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Estimating 5G network service resilience
against short timescale traffic variation
Rui Li, Bertrand Decocq, Anne Barros, Yi-Ping Fang, Member, IEEE, Zhiguo Zeng

Abstract—5G networks are designed to create a new ecosystem for
vertical industries such as health care, energy, and public transport.
These novel applications, on the other hand, bring new challenges to
network resilience. Among them, traffic variation is one of the most
vital threats to the 5G network. With tens of thousands of devices
connected to the network, network service resilience is threatened
by the heavy traffic change induced by the end users or malicious
attacks. While long timescale traffic variation can be easily predicted
based on historical data, short timescale abnormal traffic is hard
to forecast yet can significantly violate the service requirements.
The impact of short timescale traffic variation can be mitigated by
5G management and control systems. However, the complexity and
dynamics of the virtualized 5G system make it hard to estimate its
resilience. This paper provides a 5G network model that captures the
data traffic changes and network dynamic management mechanism.
The model is able to evaluate the performance of different network
services with different requirements under traffic variation events.
We analyze the effectiveness of auto-scaling and compare different
isolation strategies for traffic congestion. The simulation results
on service resilience estimation can become strong supporting
information for 5G network deployment and configuration.

Index Terms—5G, network resilience, auto-scaling, virtual
networks, traffic variation, communication networks, Kubernetes,
network service, Petri Net, discrete event simulation.

I. INTRODUCTION

ONE of the most ambitious goals of 5G is to empower
vertical markets and to realize a sustainable ecosystem.

The Next Generation Mobile Networks (NGMN) Alliance [1] has
identified many vertical industries that can benefit from 5G, such
as transport, smart grid, health, and wellness. Each covers many
different use cases. The smart grid applications, for example, may
contain use cases of equipment monitoring, fault localization,
network isolation, etc. 5G visions to support a large variety
of these vertical applications with varying characteristics and
requirements. Depending on different scenarios, the requirements
on peak data rate, bandwidth, latency, and reliability can be
completely different [2].

Building such a vertical ecosystem requires a more flexible net-
work. In order to deliver services more dynamically, 5G networks
take benefit from a set of technologies, such as Network Function
Virtualization (NFV) and Software Defined Networking (SDN)
[3]. The principle idea is to construct a virtualized network and de-
ploy it flexibly according to specific requirements. NFV proposes
to extract network functions from dedicated equipment and makes
them work in a virtualized environment. It introduces a virtual-
ization architecture based on the physical infrastructure on which
several virtual machines or containers run. At the same time, SDN
separates the control plane and the data plane by centralizing the
intelligence of the hardware infrastructure at the level of a con-
troller to support the NFV infrastructure and architecture configu-
ration. Based on NFV and SDN, network slicing proposes a cus-
tomized network for 5G verticals to support diverse requirements.

The above-mentioned technologies create a virtualized
network to support the 5G ecosystem. However, a key issue
before putting such a network into service is to verify if the
diverse requirements can be satisfied, including its resilience in
the presence of adverse events. With thousands of user devices
and services connected, testing on a real network is not practical.
We thus propose to simulate the network performance based on
a 5G network model. In this paper, we mainly focus on vertical
service’s latency and acceptance rate requirements, and consider
resilience to adverse events. This work chooses incidents caused
by traffic variation as the adverse event for the analysis since
traffic change happens more often, especially with the expansion
of new connected objects, becoming a challenging issue to
ensure service performance.

The traffic variation, one of the main threats to 5G network,
brings many uncertainties to the configuration and makes it hard
to prepare the system with an appropriate scale. 5G network is
initially well configured for a desired functioning state of the
services. 5G system can be dynamically configured using 5G
NFV Management and Orchestration (NFV-MANO) when the
environment changes. It tries to re-scale itself to save energy
when there are few service requests. When the service requests
grow, it increases its capacity. A long-time mobile traffic forecast
can precisely anticipate the traffic change during a week or a
day, as found in [4], [5]. However, in a short period, adverse
event as DDoS attacks, flash mobs, and some impromptu events
could induce abnormal traffic that is hard to predict. A real
example of network behavior during a football match is reviewed
in [6]. During an adverse event, a 5-minute disruption would be
tolerable for a smartphone user. Yet it could be catastrophic for
a reliable-sensitive use case and leads to severe consequences.
For example, real-time applications, such as remote surgery,
factory automation and intelligent transportation, require reliable
and precise information and feedback [7]. When the connection
is disrupted, some pieces of important information may not
be completely delivered. Then this service loses its reliability
and becomes unavailable and eventually causes serious railroad
accidents. Although short-term performance loss becomes critical
in network resilience, few works have focused on a short
timescale traffic variation. On the one hand, traffic changes
rapidly in fine timescales of seconds, which is hard to predict.
On the other hand, the resilience performance may depend
largely on the traffic pattern a 5G network encounters and the
management methods it applies. In this article, we simulate the
Kubernetes platform-Based NFV-MANO (as it provides operators
with a lighter, more portable container 5G network) and its built-
in control algorithm, propose different traffic change scenarios,
and estimate the short-term resilience loss under traffic variation.

The main contributions of this work are the following:
0000–0000/00$00.00 © 2023 IEEE
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• The 5G telecommunication network is modeled by a hierar-
chical Petri Net for short timescale resilience analysis.

• The model takes into consideration the dynamic behaviors of
both packet processing and micro-service management.

• The resilience loss of different network services under traffic
variation is estimated with a proposed service reliability-based
resilience metric.

• The effectiveness of service isolation strategies during an
adverse event is examined.
The paper has been organized in the following way. Related

works are discussed in Section II. We present the virtualized 5G
network in Section III. In Section IV, the Petri Net-based 5G
network model is explained. Service performance and resilience
metrics are introduces in Section V. The model is applied to
two case studies in Section VI. Finally, Section VII concludes
the paper and outlines future work directions.

