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Abstract In this paper, we establish an abstract framework for the approximation of the invariant prob-
ability measure for a Markov semigroup. Following Pagès and Panloup [40] we use an Euler scheme with
decreasing step (unadjusted Langevin algorithm). Under some contraction property with exponential rate
and some regularization properties, we give an estimate of the error in total variation distance. This
abstract framework covers the main results in [40] and [14]. As a specific application we study the con-
vergence in total variation distance to the invariant measure for jump type equations. The main technical
difficulty consists in proving the regularzation properties - this is done under an ellipticity condition, using
Malliavin calculus for jump processes.
Key words: Invariant measure, Unadjusted Langevin algorithm, Euler scheme with decreasing steps,

Total variation distance, Malliavin calculus, Regularization lemma, Jump process
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1 Introduction
The aim of this paper is to study the convergence to the invariant measure of a Markov process. We refer

to [18], [35], [38] for the existence of an invariant probability measure for a general Markov process and to
[41], [42] for some basic computation of the invariant probability measure for a Lévy process. Following
the ideas from Pagès and Panloup [40] (see also Lamberton and Pagès [30] [31]) we use an Euler scheme
with decreasing step (known in the literature as the unadjusted Langevin algorithm) in order to construct
our algorithm (this has been studied in depth in [45]).
Our paper has two parts. In the first part we construct an abstract framework which is appropriate

in order to state and discuss our approximation problem. We focus on the estimate of the error in total
variation distance. And the main achievement is to give some sufficient regularization properties for the
semigroup and for the Euler scheme, which allow to treat bounded and measurable test functions. Fur-
thermore, in order to check such regularization properties, one has to use integration by parts techniques
inspired from Malliavin calculus. We give a regularization lemma based on such arguments, which is the
crucial step in our approach (it has its own interest, beyond the application in this particular framework).
Let us mention that the abstract framework settled in our paper encompass the following recent results:
in [40], the authors use unadjusted Langevin algorithm to approximate the invariant probability measure
of a diffusion process and study the Wasserstein and total variation distance between them. In [14], the
authors approximate the invariant probability measure of a Lévy process but only study the Wasserstein
distance.
In the second part of the paper we illustrate our results in the case of jump type SDE′s. In order to

do it we recall the Malliavin calculus for jump processes and prove estimates of the Sobolev norms and of
the Malliavin covariance matrix for the solution of such equations. These estimates are rather long and
technical, but at a certain extend they come back on results already obtained in [44]. Once these estimates
are proved, we apply the abstract results from the first part and obtain the estimate of the error in total
variation distance.
Let us present in more detail our results. We give in Section 2 the abstract framework of the approx-

imation for the invariant probability measure. We denote Cl
b(Rd) the space of l−times differential and

bounded functions on Rd with bounded derivatives up to order l. We consider a semigroup Pt, t ≥ 0
on the spaceMb(Rd) of the bounded measurable functions on Rd and assume that there exists at least
one invariant probability measure ν for the semigroup Pt, t ≥ 0. We assume moreover the "exponential
Lipschitz property": there exists two constants C0 ≥ 1 and ρ > 0 such that for every t > 0 and every
φ ∈ C1

b (Rd)
(L0) ∥∇Ptφ∥∞ ≤ C0 ∥∇φ∥∞ e−ρt.

This immediately implies that ν is unique.
In order to approximate the invariant measure ν, we introduce an Euler scheme with decreasing time

steps (unadjusted Langevin algorithm). For every γ > 0 we give an operator P γ : C∞
b → C∞

b such that
∥P γφ∥∞ ≤ ∥φ∥∞ and which approximates our semigroup in the following sense: for every γ > 0

A(k0, α)
∥∥(Pγ − P γ)φ

∥∥
∞ ≤ Ck0

∥∇φ∥k0,∞ γ1+α.

Here α > 0 is a given number, k0 ∈ N and ∥ψ∥k0,∞ =
∑

|α|≤k0

∥∂αψ∥∞ .We consider a decreasing sequence

of time steps γn ↓ 0 and define the time grid Γn =
n∑

i=1

γi.We assume that

(Γ)

∞∑
i=1

γi = lim
n→∞

Γn = ∞.

We also introduce
ω = ω((γn)n∈N ) = lim

n→∞

γn − γn+1

γ2n+1

<∞.
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The typical example is γn = 1
n and then ω = 1. In the following we denote {Γ} = {Γn, n ∈ N}. And, for

Γi ≤ t < Γi+1 we denote N(t) = i and τ(t) = Γi. Then, for s ∈ {Γ} and t ∈ {Γ} we define the Euler
scheme

P s,t =

N(t)−1∏
i=N(s)

P γi , (1)

the product being understood in the sense of composition. This means that we travel from τ(s) to τ(t) by
using the Euler scheme associated to the one step Euler scheme P γ .
So now we use the Euler scheme with decreasing time steps P 0,Γn

(given in (1)) to approximate the
invariant probability measure ν. Our aim is to estimate the total variation distance between them. To do
so, we need some regularization properties. First we give the regularization hypothesis concerning the
semigroup Pt:

RP (k) sup
1≤t≤2

∥∇Ptφ∥k−1,∞ ≤ Ck ∥φ∥∞ , and

R′
P (k) sup

1≤t≤2
∥∇Ptφ∥k−1,∞ ≤ C ′

k ∥∇φ∥∞ .

We also introduce the following variant of the Lipschitz property:

Lk ∥∇Ptφ∥k,∞ ≤ Ck ∥∇φ∥k,∞ , 1 ≥ t > 0.

We give now the regularization properties for the Euler scheme P s,t. To begin, we introduce some
notations. We fix a super kernel ϕ (see (18) for the precise definition), and, for δ ∈ (0, 1] we denote
ϕδ(y) = 1

δd
ϕ(yδ ). Moreover, for a function φ we denote φδ the regularization by convolution with the

super kernel: φδ = φ ∗ ϕδ, with ∗ denoting convolution. For δ > 0, η > 0, and q, κ, p ∈ N we denote

Aδ,η
q,κ,p(h) =

δq

η2q
+ η−php + ηκ, h > 0.

Let β > 0 and p ≥ 1 be fixed and we assume the following regularization property for the Euler scheme
P s,t: we assume that for every q, κ ∈ N there exists a constant C = Cq,κ,p such that for every δ > 0, η > 0,
every 1 < t < r < t+ 2 and every bounded measurable function φ

RP(p, β)
∥∥P t−1,tPt,rφ− P t−1,tPt,rφδ

∥∥
∞ +

∥∥P t−1,tP t,rφ− P t−1,tP t,rφδ

∥∥
∞

≤ Cq,κ,p ×Aδ,η
q,κ,p(γ

β
N(t)) ∥φ∥∞ .

Now we can give our main result (see Proposition 2.1.1). We assume that an invariant probability
measure ν exists for the semigroup Pt, t ≥ 0. We construct an Euler scheme with decreasing time steps
P s,t by (1). Suppose that (L0) holds for some ρ, A(k0, α) holds for some k0, α with ρ > αω, RP (k), R′

P (k)
and Lk hold for every k, and RP(p, β) holds true for some p, β. Then the invariant probability measure ν
is unique and for any ε > 0, for every x ∈ Rd and n large enough,

dTV (P 0,Γn
(x, .), ν) ≤ Cε(γ

((pβ)∧α)−ε
n +

∫
Rd

|x− y| dν(y)e−ρΓn).

We remark that we get the same speed of convergence as in [40] and [14], but in a more general framework.

We notice that we need some regularization properties (see RP (k), R′
P (k) and RP(p, β)). In order to

obtain these properties, we introduce in Section 3 an abstract framework built on a particular case of the
Dirichlet form theory (see [4] and [7]) in which such a property may be obtained by using some integration
by parts techniques. Those techniques are very similar to the standard Malliavin calculus but are presented
in a more general framework which goes beyond the sole case of the Wiener space. In particular, we aim
at providing a minimalist setting leading to our regularization lemma. Our unified framework includes
the standard Malliavin calculus and different known versions: the calculus based on the splitting method
developed and used in [5], [6], [8] as well as the Γ−calculus in [4]. We also mention that our approach
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applies in the case of the Malliavin calculus for jump type processes as settled by [12] and in the "lent
particle" approach for Poisson point measures developed by [13].

In Section 4, we apply the results in Section 2 for jump processes. So we consider the d−dimensional
stochastic differential equation with jumps as follows:

Xt = x+

∫ t

0

b(Xr)dr +

∫ t

0

∫
Rd

c(z,Xr−)N(dz, dr), (2)

where N(dz, dr) is a Poisson point measure on the state space Rd with intensity measure N̂(dz, dr) =
µ(dz)dr, x is the initial value, µ is a positive σ-finite measure on Rd, and b : Rd → Rd, c : Rd × Rd → Rd.
Some basic background of jump processes can be found in [15], [19], [46], [47] and [3].
We need to give sufficient conditions to ensure the existence of an invariant probability measure for

the jump equation (2). We recall by [18] the classical results of the existence of an invariant probability
measure for a general Markov process. Recently, [33] gives some specific criterias for the existence of an
invariant probability measure of a jump process and also discuss some ergodicity properties. Here we
suppose that (Hypothesis 2.5)

i) ⟨x− y, b(x)− b(y)⟩ ≤ −b |x− y|2

ii) |c(z, x)− c(z, y)| ≤ c̄(z) |x− y|

and
iii) 2b−

∫
Rd

(2c̄(z) + c̄2(z))µ(dz) := θ > 0.

Our conditions are based on [18] and are essentially the same as the conditions in [33]. Indeed, the
conditions above implies that for some β̄, ᾱ > 0 and a Lyapunov function V (x) = |x|2, we have LV ≤
β̄ − ᾱV,with L denoting the infinitesimal operator of (2). This guarantees the existence of an invariant
probability measure ν.
Moreover, in order to apply the Malliavin framework in Section 3 and obtain regularization proper-

ties, we assume (see Hypothesis 2.4 b)) that the measure µ is absolutely continuous with respect to the
Lebesgue measure: µ(dz) = h(z)dz, where h is infinitely differentiable and lnh has bounded derivatives
of any order. We also need some regularity and ellipticity conditions on the coefficients (see Hypothe-
sis 2.1∼2.3 for details). We mention that for every multi-indices β1, β2, we assume that there exists a
non-negative function c̄ : Rd → R+ such that

|c(z, x)|+ |∂β2
z ∂β1

x c(z, x)| ≤ c̄(z),

with ∫Rd |c̄(z)|pµ(dz) <∞, ∀p ≥ 1.We also assume that there exists a non-negative function c : Rd → R+

such that for every ζ ∈ Rd,
d∑

j=1

⟨∂zjc(z, x), ζ⟩2 ≥ c(z)|ζ|2.

Now we construct the Euler scheme. We take a partition with decreasing time steps P = {0 = Γ0 <
Γ1 < · · · < Γn−1 < Γn < · · · } with the time steps γn = Γn − Γn−1, n ∈ N verifying some suitable
conditions (see Section 4.3 for details). For Γn ≤ t < Γn+1 we denote τ(t) = Γn. We consider the Euler
scheme:

XP
t = x+

∫ t

0

b(XP
τ(r))dr +

∫ t

0

∫
Rd

c(z,XP
τ(r)−)N(dz, dr).

Some results concerning the convergence of the Euler scheme of a jump equation can be found for example
in [43], [22], [24], [23], [21], [25] and [2].
Since µ(Rd) = ∞ (which is a consequence of Hypothesis 2.4 a)), we have infinitely many jumps. So we

construct the truncated Euler scheme in order to have finite numbers of jumps for the sake of simulation
and Malliavin calculus. For m ∈ N, we denote Bm = {z ∈ Rd : |z| ≤ m} and denote

εm :=

∫
{|z|>m}

|c̄(z)|2µ(dz) + |
∫
{|z|>m}

c̄(z)µ(dz)|2.
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For every γ > 0, we define the truncation functionM(γ) ∈ N to be the smallest integer such that

εM(γ) ≤ γ2.

For Γn < t ≤ Γn+1, we denote MP(t) = M(γn+1). Now we cancel the "big jumps" (the jumps of size
|z| > MP(t)):

XP,MP
t = x+

∫ t

0

b(XP,MP
τ(r) )dr +

∫ t

0

∫
BMP (r)

c(z,XP,MP
τ(r)− )N(dz, dr). (3)

We remark that the solution of the equation (3) can be constructed in an explicit way.
Then we apply the abstract framework in Section 2 forXP,MP

Γn
and obtain the following main result (see

Theorem 4.1): An invariant probability measure ν of the jump equation (2) exists and is unique, and for
any ε > 0, there exists a constant Cε such that for every x ∈ Rd and n large enough, we have

dTV (L(XP,MP
Γn

), ν) ≤ Cε(γ
1−ε
n +

∫
Rd

|x− y| dν(y)e− θ
2Γn),

with L(X) denoting the law of a random variable X. We notice that we obtain the same speed of conver-
gence as in [40] but [40] concern the diffusion process driven by a Brownian motion while here we consider
the jump process. Comparing with the results in [14], we also obtain the same speed of convergence but
[14] only deals with the Wasserstein distance while in our paper, we deal with the total variation distance.

2 Approximation of the invariant measure: Abstract framework

2.1 The semigroup and the invariant measure
We consider a semigroup Pt, t ≥ 0 on the spaceMb(Rd) of the bounded measurable functions onRd. We

denote Cl
b(Rd) the space of l−times differential and bounded functions on Rd with bounded derivatives

up to order l. We will use the following two hypotheses:
(I) We assume that there exists at least one invariant distribution for the semigroup Pt, t ≥ 0.
Moreover we assume the following "exponential Lipschitz property": we assume that there exists two

constants C0 ≥ 1 and ρ > 0 such that for every t > 0 and every φ ∈ C1
b (Rd)

(L0) ∥∇Ptφ∥∞ ≤ C0 ∥∇φ∥∞ e−ρt. (4)

We also denote by P1 the space of the probability measures on Rd which have finite moment of order
one ∫Rd |x| ν(dx) <∞. This is a Banach space under the Wasserstein distanceW1:

W1(ν, µ) = sup{
∣∣∣∣∫

Rd

φd(ν − µ)

∣∣∣∣ : ∥∇φ∥∞ ≤ 1}.

