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Nonlinear acoustic theoretical model considering acoustic transmissivity in the interior of
a real fluid object.

Michael OVANDO, Jean-Bernard BLAISOT*, and Françoise BAILLOT
UMR 6614 - CORIA

Abstract
The present study aims to analyze the response of a fluid system to high-level acoustic pressure fluctuations in
Liquid Rocket Engine-like conditions. Propellants are usually in a trans- or super-critical phase during steady-state
operative conditions of such engines, which requires special attention to the properties of the fluid. A semi-analitic
model is developed to study the interaction between acoustics and an object with properties ranging from sub-
critical to supercritical conditions. A particular attention is paid on the acoustic response of the injected fluid
that is usually considered as perfectly reflective in sub-critical conditions but where acoustic transmitivity has to
be considered in trans- and supercritical conditions. This model consists in the description of both the external
velocity potential field (described as the superposition of the incident standing velocity potential field and scattered
associated fields) and the velocity potential field inside the object. The first results from this model are presented
for a particular condition typical of engine thermodynamic working conditions. The importance of taking into
account acoustic transmission in the fluid is shown.

Introduction
The context of this study relies on the thermoa-

coustic instabilities occuring in Liquid Rocket Engines
(LRE). The instabilities results from the coupling be-
tween heat release rate fluctuations, q′(t) and pressure
fluctuations, p′(t) which usually tune to the chamber’s
acoustic eigenmodes (Oefelein and Yang, [1]). To un-
derstand how these instabilities modify the flow, an ap-
proach based on the analysis of the response of a fluid
flow to acoustic solicitations is considered. In experi-
ments, this is done by using an acoustic forcing acting
on the fluid flow that models injection in engine condi-
tions. In this paper we present an extension of a semi-
analytic approach to model the interaction between a
liquid or a surpercritical fluid with acoustics.

A theoretical model capable of describing the ef-
fects of the acoustic radiation pressure, considering a
non-perfectly reflective object (as opposed to how it is
seen in the works of Ficuciello [2] and Herrera [3]) is
presented. It is based on the approach of Yosioka and
Kawasima [4] that expressed the acoustic radiation force
on spheres by considering the effects of acoustic trans-
mission inside the object medium.

The next section is devoted to the presentation of the
mathematical model. Then follows a presentation of the
results when considering a practical injection condition
typical of supercritical conditions. A conclusion ends
this paper.

Acoustic radiation pressure
A potential acoustic velocity field is considered:

−→u = −
−→
∇ Φext . With this convention (Yosioka and

Kawasima [4]), the pressure variation in a compressible
fluid of density ρ0 and speed of sound c0, where acous-
tic waves are propagated, can be expressed as given by
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eq. 1 following a development similar to the one of Fi-
cuciello [2].

pext = ρ0Φ̇ext −
1
2

ρ0(
−−−→
∇Φext)

2 +
ρ0

2c2
0

Φ̇
2
ext (1)

The incident field Φi is scattered in the presence of an
object leading to the scattered field Φs. The computation
of the resulting field Φext = Φi +Φs, is required to esti-
mate the radiation pressure field acting on the surface of
the object and the resulting radiation force.

Conventionally, the acoustic radiation pressure is ex-
pressed as the time average of equation 1 over a time
period of the incident acoustic field.

prad =
1
T

∫ T

0
(ρ0Φ̇ext −

1
2

ρ0(
−−−→
∇Φext)

2 +
ρ0

2c2
0

Φ̇
2
ext)dt

= pζ + pΦ + pq (2)

where pζ is the contribution due to the motion of the
object, pΦ is the time-average volumetric kinetic energy
density, pq is the time-average volumetric potential en-
ergy density, and Φext is the total velocity potential of
the surrounding media

Since we consider the object to be free to move un-
der the influence of the acoustic field, the derivative of
the velocity potential referred to the moving origin is
given by:

Φ̇ext =
dU Φext

dt
−−→

U ·
−→
∇ Φext (3)

where
−→
U is the barycentric velocity of the object.

This velocity can be obtained by applying Newton’s sec-
ond law to the object. The external forces, reduced here
to the effect of acoustics, are derived from integration



over the object boundary, i.e.:

m
−̇→
U =−

∫∫
S

p−→n dS =
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S
−Φ̇extρ0

−→n dS

Leading to:

−→
U =

ρ0

m

∫∫
S
−Φext

−→n dS

In the case of a spherical object of radius r1 and due
to the symmetry properties, this results in :

−→
U =

3η

2r1

∫
π

0
−Φext cos(θ)sin(θ)dθ

−→ex (4)

where η =
ρ0

ρ1
is the ratio between the density of

the media and the density of the object. On this study,
the index 1 indicates parameters concerning the object,
whilst the index 0 indicates the fluid outside of the ob-
ject.

