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Introduction

The context of this study relies on the thermoacoustic instabilities occuring in Liquid Rocket Engines (LRE). The instabilities results from the coupling between heat release rate fluctuations, q ′ (t) and pressure fluctuations, p ′ (t) which usually tune to the chamber's acoustic eigenmodes (Oefelein and Yang, [START_REF] Oefelein | Comprehensive review of liquid propellant combustion instabilities in f-1 engines[END_REF]). To understand how these instabilities modify the flow, an approach based on the analysis of the response of a fluid flow to acoustic solicitations is considered. In experiments, this is done by using an acoustic forcing acting on the fluid flow that models injection in engine conditions. In this paper we present an extension of a semianalytic approach to model the interaction between a liquid or a surpercritical fluid with acoustics.

A theoretical model capable of describing the effects of the acoustic radiation pressure, considering a non-perfectly reflective object (as opposed to how it is seen in the works of Ficuciello [START_REF] Ficuciello | [END_REF] and Herrera [START_REF] Herrera | [END_REF]) is presented. It is based on the approach of Yosioka and Kawasima [START_REF] Yosioka | Acoustic radiation pressure on a compressible sphere[END_REF] that expressed the acoustic radiation force on spheres by considering the effects of acoustic transmission inside the object medium.

The next section is devoted to the presentation of the mathematical model. Then follows a presentation of the results when considering a practical injection condition typical of supercritical conditions. A conclusion ends this paper.

Acoustic radiation pressure

A potential acoustic velocity field is considered:

- → u = - - → ∇ Φ ext .
With this convention (Yosioka and Kawasima [START_REF] Yosioka | Acoustic radiation pressure on a compressible sphere[END_REF]), the pressure variation in a compressible fluid of density ρ 0 and speed of sound c 0 , where acoustic waves are propagated, can be expressed as given by * Corresponding author: blaisot@coria.fr Proceedings of the European Combustion Meeting 2023 eq. 1 following a development similar to the one of Ficuciello [START_REF] Ficuciello | [END_REF].

p ext = ρ 0 Φext - 1 2 ρ 0 ( ---→ ∇Φ ext ) 2 + ρ 0 2c 2 0 Φ2 ext (1) 
The incident field Φ i is scattered in the presence of an object leading to the scattered field Φ s . The computation of the resulting field Φ ext = Φ i + Φ s , is required to estimate the radiation pressure field acting on the surface of the object and the resulting radiation force. Conventionally, the acoustic radiation pressure is expressed as the time average of equation 1 over a time period of the incident acoustic field.

p rad = 1 T T 0 (ρ 0 Φext - 1 2 ρ 0 ( ---→ ∇Φ ext ) 2 + ρ 0 2c 2 0 Φ2 ext )dt = p ζ + p Φ + p q (2)
where p ζ is the contribution due to the motion of the object, p Φ is the time-average volumetric kinetic energy density, p q is the time-average volumetric potential energy density, and Φ ext is the total velocity potential of the surrounding media Since we consider the object to be free to move under the influence of the acoustic field, the derivative of the velocity potential referred to the moving origin is given by:

Φext = d U Φ ext dt - - → U • - → ∇ Φ ext (3) 
where -→ U is the barycentric velocity of the object. This velocity can be obtained by applying Newton's second law to the object. The external forces, reduced here to the effect of acoustics, are derived from integration over the object boundary, i.e.:

m - → U = - S p - → n dS = S -Φext ρ 0 - → n dS
Leading to:

- → U = ρ 0 m S -Φ ext - → n dS
In the case of a spherical object of radius r 1 and due to the symmetry properties, this results in :

- → U = 3η 2r 1 π 0 -Φ ext cos(θ ) sin(θ )dθ - → e x ( 4 
)
where η = ρ 0 ρ 1 is the ratio between the density of the media and the density of the object. On this study, the index 1 indicates parameters concerning the object, whilst the index 0 indicates the fluid outside of the object. Doing the time average of equation 3, the term d U Φ ext dt reduces to zero and:

Φext = - - → U • - → ∇ Φ ext (5) 
Equation 5 is used in the calculations of p ζ as:

p ζ = ρ 0 Φext = -ρ 0 - → U • - → ∇ Φ ext (6) 
For p q :

p q = ρ 0 2c 2 Φ2 ext (7) 
And finally, the term p φ :

p φ = 1 2 ρ 0 ( - → ∇ Φ ext ) 2 (8) 
The combination of equations 6, 7 and 8 allows to estimate the acoustic radiation pressure p rad at the surface of the object.

