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ABSTRACT

In this paper, we propose a novel approach to classify the
spectrogram zeros (SZs) of multicomponent signals based on
the analysis of the Voronoı̈ cells associated with these ze-
ros. More precisely, the characterization of the distribution of
the spectrogram maxima of a complex white Gaussian noise
along the edges of the Voronoı̈ cells associated with SZs en-
ables us to derive an algorithm to classify the different types
of zeros present in the spectrogram of a multicomponent sig-
nal. Numerical applications on simulated signals confirm the
relevance of the proposed classification algorithm, and an il-
lustration on a real signal concludes the paper.

Index Terms— Time-frequency analysis, short-time
Fourier transform, spectrogram zeros, Voronoı̈ cells.

1. INTRODUCTION

The analysis of non-stationary multicomponent signals from
their spectrogram has been the subject of intense research
in the last two decades, mainly because the modes of these
signals make up ridges in the time-frequency (TF) plane that
are used for instantaneous frequency (IF) estimation [1] and
mode reconstruction [2]. These ridges correspond to local
maxima of the spectrogram along the frequency axis, and, for
this reason, it is often acknowledged that the important in-
formation of the spectrogram is located where these maximal
coefficients stand.

However, in [3], it is explained, by means of the Bargmann
factorization [4, Section 3.4], that the short-time Fourier
transform (STFT) can be viewed as an analytic function
which is completely characterized by the location of its ze-
ros [3]. Furthermore, the location of spectrogram zeros (SZs)
of a complex white Gaussian noise (CWGN) is shown to ex-
hibit a very specific distribution, which was used to discrim-
inate the signal from the noise using Delaunay triangulation
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of SZs [3]. A deeper mathematical description of SZs of
CWGNs was then provided in [5], showing that their distri-
bution is homogeneous in the TF plane [5], meaning that, if a
region is devoid of zeros, it is most probably associated with
signal information. It is worth noting here that, much before
these findings, SZs had already been used in TF analysis of
the auditory system [6], where, using a reassignment tech-
nique, the repulsive effect of SZs was illustrated. Finally, we
should also note that the analysis of the behavior of the phase
of the STFT in the vicinity of SZs was investigated in [7].

In all the existing approaches to separate the noise from
the signal, one either uses SZs or local maxima of the spec-
trogram, but not both at the same time. In the present paper,
we propose an algorithm to classify SZs of an MCS in three
different classes, based on the maxima of the spectrogram co-
efficients along the edges of the Voronoı̈ cells associated with
SZs (VSZs). The rationale for using such a strategy is the idea
that, as remarked in [8], the largest spectrogram coefficients
are located close to the edges of VSZs. The paper is organized
as follows. In Sec. 2, we define the notation and basic defi-
nitions to be used throughout the paper. Then, in Sec. 3, we
investigate the distribution of the maxima of the spectrogram
coefficients of a CWGN along the edges of VSZs, which is
the basis for the SZs classification algorithm detailed in Sec.
4. Finally, Sec. 5 is devoted to the potential use of this classi-
fication algorithm to determine how separable the modes are
in the TF plane. An illustration of this last aspect on a real
signal concludes the paper.

2. DEFINITIONS AND NOTATION

For f, g ∈ l1(Z), the discrete-time STFT is defined by,

V g
f [n, k] =

∑
l∈Z

f [l + n]g[l]e−2iπ kl
N , (1)

in which N is the number of frequency bins. In the sequel, the
type of signals we study are multicomponent signals (MCSs),
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Fig. 1. (a): Local maxima and zeros of the spectrogram of a CWGN; (b): Histogram of the local maxima of the coefficients of
the normalized spectrogram of CWGN, plus the maximum likelihood estimate obtained assuming either a Gumbel or a Gamma
prior; (c): Same as (b) but for the histogram of the maxima along the edges of VSZs of normalized spectrogram coefficients of
CWGN. (d): classification error as a function of the noise level for the three signals of Fig. 2

defined by the superimposition of P modes, as follows:

f [n] =

P∑
p=1

fp[n], (2)

where fp[n] = ap[n]e
2iπϕp[n], in which ap and ϕp are respec-

tively the instantaneous amplitude and instantaneous phase.

3. ON THE DISTRIBUTION OF LOCAL MAXIMA
OF THE SPECTROGRAM OF A CWGN

Assume that ε is a circular CWGN with variance σ2
ε for its

real and imaginary parts, it is well known that the coefficients
of its normalized spectrogram follow a chi-squared distribu-
tion [9]:

|V g
ε [n, k]|2

σ2
ε∥g∥2

∼ χ2
2. (3)

Regarding the distribution of the local maxima of the
normalized spectrogram, it was hypothesized in [3] that they
should also follow a Gumbel distribution. However, to the
best of our knowledge, no theoretical results are available
to support this claim, and we now show numerically that
a Gamma distribution is much more adapted to model the
distribution of the local maxima of the normalized spectro-
gram than a Gumbel distribution. Indeed, in Fig.1 (a), we
display the location of the SZs and of the local maxima of the
spectrogram of a CWGN, and, in Fig.1 (b), the histogram of
the local maxima of the normalized spectrogram built using
300 noise realizations, along with its maximum likelihood
estimator (MLE) assuming a Gumbel or a Gamma prior. This
confirms that the latter is more appropriate than the former to
represent the distribution of local maxima.