Proposition 2.0.1. Suppose that the semigroup Pt, t ≥ 0 has at least an invariant probability measure ν and
that (4) holds true. Then the invariant probability measure is unique and moreover, for every x ∈ Rd

W1(ν, Pt(x, ·)) ≤ C

∫
Rd

|x− y| ν(dy)× e−ρt. (5)

Proof. Step 1 We will prove that for sufficiently large t, the application ν 7→ νPt is a strict contraction
on the Wassertein space: using (4),∣∣∣∣∫

Rd

φ(y)d(νPt − µPt)(dy)

∣∣∣∣ =

∣∣∣∣∫
Rd

Ptφ(x)d(ν(x)− µ(x))

∣∣∣∣
≤ ∥∇Ptφ∥∞W1(ν, µ)

≤ C0 ∥∇φ∥∞ e−ρtW1(ν, µ).
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This means that, for large t

W1(νPt, µPt) ≤ C0e
−ρtW1(ν, µ) ≤

1

2
W1(ν, µ)

and this guarantees the uniqueness of the invariant measure.
Step 2 Since ν is an invariant measure∫

Rd

φ(z)ν(dz) =

∫
Rd

∫
Rd

Pt(z, dy)φ(y)ν(dz)

which gives, for every fixed x ∈ Rd (ν is a probability)∫
Rd

φ(z)ν(dz)−
∫
Rd

Pt(x, dy)φ(y) =

∫
Rd

∫
Rd

(Pt(z, dy)− Pt(x, dy))φ(y)ν(dz) (6)

=

∫
Rd

(Ptφ(z)− Ptφ(x))ν(dz)

so that ∣∣∣∣∫
Rd

φ(z)ν(dz)−
∫
Rd

Pt(x, dy)φ(y)

∣∣∣∣ ≤ ∥∇Ptφ∥∞
∫
Rd

|x− z| ν(dz)

≤ C0e
−ρt ∥∇φ∥∞

∫
Rd

|x− z| ν(dz)

which yields (5). □

2.2 The Euler scheme
We introduce now an Euler scheme with decreasing steps. First, for every γ > 0 we give an operator

P γ : C∞
b → C∞

b such that ∥P γφ∥∞ ≤ ∥φ∥∞ and which approximates our semigroup in the following
sense: for every γ > 0

A(k0, α)
∥∥(Pγ − P γ)φ

∥∥
∞ ≤ Ck0 ∥∇φ∥k0,∞ γ1+α. (7)

Here α > 0 is a given number, k0 ∈ N and

∥ψ∥k0,∞ =
∑

|α|≤k0

∥∂αψ∥∞ .

Moreover, we consider a decreasing sequence of time steps γn ↓ 0 and define the time grid Γn =
∑n

i=1 γi.
We assume that

(Γ)

∞∑
i=1

γi = lim
n→∞

Γn = ∞. (8)

We also introduce
ω = ω((γn)n∈N ) = lim

n→∞

γn − γn+1

γ2n+1

<∞.

The typical example is γn = 1
n and then ω = 1. In the following we denote {Γ} = {Γn, n ∈ N}. And, for

Γi ≤ t < Γi+1 we denote
N(t) = i and τ(t) = Γi.

In particular, for t = Γi ∈ {Γ} we have N(t) = i such that t = ΓN(t). Then, for s ∈ {Γ} and t ∈ {Γ} we
define the Euler scheme

P s,t =

N(t)−1∏
i=N(s)

P γi (9)

6



the product being understood in sense of composition. This means that we travel from τ(s) to τ(t) by
using the Euler scheme associated to the one step Euler scheme P γ . In the appendix 7.1 we will prove
the following lemma (which is a slight generalisation of the lemma given by Pages and Panloup [40]): for
every ρ > αω, there exists nρ and Cρ such that for n ≥ nρ

n∑
i=1

γ1+α
i e−ρ(Γn−Γi) ≤ Cργ

α
n . (10)

Moreover, there exists n∗ such that, for n∗ ≤ i ≤ n

γi ≤ e2ω(Γn−Γi)γn. (11)

Notice that Pt, t ≥ 0 is a homogeneous semigroup, and we may define Ps,t = Pt−s = P0,t−s. In contrast,
P s,t, s < t, is not homogeneous: we do not have P s,t = P 0,t−s. This is due to the fact that the greed
Γi, i ∈ N is not uniform.
Finally we assume the following stronger variant of the Lipschitz property L0:

(Lk0
) ∥∇Ptφ∥k0,∞ ≤ Ck0

∥∇φ∥k0,∞ e−ρt (12)

where k0 is the one from A(k0, α).

Proposition 2.0.2. Suppose that (7) and (12) hold true with ρ > αω. Then for N(t) > nρ + 1, we have∥∥(Ps,t − P s,t)φ
∥∥
∞ ≤ Ck0

∥∇φ∥k0,∞ γαN(t). (13)

Proof We use (7) first and (12) then

∥∥(Ps,t − P s,t)φ
∥∥
∞ ≤

N(t)−1∑
i=N(s)

∥∥P s,Γi−1(P γi − Pγi)PΓi,tφ
∥∥
∞

≤
N(t)−1∑
i=N(s)

∥∥(P γi − Pγi)PΓi,tφ
∥∥
∞

≤ Ck0

N(t)−1∑
i=N(s)

∥∇PΓi,tφ∥k0,∞ γ1+α
i

≤ C ′
k0

N(t)−1∑
i=N(s)

∥∇φ∥k0,∞ γ1+α
i e−ρ(ΓN(t)−Γi)

≤ C ′′
k0

∥∇φ∥k0,∞ γαN(t).

For the last inequality we have used (10). □
Remark. Suppose that (7) and (12) hold with k0 = 0. We also suppose that an invariant probability mea-
sure ν of the semigroup Pt, t ≥ 0 exists and that (4) holds true. Then Proposition 2.0.1 and Proposition
2.0.2 give that for every x ∈ Rd, we have

W1(ν, P 0,t(x, ·)) ≤ C(γαN(t) +

∫
Rd

|x− y| ν(dy)× e−ρt).

For this result, we do not need any regularization properties. In order to obtain the result for the total
variation distance, we give some regularization properties in the next subsection.
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2.3 Regularization properties
In this section we will assume that the semigroup and the Euler scheme have some regularization prop-

erties which allow to obtain convergence in total variation distance.
First we give the regularization hypothesis concerning the semigroup:

RP (k) sup
1≤t≤2

∥∇Ptφ∥k−1,∞ ≤ Ck ∥φ∥∞ , and (14)

R′
P (k) sup

1≤t≤2
∥∇Ptφ∥k−1,∞ ≤ C ′

k ∥∇φ∥∞ , (15)

Such a regularization property is proved using the integration by parts formula in Malliavin calculus.
Moreover, we suppose that we have the following variant of the Lipschitz property:

Lk i) ∥∇Ptφ∥∞ ≤ Ck ∥∇φ∥k,∞ e−ρt, t ≥ 1, (16)
ii) ∥∇Ptφ∥k,∞ ≤ Ck ∥∇φ∥k,∞ , 1 ≥ t > 0.

Notice that Lk, i) is weaker then L0 (see (4)) because we have ∥∇φ∥k,∞ instead of ∥∇φ∥∞ . However, if
the regularization property R′

P (k) holds then Lk, i) implies L0 (for t ≥ 1). Indeed, Lk gives

∥∇Ptφ∥∞ = ∥∇(Pt−1P1φ)∥∞ ≤ C ∥∇P1φ∥k,∞ e−ρ(t−1)

≤ C ∥∇φ∥∞ e−ρ(t−1),

the last inequality being the consequence of R′
P (k). In particular, if an invariant probability measure ν

exists, then it is unique and we have (5).
Remark. We also notice that R′

P (k + 1) and Lk imply Lk. Indeed, for t ≤ 1, Lk ii) gives

∥∇Ptφ∥k,∞ ≤ Ck ∥∇φ∥k,∞ ≤ eρCk ∥∇φ∥k,∞ e−ρt

and for t ≥ 1

∥∇Ptφ∥k,∞ = ∥∇(P1Pt−1φ)∥k,∞ ≤ C ∥∇Pt−1φ∥∞
≤ C ∥∇φ∥k,∞ e−ρ(t−1).

Moreover, for t ≥ 1, Lk and RP (k + 1) give

dTV (Pt(x, .), ν) ≤ C(

∫
Rd

|x− y| dν(y))e−ρt, (17)

where dTV denotes the total variation distance:

dTV (µ, ν) = sup
∥f∥∞≤1

∣∣ ∫
Rd

f(x)µ(dx)−
∫
Rd

f(x)ν(dx)
∣∣.

Indeed,

|Ptφ(x)− Ptφ(y)| = |Pt−1P1φ(x)− Pt−1P1φ(y)|
≤ Ck ∥∇P1φ∥k,∞ e−ρ(t−1) |x− y|
≤ CkCk+1e

ρ ∥φ∥∞ e−ρt |x− y| .

Then we come back to (6) and we obtain∣∣∣∣∫
Rd

φ(z)ν(dz)−
∫
Rd

Pt(x, dy)φ(y)

∣∣∣∣ ≤ C ∥φ∥∞
∫
Rd

e−ρt |x− y| ν(dy)

8



so (17) is proved. □

We give now the regularization properties for the Euler scheme; this is a more delicate subject, because
we have some difficulties in order to use directly the Malliavin calculus for the Euler scheme (the reason
is that the decomposition using the inverse of the tangent flow does not work, and so the proof of the non
degeneracy property is more difficult) .
We introduce some notations. We recall that a super kernel ϕ : Rd → R is a function which belongs to

the Schwartz space and such that for every multi-indexes β1 and β2, one has∫
Rd

ϕ(x)dx = 1,

∫
Rd

yβ1ϕ(y)dy = 0 for |β1| ≥ 1,

∫
Rd

|y|m|∂β2ϕ(y)|dy <∞ for m ∈ N. (18)

We fix a super kernel ϕ. For δ ∈ (0, 1], we denote ϕδ(y) = 1
δd
ϕ(yδ ) and φδ the regularization by convolution

with a super kernel:
φδ = φ ∗ ϕδ, (19)

with ∗ denoting convolution.
As usual, for a multi-index β1 = (β1

1 , · · · , βm
1 ) ∈ {1, · · · , d}m, one denotes |β1| = m and yβ1 =

∏m
i=1 yβi

1
.

For δ > 0, η > 0, and q, κ, p ∈ N we denote

Aδ,η
q,κ,p(h) =

δq

η2q
+ η−php + ηκ, h > 0.

Then we assume the following:
Let β > 0 and p ≥ 1 be fixed. We assume that for every q, κ ∈ N there exists a constant C = Cq,κ,p such

that for every δ > 0, η > 0, every 1 < t < r < t+ 2 and every bounded measurable function φ
RP(p, β)

∥∥P t−1,tPt,rφ− P t−1,tPt,rφδ

∥∥
∞ +

∥∥P t−1,tP t,rφ− P t−1,tP t,rφδ

∥∥
∞ (20)

≤ Cq,κ,p ×Aδ,η
q,κ,p(γ

β
N(t−1)) ∥φ∥∞ .

This represents the "regularization property for P t−1,t”. In order to prove it, one employs Lemma 3.5
(see (38)) in Section 3.1.
As a consequence of these properties, we obtain the following lemma. We recall nρ and n∗ in (10) and

(11).
Lemma 2.1. We fix β > 0 and p ≥ 1.Suppose that (7) (12) hold with ρ > αω, and RP(p, β) (see (20))
holds. Then, for every ε > 0 there exists a constant Cε ≥ 1 such that for every s < t− 1 < t < r < t+ 2 with
N(r) > nρ + 1 and N(t− 1) > n∗, and for every bounded measurable function φ∥∥P s,t(P t,r − Pt,r)φ

∥∥
∞ ≤ Cε ∥φ∥∞ γ

((pβ)∧α)−ε
N(t) . (21)

Proof We use (20) and (11) in order to get∥∥P s,t(P t,r − Pt,r)φ
∥∥
∞ ≤

∥∥P t−1,t(P t,r − Pt,r)φ
∥∥
∞

≤ Cq,κ,p ∥φ∥∞ ×Aδ,η
q,κ,p(γ

β
N(t−1)) + bδ

≤ Cq,κ,p ∥φ∥∞ ×Aδ,η
q,κ,p(γ

β
N(t)) + bδ

with
bδ =

∥∥P t−1,t(P t,r − Pt,r)φδ

∥∥
∞ ≤

∥∥(P t,r − Pt,r)φδ

∥∥
∞ ≤

≤ C ∥∇φδ∥k0,∞
γαN(r) ≤

C

δ1+k0
∥φ∥∞ γαN(t).

Here we used (13) and γN(r) ≤ γN(t). We conclude that∥∥P s,t(P t,r − Pt,r)φ
∥∥
∞ ≤ Cq,κ,p ∥φ∥∞ × (Aδ,η

q,κ,p(γ
β
N(t)) +

1

δ1+k0
γαN(t)).
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Optimization For some fixed α, β, p, k0, ε, we optimize over δ, η, κ, q. Let ∆ = γβN(t). First we choose
η = ∆

p
p+κ so that η−p∆p = ηκ. Then

Aδ,η
q,κ,p(γ

β
N(t)) =

δq

∆
2pq
p+κ

+ 2∆
pκ

p+κ .

