n I, j+1/2 + ν n+1 I, j+1/2 , j ∈ Z Z .
L'intégrale sur leur facette respective des six normales extérieures au volume d'espace-temps V n+1/2 I, j est calculée à l'aide des expressions suivantes :

CBF G νdγ = ]0,1[×]0,1[ ∂ M ∂ξ × ∂ M ∂ζ 1, ξ, ζ dξ dζ (3.26) CBF G νdγ = ∆t ν n+1/2 j , -ν n+1/2 j • s n+1/2 j t BCDA νdγ = ]0,1[×]0,1[ ∂ M ∂θ × ∂ M ∂ζ θ, 0, ζ dθ dζ (3.27) BCDA νdγ = ∆t -ν n+1/2 j-1/2 , 1 2 ν n+1/2 j-1/2 • s n+1/2 j-1/2 t GF EH νdγ = - ]0,1[×]0,1[ ∂ M ∂θ × ∂ M ∂ζ θ, 1, ζ dθ dζ (3.28) GF EH νdγ = ∆t ν n+1/2 j+1/2 , - 1 2 ν n+1/2 j+1/2 • s n+1/2 j+1/2 t ADHE νdγ = - ]0,1[×]0,1[ ∂ M ∂ξ × ∂ M ∂ζ 0, ξ, ζ dξ dζ (3.29) ADHE νdγ = -∆t ν I-1/2, j , 0 t BAEF νdγ = - ]0,1[×]0,1[ ∂ M ∂θ × ∂ M ∂ξ θ, ξ, 0 dθ dξ (3.30) BAEF νdγ = 0 , -| K n I, j | t DCGH νdγ = ]0,1[×]0,1[ ∂ M ∂θ × ∂ M ∂ξ θ, ξ, 1 dθ dξ (3.31) DCGH νdγ = 0 , | K n+1 I, j | t .
Preuve de la proposition 3.2.

• Les relations (3.20) et (3.21) permettent le calcul des dérivées partielles utiles dans les définitions associées aux formules non numérotées. On a : 

(3.32) ∂ M ∂θ θ, ξ, ζ =                      (1 -ζ) ξ M n I+1/2, j+1/2 -ξ M n I-1/2, j+1/2 -(1 -ξ) M n I-1/2, j-1/2 + (1 -ξ) M n I+1/2, j-1/2 + ζ ξ M n+1 I+1/2, j+1/2 -ξ M n+1 I-1/2, j+1/2 -(1 -ξ) M n+1 I-1/2, j-1/2 + (1 -ξ) M n+1 I+1/2, j-1/2 , 0 t (3.33) ∂ M ∂ξ θ, ξ, ζ =                      (1 -ζ) θ M n I+1/2, j+1/2 + (1 -θ) M n I-1/2, j+1/2 -(1 -θ) M n I-1/2, j-1/2 -θ M n I+1/2, j-1/2 + ζ θ M n+1 I+1/2, j+1/2 + (1 -θ) M n+1 I-1/2, j+1/2 -(1 -θ) M n+1 I-1/2, j-1/2 -θ M n+1 I+1/2, j-1/2 , 0 t (3.34) ∂ M ∂ζ θ, ξ, ζ =                            -ξ θ M n I+1/2, j+1/2 + (1 -θ) M n I-1/2, j+1/2 -(1 -ξ) (1 -θ) M n I-1/2, j-1/2 + θ M n I+1/2, j-1/2 + ξ θ M n+1 I+1/2, j+1/2 + (1 -θ) M n+1 I-1/2, j+1/2 + (1 -ξ) (1 -θ) M n+1 I-1/2, j-1/2 + θ M n+1 I+1/2, j-1/2
]0,1[×]0,1[ ∂ M ∂ξ × ∂ M ∂ζ 1, ξ, ζ dξ dζ = 1 0 ∂ M ∂ξ dζ × 1 0 ∂ M ∂ζ dξ = ∆t     - 1 2 ν n, y I+1/2, j + ν n+1, y I+1/2, j 1 2 ν n, x I+1/2, j + ν n+1, x I+1/2, j 0     ×     1 2 s n+1/2, x j+1/2 + s n+1/2, x j-1/2 1 2 s n+1/2, y j+1/2 + s n+1/2, y j-1/2 1     = ∆t   -ν n+1/2, y j ν n+1/2, x j 0   ×   s n+1/2, x j s n+1/2, y j 1   = ∆t ν n+1/2, x j , ν n+1/2, y j , -ν n+1/2 j • s n+1/2 j t ce qui établit complètement la relation (3.26).
• La relation (3.27) se montre de façon analogue ; on a : 

BCDA νdγ = ]0,1[×]0,1[ ∂ M ∂θ × ∂ M ∂ζ θ, 0, ζ dθ dζ = 1 0 ∂ M ∂θ θ, 0, ζ dζ × 1 0 ∂ M ∂ζ θ, 0, ζ dθ = ∆t     1 2 ν n, y I, j-1/2 + ν n+1, y I, j-1/2 - 1 2 ν n, x I, j-1/2 + ν n+1, x I, j-1/2 0     ×     1 2 s n+1/2, x j-1/2 1 2 s n+1/2, y j-1/2 1     = ∆t -ν n+1/2, x j-1/2 , -ν n+1/2, y j-1/2 , 1 2 ν n+1/2 j-1/2 • s n+1/2 j-
GF EH νdγ = - ]0,1[×]0,1[ ∂ M ∂θ × ∂ M ∂ζ θ, 1, ζ dθ dζ = - 1 0 ∂ M ∂θ θ, 1, ζ dζ × 1 0 ∂ M ∂ζ θ, 1, ζ dθ = -∆t     1 2 ν n, y I, j+1/2 + ν n+1, y I, j+1/2 - 1 2 ν n, x I, j+1/2 + ν n+1, x I, j+1/2 0     ×     1 2 s n+1/2, x j+1/2 1 2 s n+1/2, y j+1/2 1     20 = ∆t ν n+1/2, x j+1/2 , ν n+1/2, y j+1/2 , - 1 2 ν n+1/2 j+1/2 • s n+1/2 j+1/2
t .

• Le lecteur sérieux parvenu à ce stade de cette preuve ayant de toute façon sorti son crayon ou son logiciel Maple, la fin est quasi-automatique :

ADHE νdγ = - ]0,1[×]0,1[ ∂ M ∂ξ × ∂ M ∂ζ 0, ξ, ζ dξ dζ = - 1 0 ∂ M ∂ξ 0, ξ, ζ dζ × 1 0 ∂ M ∂ζ 0, ξ, ζ dξ = ∆t   ν y I-1/2, j -ν x I-1/2, j 0   ×   0 0 1   = -∆t ν x I-1/2, j , ν y I-1/2, j , 0 t ce qui établit (3.29), BAEF νdγ = - ]0,1[×]0,1[ ∂ M ∂θ × ∂ M ∂ξ θ, ξ, 0 dθ dξ = - 1 0 ∂ M ∂θ θ, ξ, 0 dξ × 1 0 ∂ M ∂ζ θ, ξ, 0 dθ = ∆t 0 , -| K n I, j |
t compte-tenu du calcul effectué lors de la preuve de la proposition 3.1 ; donc la relation (3.30) est démontrée. Enfin, et de manière analogue : par interpolation temporelle entre les mailles K i, j (dont celles celles de premier numéro i = I , rappelons le, dépendent du temps) à l'aide du temps t n = n∆t . Nous diposons donc, comme au chapitre 2 relatif à l'étude monodimensionnelle, d'un domaine d'espace-temps Ξ défini par : 

DCGH νdγ = ]0,1[×]0,1[ ∂ M ∂θ × ∂ M ∂ξ θ, ξ, 1 dθ dξ = ∆t 0 , | K n+1 I,
(3.35) Ξ = n ≥ 0 j ∈ Z Z i ≤ I -1 K i, j × t n , t n+1 ∪ V n+1/2 I, j
(3.43) Φ(W ) = f (W ) , g(W ) ∈ IR 4 × IR 4 et pour une direction spatiale ν = (ν x , ν y ) ∈ IR 2 le produit scalaire contracté (3.44) Φ(W ) • ν = f (W ) ν x + g(W ) ν y qui appartient à IR 4 .
• Les conditions au bord du domaine Ξ sont de type condition limite et condition initiale. En ce qui concerne les conditions aux limites au bord spatial de Ξ , il suffit d'écrire la non-pénétration du fluide sur les parois mobiles Σ n+1/2 j (j ∈ Z Z, n ≥ 0) définies par les relations suivantes :

(3.45) Σ n j = M n I+1/2, j-1/2 , M n I+1/2, j+1/2 , j ∈ Z Z , n ≥ 0 (3.46) Σ n+1/2 j = (n+1)∆t -t ∆t Σ n j + t -n∆t ∆t Σ n+1 j , t , n∆t ≤ t ≤ (n+1)∆t
le long desquelles la vitesse moyenne vaut s n+1/2 j et est calculée à la relation (3.23). La condition de non-pénétration à la paroi (analogue bidimensionnel de la relation (2.12)) s'écrit donc en moyenne sur la surface mobile Σ n+1/2 j très simplement :

(3.47) 1 Σ n+1/2 j Σ n+1/2 j u • ν n+1/2 j dγ = s n+1/2 j • ν n+1/2 j , j ∈ Z Z , n ≥ 0
en utilisant la normale moyenne ν n+1/2 j le long de Σ n+1/2 j (voir la relation (3.24)).

• Notons que l'emploi d'indices non bornés pour la géométrie spatiale (i ≤ I, j ∈ Z Z) évite de poser ici le problème classique de la condition fluide. On renvoie pour cela aux approches classiques, décrites par exemple dans [START_REF] Dubois | Guide méthodologique : Schémas numériques décentrés pour la mécanique des fluides[END_REF]. La condition initiale ne pose pas de problème particulier et la relation (2.10) reste valable.

• La méthode des volumes finis introduit comme inconnue de base le champ W n i, j

des valeurs moyennes des variables conservées (3.36) dans la maille spatiale K n i, j :

(3.48)

W n i, j = 1 K n+1/2 i, j K n+1/2 j W x, t n dx .
Le schéma numérique consiste à intégrer la loi de conservation (3.42) dans la cellule d'espace-temps V n+1/2 i, j

, définie de manière générale par les relations :

(3.49) V n+1/2 i, j = K i, j × t n , t n+1 , i ≤ I -1 , j ∈ Z Z V n+1/2 I, j , j ∈ Z Z .
On a donc :

(3.50) ∂V n+1/2 i, j

W ν t + f (W ) ν x + g(W ) ν y (x, t) dγ(x, t) = 0 .
Le bord de V n+1/2 i, j

est constitué de facettes Σ n+1/2 i+1/2, j et Σ n+1/2 i, j+1/2 en plus des volumes spatiaux K i, j . Elles sont définies par :

(3.51) Σ n+1/2 i+1/2, j = Σ i+1/2, j × t n , t n+1 , i ≤ I -1 , j ∈ Z Z Σ n+1/2 j (c.f.(3.45)) , i = I , j ∈ Z Z (3.52) Σ n+1/2 i, j+1/2 = Σ i, j+1/2 × t n , t n+1 , i ≤ I -1 , j ∈ Z Z Σ n+1/2 j+1/2 , i = I , j ∈ Z Z
avec pour les facettes transversales :

(3.53) Σ n j+1/2 = M n I-1/2, j+1/2 , M n I+1/2, j+1/2 , j ∈ Z Z , n ≥ 0 (3.54) Σ n+1/2 j+1/2 = ζ Σ n j+1/2 + (1 -ζ) Σ n+1 j+1/2 , t n + ζ∆t , 0 ≤ ζ ≤ 1 .
Avec des notation naturelles pour les directions normales, à savoir :

(3.55)

ν n+1/2 i+1/2, j = ν i+1/2, j (c.f.(3.12)) , i ≤ I -1 , j ∈ Z Z ν n+1/2 j (c.f.(3.24)) , i = I , j ∈ Z Z (3.56) ν n+1/2 i, j+1/2 = ν i, j+1/2 (c.f.(3.14)) , i ≤ I -1 , j ∈ Z Z ν n+1/2 j+1/2
(c.f.(3.25)) , i = I , j ∈ Z Z les flux normaux (Φ • ν) dans les deux directions du maillage ont une définition très simple :

(3.57) Φ • ν n+1/2 i+1/2, j = 1 ∆t Σ n+1/2 i+1/2, j Φ W (x, t) • ν n+1/2 i+1/2, j dγ(x) dt (3.58) Φ • ν n+1/2 i, j+1/2 = 1 ∆t Σ n+1/2 i, j+1/2 Φ W (x, t) • ν n+1/2 i, j+1/2
dγ(x) dt .