II. RELATED WORKS

For a communication network, resilience often refers to the
ability to provide and maintain an acceptable level of service
during failures and incidents, as pointed out in [8]–[10]. Focusing
on 5G resilience, Esposito et al. [11] introduced the threats in
Information and Communications Technology (ICT), such as
extreme weather, power outage, software failure, and attacks that
lead to the escalation of disasters in 5G networks. They highlight
the importance of ensuring adequate levels of resiliency for future
network paradigms. Dutta and Hammad [12] classify 5G threats
based on different consequences, such as loss of availability
and confidentiality. They also focus on identifying associated
system vulnerabilities and corresponding mitigation techniques.
Hutchison and Sterbenz [8] depict how a resilient network can
be constructed by considering components that interact with each
other. To build a resilient telecommunication network, operators
need to evaluate the network resilience performance in case of
various unfavorable events. Mauthe et al. [13] make an explicit
mention of cost effectiveness in the resilience definition and high-
light the need for resilience to be quantifiable. They also point out
the importance of analyzing the risks associated with challenges
in a given context. In [10], resilience-related metrics are classified
into topological and functional metrics. Topological metrics, such
as centrality, and connectivity, are the metrics directly related to
the network topology and independent of how data is transmitted,
as the works in [14], [15], whereas others focus on the functional
metrics, such as latency, are metrics that are closely related to data
flows and can evaluate the impact of an incident on applications
and users, and they are strongly related to QoS metrics.

Some works estimate 5G resilience by looking at how an
incident may impact resilience metrics dynamically. Awad et al.
[16] build a framework to improve software-defined radio access
networks’ resilience to sudden changes in network parameters
where the system functional metrics, including network latency,
are evaluated during the incident. Liu et al. [17] estimate an
mMTC network service’s performance response function evo-
lution during a typhoon disaster using an assessment framework
consisting of five mathematical models. Nakayama et al. [18]
estimate the service performance of data transmission during the
communication failure scenarios to test a resilience management
architecture for communication on portable assisted living
applications. [19] proposes a resilient VNF allocation model for
increasing the number of accepted requests in a dynamic request

scenario and develops a reinforcement learning-based approach.
Although dynamic request situation is considered, there is no
temporal resilience analysis. [20] formulates a resilient VNF
placement model that minimizes the computation resource cost
and guarantees recovery against single node failure within the
recovery time objective defined for each service.

Indeed, only limited works have drawn attention to the evalu-
ation of network service resilience from the perspective of how
network service suffers and adapts to the incident. They neglect
the network components and relations between them, which could
be necessary for system resilience analysis. Instead of estimating
the performance evolution during adverse events, most works
assume there is a more “static” or “average” service performance
loss in case of incidents or failures, and it can be helpful for
system conception and design from a preventive perspective.

5G network performance assessments have been carried out
by various studies. The considered performance indicators may
include the quality of service, network availability, installation,
and operational cost. Depending on the goal and the context,
the applied approaches can differ from one to another.

Di Mauro et al. [21] model the probabilistic behavior of a
containerized IP Multimedia Subsystem using Stochastic Reward
Networks and Reliability Block Diagram. This model gives a
joint analysis of availability and performance by considering
both failure and repair events.

With a focus on the base station, Farooq et al. [22] use
the Continuous Time Markov Chain to analyze the reliability
behavior of a base station for the future by taking into account
the arrival of faults and recovery effects. In [23], the authors
develop a semi-Markov model to quantitatively estimate both
transient and steady-state availability of a Multi-access Edge
Computing service function chain. Although dynamic behaviors
can be investigated using this model, service requirements such
as latency and packet loss are not considered.

In [24], a queuing-based model is introduced to the network
orchestrator to optimize the system resource allocation regarding
the vertical’s requirements. In this work, service delay is
chosen as the main performance indicator. In [25], an analytical
queueing model is also established to accurately evaluate the
E2E packet delay for multiple traffic.

Li et al. [26] propose a game-theoretical approach to solve
an SFC embedding problem. In this approach, SFC is seen as
a player and minimizes the overall latency subject to capacity
constraints. Singh et al. [27] give a more general insight by
surveying the game theory applied to analyzing and modeling
the 5G system. They give special attention to the coalition
games applications on resource management, interference
management, and miscellaneous.

Linear programming (LP) has been widely used to formalize
a telecommunication network problem. Instead of estimating a
transient service performance, this approach seeks an optimized
solution subjected to certain constraints. Objective functions
formulate the aim of optimization, such as minimizing cost, mini-
mizing resource allocation, or maximizing performance. Decision
variables are the configurable parameters in the 5G network
system to be estimated to obtain the optimal solution. The other
5G system structure or limitations and the service requirements
are presented as constraints. In [28], a cost minimization problem
is proposed using integer linear programming to obtain a cost-
efficient solution to VNF redundancy allocation. In [29], to effi-
ciently find the minimum end-to-end service latency, Dong et al.
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[30] minimize the total cost of service function chain deployment
while ensuring that the Quality of Service (QoS) requirements are
satisfied. Wu et al. [31] formulate an integer linear programming
problem to decide where to place virtual network functions
(VNFs) while guaranteeing service reliability. In [32], two integer
linear programming problems are formulated to minimize the
network service deployment cost while meeting latency require-
ments and identify the optimal locations concerning reliability.

In the above work, the network performance, either latency or
reliability, is generally treated in a static or stationary way. The
latency is normally calculated without considering congestion.
The reliability is seen from the system level (hardware and
software reliability) without considering how many service
requests can be successfully delivered during a short period
in adverse conditions. Indeed, various network metrics are
dynamic, and the scale and parameters of the 5G network
change according to the environment. The aspect of the dynamic
transient behavior of 5G networks is missing in these approaches.

In order to take into account dynamic behaviors, Petri Net-
based model has recently been introduced to network service per-
formance evaluation. Schneider et al. [33] use Queuing Petri Nets
to formally and unambiguously specify the behaviors of network
functions. They succeed in expressing queuing, synchronization,
processing delays, and changing traffic volume and characteristics
at each VNF. This approach allows to estimate and compare the
QoS of different configurations. Rui et al. [34] proposed a Petri
Net-based algorithm that can choose the service chain based on
service reliability in a service pool. Petri Network is used to
describe the failure and propose the migration strategy. This work
analyzes reliability from both transient and steady state perspec-
tives. However, the service performance aspect, such as service la-
tency and packet loss, is missing. The traffic flow is also not mod-
eled. In [35], a hierarchical colored generalized stochastic Petri
Net-based framework is proposed to evaluate a cloud data center
service reliability. The dynamics of service delivery are taken into
consideration. This study focuses on the reliability of the system.

