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We review the data-driven computing paradigm for inelastic problems. We extend an efficient graph search algorithm for
the data search by thermodynamic constraints and a rate independent history parametrization based on the mechanical work
increment. In addition, we propose a strategy how to use commercial solvers in the framework. Finally, we demonstrate the
proposed method with a numerical example featuring 2-d continuum plasticity.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

1.1 Data-driven computing paradigm

This work is based on the data-driven computing paradigm proposed in [1]. Therein, the solution of mechanical boundary
value problems is formulated directly in the stress and strain data without introducing a constitutive model. The motivation of
this approach is to minimize the model uncertainties introduced by a classical constitutive modeling step, while simultaneously
preserving physical laws, such as equilibrium and compatibility conditions, which are known precisely without any knowledge
uncertainties. Model uncertainties occur due to the non-unique choice of possible functionals, an often difficult calibration
procedure or uncertainties regarding the range of usage of the model. In case of an incremental data acquisition the process of
modeling and calibration often leads to an open-ended process.

We briefly summarize the framework. The mechanical system with /m material points is characterized by the strain field
e={e. €R? e=1,...,m} and the stress field 0 = {0, € R?, e = 1,...,m}. The system state may be viewed as a point
z = {z.}"_, in the global phase space Z = R™?*™¢_The global phase space is equipped with a suitable norm

m

21 = lie.)I* = 3 we (Ceee - e + € o - 2 ). M

e=1

which defines a measure of distance with the metric coefficients C.. Hereby, w. denotes the volume of material point e.
In addition, we define the global data set D = Dy x --- x D,, as the collection of local data sets D, which consists of
experimental data. A global data point y; € D is then one possible assignment of local data points ¥, ; to each material point.
The physical constraints are given by equilibrium and compatibility

> w.Blo, = f, ()
e=1
€c=Beu, e=1,...m, (2b)

whereby B, is the gradient operator relating the displacement field « to the strain field in material point e, given suitable
boundary conditions for u and the force field f.

These constraints are then encoded by the constraint set £ C Z which contains all states z € Z satisfying Eqs. 2. The
so-called min-dist solution is then defined by the data point closest to the constraint set:

. 2
ymp = min [[y; — z| ©)
yi €D
with the closest point projection

i = Pg(y;) = mi — yil? 4
= Pe(y) = min |z — @
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20f6 Section 6: Material modelling in solid mechanics

onto the constraint set F/. As presented in [1], the closest point projection is solved by two linear, decoupled systems of
equations

i w,BTC.B, | u= Em: weB;‘F(Cee’e_’i (52)

e=1 e=1

(Z weBeT(CeBe> n=f-> wBlo,, (5b)
e=1 e=1

for a given data point y; = {¢, ;, 0; ; }7-;. The closest compatible state z; = {€c i, 0c i 7, is then given by

€e,i = Beu (6a)
Oci = oéyi + C.B.n. (6b)

It should be noted that a direct evaluation of Eq. (3) is of combinatorial complexity since the number of possible assignments
of local data points to material points (size of D) grows exponentially with the number of material points. To overcome
this, [1] proposed a heuristic solver scheme which iterates between the projection operation defined by Eqs. (5)-(6) and a
nearest neighbor (NN) search which finds the optimal local data point

. L 2
arg min [Ye,i — 2ell @)

with respect to the current state z.. Since the overall performance depends crucially on an efficient NN search, [2] investi-
gated various data structures and approximate NN search techniques for elastic problems. While the k-means tree seems the
most appropriate data structure for the elastic case, the kKNN-graph shows interesting properties for incremental problems, as
elaborated in Section 2. As also noted in [3, 4], the heuristic solver scheme does not necessarily find the global minimizer.

1.2 Extension to inelasticity

In [5], the framework was extended to inelastic problems. The principial idea was to restrict the data set to the admissible data
given the deformation history, for which several parametrization techniques were presented. One particular choice of such a
parametrization is

De,kJrl = {ye,i,k:Jrl S De : ye,i,k} (8)

whereby the data is labeled by time markers for time steps k. The associated solver then computes the optimal (i.e. closest to
E),—1) data point ¥; 41 € Dy41 while simultaneously minimizing the distance between its "history point" y; . € D, and the
compatible state from the last time step zj. It should be noted that this parametrization captures only the short-term memory
and is not sufficient for data involving long-term effects such as isotropic hardening. In addition, the parametrization Eq. (8)
requires that the (pseudo) time discretization in the data has to match the time discretization of the evolving constraint set
FE4+1. This makes in particular computations for rate-independent plasticity difficult, since it imposes an artificial constraint
on the rate of deformation. This issue will be further addressed in Section 2. In this work, we make in addition use of the
second law of thermodynamics, as was proposed first by [6] in the present context. Therein, the availability of thermodynamic
quantities such as free energy or dissipation was motivated by the raise of high-fidelity micro-mechanical models used for data
acquisition. In the discretized form, the dissipation inequality reads

1
§(Ué,i7k+l +00ik) (Ceinir = €oir) = Weipr1 —Yein) =0 )
which restricts the attainable data points yz41 to those satisfying the second law of thermodynamics. We note, that the linear
approximation of the mechanical work increment in Eq. (9) restricts the time step size in the regime of non-linear material
behavior.