We now would like to investigate the behavior of the max-
ima of normalized spectrogram along VSZ edges. In this re-
gard, it is reported in [10] that spectrogram coefficients of a

CWGN are mostly reassigned on the edges of VSZs, mean-
ing an edge point is close to the location of a local maximum
of the spectrogram in the direction given by the reassignment
vector. For that reason, the maxima of the normalized spec-
trogram along such an edge should follow a distribution close
to that of the local maxima, namely a Gamma distribution,
since they somehow correspond to local maxima of the spec-
trogram in two different directions. More formally, let us con-
sider a CWGN ε defined as in the previous section, zi a zero
of its spectrogram, Ci

ε its Voronoı̈ cell. The latter is a poly-
gon composed of Ji segments Ci,j

ε for j ∈ J1, JiK, and the
variable

Maxi,jε = max
[n,k]∈Ci,j

ε

|V g
ε [n, k]|2

γ2
, (4)

in which γ := σε∥g∥2, happens to follow the Gamma distri-
bution Γ(k, θ) with k ≈ 2.28 and θ ≈ 1.7, computed from
MLE, the results being shown in Fig. 1 (c). From this analy-
sis, one defines a threshold R, such that if Maxi,jε > R then
it is not en edge in noise with probability 1 − 10−3. In the
following section, we are going to use the variable defined in
(4) and the threshold R to classify SZs of noisy MCSs.

4. CLASSIFICATION OF SPECTROGRAM ZEROS
BASED ON VORONOÏ CELLS

4.1. Classification Algorithm

When considering a noisy MCS, SZs result from three differ-
ent types of interference, either between Gaussian logons in
noise (assuming the analysis window is Gaussian), between a
Gaussian logon and the STFT of a component of the signal,
or between the STFTs of two different signal components. In
what follows, we denote these three types of SZs by noise-
noise (NN), signal-noise (SN), or signal-signal (SS).



We now detail our novel algorithm to classify SZs in the
three mentioned classes. For that purpose, let us consider a
noisy version of f , denoted by f̃ = f + ε, in which ε is a
CWGN. First of all, we would like to compute an estimate of
the normalized spectrogram and thus γ := σε∥g∥2, for which

the robust estimator [11, 12], γ̂ := median[n,k]

∣∣∣ℜ{
V g

f̃
[n,k]

}∣∣∣
0.6745 ,

is often used. However, such an estimator is biased, since
some coefficients corresponding to the signal are taken into
account in the estimation. So to improve the latter, we pro-
pose to remove the coefficients that most probably correspond
to the signal, by first defining Sf̃ = {[n, k]; |V g

f̃
[n, k]| < 3γ̂}

as, from the χ2
2 table, coefficients |V g

f̃
[n, k]| > 3γ are associ-

ated with signal with probability larger than 0.99, and then by
considering the improved estimate for γ given by:

γ̃ := median
[n,k]∈Sf̃

∣∣∣ℜ{
V g

f̃
[n, k]

}∣∣∣
0.6745

. (5)

In the sequel, a normalized spectrogram coefficient corre-

sponds to
|V g

f̃
[n,k]|2

γ̃2 for some [n, k], and using the same nota-
tion as for Voronoı̈ cells in the pure noise situation, we define
the local maxima along Ci,j

f̃
as:

Maxi,j
f̃

= max
[n,k]∈Ci,j

f̃

|V g

f̃
[n, k]|2

γ̃2
, (6)

and then propose the following algorithm to classify SZs in
one of the three classes introduced in the beginning of this
section:

Algorithm 1 Classification of Spectrogram zeros

1: Input: Z set of spectrogram zeros, threshold R
2: for zi ∈ Z do
3: Ci

f̃
Voronoı̈ cell, with Ji edges, associated with zi

4: C = card {j ∈ J1, JiK,Maxi,j
f̃

> R}
5: if C = Ji then

zi ∈ SS
6: else
7: if 3 ≤ C then
8: zi ∈ SN
9: else

10: zi ∈ NN
11: end if
12: end if
13: end for

Indeed, when a SZ is of SS type, it is most of the time
associated with a specific TF pattern called time-frequency
bubble [13]. Such a structure corresponds to a SZ circled
by normalized spectrogram coefficients with high amplitude,
and the edges of the corresponding VSZ follow, more or less,

these coefficients in the TF plane. Thus, a normalized spec-
trogram maximum along an edge of such a VSZ should be
above R. When a SZ is of type SN, one edge of its Voronoı̈
cell follows the ridge of the mode of the signal involved in
the interference, implying that at least the normalized spec-
trogram maxima along three different edges should be above
R. Finally, to improve the efficiency of the proposed algo-
rithm, a SZ of type SS is changed into SN when there is a SZ
of NN type in a neigbhoring cell.