Despite the efforts made in these frameworks, not all
dynamic behaviors that affect the performance of short-time
labeling services are well captured. In particular, the dynamic
management and configuration of the network, to which
the service performance and resilience are sensitive, are
not addressed. In this paper, we intend to build a Petri
Net-based model that describes the dynamic behavior of the
network, namely, the auto-scaling mechanism, and captures the
packet-level network performance to help produce a short-term
resilience evaluation during an adverse event.

In our previous work [36], we introduced a Petri Net-based
model for network availability estimation. This model captures
single failures and common cause failures, and describes how self-
healing takes action in a failure event but we does not consider the
traffic and any service using the network. In [37], we have refined
the model to calculate service data packet latency and rejection
rates. In this paper, we present the model comprehensively,
adding the Protocol Data Unit (PDU) session connectivity and
provide resilience analysis from network service perspective.

III. VIRTUALIZED 5G SYSTEM

In this section, we introduce the scope of the proposed model:
NFV, PDU sessions, and network slicing. Then in the second
part, we present the importance of capturing network dynamics
for resilience analysis during adverse events.

A. Functional description of virtualized network
To provide innovative, customized vertical services on demand

and guarantee service performance and resilience of a 5G system,
network slicing based on SDN, NFV, and a cloud-native 5G core
is a promising solution [38], [39]. With network slicing instances
[40], the 5G physical network is sliced into multiple isolated
logical networks of varying sizes and structures dedicated to
different services that provide the necessary flexibility and
scalability to vertical networks [41]. Protocol Data Unit (PDU)
builds connectivity for end-to-end services. This connectivity
enables the data packet exchange between a single end user and
the internet. Thus, as pointed out by Ferrús [42], the realization
of network slicing relies on the principle that each PDU session
is associated with a particular network slice. End users for
different network services will use different network slices and
establish different PDU sessions. Once the session is established,
the end user can start exchanging packets with the network by
steering between a set of network functions belonging to its slice.
Then above the physical infrastructure, we create several virtual
networks. The whole network resources are therefore allocated
to different slices according to the service requirements.

During an anomaly, network slicing isolates the service from
outside adverse events. However, network slicing requires more
resource allocation than a shared network to maintain network
service performance during an incident. When an incident occurs
in a shared network, by applying a priority mechanism, priority
is given to guaranteeing critical services while sacrificing some
less critical services to avoid violating service level agreements.

To provide efficient control for such a complex system facing
various adverse events, NFV Management and Orchestration
(NFV-MANO) [43] is used to anticipate the incident or adjust
network rapidly to avoid requirement violation and, eventually,
economic loss. NFV-MANO manages and orchestrates VNFs
and other software components and ensures the correct operation
of the NFV infrastructure and VNFs [44]. The exact mechanism
to implement the NFV-MANO could depend on the service
requirement, or the choice of operator, but at the moment, it
is hard to have a mechanism that can economically avoid the
degradation of service performance under all scenarios.

B. Challenges in system resilience
In order to perform a resilience assessment, we need to

understand how the complex virtualized network is composed
and look at the specific scenario in which it is applied.

Though at the conception phase, the networks are designed
with a certain degree of redundancy margin and some
NFV-MANO mechanisms. If the initial margin is not enough,
the VNF-MANO takes over and changes the configuration
to avoid overload. Therefore, we are faced with a dynamical
system where the traffic can be dependent on time, and the
network configuration may also change with traffic demand and
service of quality demand. Without capturing the dynamics of
the system, a short-term degradation of service quality caused
by adverse events will be neglected, making it difficult to
analyze service resiliency and to configure the network.

IV. A PETRI NET-BASED MODEL
FOR DYNAMICAL 5G NETWORK

To better model the constraints and dynamics of 5G, we
propose a hierarchical Petri Net model to represent the 5G
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Fig. 1. 5G container-based NFV hierarchy topology example with one local
site and one centralized data center site.

network. We focus on how a network service traverses the 5G
network, and how the 5G system dynamically reacts to meet
the service requirement.

In this work, the proposed generic approach could be
applied to different network designs. Even though two cases
are proposed in Section VI, this approach is not limited to
the parameter settings in the cases. We can easily vary the
design parameters, such as network locations, the number of
containerized micro-services. However, the choice of multiple
locations and the number of considered micro-services will
increase the complexity of the model. When changing the
network design and parameters, the relationship between these
sub-Petri Nets should be carefully and explicitly expressed
when the network setup changes. Otherwise, the model could
fail to capture precisely how the network service process works.

A 5G network system topology is considered hierarchical,
as presented in Fig. 1. It comprises of several physical sites,
including locally distributed sites and central data centers. In each
site, network functions are virtually implemented. We assume
that VNFs are containerized. Each VNF consists of container-
based micro-services (equivalent to sub-functions). These micro-
services have multiple replicas in parallel to share the load. These
basic units are managed by a micro-service level controller, which
is connected to Kubernetes, taking charge of the utilization of
the resource pool of the site. By using hierarchical Petri Net, the
5G system is decomposed into sub-Petri Nets, which are given in
the following sections. Since the exact 5G system structure may
vary from operators and service providers, we briefly introduce
a generic system model based on our assumptions.

Based on the preceding works [36], [37], we build a
Hierarchical Timed Stochastic Colored Petri Net. The highest
level is the network functions Petri Net, which represents packet
generation, processing, and transmission in the 5G network. The
sub-networks are used to represent how the packet is generated,
processed and transmitted. From the management aspect, a
sub-network on micro-service management shows how the
network dynamics react to the environment.

The net model uses places and transitions to represent how
the network system and service dynamically change with time.
Message packets and telecommunication network components
are represented in tokens that can change the states. Places P
represent the state of the process of packets, such as transmission
and processing, or the state of the network components, such
as working mode and failure mode. Transitions T enable these
packet and component tokens to change their states.

