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Abstract In this paper, we establish an abstract framework for the approximation of the invariant prob-
ability measure for a Markov semigroup. Following Pagés and Panloup [40] we use an Euler scheme with
decreasing step (unadjusted Langevin algorithm). Under some contraction property with exponential rate
and some regularization properties, we give an estimate of the error in total variation distance. This
abstract framework covers the main results in [40] and [14]. As a specific application we study the con-
vergence in total variation distance to the invariant measure for jump type equations. The main technical
difficulty consists in proving the regularzation properties - this is done under an ellipticity condition, using
Malliavin calculus for jump processes.

Key words: Invariant measure, Unadjusted Langevin algorithm, Euler scheme with decreasing steps,
Total variation distance, Malliavin calculus, Regularization lemma, Jump process
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1 Introduction

The aim of this paper is to study the convergence to the invariant measure of a Markov process. We refer
to [18], [35], [38] for the existence of an invariant probability measure for a general Markov process and to
[41], [42] for some basic computation of the invariant probability measure for a Lévy process. Following
the ideas from Pages and Panloup [40] (see also Lamberton and Pages [30] [31]) we use an Euler scheme
with decreasing step (known in the literature as the unadjusted Langevin algorithm) in order to construct
our algorithm (this has been studied in depth in [45]).

Our paper has two parts. In the first part we construct an abstract framework which is appropriate
in order to state and discuss our approximation problem. We focus on the estimate of the error in total
variation distance. And the main achievement is to give some sufficient regularization properties for the
semigroup and for the Euler scheme, which allow to treat bounded and measurable test functions. Fur-
thermore, in order to check such regularization properties, one has to use integration by parts techniques
inspired from Malliavin calculus. We give a regularization lemma based on such arguments, which is the
crucial step in our approach (it has its own interest, beyond the application in this particular framework).
Let us mention that the abstract framework settled in our paper encompass the following recent results:
in [40], the authors use unadjusted Langevin algorithm to approximate the invariant probability measure
of a diffusion process and study the Wasserstein and total variation distance between them. In [14], the
authors approximate the invariant probability measure of a Lévy process but only study the Wasserstein
distance.

In the second part of the paper we illustrate our results in the case of jump type SDE’s. In order to
do it we recall the Malliavin calculus for jump processes and prove estimates of the Sobolev norms and of
the Malliavin covariance matrix for the solution of such equations. These estimates are rather long and
technical, but at a certain extend they come back on results already obtained in [44]. Once these estimates
are proved, we apply the abstract results from the first part and obtain the estimate of the error in total
variation distance.

Let us present in more detail our results. We give in Section 2 the abstract framework of the approx-
imation for the invariant probability measure. We denote C}(R?) the space of [—times differential and
bounded functions on R¢ with bounded derivatives up to order [. We consider a semigroup P,,t > 0
on the space M;(R?) of the bounded measurable functions on R? and assume that there exists at least
one invariant probability measure v for the semigroup P;,¢ > 0. We assume moreover the "exponential
Lipschitz property": there exists two constants Cy > 1 and p > 0 such that for every ¢ > 0 and every
p € Gy (RY)

(Lo)  IVPiello < CollVep|l o e
This immediately implies that v is unique.

In order to approximate the invariant measure v, we introduce an Euler scheme with decreasing time
steps (unadjusted Langevin algorithm). For every v > 0 we give an operator P, : Cg° — C° such that
|P,¢llso < |l¢]loo and which approximates our semigroup in the following sense: for every v > 0

Alko, @) [|(Py = )¢l < Cro V0l 007+

Here o > 0 is a given number, ko € Nand [|¢9[[,, ., = >_ [|0%¢|,, . We consider a decreasing sequence
7 la| <ko

of time steps ~,, | 0 and define the time grid T',, = Z ~;. We assume that

=1
oo
im
We also introduce
@ =0((Yn)nen) = Tim M oo
n— o0 ’y’ﬂJrl



The typical example is v, = 1 and then @ = 1. In the following we denote {I'} = {I',,,n € N}. And, for
I'i <t <T;y; wedenote N(t) =i and 7(t) = I';. Then, for s € {T'} and ¢ € {I'} we define the Euler

scheme
N(t)—1

Fs,t = H F'ym 1)

i=N(s)

the product being understood in the sense of composition. This means that we travel from 7(s) to 7(¢) by
using the Euler scheme associated to the one step Euler scheme P.,.

So now we use the Euler scheme with decreasing time steps Py, (given in (1)) to approximate the
invariant probability measure v. Our aim is to estimate the total variation distance between them. To do
so, we need some regularization properties. First we give the regularization hypothesis concerning the
semigroup P;:

IN

Rp(k)  sup VPl o Cr ll¢llo, and
1<t<2

Rp(k) 1§QE2IIVPMIIIC_1,OO < CilVely, -

We also introduce the following variant of the Lipschitz property:

Zk ||VPt§0Hk,OO S Ck? ||V<}9Hk,oo ) 1 2 t> 0.
We give now the regularization properties for the Euler scheme P, ;. To begin, we introduce some
notations. We fix a super kernel ¢ (see (18) for the precise definition), and, for 6 € (0,1] we denote
os(y) = 5%(;5(%). Moreover, for a function ¢ we denote s the regularization by convolution with the
super kernel: @5 = ¢ * ¢5, with x denoting convolution. For 6 > 0,7 > 0, and ¢, s, p € N we denote

54
5, _ — K
Aq,ﬁ,p(h) = ﬁ + n PhP + n, h > 0.
Let 3 > 0 and p > 1 be fixed and we assume the following regularization property for the Euler scheme
P ;: we assume that for every ¢, x € N there exists a constant C' = C,, . ,, such that for every § > 0,1 > 0,
every 1 <t < r <t + 2 and every bounded measurable function ¢

Rﬁ(}% B) Hptfl,tpt,r@ - ?tfl,tpt,r@duoo + Hﬁtfl,t?t,r(p - Ptfl,tpt,rwéHoo
< G X AP (V) 10loc -

Now we can give our main result (see Proposition 2.1.1). We assume that an invariant probability
measure v exists for the semigroup P;,t > 0. We construct an Euler scheme with decreasing time steps
P, by (1). Suppose that (Lg) holds for some p, A(kq, @) holds for some kg, o with p > aw, Rp(k), R (k)
and Ly, hold for every k, and Rz(p, 8) holds true for some p, 3. Then the invariant probability measure v
is unique and for any ¢ > 0, for every 2 € R? and n large enough,

oy (Pox, (2,)0) < C.OI % 4 [ o= yldvy)e ™)
R L

We remark that we get the same speed of convergence as in [40] and [14], but in a more general framework.

We notice that we need some regularization properties (see Rp(k), R(k) and R5(p, 5)). In order to
obtain these properties, we introduce in Section 3 an abstract framework built on a particular case of the
Dirichlet form theory (see [4] and [7]) in which such a property may be obtained by using some integration
by parts techniques. Those techniques are very similar to the standard Malliavin calculus but are presented
in a more general framework which goes beyond the sole case of the Wiener space. In particular, we aim
at providing a minimalist setting leading to our regularization lemma. Our unified framework includes
the standard Malliavin calculus and different known versions: the calculus based on the splitting method
developed and used in [5], [6],[8] as well as the I'—calculus in [4]. We also mention that our approach



applies in the case of the Malliavin calculus for jump type processes as settled by [12] and in the "lent
particle" approach for Poisson point measures developed by [13].

In Section 4, we apply the results in Section 2 for jump processes. So we consider the d—dimensional
stochastic differential equation with jumps as follows:

X = / dr—i—/ / e(z, X, )N(dz,dr), 2
R4

where N(dz,dr) is a Poisson point measure on the state space R? with intensity measure N (dz,dr) =
p(dz)dr, z is the initial value, y is a positive o-finite measure on R, and b : R? — R%, ¢ : R? x R — R4,
Some basic background of jump processes can be found in [15],[19], [46], [47] and [3].

We need to give sufficient conditions to ensure the existence of an invariant probability measure for
the jump equation (2). We recall by [18] the classical results of the existence of an invariant probability
measure for a general Markov process. Recently, [33] gives some specific criterias for the existence of an
invariant probability measure of a jump process and also discuss some ergodicity properties. Here we
suppose that (Hypothesis 2.5)

< —blz—y?
< e2) | -yl

i) (z—y,b(z)—0b(y))
i) |e(z,2) — c(z,y)]
and

iii)  2b — /Rd(za(z) + & (2))p(dz) :== 6 > 0.

Our conditions are based on [18] and are essentially the same as the conditions in [33]. Indeed, the
conditions above implies that for some 3,a > 0 and a Lyapunov function V (z) = ||, we have LV <
3 — aV,with L denoting the infinitesimal operator of (2). This guarantees the existence of an invariant
probability measure v.

Moreover, in order to apply the Malliavin framework in Section 3 and obtain regularization proper-
ties, we assume (see Hypothesis 2.4 b)) that the measure p is absolutely continuous with respect to the
Lebesgue measure: yu(dz) = h(z)dz, where h is infinitely differentiable and In i has bounded derivatives
of any order. We also need some regularity and ellipticity conditions on the coefficients (see Hypothe-
sis 2.1~2.3 for details). We mention that for every multi-indices §;, 32, we assume that there exists a
non-negative function ¢ : R¢ — R, such that

le(z, )| + 022051 ¢(2, x)| < &(2),

with [5,]¢(2)|Pu(dz) < oo, ¥p > 1. We also assume that there exists a non-negative function ¢ : R* — R,
such that for every ¢ € Rd,
d
D (0e(z,2), 0% = el2)[¢
j=1

Now we construct the Euler scheme. We take a partition with decreasing time steps P = {0 = Iy <
rh <---<rIy.1 <I, <.} with the time steps v, = I, — I';,_1, n € N verifying some suitable
conditions (see Section 4.3 for details). For I';, < ¢ < I',, ;1 we denote 7(t) = I',,. We consider the Euler

scheme:
t t
xr = x—}—/o b(XZ_D(T))dr—i—/O /Rdc(z,Xf(T)f)N(dz,dr).

Some results concerning the convergence of the Euler scheme of a jump equation can be found for example
in [43],[22], [24], [23], [21], [25] and [2].

Since p(R?) = co (which is a consequence of Hypothesis 2.4 a)), we have infinitely many jumps. So we
construct the truncated Euler scheme in order to have finite numbers of jumps for the sake of simulation
and Malliavin calculus. For m € N, we denote B,, = {z € R? : |z| < m} and denote

m = é(2) 2 u(dz é(2)p(dz)|?.
e Al e [ auas)



For every v > 0, we define the truncation function M (v) € N to be the smallest integer such that

EM(y) 7.

ForT,, < t < T'y41, we denote Mp(t) = M(yn4+1). Now we cancel the "big jumps" (the jumps of size
2| > Mp(t)):

xPMe = m+/ b(X APy +/ / o(z, XJ AP )N (dz, dr). (3)
B

7(r)
Mp(r)

We remark that the solution of the equation (3) can be constructed in an explicit way.