Fig. 2. Voronoı̈ cells associated with SZs of two crossing
modes, the dots, the stars and the circle correspond to SZs of
NN, SN, and SS types respectively

An illustration of the behavior of the algorithm is given
in Fig.2, for the signal made of two crossing linear chirps.
We remark that the classification of the SZs in three differ-
ent types seems correct, but we need to quantify classification
errors more precisely, which is done in the next section.

4.2. Validation on Synthetic MCSs

In this section, we propose to validate the previous algo-
rithm by checking that a SZ is correctly classified into
one of the three classes. To define what should be the
class of a SZ, we associate with the mode fp the region
Hfp := {[n, k]; |V g

fp
[n, k]| > 3γ}. Then, for each SZ zi, we

count the number of these regions that are intersected by VSZ
Ci

f̃
, namely:

Di := card{p ∈ J1, P K;Ci
f̃
∩Hfp ̸= ∅}. (7)

The three perfect classes are then defined by

ZSS := {zi, Di > 1},
ZSN := {zi, Di = 1},
ZNN := {zi, Di = 0}.

(8)

Then, a zero zi of type Ti is said to be correctly classified,
if zi ∈ ZTi , and we thus measure the classification error by
computing 1− 1

card(Z)

∑
i 1{ZTi

}(zi).
To evaluate the quality of our classification method, when

the input SNR varies, we depict in Fig. 3 (d), the classifica-
tion error in percentage associated with the signals of Fig. 3
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Fig. 3. (a): Spectrogram of two close parallel linear chirps;
(b): Spectrogram of two crossing linear chirps; (c): Spectro-
gram of two close oscillating modes; (d): classification results

(a) to (c). The proposed method performs best for the two
parallel linear chirps, while for crossing linear chirps, the er-
ror is slightly higher, but in both cases it remains stable when
the noise level varies. Finally, for the signal with oscillating
phases, the error is, for most input SNRs, lesser than 1%, but
increases when the input SNR decreases below 5 dB. This
is due to wrong classifications in the regions where the fre-
quency variations of the modes are strong, which are known
to be more sensitive to noise [14]. In such cases, SZs of SS
type may be classified in the SN class.

5. NUMERICAL EXPERIMENTS

5.1. Investigating Mode Separability using SZs classifica-
tion

Our goal in this section is to show that the classification of
SZs into three different classes is a good indicator of how
well the mode are separated in the TF plane. Considering
the signals of Fig. 3 (a) and (b), for the parallel linear chirps
we move the modes away one from another and see how the
classification results varies, with respect to the mode distance
in the TF plane measured by d = ϕ′

2[n] − ϕ′
1[n], constant in

that cases, and noise level. Regarding the signal of Fig. 3
(b), corresponding to a pure harmonic and a linear chirp, we
make the same computation as previously with respect to the
chirp rate r of the latter and noise. As expected, the results
depicted in Fig. 4, show that while it is possible to separate
the two pure tones by increasing the distance between them,
such is not the case with the signal made of crossing modes.
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Fig. 4. Value of #SS
#SN averaged over 30 realizations for the

signals of Fig. 3 (a) and 3 (b), at SNRs 0 dB, 5 dB and 15dB.

5.2. Investigating Mode Separation in Bat Echolocation
Signal

We here consider a bat echolocation signal containing 256
samples corresponding to a time span of 1,6 ms, which al-
lows frequency analysis up to 80 kHz. Because of a too low
frequency sampling, the signal contains some aliasing. In Fig.
3 (c), the spectrogram of this signal is depicted with VSZs su-
perimposed. Four modes with sufficiently high energy can be
observed, which appear to be surrounded by SZs classified as
SN or SS when the modes are close to each other, the loca-
tion of SS SZs telling us where the modes will be harder to
separate. Note that, in the first time instants, some zeros are
classified as SS because of aliasing, corresponding to modes
with frequencies above 80 kHz.

Fig. 5. VSZs associated with the bat signal, along with clas-
sification results of these zeros in the three classes.

6. CONCLUSION

In this paper, we proposed a method to classify the spectro-
gram zeros of noisy multicomponent signals. These are gen-
erated by interference of different types which we denoted by
noise-noise, signal-noise or signal-signal. Based on a thor-
ough study of the distribution of spectrogram coefficients on
the edges of the Voronoı̈ cells associated with spectrogram
zeros in pure noise, we were able to accurately classify the
spectrogram zeros of noisy multicomponent signals in one of
the above-mentioned classes.
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