The rest of the paper is structured as follows. In Section 2, we propose an efficient data search method tailored around
Eq. (9) using a deformation rate independent history parametrization. In Section 3 we discuss a strategy to make non-intrusive
use of commercial finite element solver for the presented data-driven framework. In Section 4 we present a numerical example
featuring a 2-d continuum boundary value problem with rate-independent plasticity using the proposed methods. We conclude
the work and give an outlook for future work in Section 5.

2 Graph search

In [2], the performance of the k nearest neighbor (kNN) graph data structure was investigated for the nearest neighbor search
for elastic problems defined in Eq. (7). Here, we extend the graph search to inelastic problems under constraint Eq. (9). At the
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initialization of the kNN graph, each data point . ; stores its k nearest neighbors N; C D,. For elastic problems, the search
starts at an initial data point g, ; and proceeds with optimal moves

Ye,i ¢ arg yr?ler}\/ Ve, — zell? (10)

until [|ye ; — zel|? > ||Ye,i — 2¢|? forall y. ; € N;. Since the search is performed only locally, it is not guaranteed to find
the true nearest neighbor, or global minimum of Eq. (7). On the other side, this local search scheme is in particular efficient
when an appropriate starting point can be provided, which is the case for inelastic problems. Due to its incremental nature the
solution of the last time step can be used as an appropriate starting point, thus accelerating the kNN graph search.

We proceed by including the dissipation inequality by restricting A; only to data points which allow thermodynamically
consistent moves, that is

1
ATC {y NG 50ty 40l (el =€) = (WL, = V) 2 0} | "

One should note the subtle difference to Eq. (9). While in Eq. (9) the constraint is imposed on the whole time step, by Eq. (11)
has imposes the constraint on each move. We argue that, if each move within the graph is thermodynamical consistent,
the constraint is also fulfilled for the whole time step. Imposing the constraint by Eq. (11) by has the advantage that the
admissible moves can be pre-computed offline. In addition, since only small, local moves are subject to the constraint,
the linear approximation of the mechanical work holds also for non-linear time steps. However, restriction (11) alone is
not sufficient. We complement the parametrization by a constraint on the deformation history. In particular, we propose a
parametrization based on the mechanical work increment which is independent of the rate, thus avoiding the problems of
parametrization (8) as discussed above. In [5], a history variable is re-interpreted as a variable which stores partial information
of the stress strain history. Keeping this in mind, we define the history variable

Ge,i = Z

k=1

(Oein+0ein1) (€ir—€ir1) (12)

N =

as the total mechanical work to reach data point y,. ;. Hereby, we have assumed that the ordering of the data path of length &;
to point . ; and y. ;.0 = (0, 0) is known. With this at hand, we define the subset

1
N = L € N[00+ 010 (s = €)= s~ )

< TOL} (13)

as all data points within the graph neighbors which are consistent with the measured work increment. Finally, we apply both
constraints (11, 13)

NE = NTCnAYe (14)

which defines the admissible graph neighborhood, as also illustrated in Fig. (1). Finally, these constraints define the graph
structure used for the nearest neighbor search scheme as given in Eq. (10).

(a) (b)

Fig. 1: Visualization of the constraints on a 1-d plasticity data set with isotropic hardening. a) Graph neighborhood after application of the
dissipation inequality constraint (11). Green data points denote ;' ©. b) Graph neighborhood after application of both constraints (11,13).
Green data points denote A;"C N AVC. Red data points denote the non-admissible neighborhood around blue center points ye ;.
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3 Using commercial solvers

An important aspect for the further application of the data-driven computing paradigm [1] is the usability of commercial finite
element codes for the equilibrium projection (5). To the authors knowledge, this was not explicitly addressed in the literature
so far. However, a few aspects have to be carefully considered. Since no functional relationship between stresses and strains is
assumed, the number of degrees of freedom is doubled by introducing the Lagrange multipliers 7. Even though it is possible
to implement a data-driven solver with user-elements featuring additional degrees of freedom and included data sets, we argue
that this approach has besides technical difficulties also conceptual drawbacks.

In particular, we emphasize the modular nature of the present framework. First, the two systems of equations (5) are
decoupled and linear, even for non-linear material behavior. Therefore, only a single decomposition has to be performed.
Secondly, the data search is decoupled from the equilibrium projection. In particular, concepts for history parametrizations
for inelastic material behavior concern only the data search, and are not involved in equilibrium and compatibility. Lastly, the
data storage and data acquisition are decoupled from the solver process. This has not only the advantage that large data sets
have not to be loaded by the FE-solver, but also simplifies the collaborative work between structural analysts and material data
specialists from experimental science or micro-scale modeling. Decoupling leads to a query-based usage of the FE-solver,
complementing the query-based usage of the data search. Hereby, a data point (the query) is processed by the two linear elastic
problems to compute the closest compatible state (the return value). This concept is also illustrated in Fig. (2).