Then we apply the abstract framework in Section 2 for X. 7-M7 and obtain the following main result (see
Theorem 4.1): An invariant probability measure v of the j Jump equation (2) exists and is unique, and for
any ¢ > 0, there exists a constant C. such that for every z € R? and n large enough, we have

dry (LXTM7),v) < Caly ™ + / o —yldu(y)e ),
R

with £(X) denoting the law of a random variable X. We notice that we obtain the same speed of conver-
gence as in [40] but [40] concern the diffusion process driven by a Brownian motion while here we consider
the jump process. Comparing with the results in [14], we also obtain the same speed of convergence but
[14] only deals with the Wasserstein distance while in our paper, we deal with the total variation distance.

2 Approximation of the invariant measure: Abstract framework

2.1 The semigroup and the invariant measure

We consider a semigroup P;, ¢ > 0 on the space M, (R?) of the bounded measurable functions on R?%. We
denote C}(R?) the space of [—times differential and bounded functions on R? with bounded derivatives
up to order [. We will use the following two hypotheses:

(1) We assume that there exists at least one invariant distribution for the semigroup F;, ¢ > 0.

Moreover we assume the following "exponential Lipschitz property": we assume that there exists two
constants Cy > 1 and p > 0 such that for every ¢ > 0 and every ¢ € CL(R?)

(Lo) VPl < ColIVell e ™. 4)

We also denote by P; the space of the probability measures on R¢ which have finite moment of order
one [, |x|v(dz) < co. This is a Banach space under the Wasserstein distance 1¥;:

Wi(v, 1) —sup{‘/ pd(v — p ‘ Vel < 13

Proposition 2.0.1. Suppose that the semigroup P;, ¢ > 0 has at least an invariant probability measure v and
that (4) holds true. Then the invariant probability measure is unique and moreover, for every x € R?

Wi(v, Pz, ) < C’/ |z — y|v(dy) x e P". (5)
R4

Proof. Step 1 We will prove that for sufficiently large ¢, the application v — v P, is a strict contraction
on the Wassertein space: using (4),

[ etwrier, - ur dy)’ )

/ Pap(@)d(v(z) — p(x))

IV Pl o Wi(v, 1)
Co IVl e P Wi (v, ).

IAIA



This means that, for large ¢
1
WI(VPtv /J'Pt) < C()e_ptWI(Va M) < QWI(Vu ,U/)

and this guarantees the uniqueness of the invariant measure.
Step 2 Since v is an invariant measure

/Rd o(z)v(dz) = /]Rd /Rd P,(z, dy)o(y)v(dz)

which gives, for every fixed x € R? (v is a probability)

/ p((dz) — | Pue,dy)e() / /(Pt<z,dy>—Pt<x,dy>>so<y>v<dz> ©
Rd Rd R4 JR4

[, (Piol) = Prgla)wtaz)

so that

IN

/@(Z)V(dZ)— Pt(:c,dy)so(y)‘ HVPMHOO/ |z — 2| v(dz)
Rd Rd Rd

IN

Coe Vil [ 1o =2lv(d)

which yields (5). O

2.2 The Euler scheme

We introduce now an Euler scheme with decreasing steps. First, for every v > 0 we give an operator
P, : Cp° — Cp° such that |Py¢||s < ||¢|l and which approximates our semigroup in the following
sense: for every v > 0

A(ko, ) [|(Py = Py)¢l| o, < Ci [Vl 007 )

Here o > 0 is a given number, ky € N and

lly o = D 10l -

|| <ko

Moreover, we consider a decreasing sequence of time steps 7, | 0 and define the time grid ', = Y"1~ ;.
We assume that

(T) ;7 = lim T, = cc. (8)
We also introduce
© = 0((T)nen) = Tm 2T < o,
n—00 ’Yn-‘,-l

The typical example is 7, = 1 and then @ = 1. In the following we denote {I'} = {I',,n € N}. And, for
I'; <t < T4, we denote
N(t)=14 and 7(t)=T;.

In particular, for t = T'; € {T'} we have N(t) = i such that t = T'y (. Then, for s € {I'} and ¢t € {T'} we
define the Euler scheme

Ps,t = H F’yi (9)



the product being understood in sense of composition. This means that we travel from 7(s) to 7(¢) by
using the Euler scheme associated to the one step Euler scheme P,. In the appendix 7.1 we will prove
the following lemma (which is a slight generalisation of the lemma given by Pages and Panloup [40]): for
every p > ow, there exists n, and C,, such that forn > n,

n

Z%Hae—p(l“n—l“i) < Cp%C:- (10)

i=1
Moreover, there exists n, such that, for n, <: <n
v < eIy, (11)

Notice that P;,¢ > 0 is a homogeneous semigroup, and we may define P; ; = P,_; = Py ;_s. In contrast,
Psy,s < t, is not homogeneous: we do not have P;; = Pg;_,. This is due to the fact that the greed
I';,4 € N is not uniform.

Finally we assume the following stronger variant of the Lipschitz property Lg:

(Lko) VPl 00 < Cro [Vl o0 €™ (12)

where ky is the one from A(ky, «).

Proposition 2.0.2. Suppose that (7) and (12) hold true with p > aw. Then for N(t) > n, + 1, we have

(Pt = Pst)e|l o < Cro VOl 00 Yo (1)- (13)

Proof We use (7) first and (12) then

N(t)—1
H(Ps,t - Ps,t)SDHOO < Z |’P37Fi—l(P’Yi - P’Yi)PFi’t(pHoo
i=N(s)
N(t)—1
< Z H(P"/ _Pvi)PFz‘xt‘PHoo
i=N(s)
N(t)—1
< Cry Y VPl ot

i=N(s)
N(t)-1

< Chy Y V6l vi teT TN 7T
i=N(s)

< Gy IVOllkg 00 TR0ty

For the last inequality we have used (10). OJ

Remark. Suppose that (7) and (12) hold with k&, = 0. We also suppose that an invariant probability mea-
sure v of the semigroup P;, ¢ > 0 exists and that (4) holds true. Then Proposition 2.0.1 and Proposition
2.0.2 give that for every z € R%, we have

Wi (v, Poi(z,-)) < Clyve + /d |z — y|v(dy) x e P1).
R

For this result, we do not need any regularization properties. In order to obtain the result for the total
variation distance, we give some regularization properties in the next subsection.



2.3 Regularization properties

In this section we will assume that the semigroup and the Euler scheme have some regularization prop-
erties which allow to obtain convergence in total variation distance.
First we give the regularization hypothesis concerning the semigroup:

Rp(k)  suwp VPl roe < Cillglls. and (14)
1<t<2

Rip(k) S VPl 00 < Cr IVl » (15)

Such a regularization property is proved using the integration by parts formula in Malliavin calculus.
Moreover, we suppose that we have the following variant of the Lipschitz property:

Ly i) [IVPoll, < CrllVelpe™ t>1, (16)
it) [VPOlpo < CelVellye, 12t>0.

Notice that Ly, i) is weaker then L, (see (4)) because we have IVelly o instead of [[Vel| . However, if
the regularization property R’ (k) holds then Ly, i) implies Lo (for ¢t > 1). Indeed, L, gives

VPl o

IV(Pe-1P1o)| o < C VPl o e—P(t=1)
CIVell,, e Y,

IN

the last inequality being the consequence of R’ (k). In particular, if an invariant probability measure v
exists, then it is unique and we have (5).

Remark. We also notice that R, (k + 1) and Ly, imply Ly. Indeed, for t < 1, Ly, ii) gives
VPl 0o < Cr IVl 00 < €Cr[Vllg 0o €7
and fort >1

IVPeloo = VPPl < CIVP19] o
C IVl o0 e~ Y.

IN

Moreover, for t > 1, L;, and Rp(k + 1) give

drv(Pua.),v) < ([ o=yl duly))e ™", a7
R
where dpy denotes the total variation distance:
drv(u) = swp | [ f@utdo) - [ j@wido),
Ifllec<1 JR R4

Indeed,

|Prp(x) — Pro(y)] |Pi—1Pro(x) — Pi1Pro(y)|
Cr VPl o eV |2 — |

CrCrrre” [l e |z —yl .

A

IN

Then we come back to (6) and we obtain

/ p(2)v(dz) — Pt(w,dy)w(y)’ < CII@IIOO/ e |z —y|v(dy)
R4 R4 Rd



so (17) is proved. [J

We give now the regularization properties for the Euler scheme; this is a more delicate subject, because
we have some difficulties in order to use directly the Malliavin calculus for the Euler scheme (the reason
is that the decomposition using the inverse of the tangent flow does not work, and so the proof of the non
degeneracy property is more difficult) .

We introduce some notations. We recall that a super kernel ¢ : R? — R is a function which belongs to
the Schwartz space and such that for every multi-indexes $; and 35, one has

o(z)dr =1, / v oy)dy =0 for |Bi]>1, / ly|™0s,0(y)|dy < 00 for meN. (18)
Rd Rd R4

We fix a super kernel ¢. For § € (0, 1], we denote ¢5(y) = 37¢(¥%) and 5 the regularization by convolution
with a super kernel:
05 = P * @5, (19

with * denoting convolution.
As usual, for a multi-index 81 = (81, ,87") € {1,--- ,d}™, one denotes |3;| = mand y** =[", Ygi-
For § > 0,7 > 0, and ¢, x,p € N we denote

q

6 — K
Ag’j’i’p(h):@Jrn PP + 1%, h> 0.

Then we assume the following:
Let 8 > 0 and p > 1 be fixed. We assume that for every ¢, x € N there exists a constant C' = C; ,, ,, such
that for every 6 > 0,1 > 0, every 1 < ¢ < r < t + 2 and every bounded measurable function ¢

R5(p, B) ||Pt—1,tpt,r90 - Pt—l,tpt,MP(S”OO + ||Pt—1,t?t,r<,0 - Pt—l,t?t,ﬂﬂéum (20)
< Cgrp X AS:Z,p(va(t_l)) el -

This represents the "regularization property for P;_; ;”. In order to prove it, one employs Lemma 3.5
(see (38)) in Section 3.1.

As a consequence of these properties, we obtain the following lemma. We recall n, and n. in (10) and
11).