Take now δ = ∆
3p

p+κ so that
Aδ,η

q,κ,p(γ
β
N(t)) = ∆

pq
p+κ + 2∆

pκ
p+κ .

With this choice

Aδ,η
q,κ,p(γ

β
N(t)) +

γαN(t)

δ1+k0
= ∆

pq
p+κ + 2∆

pκ
p+κ +∆− 3p(1+k0)

p+κ γαN(t)

= γ
pqβ
p+κ

N(t) + 2γ
pκβ
p+κ

N(t) + γ
− 3p(1+k0)β

p+κ

N(t) × γαN(t)

We need

i)
3p(1 + k0)β

p+ κ
< ε,

ii)
κ

p+ κ
≥ 1− ε

iii)
q

p+ κ
≥ 1− ε.

We first choose κ(ε) such that i) and ii) hold true. Then we choose q(ε) such that q(ε)
p+κ(ε) ≥ 1 − ε. With

this choice we have∥∥P s,t(P t,r − Pt,r)φ
∥∥
∞ ≤ Cq,κ,p ∥φ∥∞ × (Aδ,η

q,κ,p(γ
β
N(t)) + γ

− 3p(1+k0)β
p+κ

N(t) γαN(t))

≤ C ′
q(ε),κ(ε),p ∥φ∥∞ × (γ

pβ(1−ε)
N(t) + γα−ε

N(t))

≤ C ′
q(ε),κ(ε),p ∥φ∥∞ × γ

((pβ)∧α)−ε̄
N(t) ,

with ε̄ = pβε ∨ ε. □
We give now the main result. We recall nρ and n∗ in (10) and (11).

Proposition 2.1.1. Let β > 0 and p ≥ 1 be fixed. Suppose that (7) holds for some α, k0, (14),(15),(16) hold
for every k and some ρ with ρ > αω, and RP(p, β) (see (20)) holds. For every ε > 0 and every measurable
and bounded function φ, for n large enough such that N(Γn − 3) > n∗ and N(Γn − 2) > nρ + 1, we have∥∥(P 0,Γn

− P0,Γn
)φ

∥∥
∞ ≤ Cε ∥φ∥∞ γ((pβ)∧α)−ε

n . (22)
Moreover, if an invariant probability measure ν exists, then the invariant probability measure ν is unique and
for every x ∈ Rd, we have

dTV (P 0,Γn
(x, .), ν) ≤ Cε(γ

((pβ)∧α)−ε
n +

∫
Rd

|x− y| dν(y)e−ρΓn). (23)

Proof We fix i < n such that 1 < Γi and Γi + 1 ≤ Γn ≤ Γi + 2 and we write∥∥(P 0,Γn
− P0,Γn

)φ
∥∥
∞

≤
∥∥(P 0,ΓiPΓi,Γn − P 0,ΓiPΓi,Γn)φ

∥∥
∞ +

∥∥(P 0,ΓiPΓi,Γn − P0,ΓiPΓi,Γn)φ
∥∥
∞

= : A+B.

First, since Γi > 1, using (21) with s = 0, t = Γi and r = Γn we obtain

A ≤ Cε ∥φ∥∞ × γ
((pβ)∧α)−ε
i ≤ Cε ∥φ∥∞ × γ((pβ)∧α)−ε

n ,
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where in the last inequality, we have used (11).
Moreover, we recall that (15) and (16) imply (12). So using (13) and the regularization property (14)

(notice that Γn − Γi ≥ 1) we obtain

B ≤ C ∥∇PΓi,Γn
φ∥k0,∞ γαi ≤ C ∥φ∥∞ γαi ≤ C ∥φ∥∞ γαn ,

the last inequality being obtained by (11) (because Γn − Γi ≤ 2).
Finally, in order to obtain (23) we use (17). The uniqueness of the invariant probability measure ν

comes directly from Proposition 2.0.1. □

3 Abstract integration by parts framework
Here we recall the abstract integration by parts framework in [7].
We denote C∞

p (Rd) to be the space of smooth functions which, together with all the derivatives, have
polynomial growth. We also denote Cq

p(Rd) to be the space of q−times differentiable functions which,
together with all the derivatives, have polynomial growth.
We consider a probability space (Ω,F ,P), and a linear subset S ⊂

∞⋂
p=1

Lp(Ω;R) such that for every

ϕ ∈ C∞
p (Rd) and every F ∈ Sd, we have ϕ(F ) ∈ S. A typical example of S is the space of simple

functionals, as in the standard Malliavin calculus. Another example is the space of "Malliavin smooth
functionals", usually denoted by D∞ (see [37]).
Given a separable Hilbert spaceH, we assume that we have a derivative operator D : S →

∞⋂
p=1

Lp(Ω;H)

which is a linear application which satisfies
a)

DhF := ⟨DF, h⟩H ∈ S, for any h ∈ H, (24)

b) Chain Rule: For every ϕ ∈ C1
p(Rd) and F = (F1, · · · , Fd) ∈ Sd, we have

Dϕ(F ) =

d∑
i=1

∂iϕ(F )DFi, (25)

SinceDhF ∈ S, wemay define by iteration the derivative operator of higher orderDq : S →
∞⋂
p=1

Lp(Ω;H⊗q)

which verifies ⟨DqF,⊗q
i=1hi⟩H⊗q = Dhq

Dhq−1
· · ·Dh1

F . We also denoteDq
h1,··· ,hq

F := ⟨DqF,⊗q
i=1hi⟩H⊗q ,

for any h1, · · · , hq ∈ H. Then, Dq
h1,··· ,hq

F = Dhq
Dq−1

h1,··· ,hq−1
F (q ≥ 2).

We notice that since H is separable, there exists a countable orthonormal base (ei)i∈N. We denote

DiF = DeiF = ⟨DF, ei⟩H.

Then
DF =

∞∑
i=1

DiF × ei and DqF =
∑

i1,··· ,iq

Di1,··· ,iqF ×⊗q
j=1ej .

For F = (F1, · · · , Fd) ∈ Sd, we associate the Malliavin covariance matrix

σF = (σi,j
F )i,j=1,··· ,d, with σi,j

F = ⟨DFi, DFj⟩H. (26)

And we denote

Σp(F ) = E(1/detσF )p. (27)
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We say that the covariance matrix of F is non-degenerated if Σp(F ) <∞, ∀p ≥ 1.
We also assume that we have an Ornstein-Uhlenbeck operator L : S → S which is a linear operator

satisfying
a) Duality: For every F,G ∈ S,

E⟨DF,DG⟩H = E(FLG) = E(GLF ), (28)

b) Chain Rule: For every ϕ ∈ C2
p(Rd) and F = (F1, · · · , Fd) ∈ Sd, we have

Lϕ(F ) =

d∑
i=1

∂iϕ(F )LFi −
d∑

i=1

d∑
j=1

∂i∂jϕ(F )⟨DFi, DFj⟩H.

As an immediate consequence of the duality formula (28), we know that L : S ⊂ L2(Ω) → L2(Ω) is
closable. But it is not clear that D is also closable. We have to assume this and to check it for each
particular example.
Definition 3.1. If Dq : S ⊂ L2(Ω) → L2(Ω;H⊗q), ∀q ≥ 1, are closable, then the triplet (S, D, L) is called
an IbP (Integration by Parts) framework.
Remark. The bilinear forms Γ(F,G) = ⟨DF,DG⟩H is called "carré du champ" operator in the theory of
Dirichlet form. And E(F,G) = E(Γ(F,G)) is the Dirichlet form associated to Γ. So our Integration by Parts
framework appears as a particular case of the Γ−calculus, presented in [4] and [7].
Now, we introduce the Sobolev norms. For any l ≥ 1, F ∈ S,

|F |1,l =

l∑
q=1

|DqF |H⊗q , |F |l = |F |+ |F |1,l , (29)

We put |F |0 = |F |, |F |l = 0 for l < 0, and |F |1,l = 0 for l ≤ 0. For F = (F1, · · · , Fd) ∈ Sd, we set

|F |1,l =

d∑
i=1

|Fi|1,l , |F |l =
d∑

i=1

|Fi|l ,

Moreover, we associate the following norms. For any l ≥ 0, p ≥ 1,

∥F∥l,p = (E |F |pl )
1/p, ∥F∥p = (E |F |p)1/p,

∥F∥L,l,p = ∥F∥l,p + ∥LF∥l−2,p . (30)

With these notations, we have the following lemma from [9] (lemma 8 and lemma 10), which is a
consequence of the chain rule.
Lemma 3.1. Let F ∈ Sd. For every l ∈ N, if ϕ : Rd → R is a Cl(Rd) function (l−times differentiable
function), then there is a constant Cl dependent on l such that

a) |ϕ(F )|1,l ≤ |∇ϕ(F )||F |1,l + Cl sup
2≤|β|≤l

|∂βϕ(F )||F |l1,l−1.

If ϕ ∈ Cl+2(Rd), then

b) |Lϕ(F )|l ≤ |∇ϕ(F )||LF |l + Cl sup
2≤|β|≤l+2

|∂βϕ(F )|(1 + |F |l+2
l+1)(1 + |LF |l−1).

For l = 0, we have
c) |Lϕ(F )| ≤ |∇ϕ(F )||LF |+ sup

|β|=2

|∂βϕ(F )||F |21,1.
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We denote by Dl,p the closure of S with respect to the norm ∥◦∥L,l,p :

Dl,p = S∥◦∥L,l,p , (31)

and
D∞ =

∞⋂
l=1

∞⋂
p=1

Dl,p, Hl = Dl,2. (32)

For an IbP framework (S, D, L), we now extend the operators from S to D∞. For F ∈ D∞, p ≥ 2, there
exists a sequence Fn ∈ S such that ∥F − Fn∥p → 0, ∥Fm − Fn∥q,p → 0 and ∥LFm − LFn∥q−2,p → 0. Since
Dq and L are closable, we can define

DqF = lim
n→∞

DqFn in Lp(Ω;H⊗q), LF = lim
n→∞

LFn in Lp(Ω). (33)

We still associate the same norms and covariance matrix introduced above for F ∈ D∞.
Lemma 3.2. The triplet (D∞, D, L) is an IbP framework.

Proof. The proof is standard and we refer to the lemma 3.1 in [10] for details.
The following lemma is useful in order to control the Sobolev norms and covariance matrices when

passing to the limit.
Lemma 3.3. (A) We fix p ≥ 2, l ≥ 2. Let F ∈ L1(Ω;Rd) and let Fn ∈ Sd, n ∈ N such that

i) E |Fn − F | → 0,

ii) sup
n

∥Fn∥L,l,p ≤ Kl,p <∞.

Then for every 1 ≤ p̄ < p, we have F ∈ Dd
l,p̄ and ∥F∥L,l,p̄ ≤ Kl,p̄ . Moreover, there exists a convex combination

Gn =

mn∑
i=n

γni × Fi ∈ Sd,

with γni ≥ 0, i = n, ....,mn and
mn∑
i=n

γni = 1, such that

∥Gn − F∥L,l,2 → 0.

(B) For F ∈ Dd
∞, we denote

λ(F ) = inf
|ζ|=1

⟨σF ζ, ζ⟩

the lowest eigenvalue of the covariance matrix σF . We consider some F and Fn which verify i), ii) in (A). We
also suppose that

iii) (DFn)n∈N is a Cauchy sequence in L2(Ω;H),

and for every p ≥ 1,

iv) sup
n

E(λ−p(Fn)) ≤ Qp <∞. (34)

Then we have
E(λ−p(F )) ≤ Qp <∞, ∀p ≥ 1.

(C) We suppose that we have (F, F̄ ) and (Fn, F̄n) which verify the hypotheses of (A). If we also have

v) sup
n

∥DFn −DF̄n∥L2(Ω;H) ≤ ε̄, (35)

then
∥DF −DF̄∥L2(Ω;H) ≤ ε̄.
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Proof. Proof of (A) For the sake of the simplicity of notations, we only prove for the one dimensional case.
We recall the notations in Section 3. The Hilbert space Hl = Dl,2 equipped with the scalar product

⟨U, V ⟩L,l,2 :=

l∑
q=1

E⟨DqU,DqV ⟩H⊗q + E(UV )

+

l−2∑
q=1

E⟨DqLU,DqLV ⟩H⊗q + E(LU × LV )

is the space of the functionals which are l−times differentiable in L2 sense. By ii), for p ≥ 2, ∥Fn∥L,l,2 ≤
∥Fn∥L,l,p ≤ Kl,p. Then, applying Banach Alaoglu theorem, there exists G ∈ Hl and a subsequence (we
still denote it by n), such that Fn → G weakly in the Hilbert space Hl. This means that for every Q ∈ Hl,
⟨Fn, Q⟩L,l,2 → ⟨G,Q⟩L,l,2. Therefore, by Mazur theorem, we can construct some convex combination

Gn =

mn∑
i=n

γni × Fi ∈ S

with γni ≥ 0, i = n, ....,mn and
mn∑
i=n

γni = 1, such that

∥Gn −G∥L,l,2 → 0.

In particular we have
E |Gn −G| ≤ ∥Gn −G∥L,l,2 → 0.

Also, we notice that by i),
E |Gn − F | ≤

mn∑
i=n

γni × E |Fi − F | → 0.

So we conclude that F = G ∈ Hl.We also have

∥Gn∥L,l,p ≤
mn∑
i=n

γni ∥Fi∥L,l,p ≤ Kl,p.

Then a standard argument gives, for every p̄ ∈ [1, p),

∥F∥L,l,p̄ ≤ Kl,p̄.

Proof of (B) We consider for a moment some general F,G ∈ Dd
∞. Notice that ⟨σ(F )ζ, ζ⟩ = |⟨DF, ζ⟩|2H,

so λ(F ) = inf |ζ|=1 |⟨DF, ζ⟩|2H. It is easy to check that

|
√
λ(F )−

√
λ(G)| ≤ |D(F −G)| H. (36)

We now come back to our framework. Recalling that Gn =
mn∑
i=n

γni × Fi, we observe that

∥DGn −DFn∥L2(Ω;H) ≤
mn∑
i=n

γni ∥DFi −DFn∥L2(Ω;H) → 0.