A. Service delivery
5G network is composed of Radio Access Network (RAN),

Transport Network (TN), and Core Network (CN). In this study,
a virtualized RAN (vRAN) is directly located in the local cell.
The functions in RAN are all virtualized using the physical
resources in the distributed local site, just as Site - RAN in Fig.
1. TN is assumed to be 100% reliable and with enough capacity
to transfer all packets. The CN is installed in the operator’s data
center, just as Site - CN in Fig. 1. We consider a vertical industry
network service in which only the up-link data is transferred and
it happens only in the User Plane (UP). The request packets start
from end users. End users randomly appear in cells. Each end
user will use either vertical service 1 or vertical service 2. Before
sending packets to the internet, we assume that the end user has
already established a PDU session, which builds connectivity
between the end user and the network. Once the PDU session is
launched, the end user starts sending packets to the network until
the session terminates. These packets follow a service function
chain containing three VNFs by assumption, Distributed Unit
(DU, providing support for the lower layers of the protocol
stack), Centralized Unit (CU, providing support for the higher
layers of the protocol stack) in vRAN, and User Plane Function
(UPF, connecting the data from the RAN to the Data Network)
in CN. The packets are locally processed at the distributed RAN
sites for DU and CU, and then at Core Network for UPF.

Fig. 2 shows an exemplified service delivery level Petri Net,
including local site layer, network function layer. Local RAN
sites 1-4 and Core Network correspond respectively to Site - RAN
and Site - CN in Fig. 1. The VNF processes in Fig. 2 correspond
to the Network functions layer in Fig. 1. As explained in Table I,
p1 is the starting place, representing the end users from the cells.
Then they start PDU sessions by a sub-Petri Net represented
in transition t1. The established PDU sessions in place p2 keep
generating packets with t2 during the lifetime of the session.
These packets in p3 will then start the vRAN process in the
local site where it starts. In a Local RAN (site 1, for example),
the packet becomes input in place p41, the ingress gateway, and
processed in the VNF process sub-Petri Net t41. After being
processed by the VNF, it arrives as p51. As VNFs are processed
in order, transition t51 sends the packet back to p41 to pursue
the next VNF, CU, if the packet finishes all processes in DU. If
a packet is processed in both DU and CU, it will be transmitted
to Core Network p40, where it will pursue processes with UPF.
Finally, after being processed in t40, the packet arrives at p50
and then transition t6 transmits the packet to Data Network p6.

TABLE I
DESCRIPTIONS OF TRANSITIONS IN SERVICE DELIVERY

Transition Type Input token Output token
t1:

PDU generation Sub-Petri Net User PDU session

t2:
Packet generation Sub-Petri Net PDU session New packet

t3x:
Radio transmission Immediate New packet Packet

t4x:
VNF process Sub-Petri Net Packet Packet

t5x:
VNF Route

Immediate
Timed(to CN) Packet Packet

t6:
Packet reception Immediate Packet Packet
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Fig. 2. Service delivery level Petri Net. Example with four radio cells and one core network data center.

Fig. 3. VNF processing level Petri Net. Example of VNF A.

B. VNF and Micro-services

As a site has a set of VNFs, a VNF is composed of a set
of sub-functions known as micro-services. The sub-Petri Net
transitions t4x (for example, t40, t41, t42, t43 and t44) in Fig.
2 lead the service packet to the corresponding VNF needed
according to its service function chain and its PDU session.
One of the VNF process, VNF A process is shown in Fig. 3.
In this level, after one micro-service is processed, the packet
will pursue the next one in the same VNF or another VNF,
according on the processing sequence.

C. Micro-service/container processing

We model the micro-service process by a queueing model.
A detailed example of the micro-service in VNF A of site 1
is given in Fig. 4. When a packet arrives at the micro-service
p41AM1, it will pass through a resource-based load balancer
t41AM1Q to different micro-service instances. By adopting NFV
in 5G, these instances are either VM-based or container-based.
In this 5G model, we assume that all network functions are
container-based and are managed by the Kubernetes platform.
The minimum manageable unit in Kubernetes is a pod, which is
one or a set of relevant containers. We assume that in this model,
each pod is exactly one container. Based on the resource limit
of the site, we also assume a maximum of n (4, for example)
pods that can be instantiated to share the traffic load. A pod
is equivalent to a container, requiring specific resources (CPU
in our case) to instantiate. The place PSite1Resource provides
a shared resources pool to all micro-services on the site. When
instantiating a pod instance, CPU resource tokens will move
to the corresponding pod place. When deleting a pod instance,
its resource tokens will move back to the site resource pool.
To process a packet that arrives at the load balancer, t41AM1P

takes one resource from the pod with the most CPU resources.
This timed transition will bring the packet to p41A1 and return

Fig. 4. Packet processing level Petri Net. Example of micro-service of the
first VNF in t41, VNF A.

TABLE II
EXPLANATION OF TRANSITIONS IN PACKET PROCESSING

Transition Type Conditions
t41AM1Q

Join the queue Immediate Packet joins p41M1Q if not congested
Packet is rejected if p41M1Q is full

t41AM1P
MS process Timed Process packet if resource is available

Packet waits if no available resource
tK8S1AM1

MS controller
Periodic

Immediate
Intermittent activation

Subject to MS resource utilization

TABLE III
DESCRIPTIONS OF PLACES IN PACKET PROCESSING

Place Token color Explanation
p41M1 Packet Packet to be processed in MS
p41M1R Packet Packet rejected due to capacity limit
p41M1Q Packet list MS packet waiting list
p41A1 Packet Packet processed by MS

pSite1Resource Resource unit Resource pool of the site
p41AM1x Resource unit MS pod with a certain capacity

the resource after a processing time. When there are no available
resources in any of these pods, this packet will have temporally
waited until there is a new resource. If the queue is full of
packets, the system may reject a newly arrived packet. A detailed
explanation of transitions and places is listed in Table II and III.