Lemma 2.1. We fix f > 0 and p > 1.Suppose that (7) (12) hold with p > aw, and Ry (p, 3) Gee (20))
holds. Then, for every ¢ > 0 there exists a constant C. > 1 such that forevery s <t —1 <t <r < t+ 2 with
N(r) >n,+1and N(t — 1) > n,, and for every bounded measurable function ¢

Pt (Prr = P, < Cellollo iy e 1)

Proof We use (20) and (11) in order to get

|Pst(Per—Pir)e|, < |[Pe-14(Pir— Pro)e|
< Camp 19lloc X AT, (VR1)) + b5
< Conp 0l ¥ AP, (V) + b5
with
bs = [Peore(Prr = Pri)os|l < |(Per = Prr)es| . <

IN

C
ClIVeslly, . YNy < FET 6l oo Y (t)-

Here we used (13) and vy () < vn (). We conclude that

_ 1,
[Pot(Prr = Pr)|l o < Comp 19l X (AF (V) + STk TN ()



Optimization For some fixed «, 3, p, ko, €, we optimize over ¢,7, x,q. Let A = yf,( 0" First we choose

n= A% so that n-

Take now § = A%

With this choice

We need

PAP = p®. Then

04 on
sm (A8 — .
Aghp (W) = Nz 2APFR
so that
AqZZ,p(fo(t)) = Aptr 4+ 2APFr,
0N q " 3p(14+k0)
6 (o NGO A2 e s
Aq,Z,p(IYN(t)) + §1+ko = ArFs +2ArF~ + A s PyN(t)
piﬂ pig 7@
= e TN TIve"T XN
3p(1+k
0 3p(1 + ko) B < e
P+ K
i) > 1-¢
p+K
q
i41) > 1—¢
P+ K

We first choose k(¢) such that ¢) and i7) hold true. Then we choose ¢(¢) such that pj(,f()g)

this choice we have

[ p— _3p(+kg)B
HPs,t(Pm - Ptm)‘PHOO < Cymp el < (ASZZ,p('YJB\I(t)) T Vv ")
B(1—e) a—
< Ctl](s),n(s),p ”(p”oo X (7]%/‘(15) : +7N(t€))
- (pB)A@)—2

with & = pBe ve. O

C;(E),H(E),p ||<p||oo X F)/N(t) 3

We give now the main result. We recall n, and n, in (10) and (11).

Proposition 2.1.1. Let 5 > 0 and p > 1 be fixed. Suppose that (7) holds for some «, ko, (14),(15),(16) hold
for every k and some p with p > aw, and R5(p, 3) (see (20)) holds. For every ¢ > 0 and every measurable
and bounded function ¢, for n large enough such that N(I',, — 3) > n, and N(T';, — 2) > n, + 1, we have

|(Po,r, — Por,)¢|.. < Cellello v @A,

> 1 — e. With

(22)

Moreover, if an invariant probability measure v exists, then the invariant probability measure v is unique and
for every x € R, we have

oy (Pox, (2,0) < COWP D 4 [ o= yldog)e ™)
R

Proof We fixi < nsuchthatl <I';andI'; +1 < T, <T; + 2 and we write

<

|(Po,r,, = Por,)¢l| o

|(Po,r,Pr, r, — Por,Pr,r,)e|. +||(Por,Pr,r, — Por,Pr.r,)e|
: A+ B.

First, since I'; > 1, using (21) with s = 0,¢ =T'; and r = I',, we obtain

A< Cellpll g x AP < C il x APINE

10

oo

(23)



where in the last inequality, we have used (11).
Moreover, we recall that (15) and (16) imply (12). So using (13) and the regularization property (14)
(notice that I",, — I'; > 1) we obtain

B<CVPr,r, ¢l 00 S Cllelloer < Cllelle 1,

the last inequality being obtained by (11) (because I',, — I'; < 2).
Finally, in order to obtain (23) we use (17). The uniqueness of the invariant probability measure v
comes directly from Proposition 2.0.1. [J

3 Abstract integration by parts framework

Here we recall the abstract integration by parts framework in [7].
We denote C5°(R?) to be the space of smooth functions which, together with all the derivatives, have

polynomial growth. We also denote Cg(]Rd) to be the space of g—times differentiable functions which,
together with all the derivatives, have polynomial growth.

We consider a probability space (€,F,P), and a linear subset S C ﬂ L?(Q;R) such that for every

¢ € C*(RY) and every F € S, we have ¢(F) € S. A typical example of S is the space of simple
functionals, as in the standard Malliavin calculus. Another example is the space of "Malliavin smooth
functionals", usually denoted by D, (see [37]).

Given a separable Hilbert space H, we assume that we have a derivative operator D : § — (| LP(;H)

p=1
which is a linear application which satisfies
a)
DpF := (DF,h)y €S, foranyh € H, 249
b) Chain Rule: For every ¢ € C}(R?) and F = (F},--- , Fy) € 8%, we have
d
=Y 0:¢(F)DF, (25)
i=1
Since D, F € S, we may define by iteration the derivative operator of higher order D : S — (| LP(2; H®)
p=1
which verifies (DqF ®7_ hi)yyee = Dp, Dy, _, --- D, F. We also denote D;ZLl’_i,?th = (D1F, ®@_h;)y@q,

for any hq,--- ,hy € H. Then, D} F D;Lqu ! s F(¢>2).
We notice that since H is separable there exists a Countable orthonormal base (e;);cn. We denote

D;F =D, F = (DF,e;)n

Then
DF = ZD Fxe; and DIF = Z Dy, ... i,F x @7_ ¢
i=1 i1, ig
For F = (Fy,--- , F;) € 8%, we associate the Malliavin covariance matrix
or = (0%)ij=1...a, With o% = (DF;, DF})3. (26)
And we denote
5,(F) = E(1/ det op)P. (27)

11



We say that the covariance matrix of F' is non-degenerated if ¥,(F') < oo, ¥p > 1.

We also assume that we have an Ornstein-Uhlenbeck operator L : § — S which is a linear operator
satisfying

a) Duality: For every F,G € S,

E(DF, DG)y = E(FLG) = E(GLF), (28)

b) Chain Rule: For every ¢ € C2(R?) and F = (F},--- , Fy) € 8%, we have

d d d
Lo(F) = 0;6(F)LF; = > 8;0;¢(F)(DF;, DF;)3.
i=1 i=1 j=1

As an immediate consequence of the duality formula (28), we know that L : & C L?(Q2) — L2(Q) is
closable. But it is not clear that D is also closable. We have to assume this and to check it for each
particular example.

Definition 3.1. If D?: S C L?(Q) — L?(Q; H®Y), Vq > 1, are closable, then the triplet (S, D, L) is called
an IbP (Integration by Parts) framework.

Remark. The bilinear forms I'(F, G) = (DF, DG)y is called "carré du champ" operator in the theory of
Dirichlet form. And £(F, G) = E(T'(F, G)) is the Dirichlet form associated to I'. So our Integration by Parts
framework appears as a particular case of the I"'—calculus, presented in [4] and [7].

Now, we introduce the Sobolev norms. Forany [ > 1, F € S,

l
IFly, = Y ID"Flyes, |Fl, =|F|+I|Fl,, (29)
g=1

We put |F|o = |F|, |F|; =0forl <0, and |F|;; =0 for! <0. For F = (F1,---, Fy) € 8%, we set

d d

|F|1,l = Z|Fi|1)la ‘F‘g = Z|Fi|l7

i=1 i=1

Moreover, we associate the following norms. For any ! > 0,p > 1,

112,
1E L1

With these notations, we have the following lemma from [9] (lemma 8 and lemma 10), which is a
consequence of the chain rule.

EIFI)Y?, |IFl, = EIFP)Y?,
IEMp + IEF g - (30)

Lemma 3.1. Let F € 8% Foreveryl € N, if ¢ : R — R is a C'(R?) function (I—times differentiable
function), then there is a constant C; dependent on [ such that

a) [¢(F)110 < [VO(F)||Fl1y+Cr sup [076(F)||Fli,_s.
2<||<l

If ¢ € C'F2(R?), then

b) [LO(F) < [VO(F)ILF|i+C;  sup  [9°G(F)|(1+|FI])(L + |LF)1-1).
2<|8|<i+2

For | = 0, we have

) |Lo(F)| < |Vo(F)||LF| + Sup, P (E)IFIE 1.

12



We denote by Dy, the closure of S with respect to the norm ||,

Dl7p — gHOHL,l,p, (31)
and o =
Doo = () () Prp» Hi=Dipo. (32)
I=1p=1
For an IbP framework (S, D, L), we now extend the operators from S to D.. For F' € D, p > 2, there
exists a sequence [, € S such that |F' — F,, ||, = 0, || — Fyll, ,, = 0and |[LFy — LE,[|,_, , — 0. Since
D7 and L are closable, we can define
DIF = lim DF, in LP(Q;H®%), LF = lim LF, in LF(Q). (33)
n—o00 n—oo
We still associate the same norms and covariance matrix introduced above for F' € D..
Lemma 3.2. The triplet (D, D, L) is an IbP framework.
Proof. The proof is standard and we refer to the lemma 3.1 in [10] for details. O

The following lemma is useful in order to control the Sobolev norms and covariance matrices when
passing to the limit.

Lemma 3.3. (A) Wefixp >2,1> 2. Let F € L'(;R?) and let F,, € S%,n € N such that

i) E|F,—-F] — 0,
i) sup||Fnllp,, < Kip<oo.
n

Then forevery 1 < p < p,we have F € Dld_p and || F||.,, » < Ki,5 - Moreover, there exists a convex combination

anifﬁleiGSd,

with 4 > 0,i = n,....,m, and i I =1, such that

1Gn = Fllg,2—0.
(B) For F € D, we denote

AF) = inf (716.0)

the lowest eigenvalue of the covariance matrix op. We consider some F' and F,, which verify i), i) in (A). We
also suppose that
iii) (DFy,)nen is a Cauchy sequence in L*(Q; H),

and for every p > 1,

iv) supE\NTP(F,)) <Qp, < . (34)

Then we have
EAP(F)) <Qp <0, Vp>1.

(C) We suppose that we have (F, F') and (F,,, F,,) which verify the hypotheses of (A). If we also have

U) sup HDFIL - DFTLHLQ(Q;H) <é, (35)

then B
|DF — DF|[2(m) < €.

13



Proof. Proof of (A) For the sake of the simplicity of notations, we only prove for the one dimensional case.
We recall the notations in Section 3. The Hilbert space H; = D; > equipped with the scalar product

l
U V)p1o = > E(DW,DYV)yes +EUV)
g=1
-2
+ Y E(DILU,D'LV)ysa + E(LU x LV)

q=1

is the space of the functionals which are /—times differentiable in L? sense. By i), for p > 2, |||, ;5 <
| Fully, ., < Ki,p- Then, applying Banach Alaoglu theorem, there exists G € H,; and a subsequence (we
still denote it by n), such that F;,, — G weakly in the Hilbert space H,;. This means that for every Q € H,,
(Fn,Q)r12 = (G,Q)L12. Therefore, by Mazur theorem, we can construct some convex combination

aninj’yinXFiES

i=n

my,
with 4 > 0,i =n,....,m, and > v* = 1, such that

1Gn —Gllp, ;0 — 0.
In particular we have
E|Gn =G| < [Gn =G5 — 0.
Also, we notice that by i),

E|G, —F| <> 4" xE|F; - F| = 0.
i=n

So we conclude that F' = G € H,;. We also have

my,
1Gnllzp < Z’anHFz‘ Lip < Kip.
i=n
Then a standard argument gives, for every p € [1,p),
HFHL,l,ﬁ < Kip.