• Nous développons maintenant l'intégrale de bord de la relation (3.50). Il vient :

(3.59) 

∂V n+1/2 i, j dσ(x, t) ≡            K n+1 i, j dx - K n i, j dx + Σ n+1/2 i+1/2, j dγ - Σ n+1/2 i-1/2, j dγ + Σ n+1/2 i, j+1/2 dγ - Σ n+1/2 i,
(3.60)        1 ∆t W n+1 i, j -W n i, j + 1 K i, j Φ • ν n+1/2 i+1/2, j -Φ • ν n+1/2 i-1/2, j + + Φ • ν n+1/2 i, j+1/2 -Φ • ν n+1/2 i, j-1/2 = 0 , i ≤ I -1 , j ∈ Z Z .
       Σ n+1/2 I+1/2, j W ν t + f (W ) ν x + g(W ) ν y (x, t) dγ = = ∆t Φ • ν n+1/2 I+1/2, j -s n+1/2 j • ν n+1/2 j W n+1/2 I+1/2, j (3.62) Σ n+1/2 I-1/2, j W ν t + f (W ) ν x + g(W ) ν y (x, t) dγ = -∆t Φ • ν n+1/2 I-1/2, j (3.63)        Σ n+1/2 I, j+1/2 W ν t + f (W ) ν x + g(W ) ν y (x, t) dγ = = ∆t Φ • ν n+1/2 I, j+1/2 - 1 2 s n+1/2 j+1/2 • ν n+1/2 j+1/2 W n+1/2 I, j+1/2 (3.64)        Σ n+1/2 I, j-1/2 W ν t + f (W ) ν x + g(W ) ν y (x, t) dγ = = ∆t -Φ • ν n+1/2 I, j-1/2 + 1 2 s n+1/2 j-1/2 • ν n+1/2 j-1/2 W n+1/2 I, j-1/2
. Preuve de la proposition 3.3.

• Nous montrons d'abord la relation (3.61) en détail. Nous avons : 

Σ n+1/2 I+1/2, j W ν t + f (W ) ν x + g(W ) ν y (x, t) dγ = = -∆t W n+1/2 I+1/2, j s n+1/2 j • ν n+1/2 j + ∆t f W n+1/2 I+1/2, j ν n+1/2, x j + + g W n+1/2 I+1/2, j ν n+1/2, y j compte tenu de (3.26) = ∆t Φ • ν n+1/2 I+1/2, j -s n+1/2 j • ν n+1/2 j W n+1/2 I+1/2
                           1 ∆t K n+1 I, j W n+1 I, j -K n I, j W n I, j + + Φ • ν n+1/2 I+1/2, j -s n+1/2 j • ν n+1/2 j W n+1/2 I+1/2, j -Φ • ν n+1/2 I-1/2, j + Φ • ν n+1/2 I, j+1/2 - 1 2 s n+1/2 j+1/2 • ν n+1/2 j+1/2 W n+1/2 I, j+1/2 -Φ • ν n+1/2 I, j-1/2 - 1 2 s n+1/2 j-1/2 • ν n+1/2 j-1/2 W n+1/2 I, j-1/2 = 0 . • Lorsque le volume K I, j ( 
       Φ • ν n+1/2 I+1/2, j = s n+1/2 j • ν n+1/2 j W n+1/2 I+1/2, j + + 0 , p n+1/2 I+1/2, j ν n+1/2 j , p n+1/2 I+1/2, j s n+1/2 j • ν n+1/2 j t .
Preuve de la proposition 3.4.

• Le flux normal à la paroi, compte-tenu de (3.40), (3.41) et (3.44) s'écrit :

Φ • ν =    ρ u • ν (ρ u • ν) u + p ν x (ρ u • ν) v + p ν y (ρ u • ν) E + p ( u • ν)    = ( u • ν)    ρ ρ u ρ v ρ E    +   0 p ν p ( u • ν)   = s n+1/2 j • ν n+1/2 j W n+1/2 I+1/2, j +    0 p n+1/2 I+1/2, j ν n+1/2 j p n+1/2 I+1/2, j s n+1/2 j • ν n+1/2 j   
compte-tenu de la relation (3.47), ce qui établit complètement la relation (3.66).

Proposition et définition 3.5

Flux limite de paroi mobile. Sous les mêmes hypothèses que pour les propositions précédentes, on définit par

F • ν n+1/2 I+1/2, j
l'expression algébrique qui permet de remplacer l'éécriture de la loi de bilan (3.65) sur maillage mobile par une expression algébrique de type (3.60) relative à un maillage fixe :

(3.67)        1 ∆t W n+1 I, j -W n I, j + 1 K I, j F • ν n+1/2 I+1/2, j -Φ • ν n+1/2 I-1/2, j + + Φ • ν n+1/2 I, j+1/2 -Φ • ν n+1/2 I, j-1/2 = 0 , i = I , j ∈ Z Z .
Le flux limite de paroi mobile

F • ν n+1/2 I+1/2, j
est donc défini par l'expression suivante :

(3.68) 

                                       F • ν n+1/2 I+1/2, j = K I, j K n+1 I, j    0 p n+1/2 I+1/2, j ν n+1/2 j p n+1/2 I+1/2, j s n+1/2 j • ν n+1/2 j    + + K n+1 I, j ∆t 1 - K n I, j K n+1 I, j W n+1/2 I+1/2, j + K n+1 I, j K I, j -1 Φ • ν n+1/2 I-1/2, j + Φ • ν - 1 2 s • ν W n+1/2 I, j+1/2 - K n+1 I, j K I, j Φ • ν n+1/2 I, j+1/2 - Φ • ν - 1 2 s • ν W n+1/2 I, j-1/2 - K n+1 I, j K I, j Φ • ν n+1/2 I,
       F • ν n+1/2 I+1/2, j = - K I, j ∆t W n+1 I, j -W n I, j + Φ • ν n+1/2 I-1/2, j -Φ • ν n+1/2 I, j+1/2 + Φ • ν n+1/2 I, j-1/2
puis on remplace l'état W n+1 I, j par sa valeur tirée de l'expression (3.65), c'est-à-dire, compte-tenu de la relation (3.66) :

(3.70)

                       W n+1 I, j = K n I, j K n+1 I, j W n I, j + ∆t K n+1 I, j -    0 p n+1/2 I+1/2, j ν n+1/2 j p n+1/2 I+1/2, j s n+1/2 j • ν n+1/2 j    + Φ • ν n+1/2 I-1/2, j -Φ • ν - 1 2 (s • ν)W n+1/2 I, j+1/2 + Φ • ν - 1 2 (s • ν)W n+1/2 I, j+1/2 .
On reporte l'expression (3.70) au sein de la relation (3.69). Il vient : , j ∈ Z Z reste petite devant les distances typiques au sein de la maille K I, j (j ∈ Z Z) : • 4.2 • Volume mobile Proposition 4.1 Développement limité du volume de la maille mobile. Le volume K I, j de la maille mobile K I, j à l'instant n ∆t est développé au premier ordre par l'expression suivante : 

                                               F • ν n+1/2 I+1/2, j = K I, j ∆t 1 - K n I, j K n+1 I, j W n I, j + + K I, j K n+1 I, j    0 p n+1/2 I+1/2, j ν n+1/2 j p n+1/2 I+1/2, j s n+1/2 j • ν n+1/2 j    + + 1 - K I, j K n+1 I, j Φ • ν n+1/2 I-1/2, j + K I, j K n+1 I, j Φ • ν - 1 2 (s • ν) W n+1/2 I, j+1/2 -Φ • ν n+1/2 I, j+1/2 - K I, j K n+1 I, j Φ • ν - 1 2 (s • ν) W n+1/2 I, j-1/2 + Φ • ν n+1/2 I,
(4.3) δ n j+1/2 << δ + I, j , δ - I, j , δ + I, j+1 , δ - I,
(4.4) K n I, j = K I, j + 1 2 δ + I, j × δ n j+1/2 -δ - I, j × δ n j-1/2 + (
(4.5) 1 ∆t 1 - K n I, j K n+1 I, j = 1 2 K I, j δ + I, j × s n+1/2 j+1/2 -δ - I, j × s n+1/2 j-1/2 + ordre ≥ 2 .
Preuve de la proposition 4.1 et de la remarque 4.1.

• On part de l'expression (3.18) (proposition 3.1) qui permet le calcul du volume K I, j et on remplace les bras δ + I, j et δ - I, j par leur valeur à l'instant courant. Il vient :

K n I, j = 1 2 M n I+1/2, j-1/2 -M I-1/2, j+1/2 × M n I+1/2, j+1/2 -M I-1/2, j-1/2 = 1 2 δ n j-1/2 + δ + I, j × δ n j+1/2 + δ - I, j = K I, j + 1 2 δ + I, j × δ n j+1/2 -δ - I, j × δ n j-1/2 + 1 2 δ n j-1/2 × δ n j+1/2
ce qui montre la relation (4.4) compte tenu de l'hypothèse (4.3).

• La relation (4.5) s'établit de façon analogue ; on a : 

K n I, j K n+1 I, j = 1 + 1 2 K I, j δ + I, j × δ n j+1/2 -δ - I, j × δ n j-1/2 + ordre ≥ 2 1 + 1 2 K I, j δ + I, j × δ n+1 j+1/2 -δ - I, j × δ n+1 j-1/2 + ordre ≥ 2 = 1 + 1 2 K I, j δ + I, j × δ n j+1/2 -δ n+1 j+1/2 -δ - I, j × δ n j-1/2 -δ n+1 j-1/2 + ordre ≥ 2 = 1 - ∆t 2 K I, j δ + I, j × s n+1/2 j+1/2 -δ - I, j × s n+1/2 j-
δ n+1/2 j+1/2 = 1 2 δ n j+1/2 + δ n+1 j+1/2 (4.7) ν n+1/2 j+1/2 = ν I, j+1/2 + k × δ n+1/2 j+1/2
, où k est le vecteur de IR 3 qui pointe normalement au plan du domaine Ω k = (0, 0, 1) t et × désigne le produit vectoriel habituel.

Preuve de la proposition 4.2.

• On part de la relation (3.14) qui prend ici la forme :

ν n I, j+1/2 = -y n I+1/2, j+1/2 -y I-1/2, j+1/2 , x n I+1/2, j+1/2 -x I-1/2, j+1/2 t = ν I, j+1/2 + -δ n j+1/2, y , δ n j+1/2, x t = ν I, j+1/2 + k × δ n j+1/2
et la fin résulte de la relation (3.24) qui permet de faire la demi-somme entre les instants t n et t n+1 .