D. Micro-service management
We demonstrate micro-service management using a site

containing four micro-services as shown in Fig. 5. This Petri
Net is divided into several subparts, four in the case of Fig.
5 and one shared resources place in the center. Each subpart
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Fig. 5. Micro-service management level Petri Net. Example of a site with
four micro-services.

can perform scaling out and scaling in functions proposed by
Kubernetes Horizontal Pod Autoscaler (HPA). Kubernetes is
assumed to be a fully reliable platform. While Kubernetes takes
charge of service orchestration and management, our model
only incorporates the function of HPA as a control algorithm
for managing the number of micro-service pod instances. The
built-in algorithm of the HPA controller runs auto-scaling
intermittently (the default interval is 15 seconds). By applying
auto-scaling, Kubernetes updates resource allocation, with the
aim of automatically scaling the workload to match demand. The
controllable objects of the HPA controller are the pod instances
of the micro-service in a VNF. A target resource utilization rate
is defined for each micro-service, then the controller fetches
the CPU utilization metrics and takes the mean utilization value.
If this value is outside a specified range, the HPA controller
calculates the desired pod replica number needed to obtain the
target utilization rate. If the desired number exceeds the current
one, it launches a scaling-out action to create supplementary
replicas. On the contrary, if the desired number is smaller than
the current one, it removes the unnecessary pods. In general, the
goal is to dynamically change and adapt the scale of the network
so that in a light traffic period, the system uses fewer pods to
save energy and resource allocation, and in a heavy traffic period
or during an incident, the system creates more pods to avoid
being overloaded and guarantee the network service resilience.

V. PERFORMANCE AND RESILIENCE METRICS

In this study, we focus on estimating the resilience of
the services that the network operator can offer to vertical
industries. In order to address the resilience under traffic change,
we propose several resilience-related metrics for evaluation.
End-to-end delay and packet loss, two objective functional
metrics, are first discussed. They are often used to determine
terms of service level agreements and could be very sensitive to
congestion caused by traffic variation. In order to analyze and
compare the resilience under different traffic variation scenarios,
a service reliability-based resilience triangle is introduced. This

proposed resilience metric is different from other state-of-the-art
metrics as it considers both of the two aforementioned objective
functional metrics. Finally, resource allocation cost is considered
an additional performance metric from the economic aspect.

A. End-to-end latency
End-to-end latency or end-to-end delay is the time it takes

to transfer a given piece of information from a source to a
destination [45]. This latency refers to the time to transfer a
packet from the end user to Data Network for uplink. For the
downlink, it is the opposite direction.

Most vertical services have strict requirements for end-to-end
service. From a 3GPP Technical Specifications, in the auto
function, for the service of cooperative collision avoidance be-
tween users, the maximum end-to-end latency is 10 ms [46]. For
urban area railway Very Critical Data Communication, end-to-end
latency requirement is also 10 ms for reasons of train safety [47].

When we investigate the latency evolution for a couple of
seconds, it seems impractical to examine the end-to-end latency,
packet by packet. During congestion, the difference in delay
between two consecutive packets can be significant because
the waiting time for each packet is random due to the stochastic
packet arrival rate. Instead, we prefer to look at the average
delay during a short time slot. Equation (1) illustrates a way to
calculate the delay of one time slot ]t,t+∆T ] where it uses the
average latency of all N delivered packets out of M transmitted
packets during this time interval. di is the end-to-end delay
of the i-th packet. xi is a binary variable, and it takes value
1 when the i-th packet has arrived at its destination and takes
value 0 when the target does not receive it.

Delay(t)=
∑M

i=1di ·xi

N
, where N=

M∑
i=1

xi (1)

B. Packet Loss Rate
Packet Loss Rate is the share of packets the target could not

receive, including packets dropped, packets lost in transmission,
and packets received in wrong formats [48]. Under the scope
of this work, we only consider the packet drop due to the heavy
traffic load in the VNF process. More concretely, we consider
that for each VNF or each of its components, there is a waiting
queue with a limited capacity. When the traffic increases and
exceeds the capacity, the packets that cannot join the queue
will be dropped. Those lost packets can be fatal for vertical
usages, such as the automatic control system, where continuous
signals are indispensable. Equation (2) shows how packet loss
in the time slot ]t,t+∆T ] is calculated.

PL(t)=(1− N

M
)·100%. (2)

C. Service Reliability
Reliability in the context of network layer packet transmissions

is the percentage value of the packets successfully delivered
to a given system entity within the time constraint required by
the targeted service out of all the packets transmitted [45]. It
is a combined perspective of end-to-end latency and packet loss
rate. Service reliability in one time slot, is the percentage of
the requests that are not rejected, and whose delay is below the
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Fig. 6. The resilience triangle. The incident takes place at ti. The system
recovers at tf . The gray part represents resilience loss of the k-th time slot.

latency requirement. Equations (3) and (4) give the calculation
of service reliability SR.

SR(t)=(

∑M
i=1xi ·yi
M

)·100%. (3)

yi=

{
0, if xi=0 or di> latency requirement
1, otherwise

(4)

D. Resilience metric

American National Academy of Science [49] defines
resilience in a general way as the ability to prepare and plan for,
absorb, recover from, or more successfully adapt to actual or
potential adverse events. In this article, we give special attention
to the ability of 5G to continue providing services that meet
the requirements under an adverse event.

As proposed by Bruneau et al. [50], the resilience triangle
can be used to quantify the resilience concept. As the reliability
takes both the acceptance and service latency into consideration,
we adopt service reliability as functional performance function.
The resilience loss can be quantified by calculating the area
of the degradation in the service reliability over time. Since
the service reliability is discretized based on a time slot
]tk,tk+∆T ] in the proposed simulation model as shown in Fig.
6, the estimated resilience loss of the network service under
a certain incident is given as:

R=

∫ tf

ti

[1−Rel(t)]dt=

tK∑
t=t1

[100%−SR(t)]∆T (5)

In Equation (5), ti is the time when the incident starts, and
tf is the time when the service is completely recovered. If we
discretize the impacted duration into K time slots of length
∆T (the same slots as we calculate the performance metrics),
the continuous integral of resilience loss equals the sum of
[100%−SR(tk)]∆T .