Here we use the fact that (DFn)n∈N is a Cauchy sequence in L2(Ω;H). Meanwhile, we know from (A)
that ∥DGn−DF∥L2(Ω;H) → 0. So we conclude that ∥DF −DFn∥L2(Ω;H) → 0. Thus, by (36), E|

√
λ(F )−√

λ(Fn)| → 0. This gives that there exists a subsequence (also denote by n) such that
√
λ(Fn) converges
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to
√
λ(F ) almost surely, and consequently |λ(Fn)|−p converges to |λ(F )|−p almost surely. Since we have

(34), (|λ(Fn)|−p)n∈N is uniformly integrable. It follows that

E(|λ(F )|−p) = lim
n→∞

E(|λ(Fn)|−p) ≤ Qp.

Proof of (C) Since the couples (F, F̄ ) and (Fn, F̄n) verify the hypotheses of (A), we know by (A) that
we may find a convex combination such that

limn→∞∥
mn∑
i=n

γni (DFi, DF̄i)− (DF,DF̄ )∥L2(Ω;H) = 0.

Then it follows by (35) that

∥DF −DF̄∥L2(Ω;H) ≤ limn→∞∥
mn∑
i=n

γni (DFi −DF̄i)∥L2(Ω;H)

≤ limn→∞

mn∑
i=n

γni ∥DFi −DF̄i∥L2(Ω;H)

≤ ε̄.

3.1 Main consequences
We will use the abstract framework presented above for the IbP framework (D∞, D, L), with D and L

defined in (33). We recall the notations ∥F∥L,l,p in (30), Σp(F ) in (27) and σF in (26). For any η > 0,
we take Υη(x) : (0,∞) → R to be a function of class C∞

b such that

1[ η2 ,∞) ≤ Υη ≤ 1[η,∞).

We remark that σF is invertible on the set {Υη(detσF ) > 0}.We give the following lemma, which is stated
in lemma 2.4 of [7] and is proved in the Appendix of [6], based on some integration by parts formula.
Lemma 3.4. Let F = (F1, · · · , Fd) ∈ Dd

∞ and G ∈ D∞. We fix q ∈ N.
(A) Suppose that there exists a constant Cq (dependent on q, d) such that ∥F∥L,q+2,8dq+Σ4q(F )+∥G∥q,4 ≤

Cq. Then for any multi-index β with |β| = q and any function f ∈ Cq
b (Rd),

(Bq) |E(∂βf(F )G)| ≤ Cq∥f∥∞, ∀|β| = q. (37)

(B) Suppose that there exists a constant C ′
q (dependent on q, d) such that ∥F∥L,q+2,(4d+1)q + ∥G∥q,4 ≤ C ′

q.
Then for any η > 0, any multi-index β with |β| = q and any function f ∈ Cq

b (Rd),

(B′
q) |E(∂βf(F )Υη(detσF )G)| ≤ C ′

q∥f∥∞ × 1

η2q
, ∀|β| = q.

Remark. In (A), we assume the non-degeneracy condition for F , so we can give the estimate based on the
standard integration by parts formula. In (B), we no longer suppose non-degeneracy condition for F , so
we can only obtain an estimate based on a localized form of integration by parts formula.
Remark. If the property (Bq) (respectively (B′

q)) holds for a random variable F , then it also holds for
F + x for every x in Rd, with the same constant Cq (respectively C ′

q). In order to see this, given a test
function f , one defines fx(y) = f(x+ y) so that f(F + x) = fx(F ). And one notice that the infinite norm
of fx is the same as the infinite norm of f .
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We give now a regularization lemmawhich plays a crucial role in our paper. We consider the d−dimensional
super kernel ϕδ in (18) and (19) and we denote

fδ(x) = f ∗ ϕδ(x) =
∫
Rd

f(y)ϕδ(x− y)dy.

Then we have the following regularization lemma.
Lemma 3.5. We fix some q, d ∈ N and κ, p ≥ 1. We suppose that F ∈ Dd

∞ such that ∥F∥L,q+2,(4d+1)q <∞.
We also consider an auxiliary random variable Q ∈ Dd

∞ such that Σκ(Q) < ∞. Then there exists a constant
C depending on p, q, κ and d (but not on Q) such that for any η > 0 and δ > 0, for any function f ∈ Cq

b (Rd),
we have

|E(f(F ))− E(fδ(F ))| ≤ C ∥f∥∞ × (
δq

η2q
+ η−pE(|detσF − detσQ|p) + ηκE(|detσQ|−κ)). (38)

Remark. We remark that we do not assume the non-degeneracy condition for F , but we need to assume
that we have another random variable Q which is non-degenerated such that detσQ is close to detσF .
Then we obtain the regularization lemma (38). The regularization lemma here is originally from the
paper [7].
Remark. If the property (38) holds for a random variable F , then it also holds for F +x for every x in Rd,
with the same constant C.
Proof. We denote

Rq(δ, x) =
1

q!

∑
|α|=q

∫ 1

0

dλ(1− λ)q
∫
Rd

dyϕδ(y)y
α∂αf(x+ λy)

with yα =
∏q

i=1 yαi
for α = (α1, ..., αq). Notice that if F satisfies (B′

q) with G = 1, then

|E(Rq(δ, F )Υη(detσF ))| ≤ C ′
q

∥f∥∞
η2q

∫
Rd

dyϕδ(y) |y|q = C ′
q

∫
Rd

ϕ(y) |y|q dy ∥f∥∞
δq

η2q
. (39)

We use a development in Taylor series of order q in order to get

E(f(F )Υη(detσF ))− E(fδ(F )Υη(detσF )) = E(
∫
Rd

dyϕδ(y)(f(F + y)− f(y))Υη(detσF ))

= E(Rq(δ, F )Υη(detσF )).

Here we have used the property of a super kernel: ∫Rd y
βϕ(y)dy = 0, ∀|β| ≤ q. Using (39), we have

|E(f(F )Υη(detσF ))− E(fδ(F )Υη(detσF ))| ≤ C ∥f∥∞
δq

η2q
. (40)

Following the idea from [11] p14, we denote

R =
detσF − detσQ

detσQ
.

For an arbitrary η, we write

P(detσF < η) ≤ P(detσF < η, |R| < 1

4
) + P(|R| ≥ 1

4
). (41)

When |R| < 1
4 , |detσF − detσQ| < 1

4 detσQ. This implies that detσF > 1
2 detσQ. Recalling that Q is

non-degenerated and using Markov inequality, for every κ ∈ N, it follows that

P(detσF < η, |R| < 1

4
) ≤ P(detσQ < 2η) ≤ 2κηκE(|detσQ|−κ). (42)
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For any η > 0, κ ∈ N, we write

P(|R| ≥ 1

4
) = P(|detσF − detσQ| ≥

1

4
detσQ)

≤ P(detσQ ≤ η) + P(|detσF − detσQ| >
1

4
η)

≤ C(ηκE(|detσQ|−κ) + η−pE(|detσF − detσQ|p)). (43)

So we conclude that

P(detσF < η) ≤ C(ηκE(|detσQ|−κ) + η−pE(|detσF − detσQ|p)). (44)

Then we have

|E((1−Υη(detσF ))f(F ))| ≤ ∥f∥∞P(detσF < η) ≤ C∥f∥∞(ηκE(|detσQ|−κ) + η−pE(|detσF − detσQ|p)).(45)

Similarly, we also have

|E((1−Υη(detσF ))fδ(F ))| ≤ C∥f∥∞(ηκE(|detσQ|−κ) + η−pE(|detσF − detσQ|p)). (46)

We conclude by combining (40), (45) and (46).

4 Application for jump equations

4.1 Basic notations and the main equation
To begin, we introduce some notations which will be used in the following sections. For a multi-index

β, we denote |β| to be the length of β. We denote Cl
b(Rd) the space of l−times differential and bounded

functions on Rd with bounded derivatives up to order l, and ∥f∥l,∞ :=
∑

|β|≤l

∥∥∂βf∥∥∞ for a function f ∈

Cl
b(Rd). We also denote Pl(Rd) the space of all probability measures on Rd with finite l−moment. For

ρ1, ρ2 ∈ P1(Rd), we define the Wasserstein distanceW1 by

W1(ρ1, ρ2) = sup
Lip(f)≤1

∣∣ ∫
Rd

f(x)ρ1(dx)−
∫
Rd

f(x)ρ2(dx)
∣∣, (47)

with Lip(f) := sup
x ̸=y

|f(x)−f(y)|
|x−y| the Lipschitz constant of f , and we define the total variation distance dTV

by

dTV (ρ1, ρ2) = sup
∥f∥∞≤1

∣∣ ∫
Rd

f(x)ρ1(dx)−
∫
Rd

f(x)ρ2(dx)
∣∣. (48)

For F,G ∈ L1(Ω), we also denote W1(F,G) = W1(L(F ),L(G)) and dTV (F,G) = dTV (L(F ),L(G)), with
L(F )(respectively L(G)) the law of the random variable F (respectively G). We refer to [49] and [34] the
basic properties of these distances. In addition, along the paper, C will be a constant which may change
from a line to another. It may depend on some parameters and sometimes the dependence is precised in
the notation (ex. Cl is a constant depending on l).
In this paper, we consider the d−dimensional stochastic differential equation with jumps

Xt = x+

∫ t

0

b(Xr)dr +

∫ t

0

∫
Rd

c(z,Xr−)N(dz, dr), (49)

where N(dz, dr) is a Poisson point measure on the state space Rd with intensity measure N̂(dz, dr) =
µ(dz)dr, x is the initial value, µ is a positive σ-finite measure on Rd, and b : Rd → Rd, c : Rd × Rd → Rd.
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4.2 Hypotheses
Here we give our hypotheses.
Hypothesis 2.1 (Regularity) We assume that the function x 7→ b(x) is infinitely differentiable with

bounded derivatives of any orders. We also assume that the function (z, x) 7→ c(z, x) is infinitely differ-
entiable and for every multi-indices β1, β2, there exists a function c̄ : Rd → R+ depending on β1, β2 such
that we have

sup
x∈Rd

(|c(z, x)|+ |∂β2
z ∂β1

x c(z, x)|) ≤ c̄(z), ∀z ∈ Rd, (50)

with

∫
Rd

|c̄(z)|pµ(dz) := c̄p <∞, ∀p ≥ 1. (51)

Remark. We will use several times the following consequence of (51) and of Burkholder inequality (see
for example the Theorem 2.11 in [28], see also [29]): Let Φ(s, z, ω) : [0, T ] × Rd × Ω → R+ and φ(s, ω) :
[0, T ] × Ω → R+ be two non-negative functions. The Burkholder inequality states that for any p ≥ 2, we
have

E|
∫ t

0

∫
Rd

Φ(s, z, ω)N(dz, ds)|p

≤ C[E(
∫ t

0

∫
Rd

|Φ(s, z, ω)|2µ(dz)ds)
p
2 + E

∫ t

0

∫
Rd

|Φ(s, z, ω)|pµ(dz)ds

+E|
∫ t

0

∫
Rd

|Φ(s, z, ω)|µ(dz)ds|p]. (52)

If we have
|Φ(s, z, ω)| ≤ |c̄(z)||φ(s, ω)|,

then for any p ≥ 2,

E
∣∣∣ ∫ t

0

∫
Rd

Φ(s, z, ω)N(dz, ds)
∣∣∣p ≤ CE

∫ t

0

|φ(s, ω)|pds, (53)

where C is a constant depending on p, c̄1, c̄2, c̄p and T .
Proof. By compensating N and using Burkholder inequality and (51), we have

E|
∫ t

0

∫
Rd

Φ(s, z, ω)N(dz, ds)|p

≤ C[E(
∫ t

0

∫
Rd

|Φ(s, z, ω)|2µ(dz)ds)
p
2 + E

∫ t

0

∫
Rd

|Φ(s, z, ω)|pµ(dz)ds

+E|
∫ t

0

∫
Rd

|Φ(s, z, ω)|µ(dz)ds|p]

≤ CE
∫ t

0

|φ(s, ω)|pds.

For the sake of simplicity of notations, in the following, for a constant C, we do not precise the depen-
dence on the regularity constants of the function b and c (such as ∥∇xb∥∞, Lb and c̄p).
Hypothesis 2.2We assume that there exists a non-negative function c̆ : Rd → R+ such that

∫
Rd |c̆(z)|pµ(dz) :=

c̆p <∞, ∀p ≥ 1, and ∥∥∇xc(z, x)(Id +∇xc(z, x))
−1

∥∥ ≤ c̆(z), ∀x ∈ Rd, z ∈ Rd,

with Id the d−dimensional identity matrix. To avoid overburdening notation, since both hypotheses 2.1
and 2.2 apply, we take c̆(z) = c̄(z) and c̆p = c̄p.
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Remark. We need this hypothesis to prove the regularity of the inverse tangent flow (see Section 5.2).
Hypothesis 2.3 (Ellipticity) There exists a non-negative function c : Rd → R+ such that for every

x ∈ Rd, z ∈ Rd, ζ ∈ Rd, we have
d∑

j=1

⟨∂zjc(z, x), ζ⟩2 ≥ c(z)|ζ|2.

Remark. We notice that together with Hypothesis 2.1, we have c(z) ≤ |c̄(z)|2, ∀z ∈ Rd.
Hypothesis 2.4
We give some supplementary hypotheses concerning the function c and the measure µ.
a)We assume that

limu→+∞
1

lnu
µ{c ≥ 1

u
} = ∞, (54)

with
µ(dz) =

∞∑
k=1

1[k− 3
4 ,k−

1
4 ]
(|z|)µ(dz).