Proposition 4.3 Vecteur normal le long de la paroi mobile. La normale ν n+1/2 j le long de la face de paroi mobile Σ n+1/2 j a par définition un module égal à la longueur Σ n+1/2 j de cette face. Son développement est calculé grâce aux relations suivantes :

(4.8) n+1/2 j = δ n+1/2 j+1/2 -δ n+1/2 j-1/2 , j ∈ Z Z , n ≥ 0 (4.9) ν n+1/2 j = ν I+1/2, j + n+1/2 j × k , j ∈ Z Z , n ≥ 0
avec les mêmes notations que pour la proposition précédente. Si on introduit la normale unitaire fixe ou mobile avec le symbole "tilda", c'est à dire

(4.10) ν = ν | ν | , ν = ν I+1/2, j ou ν = ν n+1/2 j ,
on a alors à l'ordre 1 de précision :

(4.11) ν n+1/2 j = 1 - ν I+1/2, j ν I+1/2, j 2 × n+1/2 j ν I+1/2, j + n+1/2 j ν I+1/2, j × k comme illustré Figure 4.2.
Preuve de la proposition 4.3.

• De même qu'à la proposition précédente, la relation (3.12) prend ici la forme :

ν n+1/2 I+1/2, j = y n+1/2 I+1/2, j+1/2 -y n+1/2 I+1/2, j-1/2 , -x n+1/2 I+1/2, j+1/2 + x n+1/2 I+1/2, j-1/2 t = ν I+1/2, j + δ n+1/2 j+1/2, y -δ n+1/2 j-1/2, y , -δ n+1/2 j+1/2, x + δ n+1/2 j-1/2, x t = ν I+1/2, j + n+1/2 j, y , -n+1/2 j, x t = ν I+1/2, j + n+1/2 j × k ,
ce qui établit la relation (4.9).

• Le calcul de la normale unitaire demande d'évaluer au préalable le module de l'expression (4.9). On a :

ν n+1/2 j 2 = ν I+1/2, j 2 + 2 ν I+1/2, j × n+1/2 j + (ordre ≥ 2) donc 1 ν n+1/2 j = 1 ν I+1/2, j 1 - ν I+1/2, j ν I+1/2, j 2 × n+1/2 j + (ordre ≥ 2)
et la relation (4.11) résulte du produit de cette dernière relation par l'expression (4.9).

• 4.3 • Décomposition de flux 

(4.12) Φ • ν n+1/2 i, j+1/2 = Ψ W n i, j+1/2, - , ν n+1/2 i, j+1/2 , W n i, j+1/2, + (4.13) Φ • ν n+1/2 i+1/2, j = Ψ W n i+1/2, j, - , ν n+1/2 i+1/2, j , W n i+1/2, j, +
et le choix du flux splitting de Van Leer pour évaluer la fonction Ψ W g , ν , W d est explicité dans le sous-paragraphe suivant.

• Le calcul du flux de Van Leer à deux dimensions d'espace (relations (4.12) et (4.13)) prend la forme simple

(4.14) Ψ W g , ν , W d = Φ + (W g ) • ν + Φ -(W d ) • ν
et compte tenu de la définition (3.44), on a, pour

(4.15) W = ρ , ρ u , ρ v , ρ E ≡ ρ e + 1 2 (u 2 + v 2 ) t (4.16) M ν = u ν x + v ν y c | ν | , p = (γ -1) ρ e , c 2 = γ p ρ , la relation suivante (4.17) Φ + (W ) • ν = 0 si M ν ≤ -1 Φ(W ) • ν si M ν ≥ 1 .
Lorsque M ν ≤ 1, l'extension bidimensionnelle des relations (2.28) à (2.30) s'écrit :

(4.18) Φ + (W ) • ν = | ν | f + m (W, ν) , f + x (W, ν) , f + y (W, ν) , f + e (W, ν) t avec (4.19) f + m (W, ν) = ρ c M ν + 1 2 2 (4.20) f + n (W, ν) = f + m (W, ν) (γ -1) u • ν + 2 c γ (4.21) f + τ (W, ν) = f + m (W, ν) u • τ (4.22) f + e (W, ν) = f + m (W, ν) (γ -1) u • ν + 2 c 2 2 (γ 2 -1) (4.23)      u • ν = 1 | ν | u ν x + v ν y ≡ u cos θ + v sin θ u • τ = 1 | ν | -u ν y + v ν x ≡ -u sin θ + v cos θ (4.24) f + x (W, ν) = f + n (W, ν) cos θ -f + τ (W, ν) sin θ (4.25) f + y (W, ν) = f + n (W, ν) sin θ + f + τ (W, ν) cos θ . De même, le flux "négatif" Φ -(W ) • ν est une généralisation naturelle des relations (2.33) à (2.35). Il vient : (4.26) Φ -(W ) • ν =              Φ(W ) • ν si M ν ≤ -1 | ν | f - m (W, ν) , f - x (W, ν) , f - y (W, ν) , f - e (W, ν) t si M ν ≤ 1 0 si M ν ≥ 1 avec, compte tenu de (4.23), les relations (4.27) f - m (W, ν) = -ρ c M ν -1 2 2 (4.28) f - n (W, ν) = f - m (W, ν) (γ -1) u • ν -2 c γ (4.29) f - τ (W, ν) = f - m (W, ν) u • τ (4.30) f - e (W, ν) = f - m (W, ν) (γ -1) u • ν -2 c 2 2 (γ 2 -1) (4.31) f - x (W, ν) = f - n (W, ν) cos θ -f - τ (W, ν) sin θ (4.32) f - y (W, ν) = f - n (W, ν) sin θ + f - τ (W, ν) cos θ . qui permettent de généraliser la relation (2.26) sous la forme (4.33) Φ(W ) • ν = Φ + (W ) • ν + Φ -(W ) • ν , ∀W , ∀ν .
• 4.4 • Pression paroi.

• La pression à la paroi s'obtient par une approche analogue au cas monodimensionnel ; on évalue d'abord la pression à vitesse nulle p n+1/2 , j (0), avec une notation quasiment analogue à celle du cas monodimensionnel, puis on la corrige avec d'une part l'effet dû à la vitesse de la paroi et d'autre part l'effet dû à la variation du vecteur normal. La pression paroi à vitesse nulle se calcule en utilisant dans le problème de Riemann relatif à la face Σ I+1/2, j la donnée à gauche égale à W n i+1/2, j, - 

                       ρ µ W n i+1/2, j, - = ρ n , j ≡ ρ W n i+1/2, j, - u µ W n i+1/2, j, - • ν = -u n , j • ν I+1/2, j ν I+1/2, j u µ W n i+1/2, j, - • τ = u n , j • k × ν I+1/2, j ν I+1/2, j = u n , j • τ (ρ E) µ W n i+1/2, j, - = (ρ E) W n i+1/2,
Φ • ν n+1/2 I+1/2, j = 0 , p n+1/2 , j (0) ν I+1/2, j , 0 t , j ∈ Z Z , n ≥ 0 avec (4.37) p n+1/2 , j (0) = 2 f + m W n i+1/2, j, - , ν I+1/2, j (γ -1) u n , j • ν + 2c n , j
γ lorsque le nombre de Mach normal M n ν, , j défini par les relations

(4.38) ν I+1/2, j = ν I+1/2, j ν I+1/2, j (4.39) M n ν, , j = u n , j • ν I+1/2, j c n , j
est inférieur ou égal à 1 en module. (0) qui se calcule à partir du nombre de Mach normal M n ν, , j , de la célérité du son c n , j et de la vitesse normale u n , j

• ν de l'état extrapolé W n i+1/2, j, -près de la paroi, à l'aide de la relation (4.37) lorsque M n ν, , j ≤ 1.

Preuve de la proposition 4.4.

• Elle a essentiellement été faite ci-dessus ; comme la vitesse normale u n , j

• ν change de signe, on a 

f + m W n i+1/2, j, - + f - m µ W n i+1/2,
           p n+1/2 I+1/2, j = p n+1/2 , j (0) -ρ n , j c n , j s n+1/2 j • ν n+1/2 j + + 3 (γ -1) u n , j • ν + (γ + 3) c n , j p n+1/2 , j (0) 
( u n , j • ν) + c n , j (γ -1)( u n , j • ν) + 2c n , j u n , j • δ ν n+1/2 j + (ordre ≥ 2) où (4.41)            u n , j • δ ν n+1/2 j = - ν I+1/2, j ν I+1/2, j 2 × n+1/2 j u n , j • ν I+1/2, j + u n , j × n+1/2 j ν I+1/2, j + ordre ≥ 2 , p n+1/2
, j (0) est la pression paroi à vitesse nulle calculée à l'aide du schéma numérique (4.37), ρ n , j la densité de l'état extrapolé W n i+1/2, j, -, c n , j la célérité du son de ce même état, u n , j sa vitesse et n+1/2 j l'infiniment petit calculé à la relation (4.8).

Preuve de la proposition 4.5.

• Comme pour le cas monodimensionnel, il faut évaluer la pression non à vitesse nulle, mais sur le point de la 1-onde issue de W n i+1/2, j, -et de vitesse normale égale à s n+1/2 j • ν n+1/2 j . Le premier terme complémentaire est donc dû à cet effet et l'analyse monodimensionnelle effectuée à la proposition 2.3 est encore valable. Nous renvoyons le lecteur aux relations (2.54) et (2.55).

• Le terme suivant, dû à la géométrie, tient à la distorsion de la paroi liée à l'ensemble du mouvement des points mobiles qui change la direction de la normale. La pression à vitesse nulle est à prendre pour une normale déformée ν n+1/2 j et on doit développer au premier ordre par rapport à δ ν n+1/2 j (calculé à l'expression (4.11)) une pression p n+1/2 , j (δ ν) donnée par :

(4.42) p n+1/2 , j (δ ν) = 2 f + m W n i+1/2, j, - , ν n+1/2 j (γ -1) u n , j • ν n+1/2 j + 2c n , j γ .
Compte tenu des relations (4.19) et (4.23), on a :

δp n+1/2 , j = 2 2 f + m ( u • ν) + c (γ -1)( u • ν) + 2c γ + 2 f + m γ -1 γ δ u • ν = p n+1/2 , j (0) 2 
( u • ν) + c + γ -1 (γ -1)( u • ν) + 2 c u • δ ν n+1/2 j
avec une notation quelque peu simplifiée pour ne pas allonger les expresions algébriques. La relation (4.40) est donc établie.

• Il reste à préciser (4.41) ; compte tenu du développement (4.11), il vient :

u • δ ν = - ν | ν | 2 × ( u • ν) + u , | ν | × k + ordre ≥ 2 = - ν | ν | 2 × ( u • ν) + u × | ν | + ordre ≥ 2
et, aux notations près, la relation (4.41) est établie.

• 4.5 • Flux transversal.

• La relation (3.68) qui permet de définir le flux limite de paroi mobile fait ap-

paraître un flux transversal Φ • ν n+1/2 I, j+1/2
qu'il convient de calculer ainsi qu'une expression dynamique issue de ce flux, à savoir .

(4.43) Ψ 1 2 (s • ν) n+1/2 j+1/2 ≡ Φ • ν n+1/2 I, j+1/2 - 1 2 (s • ν) n+1/2 j+1/2 W n+1/2 I,
• La décomposition de flux de Van Leer a les inconvénients de ses avantages ; l'expression (4.14) qui permet le calcul approché de la solution du problème de Riemann est simple mais il est impossible, dans l'état actuel de nos connaissances et malgré une tentative infructueuse menée lors de cette étude (mai 1997), de proposer une décomposition "naturelle" de l'expression Ψ(s • ν) de la relation (4.14) qui permettre de retrouver les relations (4.17) à (4.33) lorsque s • ν = 0. Nous optons donc pour la modélisation numérique qui suit, approche qui étend ce qui a été proposé plus haut pour le champ de pression.