E. Resource cost

In addition to the service performance, network resource
allocation is also a critical concern. Over-allocating CPU
resources to network services improves resilience performance
in the presence of adverse events. Nevertheless, the over-booked
resources will not only charge an extra fee but also consume more
energy. As shown in Table IV, it takes 20 CPU units of resources
to run a pod of DU or CU micro-service and 40 for a pod of UPF
micro-service. When Kubernetes takes charge of auto-scaling, it
can adjust the number of pod instances according to the traffic
congestion situation and thus resulting in changing the resource
allocation. To quantify resource cost, the resource usage metric

Fig. 7. Service function chain including 3 VNFs.

is introduced. We define in Equation (6), resource cost RC as the
sum of the resource cost of each pod j in the 5G system, mea-
sured in CPU unit · second. For each pod, its resource utilization
is the product of CPU resources that have been allocated to the
pod and the pod lifetime (tej−t0j). An ideal 5G system should
have highly resilient performance while using fewer resources.

RC=
∑
j∈P

RCj=
∑
j∈P

cpuj(tej−t0j) (6)

VI. CASE STUDIES

This section presents two case studies demonstrating how the
proposed model can be applied to estimate network resilience
performance.

The 5G network we consider is fully virtualized. This network
hosts two network services. Service 1 is a latency-sensitive type
application, with small size packet. A slight congestion can cause
a severe latency requirement violation. Service 2 is an IoT-type
application. Its latency requirement is relatively less strict. Both of
these two services are considered uplink user-plane applications.

In the local RAN, Distributed Unit and Centralized Unit
are used to provide connection to the Core Network. In the
virtualized CN, UPF routes and forwards the packets to the
internet. The service function chains are the same for these two
services, as presented in Fig. 7.

We consider simplified network settings as given in Table IV.
All parameters, including components of VNF, and their capac-
ities eventually depend on the actual services suppliers provide.
The service packet in the 5G network generated by the user will
be processed locally by the micro-services (in order) in the RAN,
then transmitted to CN, processed again, and finally delivered
to the internet. We adopt a higher RAN functional split [51].
Then CU gathers more functions than DU, so it comprises more
microservices. Since UPF is in the aggregated CN, each UPF
pod allocates more CPU units to treat more packets in parallel.
The processing time and transmission time are given in Table V.
The packet processing time is proportional to the packet size, as
we assume that one packet can be treated by one CPU unit only.
With more resources allocated to VNFs in CN, UPF is capable
of treating twice the packet than the VNFs in RAN, but all
micro-services process packets at the same rate. The variant part
of packet delay is the service delay in the micro-service queue.
When a pod micro-service is overloaded (congested), the arrival
packets will queue up and wait for available resources. When
the queue reaches the maximum length, the arriving packet will
be rejected. The parameters of processing time and transmission
time, in reality, may be associated with uncertainty as well. Since
the major interest of this study is to estimate the network service
resilience to congestion effects due to traffic variation, and the un-
certainty of processing time is assumed to stay unchanged during
adverse events, these parameters are considered fixed values.
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TABLE IV
SERVICE FUNCTION CHAIN COMPOSITION

Number of instances Capacity

VNFs in RAN
DU 1 MS infinite number of pods

MS initially 1 pod 20 CPU units per pod
CU 2 MS infinite number of pods

MS initially 1 pod 20 CPU units per pod
VNF in CN

UPF 1 MS infinite number of pods
MS initially 2 pod 40 CPU units per pod

TABLE V
NETWORK PROCESSES PARAMETERS

Value Remarks

Processing time

Distributed Unit MS short packet: 2 ms
long packet: 4 ms fixed time

Central Unit MSs short packet: 2 ms
long packet: 4 ms fixed time

UPF MS short packet: 2 ms
long packet: 4 ms fixed time

Transmission time
Radio+transport 1.25 ms fixed time
Service queue

MS queue length 50 requests first come first serve
priority if applicable

Maximal waiting time 1000 ms reject if time out

To achieve an accurate result, the model is programmed in
Python with SimPy platform to run discrete event simulation.
We take all iterations’ average service latency, service reliability,
and service resilience values generated by Monte Carlo
Simulation. We limit the time duration to 60 seconds in order
to estimate the timely dynamic response of the 5G network.
The simulations are run 2000 times to get a confident result.

A. Resilience improvement by using Auto-scaling
To test the effectiveness of auto-scaling, we consider a

network consisting of one RAN and one CN. No network slicing
or priority is considered in this case. As introduced in Section.IV,
auto-scaling is designed to be an approach to dynamically
changing the cloud service scale to adjust to the load. The auto-
scaling setup is given in Table VI. To create a new pod, it takes
time to instantiate, run, and build the connection with other pods.
This time is assumed to be an exponentially distributed random
variable. The pod termination time and auto-scaling interval
can be set by grace-period and sync-period flags in Kubernetes.
The auto-scaling goal, threshold and stabilization window can
be configured in Kubernetes. Kubernetes can configure HPA
scaling behaviors by changing these parameters and create thus
different scaling strategies. We compare different strategies: no
auto-scaling (No AS), threshold-based basic Kubernetes built-in
auto-scaling (Basic AS), and threshold-based basic auto-scaling
combined with stabilization window (Win.AS) under four
different traffic variations: a short traffic change, a long-term
traffic variation, and two fluctuating traffic changes. The traffic
arrival follows an exponential distribution, and service 1 always
has twice the traffic arrival rate as service 2, as shown in Fig.
8. The irregularity of these traffic patterns increases one by one.

In No AS strategy, no auto-scaling is performed. 5G system
will maintain the same scale during the traffic variation. In Basic

(a) Long variation (b) Short variation

(c) Sinusoidal variation 1 (d) Sinusoidal variation 2
.

Fig. 8. Four traffic patterns with different arrival rate variations after t =
18s. (a) Long-term constant variation pattern, approximate entropy: 0.0108.
(b) Short-term constant variation pattern, approximate entropy: 0.0207. (c)
Sinusoidal (superposition) variation pattern 1, approximate entropy: 0.1019.
(d) Sinusoidal (superposition) variation pattern 2, approximate entropy: 0.3676.