Doing the time average of equation 3, the term
dU Φext

dt
reduces to zero and:

〈
Φ̇ext

〉
=−

〈−→
U ·

−→
∇ Φext

〉
(5)

Equation 5 is used in the calculations of pζ as:

pζ =
〈
ρ0Φ̇ext

〉
=−ρ0

〈−→
U ·

−→
∇ Φext

〉
(6)

For pq:

pq =
〈

ρ0

2c2 Φ̇
2
ext

〉
(7)

And finally, the term pφ :

pφ =

〈
1
2

ρ0(
−→
∇ Φext)

2
〉

(8)

The combination of equations 6, 7 and 8 allows to
estimate the acoustic radiation pressure prad at the sur-
face of the object.

The approach of Yosioka and Kawasima is used here
to evaluate the effect of acoustics under trans-critical or
supercritical conditions. Indeed, in such conditions, the
object interface can no longer be considered as perfectly
reflective and the transmission of the acoustical wave
inside the object must be taken into account. This is
done through the boundary conditions used to compute
prad .

Modelling of velocity potential fields and boundary
conditions

We consider a sphere of a given radius r1 placed at
the origin of the coordinate system. The geometry of the
problem is reported in figure 1

Figure 1: Fluid object (1) with a rigid boundary in a surround-
ing fluid (0), submitted to an acoustic field. In the case of this
study, we consider a standing field

The incident velocity potential Φi of the plane stand-
ing waves is expressed by:

Φi =
φ0eiωt

2

[
e−ik0(x+h)+ eik0(x+h)

]
(9)

where x = r cos(θ) and φ0 =
pa

ρ0ω
is the velocity po-

tential field amplitude, with pa the amplitude of the
associated incident acoustic pressure field, and ω the
angular frequency. The velocity potential outside the
sphere is written as:

Φext = Φi +Φs

where Φs is the velocity potential of the scattered
waves that is expressed as:

Φs = φ0eiωt
∞

∑
n=0

(2n+1)(−i)n AnδnH(2)
n (k0r)Pn(cosθ)

(10)

being H(2)
n the spherical Hankel function of the sec-

ond kind and Pn is the Legendre polynomials. An are
constants to be determined from the boundary condi-
tions. The term δn = (−1)n eikh + e−ikh relates to the
position of the object in the acoustic field. Yosioka and
Kawasima proposed the following expression for the ve-
locity potential Φint inside a sphere:

Φint = φ0eiωt
∞

∑
n=0

(2n+1)(−i)n BnδnJn(k1r)Pn(cosθ)

(11)

where k1 = ω/c1 is the wave number inside the
sphere. Bn are other constants determined as An from
boundary conditions, i.e. by considering the continuity
of the radial velocity at the object surface (Eq. 12) as
well as the continuity of the pressure (Eq. 13).

∂Φext

∂ r
=

∂Φint

∂ r
at r = r1 (12)

ρ0Φ̇ext = ρ1Φ̇int at r = r1 (13)

As velocity potential fields are expressed in a base
of Legendre polynomials, equations 12 and 13 leads to
the following expressions for An and Bn:
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An =

ηk1Jn (k0r1)J
′
n (k1r1)− k0J

′
n (k0r1)Jn (k1r1)

k0Jn (k1r1)H
′(2)
n (k0r1)−ηk1J′

n (k1r1)H(2)
n (k0r1)

(14)

Bn =

ik0/(k0r1)
2[

k1J′
n (k1r1)H(2)

n (k0r1)−λk0Jn (k1r1)H(2)′
n (k0r1)

]
(15)

Python implementation
All the expressions are implemented in a library

acrad.py. Since the expressions are given by infinite
sums, the convergence is studied to determine the min-
imum number of terms Nmin to be considered in the
computation. We introduce the reduced acoustic radi-

ation pressure p∗rad(θ) =
prad(θ)

P̄
, where P̄ =

Pac

ρ0c2
0

is

the mean acoustic energy per unit volume carried by a
standing wave in an environment free from any obsta-
cles. The expression used to calculate the convergence
is:

error(n) = max
0≤θ≤2π

(
|p∗n+1(θ)− p∗n(θ)|

)
The evolution of this error with respect to n is shown in
figure 2.

Figure 2: Maximum error on the infinite sums for the calcula-
tion of the acoustic radiation pressure evolving in the number
Nmin of terms

The error has been calculated at a velocity antinode
(VAN) position in the standing wave acoustic field. We
can see a decrease of the error as Nmin increases. When
Nmin = 3, the error is of the order of 10−4. The contri-
bution of the terms over Nmin > 8 is under the floating
point precision of the Python code (about 10−15), there-
fore not contributing to the sum, but just adding compu-
tational time to the code. With these results, the trun-
cated number of terms considered for the calculations

presented further is n = 5, since the error calculated for
this value is in the order of 10−8, which is a good com-
promise between precision and computational cost.

Studying case
The object is placed at a velocity antinode (VAN)

where it was previously shown that maximum defor-
mations occurred under the effect of acoustics [2, 3].
The physical parameters used in the calculations are re-
sumed in table 1.