• Nous nous plaçons d'abord à une dimension d'espace et supposons le problème de Riemann entre W g et W d résolu exactement grâce au schéma de Godunov. Alors l'expression (4.43) a un développement qui s'exprime simplement en fonction du flux numérique (à vitesse nulle), de la vitesse de mobilité infiniment petite s et de l'état W (0) présent à l'interface lors de la résolution exacte de ce problème autosemblable. La proposition qui suit précise ce point.

Proposition 4.6 Flux numérique à vitesse variable. Soient W g et W d deux états monodimensionnels (relation (2.5)), V W g , ξ , W d la solution entropique autosemblable du problème de Riemann entre W g et W d . Alors on a les deux résultats suivants : (i) le flux du schéma de Godunov Ψ W g , W d est calculé simplement par la relation

(4.44) Ψ W g , W d = f V W g , 0 , W d ) où f (•) est définie à la relation (2.8), (ii) pour ξ ∈ IR infiniment petit, l'expression Ψ W g , ξ , W d définie comme en (4.43) par la relation (4.45) Ψ W g , ξ , W d ≡ f V W g , ξ , W d ) -ξ V W g , ξ , W d admet le développement suivant : (4.46) Ψ W g , ξ , W d = Ψ(W g , W d ) -ξ V W g , 0 , W d ) + ordre ξ 2 .
Preuve de la proposition 4.5.

• Nous supposons le lecteur familier de la résolution du problème de Riemann pour la dynamique des gaz et renvoyons dans le cas contraire à l'ouvrage de Courant et Freidrichs [START_REF] Courant | Supersonic flow and shock waves[END_REF] ou à nos notes de cours [START_REF] Dubois | Guide méthodologique : Schémas numériques décentrés pour la mécanique des fluides[END_REF]. La figure 4.4 illustre une configuration typique pour le problème de Riemann : l'espace-temps (x, t) ∈ IR × [0, +∞[ est divisé en secteurs angulaires où la variable ξ = x t permet de paramétrer l'état V W g , ξ , W d solution entropique du problème de tube à choc. Dans ce cas de figure, quatre valeurs de ξ sont critiques : la valeur ξ = λ 1 (W g ) qui permet de "commencer" la 1-onde de détente, la valeur ξ = λ 1 (W 1 ) du premier état intermédiaire qui termine cette 1-onde et débute la plage du premier état intermédiaire, la valeur ξ = u où u est la valeur commune des vitesses de W 1 et W 2 et enfin la valeur ξ = σ 3 de la célérité d'un 3-choc entre le second état intermédiaire W 2 et l'état de droite W d de ce problème. Nous avons donc (dans ce cas de figure au moins) :

(4.47) Ψ(W g , ξ , W d ) =                f (W g ) -ξ W g , ξ < λ 1 (W g ) f V (W g , ξ , W d ) -ξ V (W g , ξ , W d ) , λ 1 (W g ) < ξ < λ 1 (W 1 ) f (W 1 ) -ξ W 1 , λ 1 (W 1 ) < ξ < u f (W 2 ) -ξ W 2 , u < ξ < σ 3 f (W d ) -ξ W d , ξ > σ 3 .
• Dans la 1-onde de détente λ 1 (W g ) < ξ < λ 1 (W 1 ) , la fonction ξ -→ Ψ(W g , ξ , W d ) est dérivable et on a :

(4.48) ∂ ∂ξ Ψ(W g , ξ , W d ) = -V (W g , ξ , W d ) .
En effet, le long de cette onde de détente, l'état V (W g , ξ , W d ) vérifie : • Pour un état constant V , l'expression (4.45) est une simple fonction affine de ξ (c.f. (4.47)) et si c'est le cas autour de ξ = 0, alors le développement (4.46) est en fait exact.

(4.49) df V (W g , ξ , W d ) -ξ ∂V ∂ξ (W g , ξ , W d ) =
• Pour la 3-onde de choc (avec ξ = σ 3 ) ou la 2-discontinuité de contact (ξ = u ), on a deux états constants W -et W + de part et d'autre de la discontinuité et la relation de Rankine-Hugoniot s'exprime sous la forme (4.50)

f (W + ) -f (, W -) = σ (W + -W -) qui entraîne clairement la continuité de la fonction Ψ(W g , • , W d ) au voisinage de ξ = σ : (4.51) Ψ(W g , ξ = σ -0 , W d ) = Ψ(W g , ξ = σ + 0 , W d ) .
Compte tenu de l'expression affine de Ψ(W g , • , W d ) au voisinage de ξ = σ :

(4.52) Ψ(W g , ξ , W d ) = Ψ(W g , σ , W d ) -(ξ -σ)W -, ξ < σ Ψ(W g , σ , W d ) -(ξ -σ)W + , ξ > σ ,
nous concluons que le développement (4.46) est valable si σ = 0, à cette réserve près que la dérivée de Ψ(W g , • , W d ) ayant un saut, l'état V (W g , 0 , W d ) dépend du signe avec lequel ξ tend vers zéro. La propriété en résulte. 

(4.53) Ψ 1 2 (s • ν) n+1/2 j+1/2 = Φ n+1/2 I, j+1/2 • ν n+1/2 j+1/2 - 1 2 (s • ν) n+1/2 j+1/2 V n+1/2 I, j+1/2 + + (ordre ≥ 2) .
• 

(4.54) Ψ 1 2 (s • ν) n+1/2 j+1/2 = Φ n+1/2 I, j+1/2 • ν n+1/2 j+1/2 - 1 2 (s • ν) n+1/2 j+1/2 V R, n I, j+1/2 + + (ordre ≥ 2) .
• Le paragraphe 4.6 est consacré au développement du premier terme Φ n+1/2

I, j+1/2 • • ν n+1/2 j+1/2
pour prendre en compte la variation (4.7) de la direction normale ; le paragraphe 4.7 explicite le calcul de la moyenne de Roe V R, n I, j+1/2 dans le cas bidimensionnel.

• 4.6 • Sensibilité du flux de Van Leer à une variation de la direction normale. • Nous commençons par évaluer la variation δ ν de la normale unitaire lorsque la normale non unitaire ν de mesure égale à celle de la facette Σ I, j+1/2 varie de δν.

Proposition 4.7

Variation de la normale unitaire. Lorsque la normale ν varie de δν, la normale unitaire ν définie par , on a alors

(4.56) ν = ν | ν | varie de δ ν, avec (4.57) δ ν = 1 | ν | δν - 1 | ν | 3 (ν, δν) ν .
δ ν = 1 | ν | 3 (ν 2 x + ν 2 y ) -δ y δ x -(-ν x δ y + ν y δ x ) ν x ν y = 1 | ν | 3 -ν 2 y δ y -ν x ν y δ x ν 2 x δ x + ν x ν y δ y = ν • δ n+1/2 j+1/2 | ν | 3 -ν y ν x
ce qui montre la relation (4.58).

• On dérive ensuite le flux d'impulsion normal f + n (W, ν) calculé à la relation (4.20) ; il vient

δf + n (W, ν) = δΦ + m (γ -1) ( u • ν) + 2 c γ + f + m (W, ν) γ -1 γ δ u • ν = 2 1 + M ν f + m (W, ν) (γ -1) ( u • ν) + 2 c γ + f + m (W, ν) γ -1 γ c δM ν (4.67) δf + n (W, ν) = 2 1 + M ν f + n (W, ν) + γ -1 γ c f + m (W, ν) δM ν (4.68) δf + n (W, ν) = 1 γ (1 + M ν ) 3 (γ -1) ( u • ν) + (γ +3) c f + m (W, ν) δM ν .
• Il est également utile de maîtriser la dérivée de la vitesse tangentielle u • τ = ν × u :

δ ν × u = δ ν × u = ν • δ | ν | 3 (k × ν) × u = - ν • δ | ν | 3 u • ν (4.69) δ u • τ = δ ν × u = - ν • δ | ν | u • ν .
La dérivée du flux d'impulsion tangentiel (relation (4.21)) est donc simple :

δf + τ (W, ν) = δΦ + m u • τ + f + m (W, ν) δ u • τ = f + m (W, ν) 2 u • τ 1 + M ν δM ν - u • ν | ν | ν • δ (4.70) δf + τ (W, ν) = 2 1 + M ν f + τ (W, ν) δM ν -f + m (W, ν) u • ν | ν | ν • δ .
• On combine ensuite les relations (4.67) et (4.70) pour dériver, à l'aide de (4.25) et (4.26), les deux composantes cartésiennes du flux d'impulsion. Il vient :

δ Φ + x = δ f + n (W, ν) ν x -f + τ (W, ν) ν y = δf + n (W, ν) ν x + f + n (W, ν) δ ν x -δf + τ (W, ν) ν y -f + τ (W, ν) δ ν y . Compte tenu de (4.58), on a (4.71) δ ν x = - ν • δ | ν | ν y ; δ ν y = ν • δ | ν | ν x
et le calcul se déroule, suite à (4.61), (4.67), (4.70), (4.71), (4.23), (4.24) et (4.25) :

δ Φ + x = 2 1 + M ν f + n (W, ν) + γ -1 γ c f + m (W, ν) δM ν cos θ + f + n (W, ν) - ν • δ | ν | sin θ -f + τ (W, ν) ν • δ | ν | cos θ - 2 1 + M ν f + τ (W, ν) δM ν -f + m (W, ν) u • ν | ν | ν • δ sin θ = 2 1 + M ν f + x (W, ν) δM ν -f + y (W, ν) ν • δ | ν | + f + m (W, ν) ν • δ | ν | γ -1 γ u • τ cos θ + u • ν sin θ = ν • δ | ν | 2 1 + M ν f + x (W, ν) u • τ c -f + y (W, ν) + f + m (W, ν) v - u • τ γ ν x (4.76) δΦ - e = γ γ + 1 f - n (W, ν) + 2 ( u • ν) -c f - e (W, ν) ( u • τ ) ( ν • δ) | ν | .
Preuve de la proposition 4.9.

• On commence par dériver la relation (4.27) relative au flux de masse : 

δΦ - m = δ -ρ c M ν -1 2 2 = (-ρ c) 1 4 2 (M ν -1) δM ν = 2 M ν -1 f - m (W,
δf - n (W, ν) = δΦ - m (γ -1) u • ν -2c γ + γ -1 γ f - m (W, ν) δ u • ν = 2 M ν -1 f - n (W, ν) δM ν + γ -1 γ c f - m (W, ν) δM ν (4.77) δf - n (W, ν) = 2 M ν -1 f - n (W, ν) + γ -1 γ c f - m (W, ν) δM ν et δf - τ (W, τ ) = δΦ - m u • τ + f - m (W, ν) δ ν × u (4.78) δf - τ (W, ν) = 2 M ν -1 f - τ (W, ν) δM ν -f - m (W, ν) u • ν ν • δ | ν | .
• 

- x = δf - n (W, ν) cos θ -f - n (W, ν) ν • δ | ν | sin θ -δf - τ (W, ν) sin θ -f - τ (W, ν) ν • δ | ν | cos θ = 2 M ν -1 f - n (W, ν) + γ -1 γ c f - m (W, ν) δM ν cos θ -f - y (W, ν) ν • δ | ν | - 2 M ν -1 f - τ (W, ν) δM ν -f - m (W, ν) u • ν ν • δ | ν | sin θ = 2 M ν -1 f - x (W, ν) δM ν -f - y (W, ν) ν • δ | ν | +f - m (W, ν) ν • δ | ν | 1 - 1 γ u • τ cos θ + u • ν
= δf - n (W, ν) sin θ + f - n (W, ν) ν • δ | ν | cos θ + δf - τ (W, ν) cos θ -f - τ (W, ν) ν • δ | ν | sin θ = 2 M ν -1 f - n (W, ν) + γ -1 γ c f - m (W, ν) δM ν sin θ + f - x (W, ν) ν • δ | ν | + 2 M ν -1 f - τ (W, ν) δM ν -f - m (W, ν) u • ν ν • δ | ν | cos θ = 2 M ν -1 f - y (W, ν) δM ν + f - x (W, ν) ν • δ | ν | +f - m (W, ν) ν • δ | ν | 1 - 1 γ u • τ sin θ -u • ν cos θ
et la relation (4.75) est établiee.