TABLE VI
NETWORK MANAGEMENT PARAMETERS

Value Remarks

Pod creation time 50 ms exponential distribution
Pod termination time 15 s fixed value
Auto-scaling interval 5 s fixed value
Auto-scaling goal 50% CPU utilization rate
Auto-scaling thresholds 30%&70% down and up thresholds
Stabilization window 15 s if applicable

AS strategy, the Kubernetes HPA sends a prob to detect the CPU
utilization rate of each micro-service every 5 seconds. If the
utilization rate of a micro-service is outside the threshold interval,
a new scale of the micro-service will be calculated as follows:

New scale=⌈Current utilization
Desired utilization

⌉·Current scale. (7)
If the new scale is greater than the current scale, a scaling-out
decision is made to create more micro-service instances.
Otherwise, a scaling-in decision is made to remove some
existing instances. In Win. SA strategy, the HPA does not
directly trigger a scaling action every 5 seconds. Instead, the
decision is based on the resource utilization information during
the stabilization window. In case 1, the window is 15 seconds.
Therefore, a scaling-out decision is adopted if there are three
successive scaling-out proposals during the last 15 seconds
and it scales out to the smallest proposed scale. A scaling-in
decision is triggered only after three successive scaling-in
proposals and chooses the biggest estimated scale.

The simulation results of the three strategies under these four
different traffic patterns are presented in Figs. 13, 14, and 15.
In the simulation, the network suffers from abnormal traffic
from both services’ end users, starting from 18 seconds. Some
packets will be rejected during the overloaded situation due to
the micro-service queue length limit. Although some packets are
not rejected, the packets of the latency-sensitive service, service
1, can not afford a long waiting time during the congestion,
and its delivery time exceeds the latency limit.
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(a) Service latency

(b) Service reliability

Fig. 9. Service latency and reliability under a long-term traffic variation
(pattern a) with different management strategies (auto-scaling, stabilization
window-based auto-scaling, and no auto-scaling).

Fig. 9 shows how service latency evolves with time. The ∆T
is 0.1 seconds. We collect the packet delay di of each packet
xi during this ∆T and compute the corresponding Delay(t)
of each interval according to Equation (1). In the long traffic
change, Basic AS strategy immediately adds a necessary number
of micro-service instances to keep the network service load
at an acceptable level at 20 s. The window-based strategy takes
a relatively long time but eventually relieves the congestion.
While not taking any scaling action results in a large resilience
loss in the service, especially for service 1, since it is more
sensitive to latency. The model captures the service latency and
the resilience loss evolution, as presented in Fig. 9.

Fig. 10 shows how service reliability evolves with time. We
obtain the yi by verifying if the latency requirement is satisfied
for each packet xi during this ∆T interval and then compute
the corresponding service reliability SR(t) of each interval
according to Equation (3). For a short-term traffic variation,
Win.AS and No AS perform almost the same since the scaling
decision is neglected in the former, and no scaling action is
required in the latter. This leads to a congestion of the network
for about 5 seconds. However, due to the randomness of packet
arrival rates, a high resource utilization may occur from time to
time and triggers window-based auto-scaling, causing a slightly
high resource cost than No AS scenario. Basic AS reduces
congestion time to two seconds. The resilience loss of both
services is reduced, but it uses about a quarter more resources
than other management strategies. The latency and reliability
of the two services are compared in Fig. 10.

For the less fluctuating sinusoidal superposition traffic vari-
ations, Basic AS strategy makes a decision every 5 seconds to
adapt to the traffic. Win.AS considers the traffic change during
the last 15 seconds and is thus more “rigorous” to avoid frequent
scaling in and out. The three strategies are compared in Fig. 11.
The resilience loss of Basic AS is less at the beginning of traffic
variation, but it performs even worse than No AS mechanism
at the end of the simulation (at the third traffic peak). The
resilience loss of Win.AS is almost the same as No AS case at
the beginning, but it gradually performs better. The total resilience
loss of Win.AS is less than Basic AS and No AS. Taking resource

(a) Service latency

(b) Service reliability

Fig. 10. Service latency and reliability under a short-term traffic variation
(pattern b) with different management strategies (auto-scaling, stabilization
window-based auto-scaling, and no auto-scaling).

cost into consideration, Win.AS is the most economical solution
to improve service resilience with a few additional cost.

In a more fluctuating traffic situation, the threshold-based Basic
AS algorithm may not provide a satisfying solution. Indeed, the
auto-scaling fails to make the correct decision as the expected
scale at each decision moment changes. The Win.AS would
prefer to decide not to change the scale during the fluctuation. As
shown in Fig. 12, the differences in resource cost and resilience
loss for the scenarios Win.AS and No AS are not much. The
resilience of Basic AS is worse than No AS, and it costs the most.
Basic AS takes the hazard of scaling out and in quickly but fails
to provide enough service instances if there is a traffic increase
just after a scaling-in triggered by a short-sighted decision. In fact,
a scaling-in action would freeze the removed instance’s resource
for a while before being entirely killed to make sure all packet
treatments are done before removing the instance. This results in
a large resource cost and reduces the total available resources in
the shared server that other micro-services can allocate. In this
scenario, Win.AS performs the best in resilience but it is close
to No As situation. Basic AS has the lowest resilience and the
highest resource cost. If the fluctuation or irregularity of the traffic
kepng increasing, it is possible that Win.AS performs worse
than No AS, as the it may not always provide a suitable scale.

These strategies seem to perform differently under different
traffic environments. Indeed, it is possible to implement artificial
intelligence in Kubernetes so that the HPA parameters can
be optimized according to the real-time traffic to get a better
service performance. In our model, Kubernetes is assumed to be
reliable throughout the simulation. However, in actual network
installation, if Kubernetes fails, the HPA function becomes
unavailable. In such a scenario, the Basic AS and Win.AS will
perform the same as No AS.

Although this study focuses on short timescale traffic variation,
it can be extended to evaluate network service resilience under
a long timescale traffic variation. The long-timescale traffic
variation can be seen as slices of short-timescale traffic variation,
but the traffic often fluctuates less in each time slot. Therefore,
the auto-scaling can better adjust to the traffic, and the network
service is thus more resilient to a long timescale traffic variation.
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(a) Service latency

(b) Service-1 reliability

(c) Service-2 reliability

Fig. 11. Service latency and reliability under sinusoidal superposition traffic
variation (pattern c) with different management strategies (auto-scaling,
stabilization window-based auto-scaling, and no auto-scaling).

(a) Service latency

(b) Service-1 reliability

(c) Service-2 reliability

Fig. 12. Service latency and reliability under sinusoidal superposition traffic
pattern variation (pattern d) with different management strategies (auto-scaling,
stabilization window-based auto-scaling, and no auto-scaling).