This means that c could not be too small so that we could have enough noises to deduce the non-degeneracy
of the Malliavin covariance matrix (see Section 5.2).
Remark. If µ(Rd) <∞, then limu→+∞

1
lnuµ{c ≥

1
u} = 0. So (54) implies that µ(Rd) = ∞.

b) We assume that µ is absolutely continuous with respect to the Lebesgue measure: µ(dz) = h(z)dz,
where h is infinitely differentiable and lnh has bounded derivatives of any order.
Remark. We need this hypothesis to construct the integration by parts framework for the jump equations.
Hypothesis 2.5
We give some conditions which ensure the existence and uniqueness of the invariant measure and the

"exponential Lipschitz property" (4).
Suppose that

i) ⟨x− y, b(x)− b(y)⟩ ≤ −b |x− y|2

ii) |c(z, x)− c(z, y)| ≤ c̄(z) |x− y| (55)

and
iii) 2b−

∫
Rd

(2c̄(z) + c̄2(z))µ(dz) := θ > 0. (56)

Hypothesis 2.6
We assume that P is a partition with decreasing time steps: P = {0 = Γ0 < Γ1 < · · · < Γn−1 < Γn <

· · · }. We denote γn = Γn − Γn−1, n ∈ N and assume that γn ↓ 0. We also introduce

ω = lim
n→∞

γn − γn+1

γ2n+1

,

and assume that ω < θ
2 , with θ given in (56).

Remark. A typical example is γn = 1
n and so ω = 1.
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4.3 The truncated Euler scheme
Now we construct the Euler scheme. For some technical reasons, we take a general partition P = {0 =

Γ0 < Γ1 < · · · < Γn−1 < Γn < · · · } (without assuming Hypothesis 2.6 at this moment). We denote
γn = Γn − Γn−1, n ∈ N and denote |P| := max

n∈N
(Γn+1 − Γn). We assume that |P| ≤ 1, and

∞∑
i=1

γi = lim
n→∞

Γn = ∞.

For Γn ≤ t < Γn+1 we denote N(t) = n and τ(t) = Γn.We consider the Euler scheme:

XP
t = x+

∫ t

0

b(XP
τ(r))dr +

∫ t

0

∫
Rd

c(z,XP
τ(r)−)N(dz, dr). (57)

Since we have µ(Rd) = ∞ (which is a consequence of (54)), we have infinitely many jumps. We use a
truncation argument in order to have finite numbers of jumps and obtain a representation by means of a
compound Poisson process. This is necessary in order to obtain a scheme which may be simulated. We
construct the truncated Euler scheme as below. To begin, we give some notations.
We denote

εm :=

∫
{|z|>m}

|c̄(z)|2µ(dz) + |
∫
{|z|>m}

c̄(z)µ(dz)|2, ∀m ∈ N. (58)

For every γ > 0, we define the truncation functionM(γ) ∈ N to be the smallest integer such that
εM(γ) ≤ γ2. (59)

For m ∈ N, we denote Bm = {z ∈ Rd : |z| ≤ m}. For Γn−1 < t ≤ Γn, we denote MP(t) = M(γn).
We remark that we have lim

γ→0
M(γ) = ∞ and for Γn−1 < t ≤ Γn, we have MP(t) = M(γn) ≥ M(|P|) →

∞, as |P| → 0. Now we discard the "big jumps" (the jumps of size |z| > MP(t)):

XP,MP
t = x+

∫ t

0

b(XP,MP
τ(r) )dr +

∫ t

0

∫
BMP (r)

c(z,XP,MP
τ(r)− )N(dz, dr). (60)

The advantage of considering XP,MP
t is that we may represent it by means of compound Poisson pro-

cesses. For k ∈ N, we denote I1 = B1, Ik = Bk\Bk−1 for k ≥ 2 and take (Jk
t )t≥0 a Poisson process of

intensity µ(Ik). We denote by (T k
i )i∈N the jump times of (Jk

t )t≥0 and we consider a sequences of inde-
pendent random variables Zk

i ∼ 1Ik(z)
µ(dz)
µ(Ik)

, k, i ∈ N. Moreover, (Jk
t )t≥0

k∈N
and (Zk

i )k,i∈N are taken to be
independent. Then we represent the jump’s part of the equation (60) by compound Poisson processes. We
write

XP,MP
t = x+

∫ t

0

b(XP,MP
τ(r) )dr +

∞∑
k=1

Jk
t∑

i=1

1B
MP (Tk

i
)
(Zk

i )c(Z
k
i , X

P,MP
τ(Tk

i )−)

= x+

∫ t

0

b(XP,MP
τ(r) )dr +

∞∑
k=1

Jk
t∑

i=1

N(t)∑
n=0

1BM(γn+1)
(Zk

i )c(Z
k
i , X

P,MP
τ(Tk

i )−).

Since Zk
i ∈ Bk\Bk−1, it follows that Zk

i ∈ BM(γn+1) is equivalent to k ≤M(γn+1). Then

XP,MP
t = x+

∫ t

0

b(XP,MP
τ(r) )dr +

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}c(Z

k
i , X

P,MP
τ(Tk

i )−). (61)

We remark that the solution of the equation (61) can be constructed in an explicit way.
We recall the notation θ in Hypothesis 2.5. We also recall nρ = n θ

2
in (10) (with ρ = θ

2 in our case)
and n∗ in (11). We obtain the following error estimate for XP,MP

t , which represents the main result in
our paper.
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Theorem 4.1. Assume that Hypothesis 2.1∼2.5 hold and the partition P satisfies Hypothesis 2.6. Then
an invariant probability measure ν exists and is unique, and for n > max{n θ

2
+ 3, n∗ + 3}, for any ε > 0

there exists a constant Cε such that

dTV (L(XP,MP
Γn

), ν) ≤ Cε(γ
1−ε
n +

∫
Rd

|x− y| dν(y)e− θ
2Γn). (62)

The proof of this theorem will be given in Section 6 by using some Malliavin integration by parts tech-
niques introduced in Section 5.
In order to apply the Malliavin framework which will be presented in Section 5, we introduce addition-

ally an auxiliary equation as follows (see (64) below).
For Γn < t ≤ Γn+1, we define

aPt = (
∑

1≤i≤n

γi

∫
{|z|≥M(γi)}

c(z)µ(dz) + (t− Γn)

∫
{|z|≥M(γn+1)}

c(z)µ(dz))
1
2 , (63)

where c is given in Hypothesis 2.3. We notice that |aPt | ≤
√
t× εM(|P|) ≤

√
t× |P|.

Nowwe cancel the big jumps in equation (49) and replace them by a (d−dimensional) Gaussian random
variable ∆ which is independent of the Poisson point measure N(dz, ds):

XMP
t = x+ aPt ∆+

∫ t

0

b(XMP
s )ds+

∫ t

0

∫
BMP (s)

c(z,XMP
s− )N(dz, ds). (64)

We remark that∆ is necessary in order to obtain the non degeneracy of the covariance matrix (see Section
5.2 for details).
Following the same idea as above, we represent the jump’s parts of the equation (64) by compound

Poisson processes:

XMP
t = x+ aPt ∆+

∫ t

0

b(XMP
s )ds+

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}c(Z

k
i , X

MP
Tk
i −). (65)

We sometimes write XP,MP
t (x) (resp. XMP

t (x), Xt(x)) instead of XP,MP
t (resp. XMP

t , Xt) to stress the
dependence on the initial value x.

4.4 Some examples
We give some typical examples to illustrate our main results.
Example 1We take h = 1 so themeasure µ is the Lebesguemeasure. We consider two types of behaviour

for c.
i) Exponential decay We assume that |c̄(z)|2 = e−a1|z|p and c(z) = e−a2|z|p with some constants 0 <

a1 ≤ a2, p > 0. We only check Hypothesis 2.4 here. We have

µ{c > 1

u
} = µ{|z| < (

lnu

a2
)

1
p } ≥ rd

2
(
ln(u− 1)

a2
)

d
p ,

with rd the volume of the unit ball in Rd, so that

1

lnu
µ{c > 1

u
} ≥ rd

2(a2)
d
p

(ln(u− 1))
d
p

lnu
.

We notice that limu→+∞
1

lnuµ{c ≥
1
u} = ∞ when 0 < p < d. Therefore, when p ≥ d, we can say nothing;

when 0 < p < d, the results in Theorem 4.1 are true.
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ii) Polynomial decayWe assume that |c̄(z)|2 = a1

1+|z|p and c(z) = a2

1+|z|p for some constants 0 < a2 ≤ a1
and p > d. Then

µ{c > 1

u
} = µ{|z| < (a2u− 1)

1
p } ≥ rd

2
(a2(u− 1)− 1)

d
p ,

so that
1

lnu
µ{c > 1

u
} ≥ rd

2

(a2(u− 1)− 1)
d
p

lnu
.

We notice that in this case, limu→+∞
1

lnuµ{c ≥
1
u} = ∞. Thus, the results in Theorem 4.1 hold true.

Example 2 We consider the (1−dimensional) truncated α−stable process: Xt = X0 +
∫ t

0
σ(Xr−)dUr.

Here (Ut)t≥0 is a (pure jump) Lévy process with intensity measure

1{|z|≤1}
1

|z|1+α
dz, 0 ≤ α < 1.

We assume that σ ∈ C∞
b (R), 0 < σ ≤ σ(x) ≤ σ̄ and −1 < a ≤ σ′(x) ≤ σ̄, ∀x ∈ R, for some universal

constants σ̄, σ, a, where σ′ is the differential of σ in x. Then by a change of variable z 7→ 1
z , we come back

to the setting of this paper with c(r, v, z, x, ρ) = σ(x) × 1
z and µ(dz) = 1{|z|≥1}

1
|z|1−α dz. We only check

Hypothesis 2.4 here. In this case, c(z) = σ × 1
|z|4 , then

1

lnu
µ{c > 1

u
} ≥ 1

lnu

∫ (σ(u−1))
1
4

1

1

|z|1−α
dz =

(σ(u− 1))
α
4 − 1

α lnu
,

so that limu→+∞
1

lnuµ{c ≥
1
u} = ∞. Thus we can apply Theorem 4.1.

5 Malliavin framework for jump equations
We take time t ∈ [0, 3] throughout this section and we use the notations from Section 4. We recall

(Xt)t∈[0,3] in (49), (XP,MP
t )t∈[0,3] in (60) and (XMP

t )t∈[0,3] in (64), where P = {0 = Γ0 < Γ1 < · · · <
ΓN(3) ≤ 3} is a general partition (which is not supposed to verify Hypothesis 2.6).
Lemma 5.1. Suppose that Hypothesis 2.1 holds true. Then we have the followings.
i) For every t ∈ [0, 3], we have

E|XP,MP
t −Xt| → 0, as |P| → 0;

ii) For every fixed t ∈ [0, 3] and every p ≥ 2, we have

E|XMP
t −Xt|p → 0, as |P| → 0;

iii) For every fixed t ∈ [0, 3] and every multi-index β, we have

E|∂βxX
MP
t − ∂βxXt| → 0, as |P| → 0.

Proof. The proof of this lemma is standard and straightforward by Gronwall lemma and Buckholder in-
equality. So we leave it out.
Now we use Malliavin calculus for X P,MP

t , XMP
t and Xt. There are several approaches given in [12],

[20], [26], [27], [37], [48] and [50] for example. Here we give a framework analogous to [9].
To begin we define a regularization function.

a(y) = 1− 1

1− (4y − 1)2
for y ∈ [ 14 ,

1
2 ), (66)

ψ(y) = 1{|y|≤ 1
4}

+ 1{ 1
4<|y|≤ 1

2}
ea(|y|). (67)
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We notice that ψ ∈ C∞
b (R) and that its support is included in [− 1

2 ,
1
2 ]. We denote

Ψk(y) = ψ(|y| − (k − 1
2 )), ∀k ∈ N. (68)

Then for any l ∈ N, there exists a constant Cl such that

sup
k∈N

∥Ψk∥l,∞ ≤ Cl <∞. (69)

We focus on XP,MP
t (x) and XMP

t (x) (solutions of (61) and (65)) which are functions of random vari-
ables T k

i , Z
k
i and ∆ .

Now we introduce the space of simple functionals S. We take G = σ(T k
i : k, i ∈ N) to be the σ−algebra

associated to the noises which will not be involved in our calculus. In the following, we will do the
calculus based on Zk

i = (Zk
i,1, · · · , Zk

i,d), k, i ∈ N and ∆ = (∆1, · · · ,∆d). We denote by CG,p the space
of the functions f : Ω × Rm×m′×d+d → R such that for each ω, the function (z11,1, ..., z

m′

m,d, δ1, · · · , δd) 7→
f(ω, z11,1, ..., z

m′

m,d, δ1, · · · , δd) belongs to C∞
p (Rm×m′×d+d) (the space of smooth functions which, together

with all the derivatives, have polynomial growth), and for each (z11,1, ..., z
m′

m,d, δ1, · · · , δd), the function
ω 7→ f(ω, z11,1, ..., z

m′

m,d, δ1, · · · , δd) is G-measurable. And we consider the weights

ξki = Ψk(Z
k
i ). (70)

Then we define the space of simple functionals

S = {F = f(ω, (Zk
i )1≤k≤m′

1≤i≤m

,∆) : f ∈ CG,p,m,m
′ ∈ N}.

Remark. Take m′ = max
t≤3

MP(t) and m = max
k≤m′

Jk
t . Then XMP

t (x) (solution of (65)) is a function of T k
i ,

Zk
i and of ∆, with k ≤ m′ and i ≤ m. So it is a simple functional (the same for X P,MP

t (x) (solution of
(61))).
On the space S, for t ≥ 1, we define the derivative operator DF = (DZF,D∆F ), where

DZ
(k̄,̄i,j̄)F = ξk̄ī

∂f

∂zk̄
ī,j̄

(ω, (Zk
i )1≤k≤m′

1≤i≤m

,∆), k̄, ī ∈ N, j̄ ∈ {1, · · · , d}, (71)

D∆
j̃
F =

∂f

∂δj̃
(ω, (Zk

i )1≤k≤m′

1≤i≤m

,∆), j̃ ∈ {1, · · · , d}.