• La dérivation du flux d'énergie négative se mène sans difficulté ; on a : (4.80)

δΦ - e = δΦ - m (γ -1) ( u • ν) -2c 2 2 (γ 2 -1) + f - m (W, ν) 2 (γ -1) 2 (γ 2 -1) (γ-1) ( u • ν) -2c c δM ν = 2 M ν -1 f - e (W, ν) δM ν + γc γ + 1 f - n (W,
H b = 1 γ -1 c b 2 + 1 2 u 2 b + v 2 b , b = g ou d (4.81) ρ = ρ g ρ d (4.82) u = √ ρ g u g + √ ρ d u d √ ρ g + √ ρ d (4.83) v = √ ρ g v g + √ ρ d v d √ ρ g + √ ρ d (4.84) H = √ ρ g H g + √ ρ d H d √ ρ g + √ ρ d .
• La matrice de Roe A W W g , W d , ν est calculée en posant W = W W g , W d dans l'expression de la matrice jacobienne A W, ν des équations (3.42) de la dynamique des gaz. La matrice A(W, ν) est définie par la relation suivante (4.86)

                       A W, ν =          0 ν x ν y 0 (γ -1) H ν x -c 2 ν x -u ( u • ν) (2-γ) u ν x +( u • ν) -(γ -1) v ν x +u ν y (γ -1) ν x (γ -1) H ν y -c 2 ν y -v ( u • ν) v ν x -(γ -1) u ν y (2-γ) v ν y + ( u • ν) (γ -1) ν y (γ -2) H ( u • ν) -c 2 ( u • ν) H ν x -(γ -1) u ( u • ν) H ν y -(γ -1) v( u • ν) γ ( u • ν)          .
• La famille de matrices A W W g , W d , ν vérifie les relations constitutives de Roe :

(4.87) df W d -df W g = df W (W g , W d ) • W d -W g (4.88) dg W d -dg W g = dg W (W g , W d ) • W d -W g et par linéarité toute relation de la forme (4.89) Φ W d • ν -Φ W g • ν = A W (W g , W d ) , ν • W d -W g .
• L'état R W g , ν , W d est par définition la solution stationnaire du problème de Riemann linéarisé de matrice A W (W g , W d ) , ν . Son expression est para-métrée par les valeurs propres de cette matrice, à savoir les "trois" ondes de célérité λ j (W , ν) (j = 1 à 4 !) qui s'explicitent ainsi :

(4.90) λ 1 (W , ν) = u • ν -c (4.91) λ 2 (W , ν) = λ 3 (W , ν) = u • ν (4.92) λ 4 (W , ν) = u • ν + c
où c est calculée en cohérence avec les relations (4.80) à (4.84) :

(4.93) 1 γ -1 c 2 = H - 1 2 u 2 + v 2 .
On a :

(4.94)

                             R W g , ν , W d =                      W g si u • ν -c > 0 W g + 1 2 (c ) 2 p d -ρ c u d • ν -p g -ρ c u g • ν r 1 (W , ν) si u • ν -c ≤ 0 < u • ν W d - 1 2 (c ) 2 p d + ρ c u d • ν -p g + ρ c u g • ν r 4 (W , ν) si u • ν ≤ 0 < u • ν + c W d si u • ν + c ≤ 0 où les vecteurs propres r j (W , ν) vérifient bien sûr (4.95) A W , ν • r j (W , ν) = λ j (W , ν) r j (W , ν)
et ont une expression qui se calcule sans difficulté :

(4.96) r 1 (W , ν) = 1 , u -c ν x , v -c ν y , H -( u • ν) c t (4.97) r 2 (W , ν) = 1 , ( u • ν) ν x , ( u • ν) ν y , 1 2 ( u • ν) 2 - 1 2 ( u • τ ) 2 t (4.98) r 3 (W , ν) = 0 , -c ν y , c ν x , ( u • τ ) c t (4.99) r 4 (W , ν) = 1 , u + c ν x , v + c ν y , H + ( u • ν) c t .
Preuve de la proposition 4.10.

• Le calcul de la matrice jacobienne demande simplement de dériver les flux f ( • ) et g( 

= (γ -1) (ρ E) - 1 2 ρ (ρ u) 2 + (ρ v) 2 donc (4.100) ∂p ∂W = (γ -1) H -c 2 , -(γ -1) u , -(γ -1) v , (γ -1) . De façon analogue, ∂ ∂W (p u) = u ∂p ∂W + p ∂ ∂W ρ u ρ = u ∂p ∂W + p - u ρ , 1 ρ , 0 , 0 ∂ ∂W ρ u E + p u = ∂ ∂W ρ E ρ u ρ + ∂ ∂W (p u) = ( -E u , E , 0 , u ) + u ∂p ∂W + p ρ ( -u , 1 , 0 , 0 ) ∂ ∂W ρ u E + p u = -H - p ρ u , H - p ρ , 0 , u + u ∂p ∂W + p ρ ( -u , 1 , 0 , 0 ) (4.101) ∂ ∂W ρ u H = (γ -2) H u -u c 2 , H -(γ -1) u 2 , -(γ -1) u v , γ u
compte tenu de (4.100) et de l'expression de la dérivée de p u. Il vient alors, par dérivation très élémentaire de la relation (3.40) :

(4.102) df (W ) =    0 1 0 0 (γ -1) H -u 2 -c 2 (3-γ) u (1-γ) v (γ -1) -u v v u 0 (γ -2) H u -u c 2 H -(γ -1) u 2 (1-γ) u v γ u   
et un calcul très anaogue, avec l'aide de (4.100) et (4.101), permet d'expliciter la dérivée de la relation (3.41) :

(4.103) dg(W ) =    0 0 1 0 -u v v u 0 (γ -1) H -v 2 -c 2 (1-γ) u (3-γ) v (γ -1) (γ -2) H v -v c 2 (1-γ) u v H -(γ -1) v 2 γ v    .
La relation (4.86) résulte alors de (4.85) et de l'explicitation (4.102)-(4.103) des deux contributions.

• La vérification des relations (4.87) et (4.88) qui sont constitutives de la matrice de Roe demandent un peu de travail algébrique que nous explicitons ci-dessus pour la seconde ligne de (4.87).

A ≡ (γ -1) H -(u ) 2 -(c ) 2 (ρ d -ρ g ) + (3 -γ) u (ρ d u d -ρ g u g ) + + (1 -γ) v (ρ d v d -ρ g v g ) + (γ -1) (ρ d E d -ρ g E g ) = γ -3 2 (u ) 2 + γ -1 2 (v ) 2 (ρ d -ρ g ) + (3 -γ) u (ρ d u d -ρ g u g ) + + (1 -γ) v (ρ d v d -ρ g v g ) + + (γ -1) ρ d e d + ρ d 2 (u d ) 2 + (v d ) 2 -ρ g e g - ρ g 2 (u g ) 2 + (v g ) 2 = γ -3 2 (u ) 2 (ρ d -ρ g ) -(γ -3) u (ρ d u d -ρ g u g ) + γ -1 2 (ρ d u 2 d -ρ g u 2 g ) + + γ -1 2 (v ) 2 (ρ d -ρ g ) -2v (ρ d v d -ρ g v g ) + (ρ d v 2 d -ρ g v 2 g ) + p d -p g .
Nous calculons alors séparément les termes en v et en u dans cette dernière expression. On a en effet

ρ d v 2 d -ρ g v 2 g -2v (ρ d v d -ρ g v g ) + (v ) 2 (ρ d -ρ g ) = ρ d v 2 d -ρ g v 2 g -2v (ρ d v d -ρ g v g ) + ρ d -ρ g v ρ g v g + ρ d v d = ρ d v 2 d -ρ g v 2 g + v ρ g + ρ g ρ d v g -ρ d + ρ g ρ d v d = ρ d v 2 d -ρ g v 2 g + v ρ g + ρ d ρ g v g -ρ d v d = ρ d v 2 d -ρ g v 2 g + ρ g v g + ρ d v d ρ g v g -ρ d v d = 0 compte tenu de (4.83). Nous retenons (4.104) ρ d v 2 d -ρ g v 2 g -2v (ρ d v d -ρ g v g ) + (v ) 2 (ρ d -ρ g ) = 0
et de manière analogue pour la première composante de la vitesse :

(4.105) ρ d u 2 d -ρ g u 2 g -2u (ρ d u d -ρ g u g ) + (u ) 2 (ρ d -ρ g ) = 0
. Quand on injecte les relations (4.104) et (4.105) dans le calcul qui explicite la seconde ligne de la relation matricielle (4.87), il vient alors facilement :

A = ρ d u 2 d + p d -ρ g u 2 g + p g c'est à dire le résultat recherché.
• On étudie maintenant la troisième ligne de la relation (4.87). On a

B ≡ -u v (ρ d -ρ g ) + v (ρ d u d -ρ g u g ) + u (ρ d v d -ρ g v g ) = v ρ d u d -ρ g u g - ρ d -ρ g ρ g u g + ρ d u d + u ρ d v d -ρ g v g = v ρ g ρ d (-u g + u d ) + u (ρ d v d -ρ g v g ) = 1 √ ρ g + √ ρ d ρ g ρ d (u d -u g ) ρ g v g + ρ d v d + + ρ d v d -ρ g v g ρ g u g + ρ d u d = 1 √ ρ g + √ ρ d ρ d u d v d -ρ g u g v g ρ g + ρ d = ρ d u d v d -ρ g u g v g
ce qui établit également la seconde ligne de la relation (4.88). Il reste à traiter l'équation de l'énergie :

C ≡ (γ -2) H -(c ) 2 u (ρ d -ρ g ) + H -(γ -1) (u ) 2 ρ d u d -ρ g u g + -(γ -1) u v ρ d v d -ρ g v g + γ u ρ d E d -ρ g E g = γ -1 2 (u ) 2 + (v ) 2 -H u (ρ d -ρ g ) + + H -(γ -1) (u ) 2 ρ d u d -ρ g u g -(γ -1) u v ρ d v d -ρ g v g + + (γ -1) u ρ d E d -ρ g E g + u ρ d H d -p d -ρ g H g + p g = γ -1 2 u (u ) 2 (ρ d -ρ g ) -2 u ρ d u d -ρ g u g + ρ d (u d ) 2 -ρ g (u g ) 2 + + γ -1 2 u (v ) 2 (ρ d -ρ g ) -2 v ρ d v d -ρ g v g + ρ d (v d ) 2 -ρ g (v g ) 2 -H u (ρ d -ρ g ) + H ρ d u d -ρ g u g + u ρ d H d -ρ g H g .
Les deux premières lignes de cette expression de C sont nulles compte tenu des relations (4.104) et (4.105). La troisième se simplifie ; nous avons en effet

D ≡ -H u (ρ d -ρ g ) + H ρ d u d -ρ g u g + u ρ d H d -ρ g H g = -u ρ d H d + ρ g H g ρ d -ρ g + H ρ d u d -ρ g u g + u ρ d H d -ρ g H g = u ρ g ρ d (H d -H g ) + H ρ d u d -ρ g u g = 1 √ ρ g + √ ρ d ρ g ρ d ρ g u g + ρ d u d (H d -H g ) + + ρ g H g + ρ d H d ρ d u d -ρ g u g = 1 √ ρ g + √ ρ d ρ d u d H d -ρ g u g H g ρ g + ρ d = ρ d u d H d -ρ g u g H g ce
qui établit la quatrième ligne de la relation (4.87). La quatrième ligne de la relation (4.88) s'obtient par un calcul analogue. Nous retenons la forme algébrique simple pour l'expression de D :

(4.106) -H u (ρ d -ρ g ) + H ρ d u d -ρ g u g + u ρ d H d -ρ g H g = = ρ d u d H d -ρ g u g H g et
une expression analogue obtenue en changeant partout la lettre u en la lettre v dans (4.106).