Proof of (B) We consider for a moment some general F, G € D% . Notice that (¢(F)(,¢) = [(DF, ()[3,,
0 A(F) = inf|¢|=1 [(DF, ¢)|3,. It is easy to check that

VAF) = VAG)| < [D(F = G)| . (36)

Mn
We now come back to our framework. Recalling that G,, = > 4 x F;, we observe that

i=n

DG, — DFnHLz(Q;H) < Z%HHDFl - DFn||L2(Q;H) — 0.

i=n

Here we use the fact that (DF,),cy is a Cauchy sequence in L?(Q;H). Meanwhile, we know from (A)
that || DG,, — DF||12(q;3) — 0. So we conclude that | DF — DF,||12(q;%) — 0. Thus, by (36), E|[\/A(F) —

VA(F,)| — 0. This gives that there exists a subsequence (also denote by n) such that \/A(F,,) converges

14



to \/A(F) almost surely, and consequently |A(F;,)| P converges to |A(F')| P almost surely. Since we have
(34), (|A(Fy)| ?)nen is uniformly integrable. It follows that

E(AE)™?) = Tim E(JA(F)|7P) < Qp.

n—oo

Proof of (C) Since the couples (F, F) and (F,, Fn) verify the hypotheses of (A), we know by (A) that
we may find a convex combination such that

iy ool Y 47 (DFi, DF;) = (DF, DF)| 200 = 0.

Then it follows by (35) that

Mo,

IDF = DF|| 2y < IiMpoeol Y47 (DF; — DE)| 20
< mn—)oo Z’YZLHDFZ _DFi||L2(S2;H)
< & -

3.1 Main consequences

We will use the abstract framework presented above for the IbP framework (D, D, L), with D and L
defined in (33). We recall the notations || F||z,,, in (30), ¥,(F) in (27) and o in (26). For any n > 0,
we take Y, (x) : (0,00) — R to be a function of class C° such that

L2 00) < Ty < 1py,00)-

We remark that o is invertible on the set {Y, (det o) > 0}. We give the following lemma, which is stated
in lemma 2.4 of [7] and is proved in the Appendix of [6], based on some integration by parts formula.

Lemma 3.4. Let F = (I, -+, F;) € DL and G € D... We fix g € N.
(A) Suppose that there exists a constant C, (dependent on g, d) such that | F||1,,q+2,8dq +Xaq(EF)+[|G|lg.4 <
C,. Then for any multi-index 3 with || = q and any function f € Cj(R?),

(By) [E@°F(F)G)| < Cyllfllss VBl =1q. (37)

(B) Suppose that there exists a constant Cj, (dependent on q,d) such that || F|| g2, (4d+1)q + [|Gllg.a < Cy
Then for any n > 0, any multi-index 3 with |3| = ¢ and any function f € C{(R?),

(BL) [E@°f(F)Y,(detor)G)| < Chllflle X == VI8l = q.

U
Remark. In (A), we assume the non-degeneracy condition for F', so we can give the estimate based on the
standard integration by parts formula. In (B), we no longer suppose non-degeneracy condition for F, so
we can only obtain an estimate based on a localized form of integration by parts formula.

Remark. If the property (B,) (respectively (B;)) holds for a random variable F', then it also holds for
F + z for every x in R, with the same constant C,, (respectively C;). In order to see this, given a test

function f, one defines f,(y) = f(« +y) so that f(F' + z) = f,(F'). And one notice that the infinite norm
of f, is the same as the infinite norm of f.
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We give now a regularization lemma which plays a crucial role in our paper. We consider the d—dimensional
super kernel ¢s in (18) and (19) and we denote

fs(x) = f+os(x /f Jos(x — y)dy

Then we have the following regularization lemma.

Lemma 3.5. We fix some q,d € N and r,p > 1. We suppose that F € DL such that ||F||1, 442 (1d+1)q < 00
We also consider an auxiliary random variable Q € D, such that 3,.(Q) < oo. Then there exists a constant
C depending on p, g, x and d (but not on Q) such that for any n > 0 and § > 0, for any function f € C}(R%),

we have

[E(f(F) = E(fs(F))| < C[lfll x (7;572 +0 PE(|det op — det oq[") + n"E(] det og| ). (38)

Remark. We remark that we do not assume the non-degeneracy condition for F’, but we need to assume

that we have another random variable ) which is non-degenerated such that det o is close to detop.
Then we obtain the regularization lemma (38). The regularization lemma here is originally from the

paper [7].
Remark. If the property (38) holds for a random variable F, then it also holds for F + z for every z in R¢,

with the same constant C.

Proof. We denote

007 = Z / dA(1 =X "/Rd dyos(y)y“ 0 f(z + \y)

lal=q

with y* = [[_, ya, for & = (a1, ..., a,). Notice that if F' satisfies (B],) with G = 1, then

[l 94
(R, Py Tytdet o) < U [ ayos) it =4 [ o)l dylfl 2 @9)
n R Rd n
We use a development in Taylor series of order ¢ in order to get

E(f(F)Y,(detor)) —E(fs(F)Y,(det o))

B[ dvosu) (F(F +3) = F@)T,(det op))
= E(R,(5, F)T,(detop)).

Here we have used the property of a super kernel: [, yPé(y)dy = 0, V|B| < ¢. Using (39), we have

54
[E(f(F)Yy(detop)) = E(fs(F)Ty(detop))| < Cllfll —; oyl (40)
Following the idea from [11] p14, we denote
B detop —detog
o det 0Q
For an arbitrary n, we write
1
P(detop < n) < P(detop < n,|R| < ) +P(|R| > ) (41)

When |R| < 1, |detop — detog| < 1detoq. This implies that detop > 1 detog. Recalling that @ is

non-degenerated and using Markov inequality, for every x € N, it follows that

1
P(detop < n,|R| < Z) < P(detog < 2n) < 2°n"E(|detog|™"). (42)
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For any n > 0, k € N, we write

P(|R| > i) — P(|detop —detog| > idet 00)
< P(detog <n) +P(|detop —det og| > in)
< C"E(|detog|™") + n~PE(|detop — det og|?)). (43)
So we conclude that
P(detop <n) < CO"E(|detog| ™) +n PE(|detop — det ogl?)). 44)

Then we have
[E((1 =Ty (detop)) f(F)| < [[fllcP(det or < 1) < Cflflloo(n"E(| det oq|™") + 1 "E(| det op — det ag|)). (45)
Similarly, we also have
[E((1 = Ty(detor)) f5(F))| < Cllflloo(n"E(| det 0| ™") + 1~ PE(| det o — det og[")). (46)
We conclude by combining (40), (45) and (46). O

4 Application for jump equations

4.1 Basic notations and the main equation

To begin, we introduce some notations which will be used in the following sections. For a multi-index
3, we denote |3| to be the length of 3. We denote C}(R?) the space of /—times differential and bounded
functions on R¢ with bounded derivatives up to order I, and | |, ., := > ||9°f||__ for a function f €

’ |BI<t

Cl(R?). We also denote P;(R?) the space of all probability measures on R¢ with finite /—moment. For
p1, p2 € P1(R?), we define the Wasserstein distance 1, by

Wilprpn) = s | [ f@otin) = [ f@pstao), @)

Lip(f)<1 JRd

with Lip(f) := sup w the Lipschitz constant of f, and we define the total variation distance dry
T#y

|z
by

v = sw | [ f@ptn) = [ f@pn). (49)

[fllee<1
For F,G € L'(Q), we also denote W1 (F,G) = W1 (L(F), L(G)) and dry (F,G) = dry (L(F), L(G)), with
L(F)(respectively £(G)) the law of the random variable F'(respectively G). We refer to [49] and [34] the
basic properties of these distances. In addition, along the paper, C' will be a constant which may change
from a line to another. It may depend on some parameters and sometimes the dependence is precised in
the notation (ex. C; is a constant depending on [).
In this paper, we consider the d—dimensional stochastic differential equation with jumps

t t
X, = er/ b(Xr)d’l"+// c(z, Xr—)N(dz,dr), (49)
0 0 JRd4

where N(dz,dr) is a Poisson point measure on the state space R¢ with intensity measure N(dz,dr) =
p(dz)dr, z is the initial value, y is a positive o-finite measure on R%, and b : R? — R9, ¢ : R? x R? — R4,
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4.2 Hypotheses

Here we give our hypotheses.

Hypothesis 2.1 (Regularity) We assume that the function « — b(x) is infinitely differentiable with
bounded derivatives of any orders. We also assume that the function (z,z) — ¢(z, z) is infinitely differ-
entiable and for every multi-indices 3;, 3., there exists a function ¢ : R? — R, depending on 31, 3> such
that we have

sup (le(z,2)| + 100200 c(z,2)|) < e(z), Vz e R, (50)
rcRd
with / |e(2)|Pu(dz) ==¢, < oo, Vp>1. (51
]Rd'

Remark. We will use several times the following consequence of (51) and of Burkholder inequality (see
for example the Theorem 2.11 in [28], see also [29]): Let ®(s, z,w) : [0,T] x R? x Q — R, and ¢(s,w) :
[0,7] x 2 — R, be two non-negative functions. The Burkholder inequality states that for any p > 2, we

have
E|/O /]Rd O(s,z,w)N(dz,ds)|?
< CIE (/ 1B (s, z,w)|?u(dz)ds)® + /0 y |D(s, z,w)|Pu(dz)ds
JrIE\/ / |D(s, z,w)|pu(dz)ds|P]. (52)

If we have
|®(s, 2,w)| < ]e(2)][p(s,w)l,
then for any p > 2,

t t
]E‘/o /Rd <I>(s7z,w)N(dz,ds)‘p < CE/O lo(s, w)|Pds, (53)

where C' is a constant depending on p, ¢, é2, ¢, and T'.

Proof. By compensating N and using Burkholder inequality and (51), we have

E|/t /Rd O(s,z,w)N(dz,ds)|?

<C[E / |® (s, z,w)|?pu(dz)ds)® + / |®(s, 2, w)[Pu(dz)ds
Rd Rd

JrIE\/ / |D(s, z,w)|pu(dz)ds|?]

< C]E/ lo(s,w)[Pds.
0
O

For the sake of simplicity of notations, in the following, for a constant C, we do not precise the depen-
dence on the regularity constants of the function b and ¢ (such as ||V ,b||, Ly and ¢,).

Hypothesis 2.2 We assume that there exists a non-negative function ¢ : R — R, such that [5, [¢(2)[Pp(dz) :=
ép < 00, Vp > 1, and

|Vac(z, ) (Ia + Vac(z,2) 7| < é(z), Vo e R? 2 € RY,

with I; the d—dimensional identity matrix. To avoid overburdening notation, since both hypotheses 2.1
and 2.2 apply, we take ¢(z) = &(z) and ¢, = &,.
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Remark. We need this hypothesis to prove the regularity of the inverse tangent flow (see Section 5.2).

