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Abstract

Conditionals are useful for modelling many forms of everyday human reason-

ing but are not always sufficiently expressive to represent the information we

want to reason about. In this paper, we make a case for a form of situated

conditional. By ‘situated’, we mean that there is a context, based on an agent’s

beliefs and expectations, that works as background information in evaluating

a conditional, and we allow such a context to vary. These conditionals are

able to distinguish, for example, between expectations and counterfactuals. For-

mally, they are shown to generalise the conditional setting in the style of Kraus,

Lehmann, and Magidor. We show that situated conditionals can be described in

terms of a set of rationality postulates. We then propose an intuitive semantics

for these conditionals and present a representation result which shows that our

semantic construction corresponds exactly to the description in terms of postu-

lates. With the semantics in place, we define a form of entailment for situated

conditional knowledge bases, which we refer to as minimal closure. Finally, we

proceed to show that it is possible to reduce the computation of minimal clo-

sure to a series of propositional entailment and satisfiability checks. While this

is also the case for rational closure, it is somewhat surprising that the result

carries over to minimal closure.

Keywords: Conditional reasoning, non-monotonic reasoning, counterfactual

reasoning, defeasible reasoning, belief revision
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1. Introduction

Conditionals are at the heart of human everyday reasoning and play an

important role in the logical formalisation of reasoning. They can usually be

interpreted in many ways: as necessity [2, 3], as presumption [4, 5, 6], norma-

tive [7, 8], causal [9, 10], probabilistic [11, 12, 13], counterfactual [14, 15], and5

many others. Two very common interpretations that are also strongly intercon-

nected are conditionals representing expectations (‘If it is a bird, then presum-

ably it flies’) and conditionals representing counterfactuals (‘If Napoleon had

won at Waterloo, the whole of Europe would be speaking French’). Although

they are connected by virtue of being conditionals, the types of reasoning they10

aim to model differ somewhat. For instance, in the first example above, the

premise of the conditional is consistent with what is believed, while in the sec-

ond example, the premise is inconsistent with an agent’s beliefs. That this point

is problematic can be made concrete with an extended version of the (admittedly

overused) penguin example.15

Example 1.1. Suppose we know that birds usually fly, that penguins are birds

that usually do not fly, that dodos were birds that usually did not fly, and that

dodos do not exist anymore. As outlined in more detail in Example 3.1 later on,

the standard preferential semantic approach to representing conditionals [5] is

limited in that it allows for two forms of representation of an agent’s beliefs. On20

the one, it would be impossible to distinguish between atypical (exceptional) enti-

ties, such as penguins, and non-existing entities, such as dodos (they are equally

exceptional). On the other, it would be possible to draw this type of distinction,

but at the expense of being unable to reason coherently about counterfactuals—

the agent would be forced to conclude anything from the (nowadays absurd) ex-25

istence of dodos.

By ‘reasoning coherently’ about counterfactuals, we mean being able to de-

rive new information in a non-trivial way, formalising reasoning patterns that
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can be recognised as ‘rational’. As mentioned in the above example and for-

mally exemplified in Example 3.1 later on, using the classical semantic solutions30

to reason simultaneously about what is actually plausible and what is counter-

factually plausible has some strong limitations. For example, the formalism we

use could force us to reason about counterfactuals in a trivial way, relying on

the ex falso quodlibet principle. In this work, we introduce a logic of situated

conditionals to overcome precisely this problem. By ‘situated’, we mean that35

there is a context, based on an agent’s beliefs and expectations, which works

as background information in evaluating a conditional. This is particularly im-

portant when we consider counterfactual conditionals. The central insight is

that adding an explicit notion of situation to standard conditionals allows for a

refined semantics of this enriched language in which the problems described in40

Example 1.1 can be dealt with adequately. It also allows us to reason coherently

with counterfactual conditionals such as ‘Had Mauritius not been colonised, the

dodo would not fly’1. That is, the premise of a counterfactual can be inconsis-

tent with the agent’s beliefs without lapsing into the triviality of the ex falso

quodlibet principle. Moreover, it is possible to reason coherently with situated45

conditionals without knowing whether their premises are plausible or counter-

factual. In the case of penguins and dodos, for example, it allows us to state

that penguins usually do not fly in a situation where penguins exist and that

dodos usually do not fly in a situation where dodos also exist while being un-

aware of whether or not penguins and dodos actually exist. At the same time, it50

remains possible to make classical statements specifying what necessarily holds

(e.g., stating that penguins and dodos are birds as a necessary fact).