{E’ 70"}
/’ FE - tool
_

Q
[
—-
I I ”
1
7]
(]
-
7]

material B DD - solver _
- * data selection
material C + data structure z = Pp(y)
(€ o\ initialization
/’ - BVP initialization
» do while: 65
data - search N — equilibrium \&
Yy =NN(z) projection
k-d tree — NN - search

k-means tree /
kNN-graph S\e,dx

Fig. 2: Concept map for the modular parts of the data-driven computing paradigm. Green arrows are data point queries/return values, red
arrows are compatible state queries/return values.

However, a suitable interface to the FE-solver is required. The global stiffness matrix can be assembled by linear elastic
standard elements with the metric coefficients C, as stiffness. User-element implementations can thus be avoided. However,
two boundary value problems has to be set up to consider the different boundary conditions of the sub-problems (5a) and
(5b). The key observation for the interface is that the to be projected data points can be included non-intrusively as an
initial stress field. For systems (5a) and (5b) we set {Cce, ;}72 and {0} ;}{2; as initial stress field, respectively. Such an
interface was developed for the commercial FE software ABAQUS using its .odb format for data exchange, demonstrated in
the Section 4. However, the performance suffers currently due to the repeated calls to the software without dedicated interface.

p—
u(t)
f—
—
: 1 (]
v 1 . . . . .
0.3 0.7 Fig. 3 Boundary value problem with a prescribed, non-proportional displacement u(¢).
© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Independent from this, we belief that the presented concept gives a guideline for developing and using software for data-driven
computations.

4 Results

In order to verify the proposed method, we consider the 2-d continuum plate with a hole example shown in Fig. 3. The
prescribed displacement w(t) is increased to 0.1 and then decreased back to 0, resulting in residual stresses due to the plastic
material behavior. For verification purposes, the material data was obtained from the reference solution using a plane stress,
isotropic hardening von Mises plasticity model with elastic material parameters £ = 1000 MPa, v = 0.3 and yield stress
oy = 50 MPa. The data set contains in total 400000 data points, with metric coefficients C. chosen to the elastic stiffness
matrix. The mesh consists of 500 elements with 4 integration points, that is, m = 2000. In Fig. 4 the contour plots of the
von Mises residual stress after unloading are shown for the reference and data-driven solution. The good agreement indicates
that the proposed method captures successfully the inelastic behavior. Hereby, we have chosen the number of graph neighbors
k = 500.

Finally, we investigate the influence of the number of graph neighbors on accuracy and CPU time in Fig. 5. In Fig. 5b)
the error, computed by the norm defined in Eq. (1), in the last time step is shown in dependency on the number of graph

S, Mises

S, Mises
(Avg: 75%)

(Avg: 75%)
+1.032e+02

+7.303e4+00

+7.041e+00 |

(a) (b)

Fig. 4: Von Mises residual stress after unloading. a) Reference solution. b) Data-driven solution using graph search using ABAQUS for
equilibrium projections.

o
o

q) —
= 5
o <
‘E 0 Reference ;3
:8 —— 100-NN Eb/ 0.4
3 20 o z
= —— 400NN < 02
—— 500-NN
-40 0.0
0.000 0.025 0.050 0.075 0.100 100 200 300 400 500
displacement k = number of graph neighbors
(a) (b)
— 14
£,
o
£
512
o
&
10

100 200 300 400 500

k = number of graph neighbors
(o)

Fig. 5: Influence of number of graph neighbors on accuracy and CPU time. a) displacement vs. reaction force. b) Distance (error) of the
final load step. ¢) CPU times for different numbers of & using an user FE code.
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neighbors. However, Fig. 5a) indicates, that the error is mainly introduced by the unloading point, which becomes critical for
lower number of graph neighbors. The CPU times shown in Fig. 5 are obtained from computations on a 12-Core AMD Ryzen
9 3900X machine, using a self-developed user FE code for the projection operation. We note, that the CPU times using the
ABAQUS interface are currently much higher due to additional interface costs. However, we conclude that the run-time with
FE codes which has a dedicated interface is competitive in comparison to classical computations.

5 Conclusions

In this work, we have presented the data-driven computing paradigm with concepts for inelastic material behavior. We pro-
posed the kKNN-graph as an efficient search algorithm for data sets parametrized by the second law of thermodynamics. In
addition, we proposed a history parametrization based on the mechanical work increment avoiding a rate-dependency. We
presented a strategy to use commercial solver in a decoupled manner. Finally, we have demonstrated the proposed methods
by a 2-d continuum example with plastic material behavior. Possible future works will cover sampling strategies for data
acquisition with micro-mechanical models.
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