B. Resilience with network service isolation
Without isolation, the network resources are shared by all

network services. By introducing network slicing, network

(a) Service 1 latency

(b) Service 2 latency

Fig. 13. Service 1 (a) and Service 2 (b) latency values and confidential
intervals in case 1.

(a) Service 1 resilience

(b) Service 2 resilience

Fig. 14. Service 1 (a) and Service 2 (b) resilience loss values and confidential
intervals in case 1.

resources are sliced. They are assigned to different usages so
that different services use the customized VNFs belonging to
their slice. When the end user starts a communication, the PDU
session establishment is informed of which VNF instances are
used when delivering data packets.

Case study 2 considers a no-autoscaling 5G system composed
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Fig. 15. Resource cost values and confidential intervals in case 1.

(a) Service 1 and Service 2 latency

(b) Service 1 and Service 2 resilience loss

(c) Resource cost

Fig. 16. Service latency (a), reliability (b) and resource cost (c) in case 2.

of four identical distributed local RAN (1-4) and a centralized CN
(5). In zone 1, only Service 1 end users are connected and always
generate regular traffic. In zones 2, 3, and 4, only Service 2 end
users are connected, and they start to change the traffic arrival
rate by triple (short traffic variation for 10 seconds). If no network
slice is applied, in RAN, each service has its own VNF since, geo-

graphically, they use different physical infrastructure. They share
the same UPF instance in the centralized CN. If priority is applied,
then the latency-sensitive service-1 packets are treated with
priority in the shared VNF. If slicing is applied, then in CN, each
service has its UPF instance, and they are managed separately.
These UPF instances are assigned to end users when building
PDU session for the connection between user and the network.

Four scenarios are compared: no slicing or priority network,
prioritization network, and two sliced networks. We consider
two slicing partitions. The first partition is to create two
separate UPF instances for services 1 and 2, each using the
same amount of resources as in the shared UPF. Therefore, we
double the initial resource. The second partition is to create two
different sized UPF instances with different resource allocations
according to the initial service traffic. The total resources of
the two UPFs equal the single shared UPF.

Fig. 16 shows the latency and resilience results. Prioritization
helps largely reduce critical service resilience loss without
allocating more resources as it treats the latency-sensitive packets
first so that most of them do not exceed time limit. Dedicated
slices also keep the latency-sensitive service from anomalies
from services. When failure is injected into service-2 end users,
service-1 is protected by virtual isolation. If each service has its
UPF instance the same size as a shared one, then the performance
of both services is better than without slicing, even under adverse
traffic change. However, it takes relatively more resources (about
a quarter in Case 2). If we keep the initial resource the same,
the resource margin for each service in normal operation mode
is less than in a shared network. Service-1 has more chance to
overload the slice by the randomness of the packet arrival. This
explains a greater service-1 resilience loss than the doubled
initial resource slicing. For service-2, as the resource margin
is reduced, it is more congested than the no slicing scenario
during traffic variation, resulting in a greater resilience loss.

According to the results of case 2, with a generous budget,
the doubled initial resource slicing is preferred during a traffic
variation. Otherwise, prioritization is favored.

VII. CONCLUSION

This paper presents the hierarchical Petri Net-based model to
estimate 5G network service resilience performance. This model
is capable of capturing the virtualized network characteristics
and dynamic behaviors. We introduce how we apply it to
quantify network resilience by combining the aspect of service
latency and service reliability. Traffic changes are selected as the
primary threats to network service resilience. Kubernetes-based
management and orchestration systems, network slicing, and
prioritization are studied as potential solutions to increase
service resilience. A resilience analysis is carried out by Monte
Carlo simulation. The results show that: 1) auto-scaling can
improve resilience during some traffic variations by dynamically
changing the scale of the network setup, but the algorithm or
strategy should be carefully designed to cope with the different
patterns of traffic anomalies; 2) network slicing, though requires
more resources, can effectively protect a network service from
incidents happening outside the slice; 3) service priority can
be applied to guarantee the overall network resilience of all
network services with limited resource allocation budget. To
the best of our knowledge, this is the first model to estimate
service resilience in a short timescale. This model gives valuable
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information on network design, operation, and control from
a resilience perspective to the service providers and operators.

Although some existing simulators may also estimate the
service performance, the Petri Net-based approach we propose
in this work, which by focusing on stochastic processes, queue
models, and priority queue models, is tailored and adapted to the
specific problem and allows to represent and capture the dynamic
behavior and the relationship between different network elements.
These existing simulators consider the whole message process for
each VNF and link. They could be less efficient for simulating
and estimating the congestion and management problem than our
approach. Besides, the 5G model they propose will not necessarily
be the same as the 5G installation chosen by operators. Finally,
to test the performance using existing simulators, additional parts
such as a traffic generator and a K8S model will be needed.

In future work, more precise parameters will be collected
to simulate a use case from the vertical industry to evaluate
the resilience based on the real service requirements. Certain
parameters may be challenging to obtain directly from
simulations or experiments. For example, extracting the
processing time of each network element from an end-to-end
test may not be easy due to various limitations. In addition, the
management parameters can also differ from one service provider
to another, which can impact service resilience. Nevertheless,
we can modify these parameters in the model to assess their
impact on the overall system resilience, e.g., for determining
the most contributing parameters to the service resilience. This
is usually conducted with global sensitivity analysis methods
[52] and is outside the scope of the present study.

A control plane network model will be considered to simulate
the network signaling, which is critical in evaluating the
network service resilience in use cases such as high-speed
train services where frequent signaling requests are expected.
Although the proposed model is currently used for off-line
resilience estimation to provide suggestions to anticipate traffic
change, it is possible to implement or integrate the model
with operational intelligence, such as NWDAF in 5G CN for
real-time deployment. By doing so, the model could estimate the
network service resilience based on real-time metrics collected
from the system and provide feasible and efficient management
suggestions for enhancing resilience.

Since our approach can also be applied to all types of
5G/6G networks that will be installed, future work will also
undertake performance testing using an actual virtualized
telecommunication network, once the fully virtualized
commercial or experimental network becomes available.
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