• Le calcul de l'état R W g , ν , W d demande de résoudre un problème de Riemann linéaire entre W g et W d avec comme opérateur la matrice A W , ν . Il suffit pour cela d'expliciter les vecteurs propres r j W , ν de cette matrice, les composantes "caractéristiques" ϕ j de la différence W d -W g dans cette base : • On calcule dans un premier temps l'expression des vecteurs propres r j W , ν de la matrice A W , ν de la relation (4.86), en se contentant en fait de vérifier les relations (4.95) pour j = 1 à 4 lorsque r j W , ν prend successivement les expressions (4.96) à (4.99) et λ j (W , ν) celles proposées en (4.90) à (4.92). Livrons nous à cet exercice de style [ ν est dans la suite une normale unitaire] :

(ξ) (ξ = x t , -∞ < ξ < ∞) du problème de Riemann entre W g et W d s'explicite par : (4.108) W (ξ) =            W g + j, λ j (W , ν) < ξ ϕ j r j W , ν W d - j, λ j (W , ν) > ξ ϕ j r j W , ν sauf 
• 1 ière composante de A • r 1 W , ν) = ν x (uc ν x ) + ν y (vcν y ) = ( u • ν)c = λ 1 1 ière composante de r 1 W , ν) .

• 2 ième composante de A = λ 1 2 ième composante de r 1 W , ν) .

• 3 ième composante de

A • r 1 W , ν) = -u v ν x + (γ -1) H -v 2 -c 2 ν y + v ν x -(γ -1) u ν y (u -c ν x ) + u ν x + (3 -γ) v ν y (v -c ν y ) + + (γ -1) ν y H -u c ν x -v c ν y = -v c (ν x ) 2 -u c ν x ν y -2 v c (ν y ) 2 + u v ν x + (v 2 + c 2 ) ν y = -v c -c ν y ( u • ν) + v ( u • ν) + c 2 ν y = ( u • ν) -c (v -cν y )
= λ 1 3 ième composante de r 1 W , ν) .

• 4 ième composante de

A • r 1 W , ν) = (γ -2) H -c 2 ( u • ν) + + H ν x -(γ -1) u ( u • ν) (u -c ν x ) + + H ν y -(γ -1) v ( u • ν) (v -c ν y ) + γ ( u • ν) H -( u • ν) c = H ( u • ν) (γ -1 + γ) -H c -(γ -1) ( u • ν) (u 2 + v 2 ) + ( u • ν) 2 c(γ -1 -γ) = H ( u • ν) 2 γ -1 -2 (γ -1) -H c + c 2 ( u • ν) -c ( u • ν) 2 = ( u • ν) -c H -( u • ν) c
= λ 1 4 ième composante de r 1 W , ν) , donc A • r 1 W , ν) = λ 1 r 1 W , ν) .

• On continue avec la valeur propre (double) λ 2 = λ 3 = u • ν. On a

• 1 ière composante de A • r 2 W , ν) = ν x ( u • ν) ν x + ν y ( u • ν) ν y = u • ν
= λ 2 1 ière composante de r 2 W , ν) .

• 2 ième composante de

A • r 2 W , ν) = (γ -1) H -u 2 -c 2 ν x -u v ν y + + (2 -γ) u ν x + ( u • ν) ( u • ν) ν x + -(γ -1) v ν x + u ν y ( u • ν) ν y + + γ -1 2 ν x ( u • ν) 2 -( u • τ ) 2 = γ -1 2 ( u • ν) 2 + ( u • τ ) 2 ν x -u 2 ν x -u v ν y + ( u • ν) u + (2 -γ) ( u • ν) ν x + γ -1 2 ( u • ν) 2 -( u • τ ) 2
= ( u • ν) 2 ν x = λ 2 2 ième composante de r 2 W , ν) . • Pour terminer la preuve, il sufit d'expliciter les variables caractéristiques ϕ j qui sont les composantes de la différence W d -W g sur les vecteurs propres r j W , ν de l'état intermédiaire de Roe : • 5.3 • Preuve du développement limité.

• La relation (5.2) met en évidence cinq termes, à savoir (5.17 Dans la suite de ce paragraphe, nous nous concentrons successivement sur ces divers termes.

+ s • ν I+1/2, j W + (ordre ≥ 2) = q n+1/2 j W + p 0 , ν I+1/2, j , q n+1/2 j t + (ordre ≥ 2) .

ce qui montre la relation (5.44). La seule différence entre les expressions (5.43)(5.44) et (5.45)(5.46) tient à l'unique point suivant :

(5.50) q(t)q n+1/2 j = s • δν n+1/2 j lequel est un infiniment petit du second ordre compte tenu des hypothèses faites pour établir la relation (5.3). La proposition en résulte.

6) Conclusion, remerciements.

• Nous avons montré que si un fluide considéré comme non visqueux est limité par une structure lentement variable et qui se déplace d'une faible amplitude dans l'espace, il est possible au premier ordre de remplacer une modélisation géométrique de ce mouvement par un flux limite de paroi mobile sur les facettes qui relient le fluide et la structure. L'évaluation numérique du flux limite de paroi mobile demande, dans le cas où l'on utlise la méthode Muscl de Van Leer avec les choix faits aux Mureaux d'un maillage structuré, une évaluation précise de la normale au cours du temps, une mise en mémoire de l'état extrapolé à la paroi, une évaluation de la dérivée de la pression paroi, la maîtrise de la dérivée du flux de Van Leer par rapport aux états fluides et une résolution approchée de la discontinuité sur les facettes transversales avec un schéma de Roe. Il s'agit de calculs de mise en oeuvre délicate mais qui ne doivent entraîner qu'un surcoût modique à l'exploitation.

• La suite naturelle de ce travail pourrait être la suivante : (i) mise en oeuvre du flux linéarisé de paroi mobile dans une maquette logicielle jointe à une extension tridimensionnelle des développements algébriques formels contenus dans ce mémoire, (ii) validation par rapport à l'expérience détenue par Aerospatiale aux Mureaux, (iii) insertion du module ainsi développé au sein d'un logiciel tridimensionnel opérationnel comme Flu3mi ou Elsa. De façon plus générale, ce travail s'insère dans une réflexion globale sur le couplage aéroélastique et le besoin opérationnel de disposer pour les études systèmes d'un logiciel de simulation couplant aérodynamique et élastodynamique. 

  de flux f (•) suit la relation algébrique :

I+1

  Dans le cas d'une maille mobile (i = I), l'écriture de la loi de conservation (3.50) est un peu plus compliquée car les facettes Σ n+1/2 extérieure ν qui a une composante temporelle ν t (relation (3.22)) non-triviale. Nous détaillons dans la proposition suivante l'algèbre relative à ces différents termes. Proposition 3.3 Flux au bord du volume mobile V n+1/2 I, j . Etant donnée une famille W n l, m , l ≤ I, m ∈ Z Z fixée d'états fluides, on suppose que le schéma numérique de volumes finis permet l'évaluation d'états interpolés W n+1/2 i+1/2, j et W n+1/2 i, j+1/2 sur les facettes Σ n+1/2 i+1/2, j et Σ n+1/2 i, j+1/2 comme fonction de ces seules variables, prenant en compte également les données aux limites (i = I) . On a alors les quatre relations suivantes : (3.61)

  , j compte tenu de (3.43) et (3.44), ce qui montre la première identité. • Les autres relations résultent du calcul des intégrales des normales extérieures (relations (3.27) à (3.29)) mené à la proposition 3.2 et de l'orientation relative de la normale extérieure ν au volume mobile V n+1/2 I, j d'une part et des normales ν i+1/2, j et ν i, j+1/2 qui courent le long des lignes de maillage d'autre part. Remarque 3.1 • Dans le cas de la maille mobile K I, j , c'est-à-dire du volume dans l'espacetemps V n+1/2 I, j , l'équation de bilan (3.50) prend la forme suivante, compte-tenu de la définition (3.48), du calcul (3.59) et des relations (3.61) à (3.64) que nous venons d'établir : (3.65)

  mais le schéma usuel (3.60), non valable en toute rigueur dans cette région d'espace-temps si on ne modifie convenablement le flux sur la paroi mobile. Une difficulté vient du fait que ces deux objets portent à priori le même nom Φ • ν limite de paroi mobile F • ν n+1/2 I+1/2, j tel que défini ici est simplement un artifice algébrique pour donner à la loi de conservation en domaine mobile les apparences d'un bilan en maillage fixe. Nous l'avons présenté pour la première fois sous cette forme en 1998 [Du98]. Preuve de la proposition 3.5. • On explicite le flux limite de paroi mobile F • ν n+1/2 I+1/2, j en le tirant de la relation (3.67) ; il vient : (3.69)

  j+1 , j ∈ Z Z . Nous devons donc évaluer en fonction de ces deux (!) infiniment petits le volume K I, j de la maille à la paroi au temps n ∆t , la normale spatiale ν n+1/2 j le long de la paroi mobile et la normale spatiale ν n+1/2 I, j+1/2 le long de la facette transversale d'indice (I, j + 1/2) ; ces données sont utiles pour développer ensuite les champs physiques tels que la pression paroi p n+1/2 I+1/2, j , le flux numérique Φ • ν ces mêmes faces. Nous détaillons dans la suite le calcul de chacun de ces termes au premier ordre de précision par rapport à s n+1/regrouper pour expliciter une expression approchée du flux limite de paroi mobile F • ν

  son état miroir : (4.34) W n i+1/2, j, + = µ W n i+1/2, j,qui a même thermodynamique que l'état W n i+1/2, j, -, même vitesse tangentielle u , j • τ mais une vitesse normale u , j • ν opposée. Nous avons : (4.35)

Proposition 4. 4

 4 Pression paroi à vitesse nulle. Lorsque l'élément de surface discrète Σ I+1/2, j est immobile dans sa position initiale (i.e. s n+1/définit, grâce à la relation (4.36), une pression paroi p n+1/2 , j

  0 et la propriété (4.48) résulte d'une dérivation par rapport à ξ de la relation (4.45) et de la relation (4.49). Si la 1-onde de détente contient le point d'origine ξ = 0, la relation (4.46) résulte alors du développement de Taylor à l'ordre 1 de Ψ(W g , ξ , W d ) et de la relation (4.48).

.