Hypothesis 2.3 (Ellipticity) There exists a non-negative function ¢ : R¢ — R, such that for every
r € R 2z € RY ¢ € R, we have
d
> (0, e(2,2),€)° > e(2)[¢].

j=1

Remark. We notice that together with Hypothesis 2.1, we have c(z) < |¢(2)[?, Vz € R

Hypothesis 2.4
We give some supplementary hypotheses concerning the function ¢ and the measure p.
a) We assume that

. 1 _ 1
h7mu~>+oomu{g 2 a} = 09, (54)

with -
A(dz) = Z Lz o 1y(l2])p(dz).
k=1

This means that ¢ could not be too small so that we could have enough noises to deduce the non-degeneracy
of the Malliavin covariance matrix (see Section 5.2).

Remark. If u(R?) < oo, then lim,,_,, - 7{c > 1} = 0. So (54) implies that (RY) = occ.

b) We assume that p is absolutely continuous with respect to the Lebesgue measure: p(dz) = h(z)dz,
where h is infinitely differentiable and In ~ has bounded derivatives of any order.

Remark. We need this hypothesis to construct the integration by parts framework for the jump equations.

Hypothesis 2.5

We give some conditions which ensure the existence and uniqueness of the invariant measure and the
"exponential Lipschitz property" (4).

Suppose that

D) o —yb(@) —by) < —blr—y’
i) le(z.2) —e(zy)| < @) |-yl (55)

and
iii)  2b— / (2¢(2) + & (2))u(dz) == 0 > 0. (56)
Rd

Hypothesis 2.6
We assume that P is a partition with decreasing time steps: P = {0 =Ty < I <--- <T[,,1 <, <
---}. We denote v, =T',, — I',_1, n € N and assume that ~,, | 0. We also introduce

Tn — Vn+1

w= lim ,

n—oo

7n+1

and assume that @ < £, with 6 given in (56).

Remark. A typical example is v, = = and so w = 1.
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4.3 The truncated Euler scheme

Now we construct the Euler scheme. For some technical reasons, we take a general partition P = {0 =
I'p <T'y < - <Ty1 <T,, < ---} (without assuming Hypothesis 2.6 at this moment). We denote
Yo =Tp —Th1, n € N and denote |P| := mai%((rn_irl —T,,). We assume that |P| < 1, and

ne

o0

g v, = lim I';, = 00
— n— o0

1=

ForT',, <t < T,4+1 we denote N(t) = n and 7(¢) = I',,. We consider the Euler scheme:

t t
X7 = x—‘,—/ b(XZr))dr—i—// c(z, X,y )N(dz,dr). (57)
0 0 JR4

Since we have ;(R%) = oo (which is a consequence of (54)), we have infinitely many jumps. We use a
truncation argument in order to have finite numbers of jumps and obtain a representation by means of a
compound Poisson process. This is necessary in order to obtain a scheme which may be simulated. We
construct the truncated Euler scheme as below. To begin, we give some notations.

We denote

- / 15(2) 2 uldz) + | d()u(dz)?, ¥m e N. (58)
{lz|>m} {lz|>m}

For every v > 0, we define the truncation function M () € N to be the smallest integer such that
EM(y) < v (59)

For m € N, we denote B, = {z € R? : |z| < m}. ForT',_; < t < T, we denote Mp(t) = M(v,).
We remark that we have lirrb M(v) = o0 and for I',,_; < t < T, we have Mp(t) = M(v,) > M(|P|) —
v

00, as |P| — 0. Now we discard the "big jumps" (the jumps of size |z| > Mp(t)):
t t
XPMP / BTy + / / (2, XN N (dz, dr). (60)
Bup

The advantage of considering X;*"'* is that we may represent it by means of compound Poisson pro-
cesses. For k € N, we denote I} = By, I}, = By \By_1 for k > 2 and take (J});>( a Poisson process of
intensity u(Ix). We denote by (T}¥);cy the jump times of (JF);>0 and we consider a sequences of inde-
pendent random variables ZF ~ 1, (2 )#EI ;,k i € N. Moreover, (JF);>o and (ZF)y.icn are taken to be

keEN
independent. Then we represent the jump’s part of the equation (60) by compound Poisson processes. We

write

oo Jf
XPMR gy /0 DT+ 03 U (ZE)e(2E XD )

=1

. kool JE N(t)

= x+/0 XTI+ D 0 b, (ZD)e(ZE, X0 ).
k=1 i=1 n=0
Since ZF € By,\Bj,—1, it follows that ZF € By, ,,) is equivalent to k& < M (v,1). Then
) M(vyni1) JE
xrMe = x+/0 b(Xf(rj;b )dr + ZO Z Z]l{r <le§rﬂ+1/\t}C(Zk XP(I{\?)) )- (61)

We remark that the solution of the equation (61) can be constructed in an explicit way.
We recall the notation ¢ in Hypothesis 2.5. We also recall n, = n g in (10) (with p = g in our case)

and n, in (11). We obtain the following error estimate for XZD ’M7’, which represents the main result in
our paper.
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Theorem 4.1. Assume that Hypothesis 2.1~2.5 hold and the partition P satisfies Hypothesis 2.6. Then
an invariant probability measure v exists and is unique, and for n > max{n 9 +3,n. + 3}, forany e > 0

there exists a constant C. such that
dnmuX&Mﬂ»oscuw5“+/dm—ymwwa%“» (62)
R

The proof of this theorem will be given in Section 6 by using some Malliavin integration by parts tech-
niques introduced in Section 5.

In order to apply the Malliavin framework which will be presented in Section 5, we introduce addition-
ally an auxiliary equation as follows (see (64) below).

For T, <t <T,41, we define

aP /‘ u(dz) + (t rm/ c()uldz))t, (63)
{lz \>M(%)} {Iz|=M (vn+1)}

1<z<n

where ¢ is given in Hypothesis 2.3. We notice that |a]’| < |/t X er(p)) < VE X |P|.
Now we cancel the big jumps in equation (49) and replace them by a (d—dimensional) Gaussian random
variable A which is independent of the Poisson point measure N(dz,ds):

xMr o = ;p+atA+/ b(X M ds+/ / c(z, XMP)N(dz, ds). 64)
B

Mp(s)

We remark that A is necessary in order to obtain the non degeneracy of the covariance matrix (see Section
5.2 for details).

Following the same idea as above, we represent the jump’s parts of the equation (64) by compound
Poisson processes:

]\/[ ’Yn+1 ‘t‘
XtIVIP = z+4a] A—‘r/ XJWP ds + Z Z Z {F,L<T1’”§F,L+1/\t}c(Zlk’X%P—)' (65)
n=0 = =

We sometimes write X, "7 () (resp. XM7 (z), X;(z)) instead of X M7 (resp. X7, X,) to stress the
dependence on the initial value z.

4.4 Some examples

We give some typical examples to illustrate our main results.

Example 1 We take h = 1 so the measure p is the Lebesgue measure. We consider two types of behaviour
for c.

i) Exponential decay We assume that |¢(z)|? = e~ ®/*I" and ¢(z) = e~/*I" with some constants 0 <
a1 < ag, p > 0. We only check Hypothesis 2.4 here. We have

. 1, _ rg In(u—1) 4
ple> 1} =l < (o)) = =),
with r4 the volume of the unit ball in R¢, so that
d
1 1 —1))»
1 — e > }> Tdi(n(u ) )
nu 2(ag)? Inu

We notice that lim,,_, , . —7{c > 2} = oo when 0 < p < d. Therefore, when p > d, we can say nothing;
when 0 < p < d, the results in Theorem 4.1 are true.
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ii) Polynomial decay We assume that |¢(2)|? = for some constants 0 < az < ay

and p > d. Then

_a1 _ _ay
e and o(z) = iy

1 1 r d
Afe> —} = a{lzl < (azu —1)7} = F(az(u—1) ~1)7,
so that ,
1 _ 1 rq (ag(u—1) = 1)r
_— 1> ¢ .
lnuﬂ{g>u}_ 2 Inu

We notice that in this case, lim, , =~ 7i{c > L1} = oco. Thus, the results in Theorem 4.1 hold true.

Example 2 We consider the (1—dimensional) truncated a—stable process: X; = Xy + fg o(X,-)dU,.
Here (U,;):>0 is a (pure jump) Lévy process with intensity measure

1

We assume that 0 € C3°(R), 0 < ¢ < o(z) < g and -1 < a < ¢'(z) < 7, Vz € R, for some universal
constants &, g, a, where ¢’ is the differential of ¢ in 2. Then by a change of variable z — %, we come back
to the setting of this paper with ¢(r,v, z,z,p) = o(z) x ; and pu(dz) = L{j.|>1) zji==d2- We only check

Hypothesis 2.4 here. In this case, ¢(z) = o x #, then

1

1
JE— s > -t >
lnuu{g u} -

Y

1 /(U(ul))4 1 p (clu—1))% —1
1

Inu |zt B alnu

: 1
SO that hmu_>+oom

{c> 37} = oo. Thus we can apply Theorem 4.1.

5 Malliavin framework for jump equations

We take time ¢ € [0, 3] throughout this section and we use the notations from Section 4. We recall
(Xt)tepo.3 in (49), (X7M7)ic03) in (60) and (X7 )iepo.z) in (64), where P = {0 =Tg < Iy < --- <
I'n(3) < 3} is a general partition (which is not supposed to verify Hypothesis 2.6).

Lemma 5.1. Suppose that Hypothesis 2.1 holds true. Then we have the followings.
i) For every t € [0, 3], we have
E|X7M — X, =0, as [P| = 0;

i) For every fixed t € [0, 3] and every p > 2, we have
E|XMP — X,|P -0, as |P| — 0;
i11) For every fixed t € [0, 3] and every multi-index (3, we have
E|0PXMP — 98 X,| — 0, as |P| — 0.

Proof. The proof of this lemma is standard and straightforward by Gronwall lemma and Buckholder in-
equality. So we leave it out. O

Now we use Malliavin calculus for X,”"*” XM” and X,. There are several approaches given in [12],
[20], [26], [27], [37], [48] and [50] for example. Here we give a framework analogous to [9].
To begin we define a regularization function.
1
aly) = 1- T (a1 for yel,3) (66)

v = l{lylﬁi}+1{%<\y\§%}eu(‘y‘)- 67)
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We notice that 1) € C§°(R) and that its support is included in [—1, ]. We denote

Ui(y) = ¢(lyl — (k- 3)), Vk € N. (68)
Then for any [ € N, there exists a constant C; such that

sup [|[¥ll1,00 < C1 < 0. (69)
keN

We focus on X7 () and X7 (z) (solutions of (61) and (65)) which are functions of random vari-
ables TF, ZF and A .