The approach of Yosioka and Kawasima is used here to evaluate the effect of acoustics under trans-critical or supercritical conditions. Indeed, in such conditions, the object interface can no longer be considered as perfectly reflective and the transmission of the acoustical wave inside the object must be taken into account. This is done through the boundary conditions used to compute p rad .

Modelling of velocity potential fields and boundary conditions

We consider a sphere of a given radius r 1 placed at the origin of the coordinate system. The geometry of the problem is reported in figure 1 Figure 1: Fluid object (1) with a rigid boundary in a surrounding fluid (0), submitted to an acoustic field. In the case of this study, we consider a standing field The incident velocity potential Φ i of the plane standing waves is expressed by:

Φ i = φ 0 e iωt 2 e -ik 0 (x+h) + e ik 0 (x+h) (9) 
where x = r cos(θ ) and φ 0 = p a ρ 0 ω is the velocity potential field amplitude, with p a the amplitude of the associated incident acoustic pressure field, and ω the angular frequency. The velocity potential outside the sphere is written as:

Φ ext = Φ i + Φ s
where Φ s is the velocity potential of the scattered waves that is expressed as:

Φ s = φ 0 e iωt ∞ ∑ n=0 (2n + 1) (-i) n A n δ n H (2) n (k 0 r)P n (cosθ ) (10) being H (2)
n the spherical Hankel function of the second kind and P n is the Legendre polynomials. A n are constants to be determined from the boundary conditions. The term δ n = (-1) n e ikh + e -ikh relates to the position of the object in the acoustic field. Yosioka and Kawasima proposed the following expression for the velocity potential Φ int inside a sphere:

Φ int = φ 0 e iωt ∞ ∑ n=0 (2n + 1) (-i) n B n δ n J n (k 1 r)P n (cosθ ) (11) 
where k 1 = ω/c 1 is the wave number inside the sphere. B n are other constants determined as A n from boundary conditions, i.e. by considering the continuity of the radial velocity at the object surface (Eq. 12) as well as the continuity of the pressure (Eq. 13).

∂ Φ ext ∂ r = ∂ Φ int ∂ r at r = r 1 ( 12 
)
ρ 0 Φext = ρ 1 Φint at r = r 1 ( 13 
)
As velocity potential fields are expressed in a base of Legendre polynomials, equations 12 and 13 leads to the following expressions for A n and B n :

A n = ηk 1 J n (k 0 r 1 ) J ′ n (k 1 r 1 ) -k 0 J ′ n (k 0 r 1 ) J n (k 1 r 1 ) k 0 J n (k 1 r 1 ) H ′ (2) n (k 0 r 1 ) -ηk 1 J ′ n (k 1 r 1 ) H (2) n (k 0 r 1 ) (14) 
B n = ik 0 / (k 0 r 1 ) 2 k 1 J ′ n (k 1 r 1 ) H (2) n (k 0 r 1 ) -λ k 0 J n (k 1 r 1 ) H (2) ′ n (k 0 r 1 ) (15) 
Python implementation All the expressions are implemented in a library acrad.py. Since the expressions are given by infinite sums, the convergence is studied to determine the minimum number of terms N min to be considered in the computation. We introduce the reduced acoustic radiation pressure p * rad (θ ) = p rad (θ ) P , where P = P ac ρ 0 c 2 0 is the mean acoustic energy per unit volume carried by a standing wave in an environment free from any obstacles. The expression used to calculate the convergence is:

error(n) = max 0≤θ ≤2π |p * n+1 (θ ) -p * n (θ )|
The evolution of this error with respect to n is shown in figure 2. The error has been calculated at a velocity antinode (VAN) position in the standing wave acoustic field. We can see a decrease of the error as N min increases. When N min = 3, the error is of the order of 10 -4 . The contribution of the terms over N min > 8 is under the floating point precision of the Python code (about 10 -15 ), therefore not contributing to the sum, but just adding computational time to the code. With these results, the truncated number of terms considered for the calculations presented further is n = 5, since the error calculated for this value is in the order of 10 -8 , which is a good compromise between precision and computational cost.