  Dans la suite de ce paragraphe, nous explicitons la variation δΦ + (respectivementδΦ -) du flux numérique Φ + (W ) • ν (respectivement Φ -(W ) • ν) dans une variation δν = k × δ n+1/2 j+1/2de la direction normale (relation (4.7)), afin de développer le flux (4.55) lorsque la position du sommet frontière M I+1/2, j+1/2 varie de δ n+1/2 j+1/2 au cours du temps.

|

  Dans le cas de la relation (4.7) où δν s'écrit δν n+1/ν | 3 (k × ν I, j+1/2 ) . Preuve de la proposition 4.7. • La relation (4.57) est une simple dérivation de (4.56), compte tenu de la définition de la norme | ν | en fonction du produit scalaire (ν, ν). Lorsque δν = k × δ n+1/2 j+1/2

  ν) δM ν et la relation (4.76) résulte alors simplement de (4.66), ce qui termine d'établir la proposition 9.• 4.7 • Moyenne de Roe bidimensionnelle.• Le paragraphe 4.5 relatif à l'étude du flux transversal (4.3) nous a montré qu'on peut le développer au second ordre sous la forme (4.53). Au paragraphe 4.6 qui vient de s'achever, nous avons explicité l'outillage technique qui permet de développer le premier terme du membre de droite de la relation (4.53), c'est à dire Φ n+1/2 I, j+1/2• ν n+1/2 j+1/2lorsque la normale ν n+1/2 I, j+1/2 est une perturbation du premier ordre de la normale "fixe" ν I, j+1/2 donnée à l'aide de la relation (4.7). Il convient maintenant de s'intéresser au second terme du membre de droite de la relation (4.53), lequel se présente déjà sous la forme d'une perturbation du premier ordre et peut donc être approchée par la relation (4.54). Le problème qui reste à résoudre est de calculer la moyennede Roe, notée V R, n I, j+1/2 sur l'interface Σ I, j+1/2 transverse à la paroi mobile, entre les états W n I, j+1/2, -et W n I, j+1/2, + de part et d'autre de cette interface (voir la figure 4.1 pour une explicitation de la géométrie). • Pour éviter des notations trop lourdes dans le corps de ce paragraphe, nous cherchons donc à évaluer la moyenne de Roe entre deux états W g ( W g = W n I, j+1/2, -ici) et W d ( W d = W n I, j+1/2, + dans notre cas de figure) séparés par une interface de normale unitaire ν ( ν = ν I, j+1/2 | ν I, j+1/2 | pour le calcul de V R, n I, j+1/2 ). Nous posons donc : (4.79) V R, n I, j+1/2 = R W n I, j+1/2, -, ν I, j+1/2 , W n I, j+1/2, + et nous explicitons à la proposition suivante le calcul de la moyenne de Roe bidimensionnelle R W g , ν , W d entre deux états W g et W d séparés par une normale unitaire ν. Proposition 4.10 Moyenne de Roe bidimensionnelle. • Soient W g et W d deux états fluides à quatre composantes scalaires (explicitées génériquement à la relation (4.15)) et ν une normale unitaire fixée. On définit l'état d'interface W W g , W d à l'aide de sa densité ρ , de sa vitesse u = (u , v ) et de son enthalpie totale H , calculés par les (célèbres) relations de moyenne [Roe81] :

( 4

 4 .85) A W, ν = df (W ) ν x + dg(W ) ν y à partir des flux f (•) et g(•) et qui a une expression explicitée ci-dessous :

  (4.107) W d -W g = 4 j=1 ϕ j r j W , ν et de remarquer que dans le cas d'un système linéaire, la solution autosemblable W

  pour les valeurs exceptionnelles de ξ égales aux valeurs propres λ j (W , ν) de la matrice A(W , ν) où la matrice autosemblable est discontinue. L'état R W g , ν , W d est égal à W (ξ = 0) et la relation (4.94) résulte alors simplement d'une part de l'explicitation des variables caractéristiques ϕ 1 et ϕ 4 de la relation (4.107) et d'autre part de (4.108) appliquée avec ξ = 0 (voir la figure 4.5).

  • r 1 W , ν) = (γ -1) Hu 2c 2 ν xu v ν y + + (2γ) u ν x + ( u • ν) (uc ν x ) + -(γ -1) v ν x + u ν y (vc ν y ) + + (γ -1) ν x Hu c ν xv c ν y = (γ -3) u c -(γ -1) u c (ν x ) 2 + -c v + (γ -1)c v -(γ -1) c v ν x ν y + -(u c) (ν y ) 2 + 2 (γ -1) Hu 2c 2 + (3γ) u 2 -(γ -1) v 2 ν x + (u v) ν y = -2 u c (ν x ) 2c v ν x ν yu c (ν y ) 2 + (u 2 + c 2 ) ν x + u v ν y = -u cc ν x ( u • ν) + (u 2 + c 2 ) ν x + u v ν y = -u cc ν x ( u • ν) + u ( u • ν) + c 2 ν x = ( u • ν)c (ucν x )

• 3

 3 ième composante de A • r 2 W , ν) = -u v ν x + (γ -1) Hv 2c 2 ν y + = ( u • ν) + c = λ 4 1 ière composante de r 4 W , ν) • 2 ième composante de A • r 4 W , ν) = (γ -1) H ν xc 2 ν xu ( u • ν) + + (2γ) u ν x + ( u • ν) (u + c ν x ) + -(γ -1) v ν x + u ν y (v + c ν y ) + + (γ -1) ν x H + ( u • ν) c = 2 u c (ν x ) 2 + c v ν x ν y + u c (ν y ) 2 + u 2 + c 2 ν x + u v ν y = u c + c ν x ( u • ν) + c 2 ν x + u ( u • ν) = ( u • ν) + c (u + c ν x ) = λ 4 2 ième composante de r 4 W , ν) • 3 ième composante de A • r 4 W , ν) = -u v ν x + (γ -1) Hv 2c 2 ν y + + v ν x -(γ -1) u ν y (u + c ν x ) + u ν x + (3γ) v ν y (v + c ν y ) + + (γ -1)ν y H + u c ν x + v c ν y = v c (ν x ) 2 + u c ν x ν y + 2 v c (ν y ) 2 + u v ν x + v 2 + c 2 ν y = v c + c ν y ( u • ν) + c 2 ν y + v ( u • ν) = ( u • ν) + c (v + cν y ) = λ 4 3 ième composante de r 4 W , ν) • 4 ième composante de A • r 4 W , ν) = (γ -2) Hc 2 ( u • ν) + + H ν x -(γ -1) u ( u • ν) (u+c ν x ) + H ν y -(γ -1) v ( u • ν) (v +c ν y ) + + γ ( u • ν) H + ( u • ν) c = H ( u • ν) (2 γ -1)c 2 ( u • ν) + H c -(γ -1) ( u • ν) u 2 + v 2 + ( u • ν) 2 c = H ( u • ν) + H c + c 2 ( u • ν) + c ( u • ν) 2 = ( u • ν) + c H + ( u • ν) c= λ 4 4 ième composante de r 4 W , ν) et A • r 4 W , ν) = λ 4 r 4 W , ν) , ce qui établit finalement la relation (4.95).

( 4 .•,

 4 109) W d -W g = 4 j=1ϕ j r j W , ν Compte tenu des expressions (4.96) à (4.99) des vecteurs propres, les variables caractéristiques ϕ j sont donc solution du système linéaire suivant :(4.110) ϕ 1 + ϕ 2 + ϕ 4 = ρ dρ g (4.111) uc ν x ϕ 1 + ( u • ν) ν x ϕ 2c ν y ϕ 3 + u + c ν x ϕ 4 = = ρ d u dρ g u g (4.112) vc ν y ϕ 1 + ( u • ν) ν y ϕ 2 + c ν x ϕ 3 + v + c ν y ϕ 4 = = ρ d v dρ g v g où les sensibilités δ Φ + • ν et δ Φ -• νsont calculées aux relations (4.60) à (4.64) et (4.72) à (4.76) respectivement. • Les états de Roe V R, n I, j+1/2 (j ∈ Z Z) sur les facettes transverses à la paroi s(assez classique) est calculée aux relations (4.80) à (4.99) de la proposition 4.10 : on évalue d'abord (à l'aide de racines carrées) une densité, une vitesse et une enthalpie totale intermédiaires entre les deux états de part et d'autre de la facette numéro (I, j + 1/2) avant de calculer les vecteurs propres de la matrice jacobienne associée (c'est la matrice de Roe), lesquels donnent une base naturelle pour résoudre le problème de Riemann linéarisé (relation (4.94)).

  1 à I -1, le maillage est fixe et la relation (2.22) s'applique ; la condition limite de paroi mobile consiste à imposer à la relation (2.22) d'être encore vraie dans la dernière maille, alors que l'intégration de la loi de conservation doit se faire dans un domaine contenant une paroi mobile.

	• La méthode Muscl propose de calculer d'abord une valeur interpolée W n i+1/2,-à gauche de l'interface x i+1/2 et une valeur interpolée W n i+1/2,+ à droite de cette
	interface (voir par exemple [Du93]) avant de calculer le flux numérique f	n+1/2 i+1/2	à
	l'aide d'un "solveur" approché Ψ(• , •) du problème de Riemann entre les valeurs extrapolées W n i+1/2,± de part et d'autre de l'interface :
	(2.23)		

•

  Dans le cas particulier où la paroi est fixe (c'est-à-dire X(t) ≡ L, x n

	I+1/2 I∆x) , la relation (2.22) est encore valable et le flux paroi est donné encore à l'aide ≡
	de la relation (2.22), mais l'état W n I+1/2,+ est en général choisi comme l'état "miroir" µ(W n I+1/2,-) de W n I+1/2,-de façon à imposer un flux à la paroi de la forme "force de pression" :
	(2.31) Afin d'alléger les notations, notons u n la vitesse extrapolée à la paroi : f n+1/2 I+1/2 = 0 , p n+1/2 * (0) , 0 t , n ≥ 0.
	(2.32) et supposons le nombre de Mach de cet état extrapolé compris entre -1 et 1. Rap-u n * = u W n I+1/2,-, n ≥ 0 pelons, compte-tenu des relations (2.26) à (2.30) que pour | M | ≤ 1, on a :

•

  Dans le cas où la paroi X(t) est mobile, la loi de conservation (2.22) ne s'applique plus a priori, et en particulier, le flux à la paroi f

		n+1/2 I+1/2 ne saurait être calculé	à
	l'aide de la relation (2.31). La condition limite de paroi mobile est une réécriture de
	la loi de conservation (2.7) dans la boîte d'espace-temps ABCDA décrite à la figure
	2.3, qui force la forme algébrique (2.22), quitte à définir un nouveau flux à la paroi,
	noté F I+1/2 et appelé dans la suite "flux limite de paroi mobile". On a la n+1/2
	Proposition 2.2	Condition limite de paroi mobile monodimensionnelle.
	Avec les notations utilisées plus haut, soit W la 1 -onde (de choc ou de détente) issue de l'état extrapolé W n n+1/2 I+1/2 l'état de vitesse s n+1/2 sur I+1/2,-(de vitesse u n * , pression p n * , densité ρ n * , vitesse du son c n * ). Sa pression : p n+1/2 n+1/2 I+1/2 I+1/2 ≡ p W est calculée par résolution du système d'équations suivant :

  Pour expliciter le membre de droite de (3.22), il est utile de préciser les notations pour les normales spatiales situées sur les parois mobiles CBFG, BCDA et GFEH. Il convient de faire attention au fait que la normale ν est orientée et pointe toujours vers l'extérieur du volume V n+1/2 I, j alors que les directions normales ν i+1/2, j et ν i, j+1/2 suivent en espace les lignes d'indices croissants. Nous explicitons donc dans la suite de ce paragraphe les expressions des six normales extérieures.

	Proposition 3.2	Normales extérieures au volume V n+1/2 I, j

ν y , ν t ou deux composantes, une spatiale ν e ∈ IR 2 et une temporelle ν t :

(3.22) ν = ν e , ν t .

•

•

  Cette recherche a été soutenue par Aerospatiale Espace & Defense et la Jeune équipe de recherche n o 2140 du Conservatoire National des Arts et Métiers. Il est issu de conversations approfondies et fructueuses avec François Coron et Fabrice Ruffino aux Mureaux et l'auteur les remercie ici très chaleureusement. La dactylographie de ce mémoire est le fruit d'une collaboration avec Pierrette Foulon du Conservatoire National des Arts et Métiers à Saint Cyr l' École, qui reçoit ici tous les encouragements fraternels du responsable de ces mots.

Preuve de la proposition 4.8.