Now we introduce the space of simple functionals S. We take G = o(TF : k,i € N) to be the o—algebra
associated to the noises which will not be involved in our calculus. In the following, we will do the
calculus based on Z} = (ZF,,---,Z},;),k,i € Nand A = (Ay,---,A,). We denote by Cg,p the space

of the functions f : Q x R™*™'*d+d _, R such that for each w, the function (21155 20, mo S, 04)
flw 2t gy zf,}:d, 01, ,04) belongs to C° (Rm*mxd+d) (the space of smooth functions which, together
with all the derivatives, have polynomial growth), and for each (z}jl, - zm:d,dl, -+« ,04), the function
w = flw, 2], zj{fjd, 01, ,04) is G-measurable. And we consider the weights

& =wi(2)). (70)

Then we define the space of simple functionals

- {F f( ( )1<k:<m/7A) f € ngpﬂma m/ € N}

1<i<m

Remark. Take m' = max Mp(t) and m = max JF. Then X7 (z) (solution of (65)) is a function of TF,

ZF and of A, with £ < m/ and i < m. So it is a simple functional (the same for XtP’MP (z) (solution of
(61))).
On the space S, for t > 1, we define the derivative operator DF = (D? F, DAF), where

R Of

DiipF = & P (2 1cpemn D), RIENE (L d}, (71)
1<i<m
0 ~
D}AF = a(i (w7 (sz)lﬁkfm’vA)a J € {17 o ’d}
b 1<i<m

We regard D? F' as an element of the Hilbert space I, (the space of the sequences u = (ui;)k,ieN,je{1, - d}

. 2 d
Wlth \u|l2 = Z;‘;l Z;)il Zj:l |uk,i,j 2

< 00) and DF as an element of [s x R%, so we have

d oo oo d
(DF,DG),, pa =Y DSF x DRG + Z S>> DE.F xDE, /G (72)
k=11:=1 j5=1

j=1

We also denote D'F = DF, and we define the derivatives of order q € N recursively: DYF := DD~ F.
And we denote D% (respectively D*9) as the derivative DZ (respectively D*) of order q.

We recall that p(dz) = h(z)dz with h € C=(R?) (see Hypothesis 2.4 b)). We define the Ornstein-
Uhlenbeck operator LF = L F + LAF with

m’ m d
LAF = =3 > > (O (& DfoigyF) + DiiipyF % D gy mh(ZE))), (73)
k=1i=1 j=1
d d
LAF = Y D{FxA;—» DFDRF.
Jj=1 j=1
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One can check that the triplet (S, D, L) is consistent with the IbP framework given in Section 3.1. In
particular the duality formula (28) holds true. We refer to [10](Appendix 5.3). We say that F'is a "Malliavin
smooth functional" if F' € D, (with the definition given in (32)).

We recall X7 (z) in (61), X7 (z) in (65) and X,(z) in (49). We denote
FPMP (2) = XPMP (@) — 2, FMP (2) = X7 (2) — v and Fy(x) = X, () — @ (74)

In the following subsections, we will give some lemmas concerning the Sobolev norms and the covariance
matrices. We recall (see (26)) that o denotes the covariance matrix of I, and recall the Sobolev norms
defined in (29) and (30).

5.1 Sobolev norms
We recall the notations F)""” (), FM7 (z) and F;(z) in (74).

Lemma 5.2. Assuming Hypothesis 2.1 and Hypothesis 2.4 b), for all p > 1,1 > 0, there exists a constant
C),p depending on I, p, d, such that for any t € [0, 3],

. P.M
i) S%pSHP(IIFt P@)lpap + 1FM @) Lip) < Crp.
xT

Moreover, F;(x) belongs to D%, and

ii)  sup [|[Fy(2)|L1p < Clp-
T

For all p,q > 1,1 > 0, there exists a constant C; p, , depending on ,p, q,d, such that for every multi-index
with || = g, we also have
iit) - sup |07 (X (@)lp < Crpg-
x

Remark. Since Dz = 0, Vz € R?, we also have

supsup(ELX] M (@), + E|X @), + B, (@) ) < .
x

Proof. We first notice that for any I, p, supsup(||F,”""" ()| .1 + | FM7 (2)||£.1.p) < Cip This is a slight
P =z

variant of the proof of Lemma 3.7 ¢) in [44]. The difference in that the truncation function M is constant
in [44] while here it depends on the time. But this does not change anything. In a similar way, for every
multi-index 3 with || = ¢, we have sup sup [|02 (X" (2))||1p < Clp.q-

Afterwards, we consider an increasir?g sgquence of partition P,,, n € N, (P,, C Pp+1), such that |P,| ] 0.
In particular, V¢, Mp, (t) T co. Noticing by Lemma 5.1 i) that ]E|FtM7’" — F| — 0asn — 0, and applying
Lemma 3.3 (A) with F,, = FtM”" and F = F;, we get that F; belongs to DL and sup ||Fy(2)| 11, < Cip-

Furthermore, noticing by Lemma 5.1 iii) that E|0? th\4 Pr — 98 X,| — 0asn — 0, and applying Lemma
3.3 (A) with F, = 92X,""”" and F = 9% X,, we obtain that 9° X, belongs to D% and sup ||0%(X,(z))||1, <

Cipq-
O
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5.2 Covariance matrix
Lemma 5.3. Assume that Hypothesis 2.1, 2.2, 2.3 and 2.4 hold true. We denote the lowest eigenvalue of
the Malliavin covariance matrix o Mp by )\im’ . Then for every p > 1, 1 <t < 3, we have
i) supsupE(1l/det T M ))p < supsup E(|]\M7|-%) < C,,
P =z t * P =z

it) supE(1/detox, )’ < Cp,
T

with C), a constant depending on p, d.

Remark. We recall the notations FM” (z) = X7 (x) — x and Fy(x) = X,(z) — z. Since Dz = 0, Yz € RY,
the above results are equivalent to

i) supsupE(1/det O'FMp(t))p < supsup E(|]\V7|~9) < C,,
P =z t ’ P oz

it) supE(1/detop,(4))" < Cp.

Proof of i) We proceed in 4 steps.
Step 1 We notice by the definition (71) that for any kg, i0 € N,j € {1,--- ,d},

t

Z Mp __ M- Z M-
DisaionyXe” = | ) V(XTI Digg io gy Ko7 elr

N(t)

ko ko Mp
+ Z IL{1“,,L<Ti";)0 §F7L+1/\t}]l{lfkoéM(%H)}gio azfoo,jc(Zio ’XTko )

n=0 iQ
N(t) M(yny1) JF
E yvM 4 M
+ Z Z Z IL{I‘W,VTT,,’EU <TiF§F,1+1At}VIC(Zi ’XTfP—)D(kO,iOJ)XTff’ (75)
n=0 k=1 =1

¢ N(t) M(yns1) JF
DAXMP = ale; +/ Vab(XMP)DEXMPdr + 37 > i cprar, g VaclZE, X002 VDR XN
0 i i

n=0 k=1 i=1

(76)
where e; = (0,---,0,1,0,---,0) with value 1 at the j—th component.
Now we introduce (Y;"/7),>¢ (this is so-called the tangent flow) which is the matrix solution of the linear
equation
t N(t) M(vnt1) J¢
YMP =1, + / Vab(XMP)YMPdr +3 7 N " N 1p cprar,an Vac(Z5, X 0P YT
0 n=0 k=1 =1 o ' '
And using Ité’s formula, the inverse matrix ;7 = (v;/7)~1 verifies the equation
~ t N(t) M(yn41) J¢ _
YMr =1, — / YMPVLb(XMPYar = > YT Y ]I{Fn<TikSFnHM}YT]?waC(Id + Vwc)_l(Zf,X%ji).
o n=0 k=1 =1
77)

Remark. We notice that Y;''» = V(X7 (x)). If instead we consider the gradient of the Euler scheme
y;PMP = v, (XIMP (2)), the matrix ;""" is not invertible, and this is a specific difficulty when we deal
with the Euler scheme. This is why we have to work with X7 only.
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Applying Hypothesis 2.1 and Hypothesis 2.2, one also has

E( sup HYMP YM”

0<t<2

)) < Cp < 0. (78)

The proof of (78) is straightforward and we leave it out.
Then using the uniqueness of solution to the equation (75) and (76), one obtains

N(t)
DX = ﬂ{rn<T,;ksrn+mt}1{1§k§M(vn+1>}5fYtM”YT]?”E’Z;?“,.C(Zf“»Xﬁfﬁ’_)» (79)
n=0

and DAXMP =l YV]'7e;.
We recall that we denote the lowest eigenvalue of the Malliavin covariance matrix o
we have (recalling the definitions (26) and (72))

M DY AM7  Then

N(t) M(vng1) JF
AP = inf (o 2 (,¢) > inf Z Z Zn{r <Tk<rn+m}z DGy X170+ inf > (DPXMP ()2

s

icl=1 icl=1 cl=1 4
By (79),
N(#) M(yn41) JF
Wz S S S i IR 2 X 00T

f (Y MPYEC)2,
|lf1- Z\a (ej, ( )*¢)

where Y* denotes the transposition of a matrix Y.
We recall the ellipticity hypothesis (Hypothesis 2.3): there exists a non-negative function ¢(z) such that

d
D (0:,e(z,2),0)? = el2)IC

j=1
So we deduce that

N(t) M(ynt1) JI¢

A ODEDY S L crpern o EEPLZE (VR TAL ) C) + 1P I (7).
n=0 k=1 =1 n

For every invertible matrix A and every vector y, one has |Ay| > ﬁ |y, so that

]W'YvHrl) Tk
M. v Mp || — Mop || — M
A > Z S 3 Urncrr erann EEPZOITM |2 VAP 72) + af [T
n=0 k=1 =1
N(t) M(vny1) Jf
M 211y M 2 k2
> (it [Ty Z Z Zn{p crrary o [EEPE(ZE) + 1T ).
n= = 1=
We denote

N(t) M(vnt1) J¢

Xi'” = Z Z ZI{F <ri<ropntp 6P e(ZE). (80)
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By (78), (E sup ||Y;M7 |4 ||y, M7 ||4dp)1/2 < ¢, < oo, so that using Schwartz inequality, we have
0<t<2

1

T [P SEAT) < CE(XGT™ + o] P|727)). (81)
et O'XJMP

El

|P

Step 2 Since it is not easy to compute E(|x? + lal ||~ 2dp)) directly, we make the following argument

where the idea comes originally from [12]. Let T'(p fo ~le=3ds be the Gamma function. By a change
of variables, we have the numerical equality
1 L e N S
= s e 5 a1 ds,
Ixt'? + |aF|2|2dr  T'(2dp) /

which, by taking expectation, gives

1 1 ™ 2o (-7 +laT |?)
B e~ e, R )ds. (82)

Step 3 Now we compute E(e —s(x," 7’+\a1’|2)) forany s > 0. Werecallthat I[; = By, Iy = B,—Byr_1,k > 2
(given in Section 4.3), and ¢F = W, (ZF) (see (70)). Then

N(t) M(vn+1)

Z Z /"*W/Ik Wy (2)[*c(2) N (dz, dr) //BM B N(dz,dr),

Zm 15 (2) > 3 Ly s o n(12D1(2).

with

k=1
Using It6 formula,
E(c™%") = 1+E// sOGL7+ ¥R _ o= VN (dz, dr)
BMP(T)
N@#) DAt A M (n+1)
_ 1_2(/ Be="")dr Y. /(1—6—8““'@(2) <) 4(d2)).
n=0 “I'n k=1 “1
Solving the above equation we obtain
Mp N(t) M (Yn+1) R
B ) = epc (@A) =T 3 [ (1 e Oz

n=0 T
w e (Ihe(=)

< exp(= Y (Tapa A) = Z / R A ICD))
n=0 I
N(t) M('Yn+ )

= o= Y (Ca AD-T0) Y / (1= e )y s (12Du(d2))
n=0 k=1 k
N(t)

= (- Y (@A) -Tw) [ (1= e p(az),
n=0 BM('m+1)

with

dz) =Y My_s o ny(|2)p(d2).
k=1
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On the other hand, we denote
t
)‘(i”” :/ / U(2)e(z)N(dz, dr),
0 Blil'p('r‘)
where B¢, denote the complementary set of B,,,. Then in the same way,

_Mp N
Ble7) Sep(- Y (@A) -T0) [ (1= e =C)p(az).

c
n=0 B (vngn)

We recall by (63) that forT',, <t <T'41,

af: i c(z)u(dz t—1I, c(2)u(dz 3
(Y 4 /{|Z|>M(m} (2)uldz) + (t — T) / (2)u(dz))

1<i<n {I2|=>M (yn+1)}
af > \JEx;"”.