We regardDZF as an element of the Hilbert space l2 (the space of the sequences u = (uk,i,j)k,i∈N,j∈{1,··· ,d}

with |u|2l2 :=
∑∞

k=1

∑∞
i=1

∑d
j=1 |uk,i,j |2 <∞) and DF as an element of l2 × Rd, so we have

⟨DF,DG⟩l2×Rd =

d∑
j=1

D∆
j F ×D∆

j G+

∞∑
k=1

∞∑
i=1

d∑
j=1

DZ
(k,i,j)F ×DZ

(k,i,j)G. (72)

We also denote D1F = DF , and we define the derivatives of order q ∈ N recursively: DqF := DDq−1F.
And we denote DZ,q (respectively D∆,q) as the derivative DZ (respectively D∆) of order q.
We recall that µ(dz) = h(z)dz with h ∈ C∞(Rd) (see Hypothesis 2.4 b)). We define the Ornstein-

Uhlenbeck operator LF = LZF + L∆F with

LZF = −
m′∑
k=1

m∑
i=1

d∑
j=1

(∂zk
i,j
(ξki D

Z
(k,i,j)F ) +DZ

(k,i,j)F ×DZ
(k,i,j) ln[h(Z

k
i )]), (73)

L∆F =

d∑
j=1

D∆
j F ×∆j −

d∑
j=1

D∆
j D

∆
j F.
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One can check that the triplet (S, D, L) is consistent with the IbP framework given in Section 3.1. In
particular the duality formula (28) holds true. We refer to [10](Appendix 5.3). We say that F is a "Malliavin
smooth functional" if F ∈ D∞ (with the definition given in (32)).

We recall XP,MP
t (x) in (61), XMP

t (x) in (65) and Xt(x) in (49). We denote

FP,MP
t (x) = XP,MP

t (x)− x, FMP
t (x) = XMP

t (x)− x and Ft(x) = Xt(x)− x (74)

In the following subsections, we will give some lemmas concerning the Sobolev norms and the covariance
matrices. We recall (see (26)) that σF denotes the covariance matrix of F , and recall the Sobolev norms
defined in (29) and (30).

5.1 Sobolev norms
We recall the notations FP,MP

t (x), FMP
t (x) and Ft(x) in (74).

Lemma 5.2. Assuming Hypothesis 2.1 and Hypothesis 2.4 b), for all p ≥ 1, l ≥ 0, there exists a constant
Cl,p depending on l, p, d, such that for any t ∈ [0, 3],

i) sup
P

sup
x
(∥F P,MP

t (x)∥L,l,p + ∥FMP
t (x)∥L,l,p) ≤ Cl,p.

Moreover, Ft(x) belongs to Dd
∞ and

ii) sup
x

∥Ft(x)∥L,l,p ≤ Cl,p.

For all p, q ≥ 1, l ≥ 0, there exists a constant Cl,p,q depending on l, p, q, d, such that for every multi-index β
with |β| = q, we also have

iii) sup
x

∥∂βx (Xt(x))∥l,p ≤ Cl,p,q.

Remark. Since Dx = 0, ∀x ∈ Rd, we also have

sup
P

sup
x
(E|XP,MP

t (x)|p1,l + E|XMP
t (x)|p1,l + E|Xt(x)|p1,l) ≤ Cl,p.

Proof. We first notice that for any l, p, sup
P

sup
x
(∥F P,MP

t (x)∥L,l,p + ∥FMP
t (x)∥L,l,p) ≤ Cl,p This is a slight

variant of the proof of Lemma 3.7 i) in [44]. The difference in that the truncation functionM is constant
in [44] while here it depends on the time. But this does not change anything. In a similar way, for every
multi-index β with |β| = q, we have sup

P
sup
x

∥∂βx (X
MP
t (x))∥l,p ≤ Cl,p,q.

Afterwards, we consider an increasing sequence of partitionPn, n ∈ N, (Pn ⊂ Pn+1 ), such that |Pn| ↓ 0.
In particular, ∀t, MPn

(t) ↑ ∞. Noticing by Lemma 5.1 ii) that E|FMPn
t −Ft| → 0 as n→ 0, and applying

Lemma 3.3 (A) with Fn = F
MPn
t and F = Ft, we get that Ft belongs to Dd

∞ and sup
x

∥Ft(x)∥L,l,p ≤ Cl,p.
Furthermore, noticing by Lemma 5.1 iii) that E|∂βxXMPn

t −∂βxXt| → 0 as n→ 0, and applying Lemma
3.3 (A) with Fn = ∂βxX

MPn
t and F = ∂βxXt, we obtain that ∂βxXt belongs to Dd

∞ and sup
x

∥∂βx (Xt(x))∥l,p ≤
Cl,p,q.
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5.2 Covariance matrix
Lemma 5.3. Assume that Hypothesis 2.1, 2.2, 2.3 and 2.4 hold true. We denote the lowest eigenvalue of
the Malliavin covariance matrix σ

X
MP
t

by λMP
t . Then for every p ≥ 1, 1 ≤ t ≤ 3, we have

i) sup
P

sup
x

E(1/ detσ
X

MP
t (x)

)p ≤ sup
P

sup
x

E(|λMP
t |−dp) ≤ Cp,

ii) sup
x

E(1/ detσXt(x))
p ≤ Cp,

with Cp a constant depending on p, d.

Remark. We recall the notations FMP
t (x) = XMP

t (x)− x and Ft(x) = Xt(x)− x. Since Dx = 0, ∀x ∈ Rd,
the above results are equivalent to

i) sup
P

sup
x

E(1/detσ
F

MP
t (x)

)p ≤ sup
P

sup
x

E(|λMP
t |−dp) ≤ Cp,

ii) sup
x

E(1/ detσFt(x))
p ≤ Cp.

Proof of i)We proceed in 4 steps.
Step 1We notice by the definition (71) that for any k0, i0 ∈ N, j ∈ {1, · · · , d},

DZ
(k0,i0,j)

XMP
t =

∫ t

T
k0
i0

∇xb(X
MP
r )DZ

(k0,i0,j)
XMP

r dr

+

N(t)∑
n=0

1{Γn<T
k0
i0

≤Γn+1∧t}1{1≤k0≤M(γn+1)}ξ
k0
i0
∂
z
k0
i0,j

c(Zk0
i0
, XMP

T
k0
i0

−
)

+

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn∨T
k0
i0

<Tk
i ≤Γn+1∧t}∇xc(Z

k
i , X

MP
Tk
i −)D

Z
(k0,i0,j)

XM P
Tk
i − , (75)

D∆
j X

MP
t = aPt ej +

∫ t

0

∇xb(X
MP
r )D∆

j X
MP
r dr +

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}∇xc(Z

k
i , X

MP
Tk
i −)D

∆
j X

MP
Tk
i −,

(76)

where ej = (0, · · · , 0, 1, 0, · · · , 0) with value 1 at the j−th component.
Nowwe introduce (YMP

t )t≥0 (this is so-called the tangent flow) which is the matrix solution of the linear
equation

YMP
t = Id +

∫ t

0

∇xb(X
MP
r )YMP

r dr +

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}∇xc(Z

k
i, X

MP
Tk
i −)Y

MP
Tk
i −.

And using Itô’s formula, the inverse matrix ỸMP
t = (YMP

t )−1 verifies the equation

ỸMP
t = Id −

∫ t

o

ỸMP
r ∇xb(X

MP
r )dr −

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}Ỹ

MP
Tk
i −∇xc(Id +∇xc)

−1(Zk
i , X

MP
Tk
i −).

(77)

Remark. We notice that YMP
t = ∇x(X

MP
t (x)). If instead we consider the gradient of the Euler scheme

Y P,MP
t = ∇x(X

P,MP
t (x)), the matrix Y P,MP

t is not invertible, and this is a specific difficulty when we deal
with the Euler scheme. This is why we have to work with XMP

t only.
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Applying Hypothesis 2.1 and Hypothesis 2.2, one also has

E( sup
0<t≤2

(
∥∥∥YMP

t

∥∥∥p + ∥∥∥ỸMP
t

∥∥∥p)) ≤ Cp <∞. (78)

The proof of (78) is straightforward and we leave it out.
Then using the uniqueness of solution to the equation (75) and (76), one obtains

DZ
(k,i,j)X

MP
t =

N(t)∑
n=0

1{Γn<Tk
i ≤Γn+1∧t}1{1≤k≤M(γn+1)}ξ

k
i Y

MP
t ỸMP

Tk
i

∂zk
i,j
c(Zk

i , X
MP
Tk
i −), (79)

and D∆
j X

MP
t = aPt YMP

t ej .
We recall that we denote the lowest eigenvalue of the Malliavin covariance matrix σ

X
MP
t
by λMP

t . Then
we have (recalling the definitions (26) and (72))

λMP
t = inf

|ζ|=1
⟨σ

X
MP
t

ζ, ζ⟩ ≥ inf
|ζ|=1

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}

d∑
j=1

⟨DZ
(k,i,j) X

MP
t , ζ⟩2+ inf

|ζ|=1

d∑
j=1

⟨D∆
j X

MP
t , ζ⟩2.

By (79),

λMP
t ≥ inf

|ζ|=1

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}

d∑
j=1

|ξki |2⟨∂zk
i,j
c(Zk

i , X
MP
Tk
i −), (Y

MP
t ỸMP

Tk
i

)∗ζ⟩2

+ inf
|ζ|=1

d∑
j=1

|aPt |2⟨ej , (Y
MP
t )∗ζ⟩2,

where Y ∗ denotes the transposition of a matrix Y .
We recall the ellipticity hypothesis (Hypothesis 2.3): there exists a non-negative function c(z) such that

d∑
j=1

⟨∂zjc(z, x), ζ⟩2 ≥ c(z)|ζ|2.

So we deduce that

λMP
t ≥ inf

|ζ|=1
(

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}|ξki |2c(Zk

i )|(Y
MP
t ỸM P

Tk
i

)∗ζ|2) + |aPt |2 inf
|ζ|=1

|(YMP
t )∗ζ|2.

For every invertible matrix A and every vector y, one has |Ay| ≥ 1
∥A−1∥ |y|, so that

λMP
t ≥ (

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}|ξki |2c(Zk

i )∥Ỹ
MP
t ∥−2∥YMP

Tk
i

∥−2) + |aPt |2∥Ỹ
MP
t ∥−2

≥ ( inf
0<t≤2

∥ỸMP
t ∥−2∥YMP

t ∥−2)((

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}|ξki |2c(Zk

i )) + |aPt |2).

We denote

χMP
t =

N(t)∑
n=0

M(γn+1)∑
k=1

Jk
t∑

i=1

1{Γn<Tk
i ≤Γn+1∧t}|ξki |2c(Zk

i ). (80)

26



By (78), (E sup
0≤t≤2

∥ỸMP
t ∥4dp∥YMP

t ∥4dp)1/2 ≤ Cd,p <∞, so that using Schwartz inequality, we have

E| 1

detσ
X

MP
t

|p ≤ E(|λMP
t |−dp) ≤ C(E(|χMP

t + |aPt |2|−2dp))
1
2 . (81)

Step 2 Since it is not easy to compute E(|χMP
t + |aPt |2|−2dp)) directly, we make the following argument

where the idea comes originally from [12]. Let Γ(p) = ∫∞
0
sp−1e−sds be the Gamma function. By a change

of variables, we have the numerical equality

1

|χMP
t + |aPt |2|2dp

=
1

Γ(2dp)

∫ ∞

0

s2dp−1e−s(χ
MP
t +|aP

t |2)ds,

which, by taking expectation, gives

E(
1

|χMP
t + |a P

t |2|2dp
) =

1

Γ(2dp)

∫ ∞

0

s2dp−1E(e−s(χ
MP
t +|aP

t |2))ds. (82)

Step 3Nowwe compute E(e−s(χ
M P
t +|aP

t |2)) for any s > 0. We recall that I1 = B1, Ik = Bk−Bk−1, k ≥ 2
(given in Section 4.3), and ξki = Ψk(Z

k
i ) (see (70)). Then

χMP
t =

N(t)∑
n=0

M(γn+1)∑
k=1

∫ Γn+1∧t

Γn

∫
Ik

|Ψk(z)|2c(z)N(dz, dr) =

∫ t

0

∫
BMP (r)

Ψ(z)c(z)N(dz, dr),

with
Ψ(z) =

∞∑
k=1

|Ψk(z)|21Ik(z) ≥
∞∑
k=1

1[k− 3
4 ,k−

1
4 ]
(|z|)1Ik(z).

Using Itô formula,

E(e−sχ
MP
t ) = 1 + E

∫ t

0

∫
BMP (r)

(e−s(χ
M P
r− +Ψ(z)c(z)) − e−sχ

MP
r− )N̂(dz, dr)

= 1−
N(t)∑
n=0

(

∫ Γn+1∧t

Γn

E(e−sχ
MP
r )dr

M(γn+1)∑
k=1

∫
Ik

(1− e−s|Ψk(z)|2c(z))µ(dz)).