• Compte tenu de la relation (4.58) et de la forme algébrique particulière des flux f + m (W, ν), f + x (W, ν), f + y (W, ν) et f + e (W, ν) à dériver (relations (4.19) à (4.25)), on commence par dériver le nombre de Mach normal. On a :

• Il suffit ensuite de dériver l'expression (4.19) par rapport au nombre de Mach normal :

δM ν 1 + M ν ce qui montre la relation (4.61). ce qui établit la relation (4.62). On procède de même pour la seconde composante :

et la relation (4.63) en découle.

• La dérivation du flux d'énergie positive est menée par dérivation de la relation (4.22). il vient : 

On multiplie l'équation (4.111) par ν x , (4.112) par ν y et on additionne ; il vient

on recommence avec (-u ) en facteur de (4.111) et (-v ) en facteur de (4.112). Après addition avec (4.113) , on obtient l'équation suivante : On en tire immédiatement une expression des variables caractéristiques sur les deux ondes non-linéaires :

• L'expression de ϕ 2 et ϕ 3 n'est pas stricto-sensu indispensable à la preuve de la proposition 4.10. Nous achevons tout de même ce calcul. On tire ϕ 2 de (4.110) et (4.115) : 

5)

Linéarisation du flux limite de paroi mobile.

• 5.1 • Introduction.

• Rappelons que l'on étudie la résolution numérique des équations d'Euler de la dynamique des gaz dans un domaine Ω variable au cours du temps. Seuls les noeuds M I+1/2, j+1/2 (pour j entier positif ou négatif) de la paroi (située à l'indice I + 1/2) sont mobiles et l'on suppose d'une part que l'élongation δ n j+1/2 des noeuds au temps n ∆t est petite devant la dimension caractéristique de la maille et d'autre part que la vitesse (5.1)

/2 est petite devant la célérité du son du fluide proche de la paroi.

• Le flux limite de paroi mobile

permet de calculer un flux sur la facette mobile à la paroi afin qu'une écriture classique (c.f. (3.67)) du bilan de masse, impulsion, énergie prenne en compte la variation (imposée) de la géométrie. L'expression (3.68) qui est exacte peut être approchée au premier ordre par rapport aux deux infiniment petits rappelés ci-dessus.

• 5.2 • Flux linéarisé de paroi mobile.

• Avec des notations que nous allons expliciter dans la suite de ce paragraphe, le flux limite de paroi mobile calculé en (3.68) selon l'expression algébrique

(5.2)

admet au second ordre de précision le développement limité suivant :
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(5.3)

• Il y a dans l'expression précédente des variables géométriques statiques comme d'une part le volume K I, j de la maille de numéro (I, j) :

(5.4)

où δ ± I, j sont les vecteurs représentés figure 3.5 et calculés explicitement aux relations (3.16)-(3.17) ou d'autre part les normales (de module égal à la mesure de l'arête afférente) ν I+1/2, j et ν I, j+1/2 orientées par les lignes de maillage (voir la figure 4.1) et évaluées algébriquement aux relations (3.12) et (3.14).

•

Il importe également de remarquer les variables fluides statiques comme la pression paroi de vitesse nulle p n+1/2 , j (0) évaluée par la relation (4.37) dans le cas le plus courant pour le schéma de Van Leer, les flux Φ n+1/2 I-1/2, j

• ν I, j-1/2 sur les trois autres faces du volume K I, j pour lesquels les relations (4.12) et (4.13) donnent le point de départ en vue de leur calcul numérique et l'état W n I, j dans la maille qui touche la facette frontière.

• Les variables géométriques dynamiques sont induites par la variation δ n j+1/2 des points de la paroi. Rappelons d'abord quelles sont les notations utilisées. Elles partent toutes de la donnée des vecteurs δ n j+1/2

pour n ≥ 0 et j ∈ Z Z et uniquement de ces variables. Nous avons ensuite :

(5.5)

(5.8)
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Ces dernières relations, explicitées en (4.7) et (4.9) utilisent le produit vectoriel avec une direction k perpendiculaire à la direction du plan d'étude. Les vitesses s n+1/2 j+1/2 des points de paroi sont naturellement définies à la relation (5.1), mais on utilise aussi le long de la facette la vitesse (5.9)

, n ≥ 0 , j ∈ Z Z .

La variation relative du volume K I, j a une expression simple :

(5.10) δK I, j

ainsi qu'annoncé à la relation (4.4). On a également vu en (4.5) l'expression développée du préfacteur de W n I, j pour la relation (5.2) :

(5.11) (5.13)

où δ ν n+1/2 j est la variation de la normale unitaire à la paroi. On en déduit l'expression de la variation δp n+1/2 , j de la pression paroi (voir aussi la relation (4.40)) :

(5.14)

dans la variation de la direction normale est donnée par • Nous remarquons qu'au sein de la composante "énergie" (la troisième en partant de la gauche) du vecteur f 1 , le facteur s n+1/2 j • ν n+1/2 j est un infiniment petit d'ordre supérieur ou égal à 1 à cause du terme s n+1/2 j ; ceci permet de ne considérer les autres facteurs qu'à l'ordre zéro de précision (puisqu'on cherche un résultat à l'ordre au plus 2). On en déduit :

(5.23)

et nous venons de mettre en évidence le troisième terme de la relation (5.3). Nous avons par ailleurs :

Les trois premiers termes du membre de droite de la relation (5.24) sont identiques aux deux premiers termes de la relation (5.3). Le quatrième terme (en δK/ | K | ) se retrouve comme le premier des quatre sous-termes du quatrième terme du second membre de la relation (5.3).

• Le second terme f 2 s'explicite très simplement compte tenu de la relation (5.11). On le retrouve comme sixième terme de (5.3). Pour l'étude du troisième terme (relation (5.19)), on remarque une nouvelle fois que la présence en facteur d'un infiniment petit simplifie le calcul. On trouve :

(5.25)

• ν I-1/2, j + ordre ≥ 2 et cette expression constitue le second sous-terme du quatrième terme du second membre de la relation (5.3).

• L'étude du terme transversal a été commencée à la relation (4.54) et nous la réexplicitons :
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(5.26)

+ ordre ≥ 2 et l'insertion de cette dernière relation au sein de l'expression (5.20) conduit au calcul suivant :

Le premier terme du membre de droite de (5.27) se retrouve comme troisième sousterme du quatrième terme du membre de droite de la relation (5.3). Le second terme de (5.27) est égal au premier terme de la cinquième ligne de (5.3) et le troisième de (5.27) (avec l'état de Roe V R, n I, j+1/2

) constitue le premier de la septième ligne du développement (5.3).

• Le développement de f 5 est analogue à f 4 , au changement de signe et à la modificationn de (j + 1/2) en (j -1/2) près. Il permet de clore le quatrième terme de (5.3) ainsi que la fin des cinquièmes et septièmes lignes. La relation (5.3) est bien identique à (5.2), au second ordre de précision près, ce qui achève la démonstration de la propriété.

• 5.4 • Une autre linéarisation de la pression paroi.

• On pourra trouver que l'expression (5.14) qui permet d'évaluer l'incrément de pression à la paroi est trop compliquée algébriquement et de toute façon limitée à l'emploi du flux de Van Leer pour résoudre le schéma fluide. Nous proposons ici une autre expression approchée qui n'est pas obtenue par linéarisation rigoureuse du flux numérique mais par une analyse du problème de Riemann, ainsi que menée aux relations (2.39) et (2.40) de la proposition 2.2.

• Rappelons que, si l'on utilise le schéma de Godunov, la pression p n+1/2 I+1/2, j de la relation (5.2) est l'état situé sur la 1-onde issue de l'état W n I+1/2, j, -et de vitesse normale égale à

(5.28)

On pose donc (5.29) w n , j = u n , j

• ν n+1/2 j 59 et séparant le cas d'une détente σ n+1/2 j w n , j ≥ 0 de celui d'un choc σ n+1/2 j w n , j ≤ 0 , les relations (2.39) et (2.40) dans notre contexte bidimensionnel expriment que la pression p n+1/2 I+1/2, j est solution de l'une des deux équations suivantes (5.30)

I+1/2, j + (γ -1) p n si σ n+1/2 j w n , j ≤ 0 .

• Nous résolvons le système (5.30)-(5.31) de façon approchée grâce au raisonnement suivant : lorsque s n+1/2 j = 0 et ν n+1/2 j = ν I+1/2, j , la solution est celle du schéma numérique associé à une vitesse nulle pour la paroi, c'est à dire p n+1/2 , j (0). Cette pression paroi est, par hypothèse de travail, supposée correctement calculée grâce au flux de Van Leer (relation (4.37)). Lorsque la paroi est mobile, le mouvement reste modéré et l'écart de pression δp n+1/2 , j est obtenu en linéarisant l'une des deux relations (5.30) ou (5.31). Comme ces deux courbes de choc et de détente ont mêmes éléments de contact au second ordre inclus [START_REF] Courant | Supersonic flow and shock waves[END_REF], il vient (5.32) δ σ n+1/2 j w n , j + 1 ρ n c n δp n+1/2 , j = 0 compte tenu des relations classiques entre densité, pression et vitesse du son de l'état extrapolé à la paroi. On déduit de (5.28), (5.29) et (5.32) :

(5.33)

Cette relation permet un autre calcul de l'écart de pression à la paroi et ne diffère de la relation (5.14) que par le coefficient de u n , j

• δ ν n+1/2 j .

• 5.5 • De une à deux dimensions. • Le terme s n+1/2 W n I donne naissance aux trois dernières lignes du développement (5.3), avec un couplage géométrie-cinématique non trivial pour le terme en W n I et la nécessité d'évaluer correctement un état intermédiaire sur les facettes Σ I, j+1/2 (j ∈ Z Z) transversales à la paroi.

• Enfin, le dernier terme de (2.60) et le quatrième de (5.3) représentent tous deux la variation (5.34) δW I, j = δK n I, j W I, j -W n I, j ∆t où W I, j est l'état qu'on obtiendrait dans la maille K I, j en utilisant une paroi fixe. En effet, ces deux termes forment un bilan de flux qu'il est facile ensuite d'interpréter ensuite comme une dérivée temporelle.

• 5.6 • Lien avec la condition de transpiration classique.

• L'approche discrète que nous avons suivie est différente de celle, continue, suivie par d'autres auteurs de la communauté (voir par exemple Mortchélévicz [START_REF] Mortchélévicz | Résolution des équations d'Euler instationnaires en maillages non structurés[END_REF] ou Piperno [START_REF] Piperno | Simulation numérique de phénomènes d'interaction fluide-structure[END_REF]). La proposition qui suit fait le lien entre ce travail et l'expression du flux utilisé comme condition de transpiration dans les travaux antérieurs à l'Aerospatiale [START_REF] Ruffino | Aéroélasticité des lanceurs, conditon limite de transpiration[END_REF].

Proposition 5.1 Simplification extrême. Si, dans la relation (5.3) qui permet le calcul du flux limite de paroi mobile au premier ordre de précision, on fait les hypothèses suivantes :

(5.35) δp n+1/2 , j = 0

(5.36) δK n I, j = 0 (5.37)

se calcule par les relations algébriques suivantes :

(5.41)

I+1/2, j = q n+1/2 j W + p 0 , ν I+1/2, j , q n+1/2 j t + ordre ≥ 2 .

L'expression (5.44) est, au second ordre près, analogue à l'expression algébrique utilisée dans [START_REF] Ruffino | Aéroélasticité des lanceurs, conditon limite de transpiration[END_REF], à savoir (5.45) q(t) = s • ν n+1/2 j u • δν n+1/2 j (5.46) Φ • ν n+1/2 I+1/2, j = q(t) W + p 0 , ν I+1/2, j , q(t) t .

Preuve de la proposition 5.1.