Using Jensen inequality for the convex function f(x) = e™%%, s,z > 0, we have

Then

N(t)
el TP < =BT < BN ) < exp(— Y ((Tuga AL) — ) / (1 — =N a(d2))).
n=0 BICW('m+1)

So we deduce that
E(e—*00 a1y Z (e x gmslaf I’

N(t)

<exp(- 3 (Cwn A =T) [ (e u(az))

B

n=0 M (vn41)
N(t)
xexp(— Y (((Tng1 At) = T) (1 —e<)(dz)))
n=0 BICVI(WL+1)
~ exp(—t / (1 — e~ )7(d2)), 83)
R

and the last term does not depend on Mp(t).

Step 4 Now we use the Lemma 14 from [9], which states the following.

Lemma 5.4. We consider an abstract measurable space B, a o-finite measure M on this space and a non-
negative measurable function f : B — R such that [, fdM < co. For t > 0 and p > 1, we note

ﬂf(S):/B(lfe*Sf(I))M(dx) and If(f)/ooo sPlem () g,

We suppose that for some t > 0 and p > 1,

S

. 1 D
himuﬁoomM(f >-)> 7 (84)

then IY(f) < .

We will use the above lemma for M(dz) = fi(dz), f(z) = c¢(z) and B = R%. Thanks to (54) in Hypoth-
esis 2.4,

) = 0. (85)
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Then for every p > 1,1 < ¢ < 3, we deduce from (81),(82),(83) and Lemma 5.4 that

1 1
P < Mp|—dpy ~ Mp P2|—2dpY\\ %
|det UXT{WP < E(N7ITP) < CE(x; " +lag |7] )
1 & Mp P2 1
< C 7/ s WPIE (e T Hlac 1)) ds) 2
T dp) Jo ( %)
1 o0 1
< C / §2P—1 ox ft/ 1 — e "N 1(dz)ds)? < . (86)
(i || (-t [ Vi(dz)ds)

Proof of ii) We consider an increasing sequence of partition P,, n € N, (P, C Pp+1), such that
|Py| 4 0. In particular, V¢, Mp, (t) 1 oco.

We recall the notations F'? (z) = X”(z) — 2 and F,(z) = X;(x) — z. We notice by Lemma 5.1 i)
that E|F}"*" — F,| — 0 as n — oo , and by Lemma 5.2 that supsup || F}"™" (2)]| 1.1, < Cip-

Moreover, by Lemma 5.5 i) (given immediately below), we know that (DFtM”")neN is a Cauchy se-
quence in L2(€;12 x RY). Then applying Lemma 3.3 (B) with , = F** and F = F,, Lemma 5.3 1)
implies Lemma 5.3 i1).

O

5.3 Auxiliary results

Besides the lemmas concerning the Sobolev norms and covariance matrices, we establish an auxiliary
result. We recall ¢,,, given in (58).

Lemma 5.5. We assume that Hypothesis 2.1 and Hypothesis 2.4 b) hold true.
i) Then for any e > 0, there exists a constant C dependent on d, e, such that for every t € [0, 3] and every
stating point x € R, we have

= P,M Sewry N— T
El det O'XZ>,M7; — det X, ‘ T+e0 < CHDXt P DXtHll,z(gZ;lngd) < C(|P| + 61\/[(|7;|)) (2+e9)(1+e0) |

1) We consider an increasing sequence of partition P,, n € N, (P, C Pn41), such that |P,| | 0. In
particular, Vt, Mp, (t) 1 co. We denote

Fu(w) = X" ().

Then for each x € RY, the sequence DF,,(z), n € Nis Cauchy in L?(; 1o x R?), uniformly with respect to x :

sup | DF,(z) — DFp(2) | 2 (0415 ey — 0, as n,m — o0.

Proof. Proof of i)
By Lemma 5.2, we know that HDXZDMPHLz(Q;lQX]Rd) and || DX¢| 12(a;1, xrey are bounded, uniformly
with respect to . Then using Holder’s inequality with conjugates 1 + ¢ and %> we get

2 2
E(|det o parp — detox, |7F90) < CIDX]M P — DX [ 6 ey (87)

Now we only need to prove that

DXPMP _ x| T < (P (EEEIe) 88
I t t”Lz(Q;lszd)— (I |+€M(\7’\)) 0 o (88)

The proof of (88) is a slight variant of the proof of Lemma 3.9 iii) in the paper [44]. The difference in that
the truncation function M is constant in [44] while here it may vary on different time intervals. We do not
discuss in detail here. So we conclude that Lemma 5.5 7) holds.
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Proof of i)
We consider an increasing sequence of partition P,,, n € N, (P, C P,41), such that |P,| | 0. In
particular, V¢, Mp, (t) 1 co. We need to prove that

DX} — DX || L2y ety — 0, @8 n,m — 00, (89)

The proof of (89) is a slight variant of the proof of (148) p.47-49 in [44], so we omit it.

6 Proof of Theorem 4.1

In this section, we give the proof of Theorem 4.1. We apply Proposition 2.1.1 in Section 2. For a
measurable function f, we denote P, f(z) = Ef(X] "7 (2)) and P,f(z) = Ef(X.(z)). In the following
subsections, we will check the conditions of Proposition 2.1.1.

6.1 Euler: condition (7)
For every v > 0, we recall in (59) that we define M () € N such that

emiy) <77

We recall the basic equation X; (see (49)). We denote by f(tMP the one step truncated Euler scheme:

XMP(2) =2+ /Ot /BMW) c(z,2)dN(z,s) + /Otb(x)ds.

Then,
- Y Y
B x| < B[ [ e XN +E [ () - (s XN 1)
0 J{lz|>M(v)} 0 J By
.
+ E/ Ib() — b(X,)|ds
0
Y
< 7/ é(z),u(dz)—f—C/ Elz — X,|ds
{lzI=M(v)} 0
< YyEme) +Cx ¥ <CxA?
So

Wi(XMP X)) <E[XM - X,| < C x~2
So we conclude that (7) holds for o = 1 and kg = 0.

6.2 Lipschitz: condition (4) and the existence of an invariant measure

We recall that X is the solution of the equation (49).

Lemma 6.1. Suppose that Hypothesis 2.5 (see (55) and (56)) holds.
a) Then, for a Lipschitz continuous function f

E(f(Xi(x)) — E(f(Xi(y))| < Lye™ 5t |z — ],

with Ly the Lipschitz constant of f.
b) Moreover, there exists at least one invariant probability.
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Proof a) We fix 2,y € R? and we construct on the same probability space, with the same Poisson point
measure N the solution X (y) which starts from y. Then we denote

i = Xi(z) — Xe(y),
Af(2) co(z, Xs—(2)) — ez, X5 ()
A}t) = b(XS,(.’E)) - b(Xsf<y))

and we have . .
Yi=z—y+ / AS(z)dN(z,s) + / Abds.
0 JRr 0

Using It&’s formula for ®(¢, u) = ¢ |u|® we obtain
t t
(Y, = |lz—y+ )\/ d(s,Y,)ds + / 2e (Ys, AL) ds
0 0
t
[ @ Y+ A5 - B YN )
0 JRd
t t
= Jz—yl’+ )\/ ®(s,Y,)ds + / 2e (Y,, AL) ds
0 0
t
WMt [ @Y+ ML) - B Yo du()ds
0 JR4
with M; a martingale. Taking the expectation we get
t
MEY) < |z —y| —|—/ eME(V,)ds
0
with
o= AW 2V AY + [V AL - il ()
Rd
MY+ 20V a8+ [ (A5(), 2V, + 85() uldo)
Rd

We need to prove that E(U,) < 0. We recall that we assume Hypothesis 2.5 i)ii) (see (55)). We also have
[(AL(2),2Y, + AS(2))] < (26(2) + &%(2)) |Ys]?,
so that

U, <|Yi|* A+ /Rd(%(z) + &(2))u(dz) — 2b).

Thanks to Hypothesis 2.5 iii) (see (56)), taking A < 6, we have
t
MEN <fo -yl + [ MW < oy
0

so that
2 — 2
E|X¢(x) — Xe(y)|” < e |z —y[”.

Then, for a Lipschitz continuous function f,
_6
[E(f(Xe(2)) — E(f(Xe(y)| < LyE|Xi(2) = Xe(y)] < Lye™ 2" |z —yl.
b) We denote L to be the infinitesimal operator of (49). We take V (z) = |«|* and we will prove that

LV <B—aV
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for some 3,a > 0 (the Lyapunov mean reverting condition). This implies LV < C and lim LV (z) =

|z|—o00
—oo. Then we use Theorem 9.3 and Lemma 9.7 from [18] (with ¢ = V and ¢» = LV ) which guarantees
existence of an invariant distribution. We have

LV(z) = 2(z,b(x)) +/W(V($+C(Z,l‘)) = V(@))u(dz)

IA

~2lel” + [ @z, +le(e,) ()
9B fef? + (22 + 1) / cold) + [ ()

R4

/ () + &(2))uldz) — (25 - / e(2)u(dz) |af?
Rd Rd

IN

6.3 Regularity: conditions (14), (15), (16) and (20)

Firstly, we deal with (14). Let ¢ € [1, 2]. For any k and any multi-index /3, with |5y| = k, we write

07 Prp(x) = E[07° (p(X = Y E[0°¢)(Xi(2))Pa, (@),

| [<]Bol

with P, (x) a polynomial of 92* X;(x), |a1| < |Bol-

In the following, we use the results from Section 5. In Lemma 5.2, we prove that the Sobolev norms of
each 991 X (z) are bounded, uniformly with respect to z. It follows that this is also true for P, (z).