General properties
T 310 K P 5 MPa
r1 0.003 m f0 1000 Hz

Acoustic position VAN (λ/4) P̄ 1000 Pa
Infinite sum terms n 10 Canvas size 250 x 100 pixels

Fluid properties
Ethane Nitrogen

Equation of state Peng-Robinson Equation of state Ideal gas
c0 358.82 m/s c1 108.44 m/s
ρ0 54.34 kg/m3 ρ1 128.53 kg/m3

k0 17.51 m−1 k1 57.94 m−1

Table 1: Physical parameters used in the simulations in this
chapter

As indicated in table 1, different equations of state
are considered for the calculations of the fluid proper-
ties, depending on the fluid considered. For the case
of nitrogen, the ideal gas law is used. For the case of
ethane, since the studying case is just above its crit-
ical point (Pc = 4.87 MPa, Tc = 305.5 K), the Peng-
Robinson equation of state is used:

P =
ρRT

M−bρ
− aαρ2

M2 +buρM+ vρ2 (16)

with α =

(
1+

(
0.48+1.574Ω−0.176Ω2

)(√ T
Tc

))2

,

a = 0.42748
R2T 2

c

Pc
, b = 0.08664

RTc

Pc
u = 2, v = −ρ2,

and Ω the acentric factor.
The velocity potential fields Φext and Φint are given

in figure 3 for the thermodynamic conditions given in
table 1 and at a time t = t0 corresponding to the maxi-
mum of the instantaneous acoustic velocity at the veloc-
ity antinode (VAN). These values represent the ampli-
tude of the velocity potential fields with respect to the
maximum amplitude of the incident field when there is
no object. On the region of observation, the variation of
Φext is about 10% of the amplitude of Φi. This repre-
sentation is used to visualize all the involved fields, and
following this to calculate each one of the terms of prad .

3



Figure 3: Normalized velocity potential field Φ/φ0 on both
the interior (ethane) and exterior (nitrogen) of a sphere at a
velocity antinode (VAN), η = 0.4227, T = 310 K and P = 50
atm. Time t = t0 corresponds to the maximum instantaneous
acoustic velocity at VAN.

On figure 4 we can see the representation of the
squared normalized gradient modulus of the external
and internal fields at time t = t0. This magnitude is used
to represent the volumetric kinetic energy of the system
(see equation 8), and since it does not involve the term
Φ̇ext , it can be spatially represented. The terms which
involve Φ̇ext (see equations 6 and 7) can only be calcu-
lated on the boundary of the object.

Figure 4: Squared normalized gradient modulus of the exter-

nal (nitrogen) and internal (ethane) fields

∣∣∣∣∣∣−→∇ Φ

∣∣∣∣∣∣2
φ0k0

at a veloc-

ity antinode (VAN), η = 0.4227, T = 310 K and P = 50 atm.
Radiuses are in meters. Time t = t0 corresponds to the maxi-
mum instantaneous acoustic velocity at VAN.

Comparison with prior models
The actual model is compared to the one developed

by Ficuciello for perfectly reflective objects. On figure
5, the comparison of p∗

ζ
, p∗

Φ
, p∗q and p∗rad as functions

of θ is shown for our model (expressed with ”trans” for
”transmissive”) and for Ficuciello’s model (”reflect”, for
”reflective”) along the θ axis, for the same physical con-
ditions. For both models, pq equals zero or about. The

other two components pφ and pζ , have similar distribu-
tions over the object surface but the levels are different
between the two models. Globally, the levels are higher
for the reflective model with pφ negative and pζ posi-
tive, resulting in a distribution for prad varying around
zero with positive maximums and negative minimums.
In the case of the transmissive model, pφ is also nega-
tive and pζ positive, but as the levels are lower for both
component, it results in negative values for prad all over
the object surface. Also, the amplitude of the variation
of prad over the object surface is larger for the transmis-
sive model. This indicates that the stretching effects that
lead the object deformation (not considered here) could
be more pronounced with the transmissive model than
expected from the reflective model.

Figure 5: Representation of the normalized acoustic radia-
tion pressure p∗rad and its components p∗q, p∗

Φ
and p∗

ζ
for

η = 0.4227 by two models: perfectively acoustically reflective
object and acoustically transmissive object. The bold curves
indicate the acoustic radiation pressure for the perfectly re-
flective (in black) and transmissive (in red) object assumption.

Conclusions
The study considered an object at a fixed position in

a standing wave acoustic field (velocity antinode, VAN).
This position was chosen for its interest relative to po-
tential deformation effects reported in the literature. The
implementation of transmission of acoustics in the inte-
rior of an object yields a noticeable modification of the
prediction of the time-average acoustic radiation pres-
sure distribution over the object surface when compared
to reflective models.

A studying case related to engine application was
considered, where two fluids: ethane (as the object) and
nitrogen (as the surrounding media) are submitted to a
standing plane acoustic field at high pressure and tem-
perature conditions. The acoustic radiation pressure was
calculated and compared for the case of a perfectly re-
flective object. Results show a shift of the time-average
acoustic radiation pressure with only negative values,
and also an increase of the amplitude of the distribu-
tion of this acoustic radiation pressure over the object
surface. These effects come mainly from the pζ term,
which is obtained by the barycentric velocity approach
we took into consideration. Further studies involving
density and speed of sound dependance of the equations,
as well as different spatial positioning of the object is
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currently being studied.
On the future, deformation of the object is expected

to be implemented, by considering different boundary
conditions.
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