Studying case

The object is placed at a velocity antinode (VAN) where it was previously shown that maximum deformations occurred under the effect of acoustics [START_REF] Ficuciello | [END_REF][START_REF] Herrera | [END_REF] As indicated in table 1, different equations of state are considered for the calculations of the fluid properties, depending on the fluid considered. For the case of nitrogen, the ideal gas law is used. For the case of ethane, since the studying case is just above its critical point (P c = 4.87 MPa, T c = 305.5 K), the Peng-Robinson equation of state is used:

P = ρRT M -bρ - aαρ 2 M 2 + buρM + vρ 2 (16) with α = 1 + 0.48 + 1.574Ω -0.176Ω 2 T T c 2 , a = 0.42748 R 2 T 2 c P c , b = 0.08664 RT c P c u = 2, v = -ρ 2 ,
and Ω the acentric factor. The velocity potential fields Φ ext and Φ int are given in figure 3 for the thermodynamic conditions given in table 1 and at a time t = t 0 corresponding to the maximum of the instantaneous acoustic velocity at the velocity antinode (VAN). These values represent the amplitude of the velocity potential fields with respect to the maximum amplitude of the incident field when there is no object. On the region of observation, the variation of Φ ext is about 10% of the amplitude of Φ i . This representation is used to visualize all the involved fields, and following this to calculate each one of the terms of p rad . On figure 4 we can see the representation of the squared normalized gradient modulus of the external and internal fields at time t = t 0 . This magnitude is used to represent the volumetric kinetic energy of the system (see equation 8), and since it does not involve the term Φext , it can be spatially represented. The terms which involve Φext (see equations 6 and 7) can only be calculated on the boundary of the object. 

Comparison with prior models

The actual model is compared to the one developed by Ficuciello for perfectly reflective objects. On figure 5, the comparison of p * ζ , p * Φ , p * q and p * rad as functions of θ is shown for our model (expressed with "trans" for "transmissive") and for Ficuciello's model ("reflect", for "reflective") along the θ axis, for the same physical conditions. For both models, p q equals zero or about. The other two components p φ and p ζ , have similar distributions over the object surface but the levels are different between the two models. Globally, the levels are higher for the reflective model with p φ negative and p ζ positive, resulting in a distribution for p rad varying around zero with positive maximums and negative minimums. In the case of the transmissive model, p φ is also negative and p ζ positive, but as the levels are lower for both component, it results in negative values for p rad all over the object surface. Also, the amplitude of the variation of p rad over the object surface is larger for the transmissive model. This indicates that the stretching effects that lead the object deformation (not considered here) could be more pronounced with the transmissive model than expected from the reflective model. 

Conclusions

The study considered an object at a fixed position in a standing wave acoustic field (velocity antinode, VAN). This position was chosen for its interest relative to potential deformation effects reported in the literature. The implementation of transmission of acoustics in the interior of an object yields a noticeable modification of the prediction of the time-average acoustic radiation pressure distribution over the object surface when compared to reflective models.

A studying case related to engine application was considered, where two fluids: ethane (as the object) and nitrogen (as the surrounding media) are submitted to a standing plane acoustic field at high pressure and temperature conditions. The acoustic radiation pressure was calculated and compared for the case of a perfectly reflective object. Results show a shift of the time-average acoustic radiation pressure with only negative values, and also an increase of the amplitude of the distribution of this acoustic radiation pressure over the object surface. These effects come mainly from the p ζ term, which is obtained by the barycentric velocity approach we took into consideration. Further studies involving density and speed of sound dependance of the equations, as well as different spatial positioning of the object is currently being studied.

On the future, deformation of the object is expected to be implemented, by considering different boundary conditions.
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 2 Figure 2: Maximum error on the infinite sums for the calculation of the acoustic radiation pressure evolving in the number N min of terms

Figure 3 :

 3 Figure 3: Normalized velocity potential field Φ/φ 0 on both the interior (ethane) and exterior (nitrogen) of a sphere at a velocity antinode (VAN), η = 0.4227, T = 310 K and P = 50 atm. Time t = t 0 corresponds to the maximum instantaneous acoustic velocity at VAN.
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 4 Figure 4: Squared normalized gradient modulus of the exter-

Figure 5 :

 5 Figure 5: Representation of the normalized acoustic radiation pressure p * rad and its components p * q , p * Φ and p * ζ for η = 0.4227 by two models: perfectively acoustically reflective object and acoustically transmissive object. The bold curves indicate the acoustic radiation pressure for the perfectly reflective (in black) and transmissive (in red) object assumption.

Table 1 :

 1 . The physical parameters used in the calculations are resumed in table 1. Physical parameters used in the simulations in this chapter

		General properties	
	T	310 K	P	5 MPa
	r 1	0.003 m	f 0	1000 Hz
	Acoustic position	VAN (λ /4)	P	1000 Pa
	Infinite sum terms n	10	Canvas size	250 x 100 pixels
		Fluid properties	
	Ethane		Nitrogen
	Equation of state	Peng-Robinson Equation of state	Ideal gas
	c 0	358.82 m/s	c 1	108.44 m/s
	ρ 0	54.34 kg/m 3	ρ 1	128.53 kg/m 3
	k 0	17.51 m -1	k 1	57.94 m -1
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