Solving the above equation we obtain

E(e−sχ
MP
t ) = exp(−

N(t)∑
n=0

(((Γn+1 ∧ t)− Γn)

M(γn+1)∑
k=1

∫
Ik

(1− e−s|Ψk(z)|2c(z))µ(dz)))

≤ exp(−
N(t)∑
n=0

(((Γn+1 ∧ t)− Γn)

M(γn+1)∑
k=1

∫
Ik

(1− e
−s1

[k− 3
4
,k− 1

4
]
(|z|)c(z)

)µ(dz)))

= exp(−
N(t)∑
n=0

(((Γn+1 ∧ t)− Γn)

M(γn+1)∑
k=1

∫
Ik

(1− e−sc(z))1[k− 3
4 ,k−

1
4 ]
(|z|)µ(dz)))

= exp(−
N(t)∑
n=0

(((Γn+1 ∧ t)− Γn)

∫
BM(γn+1)

(1− e−sc(z))µ(dz)),

with
µ(dz) =

∞∑
k=1

1[k− 3
4 ,k−

1
4 ]
(|z|)µ(dz).
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On the other hand, we denote

χ̄MP
t =

∫ t

0

∫
Bc

MP (r)

Ψ(z)c(z)N(dz, dr),

where Bc
m denote the complementary set of Bm. Then in the same way,

E(e−sχ̄
MP
t ) ≤ exp(−

N(t)∑
n=0

(((Γn+1 ∧ t)− Γn)

∫
Bc

M(γn+1)

(1− e−sc(z))µ(dz))).

We recall by (63) that for Γn < t ≤ Γn+1,

aPt = (
∑

1≤i≤n

γi

∫
{|z|≥M(γi)}

c(z)µ(dz) + (t− Γn)

∫
{|z|≥M(γn+1)}

c(z)µ(dz))
1
2 .

Then
aPt ≥

√
Eχ̄MP

t .

Using Jensen inequality for the convex function f(x) = e−sx, s, x > 0, we have

e−s|aMP
t |2 ≤ e−sEχ̄MP

t ≤ E(e−sχ̄
MP
t ) ≤ exp(−

N(t)∑
n=0

(((Γn+1 ∧ t)− Γn)

∫
Bc

M(γn+1)

(1− e−sc(z))µ(dz))).

So we deduce that

E(e−s(χ
MP
t +|a P

t |2)) = E(e−sχ
MP
t )× e−s|aP

t |2

≤ exp(−
N(t)∑
n=0

(((Γn+1 ∧ t)− Γn)

∫
BM(γn+1)

(1− e−sc(z))µ(dz)))

× exp(−
N(t)∑
n=0

(((Γn+1 ∧ t)− Γn)

∫
Bc

M(γn+1)

(1− e−sc(z))µ(dz)))

= exp(−t
∫
Rd

(1− e−sc(z))µ(dz)), (83)

and the last term does not depend onMP(t).

Step 4 Now we use the Lemma 14 from [9], which states the following.
Lemma 5.4. We consider an abstract measurable space B, a σ-finite measure M on this space and a non-
negative measurable function f : B → R+ such that

∫
B
fdM <∞. For t > 0 and p ≥ 1, we note

βf (s) =

∫
B

(1− e−sf(x))M(dx) and Ipt (f) =

∫ ∞

0

sp−1e−tβf (s)ds.

We suppose that for some t > 0 and p ≥ 1,

limu→∞
1

lnu
M(f ≥ 1

u
) >

p

t
, (84)

then Ipt (f) <∞.

We will use the above lemma forM(dz) = µ(dz), f(z) = c(z) and B = Rd. Thanks to (54) in Hypoth-
esis 2.4,

limu→∞
1

lnu
µ(c ≥ 1

u
) = ∞. (85)
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Then for every p ≥ 1, 1 ≤ t ≤ 3, we deduce from (81),(82),(83) and Lemma 5.4 that

E| 1

detσ
X

MP
t

|p ≤ E(|λMP
t |−dp) ≤ C(E(|χMP

t + |aPt |2|−2dp))
1
2

≤ C(
1

Γ(2dp)

∫ ∞

0

s2dp−1E(e−s(χ
MP
t +|aP

t |2))ds)
1
2

≤ C(
1

Γ(2dp)

∫ ∞

0

s2dp−1 exp(−t
∫
Rd

(1− e−sc(z))µ(dz)ds)
1
2 <∞. (86)

Proof of ii) We consider an increasing sequence of partition Pn, n ∈ N, (Pn ⊂ Pn+1), such that
|Pn| ↓ 0. In particular, ∀t, MPn

(t) ↑ ∞.
We recall the notations FMP

t (x) = XMP
t (x) − x and Ft(x) = Xt(x) − x. We notice by Lemma 5.1 ii)

that E|FMPn
t − Ft| → 0 as n→ ∞ , and by Lemma 5.2 that sup

n
sup
x

∥FMPn
t (x)∥L,l,p ≤ Cl,p.

Moreover, by Lemma 5.5 ii) (given immediately below), we know that (DFMPn
t )n∈N is a Cauchy se-

quence in L2(Ω; l2 × Rd). Then applying Lemma 3.3 (B) with Fn = F
MPn
t and F = Ft, Lemma 5.3 i)

implies Lemma 5.3 ii).

5.3 Auxiliary results
Besides the lemmas concerning the Sobolev norms and covariance matrices, we establish an auxiliary

result. We recall εm given in (58).
Lemma 5.5. We assume that Hypothesis 2.1 and Hypothesis 2.4 b) hold true.
i) Then for any ε0 > 0, there exists a constant C dependent on d, ε0 such that for every t ∈ [0, 3] and every

stating point x ∈ Rd, we have

E|detσ
X

P,MP
t

− detσXt |
2

1+ε0 ≤ C∥DXP,MP
t −DXt∥

2
1+ε0

L2(Ω;l2×Rd)
≤ C(|P|+ εM(|P|))

2
(2+ε0)(1+ε0) .

ii) We consider an increasing sequence of partition Pn, n ∈ N, (Pn ⊂ Pn+1), such that |Pn| ↓ 0. In
particular, ∀t, MPn(t) ↑ ∞. We denote

Fn(x) = X
MPn
t (x).

Then for each x ∈ Rd, the sequence DFn(x), n ∈ N is Cauchy in L2(Ω; l2×Rd), uniformly with respect to x :

sup
x

∥DFn(x)−DFm(x)∥L2(Ω;l2×Rd) → 0, as n,m→ ∞.

Proof. Proof of i)
By Lemma 5.2, we know that ∥DXP,MP

t ∥L2(Ω;l2×Rd) and ∥DXt∥L2(Ω;l2×Rd) are bounded, uniformly
with respect to x. Then using Hölder’s inequality with conjugates 1 + ε0 and 1+ε0

ε0
, we get

E(|detσ
X

P,MP
t

− detσXt |
2

1+ε0 ) ≤ C∥DXP,M P
t −DXt∥

2
1+ε0

L2(Ω;l2×Rd)
. (87)

Now we only need to prove that

∥DXP,MP
t −DXt∥

2
1+ε0

L2(Ω;l2×Rd)
≤ C(|P|+ εM(|P|))

2
(2+ε0)(1+ε0) . (88)

The proof of (88) is a slight variant of the proof of Lemma 3.9 iii) in the paper [44]. The difference in that
the truncation functionM is constant in [44] while here it may vary on different time intervals. We do not
discuss in detail here. So we conclude that Lemma 5.5 i) holds.
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Proof of ii)
We consider an increasing sequence of partition Pn, n ∈ N, (Pn ⊂ Pn+1), such that |Pn| ↓ 0. In

particular, ∀t, MPn(t) ↑ ∞. We need to prove that

∥DXMPn
t −DX

MPm
t ∥L2(Ω;l2×Rd) → 0, as n,m→ ∞. (89)

The proof of (89) is a slight variant of the proof of (148) p.47-49 in [44], so we omit it.

6 Proof of Theorem 4.1
In this section, we give the proof of Theorem 4.1. We apply Proposition 2.1.1 in Section 2. For a

measurable function f , we denote P tf(x) = Ef(XP,MP
t (x)) and Ptf(x) = Ef(Xt(x)). In the following

subsections, we will check the conditions of Proposition 2.1.1.

6.1 Euler: condition (7)
For every γ > 0, we recall in (59) that we defineM(γ) ∈ N such that

εM(γ) ≤ γ2.

We recall the basic equation Xt (see (49)). We denote by X̃MP
t the one step truncated Euler scheme:

X̃MP
t (x) = x+

∫ t

0

∫
BM(γ)

c(z, x)dN(z, s) +

∫ t

0

b(x)ds.

Then,

E|X̃MP
γ −Xγ | ≤ E

∫ γ

0

∫
{|z|≥M(γ)}

|c(z,Xs)|dN(z, s) + E
∫ γ

0

∫
BM(γ)

|c(z, x)− c(z,Xs)|dN(z, s)

+ E
∫ γ

0

|b(x)− b(Xs)|ds

≤ γ

∫
{|z|≥M(γ)}

c̄(z)µ(dz) + C

∫ γ

0

E|x−Xs|ds

≤ γ
√
εM(γ) + C × γ2 ≤ C × γ2

So
W1(X̃

MP
γ , Xγ) ≤ E|X̃M

γ −Xγ | ≤ C × γ2.

So we conclude that (7) holds for α = 1 and k0 = 0.

6.2 Lipschitz: condition (4) and the existence of an invariant measure
We recall that X is the solution of the equation (49).

Lemma 6.1. Suppose that Hypothesis 2.5 (see (55) and (56)) holds.
a) Then, for a Lipschitz continuous function f

|E(f(Xt(x))− E(f(Xt(y))| ≤ Lfe
− θ

2 t |x− y| ,

with Lf the Lipschitz constant of f .
b) Moreover, there exists at least one invariant probability.
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Proof a)We fix x, y ∈ Rd and we construct on the same probability space, with the same Poisson point
measure N the solution XM

t (y) which starts from y. Then we denote

Yt = Xt(x)−Xt(y),

∆c
t(z) = c(z,Xs−(x))− c(z,Xs−(y))

∆b
t = b(Xs−(x))− b(Xs−(y))

and we have
Yt = x− y +

∫ t

0

∫
Rd

∆c
s(z)dN(z, s) +

∫ t

0

∆b
sds.

Using Itô’s formula for Φ(t, u) = eλt |u|2 we obtain

Φ(t, Yt) = |x− y|2 + λ

∫ t

0

Φ(s, Ys)ds+

∫ t

0

2eλs
〈
Ys,∆

b
s

〉
ds

+

∫ t

0

∫
Rd

(Φ(s, Ys− +∆c
s(z))− Φ(s, Ys−))dN(z, s)

= |x− y|2 + λ

∫ t

0

Φ(s, Ys)ds+

∫ t

0

2eλs
〈
Ys,∆

b
s

〉
ds

+Mt +

∫ t

0

∫
Rd

(Φ(s, Ys− +∆c
s(z))− Φ(s, Ys−))dµ(z)ds

withMt a martingale. Taking the expectation we get

eλtE |Yt|2 ≤ |x− y|2 +
∫ t

0

eλsE(Ψs)ds

with

Ψs = λ |Ys|2 + 2
〈
Ys,∆

b
s

〉
+

∫
Rd

|Ys +∆c
s(z)|

2 − |Ys|2 µ(dz)

= λ |Ys|2 + 2
〈
Ys,∆

b
s

〉
+

∫
Rd

⟨∆c
s(z), 2Ys +∆c

s(z)⟩µ(dz).

We need to prove that E(Ψs) ≤ 0.We recall that we assume Hypothesis 2.5 i)ii) (see (55)). We also have

|⟨∆c
s(z), 2Ys +∆c

s(z)⟩| ≤ (2c̄(z) + c̄2(z)) |Ys|2 ,

so that
Ψs ≤ |Ys|2 (λ+

∫
Rd

(2c̄(z) + c̄2(z))µ(dz)− 2b).

Thanks to Hypothesis 2.5 iii) (see (56)), taking λ ≤ θ, we have

eλtE |Yt|2 ≤ |x− y|2 +
∫ t

0

eλsE(Ψs)ds ≤ |x− y|2

so that
E |Xt(x)−Xt(y)|2 ≤ e−θt |x− y|2 .

Then, for a Lipschitz continuous function f ,

|E(f(Xt(x))− E(f(Xt(y))| ≤ LfE |Xt(x)−Xt(y)| ≤ Lfe
− θ

2 t |x− y| .

b) We denote L to be the infinitesimal operator of (49). We take V (x) = |x|2 and we will prove that

LV ≤ β̄ − ᾱV

31



for some β̄, ᾱ > 0 (the Lyapunov mean reverting condition). This implies LV ≤ C and lim
|x|→∞

LV (x) =

−∞. Then we use Theorem 9.3 and Lemma 9.7 from [18] (with φ = V and ψ = LV ) which guarantees
existence of an invariant distribution. We have

LV (x) = 2 ⟨x, b(x)⟩+
∫
Rd

(V (x+ c(z, x))− V (x))µ(dz)

≤ −2b |x|2 +
∫
Rd

(2 ⟨x, c(z, x)⟩+ |c(z, x)|2)µ(dz)

≤ −2b |x|2 + (|x|2 + 1)

∫
Rd

c̄(z)µ(dz) +

∫
Rd

c̄2(z)µ(dz)

=

∫
Rd

(c̄(z) + c̄2(z))µ(dz)− (2b−
∫
Rd

c̄(z)µ(dz)) |x|2 .

□

6.3 Regularity: conditions (14), (15), (16) and (20)
Firstly, we deal with (14). Let t ∈ [1, 2]. For any k and any multi-index β0 with |β0| = k, we write

∂β0
x Ptφ(x) = E[∂β0

x (φ(Xt(x))] =
∑

|α0|≤|β0|

E[(∂α0φ)(Xt(x))Pα0
(x)],

with Pα0(x) a polynomial of ∂α1
x Xt(x), |α1| ≤ |β0|.

In the following, we use the results from Section 5. In Lemma 5.2, we prove that the Sobolev norms of
each ∂α1

x Xt(x) are bounded, uniformly with respect to x. It follows that this is also true for Pα0
(x).