We denote that Fi(z) = X;(x) — . In Lemma 5.2, we have proved that the Sobolev norms of each
Fy(x) are bounded, uniformly with respect to . Moreover, in Lemma 5.3, we prove that F;(z) is non-
degenerated, uniformly with respect to «, that is 3, (F;(«)) < oo for each p (see (26)).

Then we use Lemma 3.4 (A) which asserts that (By,) is true for ' = Fi(x) and G = P, (z). By the
remark of Lemma 3.4, (By,) is also true for F' = X;(x) = Fi(z) +  and G = P, (z). This reads

[E[(0%° @) (X¢(2))Pay (2)]| < Clj@]loo,

which gives (14).

In a similar way, we can obtain (15).

For (16), i) is a direct consequence of (4) which has been proved in Section 6.2. For (16) i), we take
t € (0,1]. For any k and any multi-index /3, with |3y| = k, we notice that

|02V Pip()| = [E[° (Vo(Xe(@))][ = D E[0°Ve)(Xi(@)Pay(@)]] < [Vl Y ElPa(@)],

[ao|<[Bol [ao|<]Bol

with P, (x) a polynomial of 0* X, (x), |aa| < |So|. In [29], Kunita has shown in Theorem 3.4.1 and
Theorem 3.4.2 the regularity of the flow associated with the jump-diffusion. So in our case, we have
E|P,,(z)| < oo and thus (16) iz) holds true.

Now we prove (20). In order to prove (20), we need to represent Fs,tw(x) and P; ;¢(x). So we consider
the following equations.
We denote X Z?gMP and X, the solutions of the following equations respectively:

XPME g / (XP0)dr + / / 2 XD N (dz, dr); (90)
BMP(T
t t
X = :c—l—/b(Xs}r)dr—i—// o(2, Xsp-)N(dz, dr). ©1)
s s JRd
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We sometimes write Xft’MP (z) (and X, (x)) instead of Xft’MP (and X ) to stress the dependence on

the initial value . And we denote P, ;¢ (x) = Ep(X] ;M7 (2)) and P; ;0(x) = Ep(X, 4()).
Letl<t<r<t+2 Werecalthat P={0=To <Dy <--- <1<y <---},v=T;—T;_; and
forT'; <t <Tj41, N(t) =I. We denote

FZ’_%E (x) =X, 0 XZ)_’%Z’ () —zand Fr_yy1(z) = Xy p 0o Xym14(2) — 2 = X410 (x) — . (92)
We also denote |P!=1t| .=  max, ((Ty41 At) — (T V (t —1))). Before we give the proof of (20), we
€N s

Fl+1>t714,1-—‘l<t
state the following lemma concerning Ff;?fi (z) and F,._;41(x) given in (92).

Lemma 6.2. Under the Hypothesis 2.1~2.4, we have these results.
i) Forallp > 1,q > 0, there exists a constant C , depending on ¢, p, d, such that Fﬁ%j () and Fy_¢11(x)
belong to D, and

P,M
SUp SUp 1F, 2430 (@) + Fret1 (@) [ 2,0 < Cop-
xr

i) For every p > 1, we have

supsupE(1/detop,_, ()" < Cyp,
P x

with C,, a constant depending on p, d.
iii) For any e > 0, there exists a constant C dependent on d, e, such that

2 RPN B
sup E[ det o ,.».np T < OfptT bt eFE )
x

e () — det OF,

'7t+1($)|

Proof. Firstly, we will construct an approximation scheme for X, , o X,Zi’fﬁ” (z). We take an integer Ny

such that 53> < |P|. For n > Ny, we take a "mixed partition"

Po={t=1<Tng-1np1 < <Tnyp <t
1 2 l
Sor=t)<t+ —(r—t)<--<t+ -(r—t)<t+

2 2n 2n
={t—1=50<81 <+ <S8y, =7}

<t+ (r—t)<---<r}

We remark that we take the partition {I';} on [t — 1,t] and take the partition {55} on [t,r]. We denote

[Pl := {max }sk — Sg—1. We construct Mp_ (t) = M(s;+1 — s;) when s; < t < s;11 with the truncation
ke{l,--- ,ng

function M (e) given in (59). And we denote 77~ (t) = s; when s; < t < s;41. Then we consider the
truncated Euler scheme based on P,,, Mp,:

XM = gy / b(X T ) )ds + / / o(z, X700 N (dz, ds).
t—1 t—1 BA/I'Pn (s)
We denote
P, M P, Mp,
E T () = Xy P (x) — . (93)

We notice that we can apply the results from Section 5 for Fz’”i’yl”" (z), Fﬁﬁ’i (z) and F,_¢41(x) defined

in (92) and (93).

Since r — ¢t + 1 < 3, by Lemma 5.2 7), the Sobolev norms of Fﬁ‘;ﬁ”" (z) and F,_;1(x) are bounded,
uniformly with respect to z. One can check that Ffft’ﬁp" () = Fz%j (x) in LY(9), as n — oo (which is
a variant of Lemma 5.1 ¢)). So we can apply Lemma 3.3 (A) for I, = Ffjt’fl”" (z)and F' = Fﬁ’?ﬁ (z) in

order to get that Ff_fﬁ (r) € DL, and sup sup HFﬂﬁ’i(az)HLw < Cy - Hence, Lemma 6.2 ¢) is proved.
x P
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Moreover, since 7 — ¢ + 1 > 1, using Lemma 5.3 7i) we have supsup E(1/det o5 m))p < Cp. So
P T r—t+1
Lemma 6.2 ;) is proved.

Finally, by Lemma 5.5 7) and recalling by (59) that e,;(,) < ~?, we have

2 2 2
||DFZ)_Rt7_Ji_Wan (1‘) — DF”'*t+1(x)||[1;E€2;l2><]Rd) < C(‘Pn‘ + 5M(|'Pn\)) EFeo)(Fe0) < C|'Pt—17t| (2+20)(1+<0) ,

where the last equality is true since 5~ < |P'~1!| for every n > Ny. Then we can apply Lemma 3.3 (C)

for (F,, F,) = (F" 2P (2), Fr_ir () and (F, F) = (F2M7(2), Fo_41(x)). So supE|det O pptn ()~
_2

,t+1(f)3)‘ﬁ < CHDFﬁé\fﬁ (z) — DFr_t+1($)H;Z§)z;z2de) < C|Pt71’t| GG and Lemma 6.2

ii1) is proved. O

deto F,

Then we can prove (20). By Lemma 6.2 i), the Sobolev norms of Fﬁ%j (z) are bounded, uniformly
with respect to x. Using Lemma 6.2 ii), the covariance matrix of F,_;,1(x) is non-degenerated. Then we
are able to apply Lemma 3.5 for F' = Fﬁ?ﬁ () and Q@ = F,._;y1(x) so (38) holds for F' = Fﬁ’?ﬁ (2)
and Q = F,_;41(z). Thanks to the remark of Lemma 3.5, (38) also holds for F' = X, , o XZ’_’%” (x) =
FPY7(2) + 2, Q = Xy 0 Xy—14(2) = Fr_yp1(2) + x and get

E(f(Xer o X717 (2)) = B(f5(Xep 0 X717 (2)))
67 . K
<C ||f||oo X (ﬁ +n IE‘ det UX,qronftP () det O-Xt,roXt—l,t(T)|p +n )7 (94)

where we have also used the fact that supsupE(1/detox, ox, , ()" < Ck from Lemma 6.2 ii).
P =z "

We take p = ﬁ for any small . Thanks to Lemma 6.2 iii),

_2 2
sup E| det % |1+so < C’|pt—1at @ Fe0)(1Fe0) |
xr t

2
—detox, ox,_, ()| F0 = supE|det O P Mp
x

r—t+1 (z) . TE,

X1 () —+1(2)

This implies that

2
2 2
Tieq (2+e0)(1+<0)
— it
st;pE|detathroXZ>7,in,(I) det ox, ,ox, . (x)| 7750 <C’YN(t71)

Substituting into (94), we obtain
5q __2 % K
sup ‘]E(f(Xm o XPMP (2))) — B(f5(Xy 0 XTMP (;,;)))] < Sl % (g +17 TG 417,
By a similar argument, we have

, 54 a2
P,.M P,.M P.M P.M 2 5 5 K
sup [E(F(XEM™ o XPUT ()~ B (XEM7 0 XD (@)] < O Nl (gt 0 v ).

So (20) holds for p = —2— and 8 =

_1
1+4+eo 24e0”

Finally, we can apply Proposition 2.1.1 for X&Ljf” and Xor, witha =1, ko =0, p= 1%, B = 57

(for any small (), and obtain the following result: for every € > 0, there exists a constant C' such that

€

N T ~
dTV(X(’fi"]:Ip;XO,Fn) < C/%SLZJrEo)(lJrEU) — 0771178, (95)
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T 2—&(2+e0)(1+e0)
withé=1— (2+€0)‘(’1+€0)"

And moreover, we have
e _e
drv (L)) < COL [ o=yl avty)e i),
R

where v is the unique invariant probability measure.

7 Appendix

7.1 The numerical lemma
In Section 2, we need to use the following numerical lemma.

Lemma 7.1. (A) Take an integer n.. Let (7, )nen be a non-increasing positive sequence such that for n > n.,
we have
SLERIARS ol (96)
’yn-&-l
We denote T',, = Z:’:l ~;. Then for every n, < i < n, we have

v < 2 (Tn=T4) Yr- 97)

(B) We assume that (v, )nen is a non-increasing positive sequence verifying

% <e, < B. (98)
’ynJrl «
We denote I',, = Y7, ;. Then
Uy 1= Z%Hae_p(r"_n‘) < Cryo. 99)
i=1

Proof of (A) Notice that (96) implies

Tn
’Yn-&- 1

<1+ 2TY41 < 2@+t

Then

n—1

n—1
H Tk < H e29(Vk+1) < 2@ —=T4)
Tn ki Ve+1 iy

Proof of (B) Notice that (98) implies

Vi

Tn
TYn —+1

<14 cayngr < e Tntt,

Then we define v, = u,, /7S and we have the recurrence relation

Vi o ptm
Un+1 = Onvn + Tn+1, On = ain X e Pt
7n+l
Using the previous inequality we obtain

Upyg < OGP Ity 4y
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and further

—aey )y —acy )y, —acy )y
elp ) g elp ) U + elp ) oy

IN A

e(p—ac*)[‘nvn + Cv/e(p—occ*)l"n,,ynJrl7

with ¢/ = sup e(P~@¢) % = e(P=ac)1 We use recursively this inequality and we obtain

k>1

n

e(P*aC*)Fnﬂanrl < e(P*aC*)Flvl +C § e(piac*)l—‘”’}/nrl»l
i=1

I'n
< e(p—ozc*)l"l v + C// e(p—(xc*)sds
0
< e(p—ac*)l"lvl i / e(p_ac*)l—‘n,+1 .
- P — Qs
That is , ,
Upnt1 S U1 + <7+
p — OCy p — OCy
which finally gives
/
Unt1 < (71 + m)%ofﬂ-

O
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