We denote that Ft(x) = Xt(x) − x. In Lemma 5.2, we have proved that the Sobolev norms of each
Ft(x) are bounded, uniformly with respect to x. Moreover, in Lemma 5.3, we prove that Ft(x) is non-
degenerated, uniformly with respect to x, that is Σp(Ft(x)) <∞ for each p (see (26)).
Then we use Lemma 3.4 (A) which asserts that (Bk) is true for F = Ft(x) and G = Pα0(x). By the

remark of Lemma 3.4, (Bk) is also true for F = Xt(x) = Ft(x) + x and G = Pα0
(x). This reads

|E[(∂α0φ)(Xt(x))Pα0
(x)]| ≤ C∥φ∥∞,

which gives (14).
In a similar way, we can obtain (15).
For (16), i) is a direct consequence of (4) which has been proved in Section 6.2. For (16) ii), we take

t ∈ (0, 1]. For any k and any multi-index β0 with |β0| = k, we notice that

|∂β0
x ∇Ptφ(x)| = |E[∂β0

x (∇φ(Xt(x))]| = |
∑

|α0|≤|β0|

E[(∂α0∇φ)(Xt(x))Pα0(x)]| ≤ ∥∇φ∥k,∞
∑

|α0|≤|β0|

E|Pα0(x)|,

with Pα0
(x) a polynomial of ∂α1

x Xt(x), |α1| ≤ |β0|. In [29], Kunita has shown in Theorem 3.4.1 and
Theorem 3.4.2 the regularity of the flow associated with the jump-diffusion. So in our case, we have
E|Pα0(x)| <∞ and thus (16) ii) holds true.

Now we prove (20). In order to prove (20), we need to represent P s,tφ(x) and Ps,tφ(x). So we consider
the following equations.
We denote XP,MP

s,t and Xs,t the solutions of the following equations respectively:

XP,MP
s,t = x+

∫ t

s

b(XP,MP
s,τ(r) )dr +

∫ t

s

∫
BMP (r)

c(z,XP,MP
s,τ(r)−)N(dz, dr); (90)

Xs,t = x+

∫ t

s

b(Xs,r)dr +

∫ t

s

∫
Rd

c(z,Xs,r−)N(dz, dr). (91)
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We sometimes write XP,MP
s,t (x) (and Xs,t(x)) instead of XP,MP

s,t (and Xs,t) to stress the dependence on
the initial value x. And we denote P s,tφ(x) = Eφ(XP,MP

s,t (x)) and Ps,tφ(x) = Eφ(Xs,t(x)).
Let 1 < t < r < t+ 2. We recall that P = {0 = Γ0 < Γ1 < · · · < Γl−1 < Γl < · · · }, γl = Γl − Γl−1 and

for Γl ≤ t < Γl+1, N(t) = l.We denote

FP,MP
r−t+1(x) = Xt,r ◦XP,MP

t−1,t (x)− x and Fr−t+1(x) = Xt,r ◦Xt−1,t(x)− x = Xt−1,r(x)− x. (92)

We also denote |Pt−1,t| := max
l∈N s.t.

Γl+1>t−1,Γl<t

((Γl+1 ∧ t)− (Γl ∨ (t− 1))). Before we give the proof of (20), we

state the following lemma concerning FP,MP
r−t+1(x) and Fr−t+1(x) given in (92).

Lemma 6.2. Under the Hypothesis 2.1∼2.4, we have these results.
i) For all p ≥ 1, q ≥ 0, there exists a constant Cq,p depending on q, p, d, such that FP,MP

r−t+1(x) and Fr−t+1(x)
belong to Dd

∞ and
sup
x

sup
P

∥FP,MP
r−t+1(x) + Fr−t+1(x)∥L,q,p ≤ Cq,p.

ii) For every p ≥ 1, we have

sup
P

sup
x

E(1/ detσFr−t+1(x))
p ≤ Cp,

with Cp a constant depending on p, d.
iii) For any ε0 > 0, there exists a constant C dependent on d, ε0 such that

sup
x

E|detσ
F

P,MP
r−t+1 (x)

− detσFr−t+1(x)|
2

1+ε0 ≤ C|Pt−1,t|
2

(2+ε0)(1+ε0) .

Proof. Firstly, we will construct an approximation scheme for Xt,r ◦ XP,MP
t−1,t (x). We take an integer N0

such that 1
2N0

≤ |P|. For n > N0, we take a "mixed partition"

Pn = {t− 1 < ΓN(t−1)+1 < · · · < ΓN(t) ≤ t

< t+
1

2n
(r − t) < t+

2

2n
(r − t) < · · · < t+

l

2n
(r − t) < t+

l + 1

2n
(r − t) < · · · < r}

:= {t− 1 = s0 < s1 < · · · < sn0
= r}.

We remark that we take the partition {Γl} on [t − 1, t] and take the partition { l
2n } on [t, r]. We denote

|Pn| := max
k∈{1,··· ,n0}

sk − sk−1.We constructMPn
(t) =M(sl+1− sl) when sl < t ≤ sl+1 with the truncation

function M(•) given in (59). And we denote τPn(t) = sl when sl < t ≤ sl+1. Then we consider the
truncated Euler scheme based on Pn, MPn

:

X
Pn,MPn
t−1,r = x+

∫ r

t−1

b(X
Pn,MPn

t−1,τPn (s)
)ds+

∫ r

t−1

∫
BMPn

(s)

c(z,X
Pn,MPn

t−1,τPn (s)−)N(dz, ds).

We denote

F
Pn,MPn
r−t+1 (x) = X

Pn,MPn
t−1,r (x)− x. (93)

We notice that we can apply the results from Section 5 for FPn,MPn
r−t+1 (x), FP,MP

r−t+1(x) and Fr−t+1(x) defined
in (92) and (93).
Since r − t+ 1 < 3, by Lemma 5.2 i), the Sobolev norms of FPn,MPn

r−t+1 (x) and Fr−t+1(x) are bounded,
uniformly with respect to x. One can check that FPn,MPn

r−t+1 (x) → FP,MP
r−t+1(x) in L1(Ω), as n→ ∞ (which is

a variant of Lemma 5.1 i)). So we can apply Lemma 3.3 (A) for Fn = F
Pn,MPn
r−t+1 (x) and F = FP,MP

r−t+1(x) in
order to get that FP,MP

r−t+1(x) ∈ Dd
∞ and sup

x
sup
P

∥FP,MP
r−t+1(x)∥L,q,p ≤ Cq,p. Hence, Lemma 6.2 i) is proved.
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Moreover, since r − t + 1 > 1, using Lemma 5.3 ii) we have sup
P

sup
x

E(1/detσ
F

MP
r−t+1(x)

)p ≤ Cp. So
Lemma 6.2 ii) is proved.
Finally, by Lemma 5.5 i) and recalling by (59) that εM(γ) ≤ γ2, we have

∥DFPn,MPn
r−t+1 (x)−DFr−t+1(x)∥

2
1+ε0

L2(Ω;l2×Rd)
≤ C(|Pn|+ εM(|Pn|))

2
(2+ε0)(1+ε0) ≤ C|Pt−1,t|

2
(2+ε0)(1+ε0) ,

where the last equality is true since 1
2n ≤ |Pt−1,t| for every n > N0. Then we can apply Lemma 3.3 (C)

for (Fn, F̄n) = (F
Pn,MPn
r−t+1 (x), Fr−t+1(x)) and (F, F̄ ) = (FP,MP

r−t+1(x), Fr−t+1(x)). So sup
x

E|detσ
F

P,MP
r−t+1 (x)

−

detσFr−t+1(x)|
2

1+ε0 ≤ C∥DFP,MP
r−t+1(x) − DFr−t+1(x)∥

2
1+ε0

L2(Ω;l2×Rd)
≤ C|Pt−1,t|

2
(2+ε0)(1+ε0) and Lemma 6.2

iii) is proved.

Then we can prove (20). By Lemma 6.2 i), the Sobolev norms of FP,MP
r−t+1(x) are bounded, uniformly

with respect to x. Using Lemma 6.2 ii), the covariance matrix of Fr−t+1(x) is non-degenerated. Then we
are able to apply Lemma 3.5 for F = FP,MP

r−t+1(x) and Q = Fr−t+1(x) so (38) holds for F = FP,MP
r−t+1(x)

and Q = Fr−t+1(x). Thanks to the remark of Lemma 3.5, (38) also holds for F = Xt,r ◦ XP,MP
t−1,t (x) =

FP,MP
r−t+1(x) + x, Q = Xt,r ◦Xt−1,t(x) = Fr−t+1(x) + x and get∣∣∣E(f(Xt,r ◦XP,MP

t−1,t (x)))− E(fδ(Xt,r ◦XP,MP
t−1,t (x)))

∣∣∣
≤ C ∥f∥∞ × (

δq

η2q
+ η−pE|detσ

Xt,r◦X
P,MP
t−1,t (x)

− detσXt,r◦Xt−1,t(x)|
p
+ ηκ), (94)

where we have also used the fact that sup
P

sup
x

E(1/detσXt,r◦Xt−1,t(x))
κ ≤ Cκ from Lemma 6.2 ii).

We take p = 2
1+ε0

for any small ε0. Thanks to Lemma 6.2 iii),

sup
x

E|detσ
Xt,r◦X

P,MP
t−1,t (x)

−detσXt,r◦Xt−1,t(x)|
2

1+ε0 = sup
x

E|detσ
F

P,MP
r−t+1 (x)

−detσFr−t+1(x)|
2

1+ε0 ≤ C|Pt−1,t|
2

(2+ε0)(1+ε0) .

This implies that

sup
x

E|detσ
Xt,r◦X

P,MP
t−1,t (x)

− detσXt,r◦Xt−1,t(x)|
2

1+ε0 ≤ Cγ
2

(2+ε0)(1+ε0)

N(t−1) .

Substituting into (94), we obtain

sup
x

∣∣∣E(f(Xt,r ◦XP,MP
t−1,t (x)))− E(fδ(Xt,r ◦XP,MP

t−1,t (x)))
∣∣∣ ≤ C ∥f∥∞ × (

δq

η2q
+ η−

2
1+ε0 γ

2
(2+ε0)(1+ε0)

N(t−1) + ηκ).

By a similar argument, we have

sup
x

∣∣∣E(f(XP,MP
t,r ◦XP,MP

t−1,t (x)))− E(fδ(XP,MP
t,r ◦XP,MP

t−1,t (x)))
∣∣∣ ≤ C ∥f∥∞×(

δq

η2q
+η−

2
1+ε0 γ

2
(2+ε0)(1+ε0)

N(t−1) +ηκ).

So (20) holds for p = 2
1+ε0

and β = 1
2+ε0

.

Finally, we can apply Proposition 2.1.1 for XP,MP
0,Γn

and X0,Γn with α = 1, k0 = 0, p = 2
1+ε0

, β = 1
2+ε0(for any small ε0), and obtain the following result: for every ε > 0, there exists a constant C such that

dTV (X
P,MP
0,Γn

, X0,Γn) ≤ Cγ
2

(2+ε0)(1+ε0)
−ε

n = Cγ1−ε̄
n , (95)
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with ε̄ = 1− 2−ε(2+ε0)(1+ε0)
(2+ε0)(1+ε0)

.

And moreover, we have

dTV (L(XP,MP
Γn

), ν) ≤ C(γ1−ε
n +

∫
Rd

|x− y| dν(y)e− θ
2Γn),

where ν is the unique invariant probability measure.

7 Appendix

7.1 The numerical lemma
In Section 2, we need to use the following numerical lemma.

Lemma 7.1. (A) Take an integer n∗. Let (γn)n∈N be a non-increasing positive sequence such that for n ≥ n∗,
we have

γn − γn+1

γ2n+1

≤ 2ω. (96)

We denote Γn =
∑n

i=1 γi. Then for every n∗ ≤ i ≤ n, we have

γi ≤ e2ω(Γn−Γi) × γn. (97)

(B) We assume that (γn)n∈N is a non-increasing positive sequence verifying

γn − γn+1

γ2n+1

≤ c∗ <
ρ

α
. (98)

We denote Γn =
∑n

i=1 γi. Then

un :=

n∑
i=1

γ1+α
i e−ρ(Γn−Γi) ≤ Cγαn . (99)

Proof of (A) Notice that (96) implies
γn
γn+1

≤ 1 + 2ωγn+1 ≤ e2ωγn+1 .

Then
γi
γn

=

n−1∏
k=i

γk
γk+1

≤
n−1∏
k=i

e2ω(γk+1) ≤ e2ω(Γn−Γi).

Proof of (B) Notice that (98) implies
γn
γn+1

≤ 1 + c∗γn+1 ≤ ec∗γn+1 .

Then we define vn = un/γ
α
n and we have the recurrence relation

vn+1 = θnvn + γn+1, θn =
γαn
γαn+1

× e−ργn+1 .

Using the previous inequality we obtain

vn+1 ≤ e(αc∗−ρ)γn+1vn + γn+1
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and further

e(ρ−αc∗)Γn+1vn+1 ≤ e(ρ−αc∗)Γnvn + e(ρ−αc∗)Γn+1γn+1

≤ e(ρ−αc∗)Γnvn + C ′e(ρ−αc∗)Γnγn+1,

with C ′ = sup
k≥1

e(ρ−αc∗)γk = e(ρ−αc∗)γ1 . We use recursively this inequality and we obtain

e(ρ−αc∗)Γn+1vn+1 ≤ e(ρ−αc∗)Γ1v1 + C ′
n∑

i=1

e(ρ−αc∗)Γnγn+1

≤ e(ρ−αc∗)Γ1v1 + C ′
∫ Γn

0

e(ρ−αc∗)sds

≤ e(ρ−αc∗)Γ1v1 +
C ′

ρ− αc∗
e(ρ−αc∗)Γn+1 .

That is
vn+1 ≤ v1 +

C ′

ρ− αc∗
≤ γ1 +

C ′

ρ− αc∗

which finally gives
un+1 ≤ (γ1 +

C ′

ρ− αc∗
)γαn+1.

□
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