Counterfactual and defeasible reasoning have been important topics of re-

search in knowledge representation and reasoning since the beginning of the AI

endeavour [16, 17]. Still, they have usually been formalised as the same form of55

conditional reasoning. While research on defeasible reasoning has always been

1The extinction of dodos in the 17th century is considered to be a consequence of the

colonisation of Mauritius.
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quite active, the importance of counterfactuals in AI has become more appar-

ent only recently, especially considering the role that counterfactuals play in

causal reasoning [18] and in eXplainable AI (XAI) [19, 20, 21]. The increasing

attention in the area of XAI to this topic means that a detailed formal analysis60

of counterfactuals and their associated reasoning systems is not just a timely

research endeavour but a necessary one. In this context, we put forward a

framework for managing both counterfactual reasoning and reasoning based on

expectations—one that avoids some of the limitations associated with previous

conditional approaches based on a preferential semantics.65

The remainder of the paper is organised as follows. Section 2 outlines the

formal background on propositional logic and on the preferential approach to

conditionals on which our work is based. Section 3 is the heart of the paper. It

describes the language of situated conditionals, furnishes it with an appropriate

and intuitive semantics, and motivates the corresponding logic through exam-70

ples, formal postulates, and a formal representation result. With the basics of

the logic in place, Section 4 defines a form of entailment for it that is based on

the well-known notion of rational closure [5]. As such, it plays a role similar

to the one that rational closure plays for reasoning with conditionals—it is a

basic form of entailment on which other forms of logical consequence can be con-75

structed. Section 5 shows that, from a computational perspective, the version

of entailment we propose in the previous section is reducible to classical propo-

sitional reasoning. Section 6 reviews related work, while Section 7 concludes

and considers future avenues to explore. Long proofs are in the appendix.

2. Formal background80

In this paper, we assume a finite set of propositional atoms P and use p, q, . . .

as metavariables to denote its elements. Sentences of the underlying proposi-

tional language are denoted by α, β, . . ., and are built up from the atomic propo-

sitions and the standard Boolean connectives in the usual way. The set of all

propositional sentences is denoted by L.85
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A valuation (alias world) is a function from P into {0, 1}. The set of all

valuations is denoted U , and we use u, v, . . . to denote its elements. Whenever

it eases presentation, we represent valuations as sequences of atoms (e.g., p)

and barred atoms (e.g., p), with the usual understanding. As an example, if

P = {b, f, p}, with the atoms standing for, respectively, ‘being a bird’, ‘being a90

flying creature’, and ‘being a penguin’, then the valuation bfp conveys the idea

that b is true, f is false, and p is true.

With v ⊩ α we denote the fact that the valuation v satisfies the sentence α.

Given α ∈ L, with JαK def= {v ∈ U | v ⊩ α} we denote its models. For X ⊆ L,

JXK def=
⋂

α∈XJαK. We say X ⊆ L (classically) entails α ∈ L, denoted X |=95

α, if JXK ⊆ JαK. Given a set of valuations V , sent(V ) indicates a sentence

characterising the set V . That is, sent(V ) is a propositional sentence satisfied

by all, and only, the valuations in V .

2.1. KLM-style rational defeasible consequence

A defeasible consequence relation |∼ is a binary relation on L. Intuitively,

the fact that (α, β) ∈|∼, which is usually represented as the statement α |∼ β,

captures the idea that “β is a defeasible consequence of α”, or, in other words,

that “if α, then usually (alias normally, or typically) β”. The relation |∼ is said

to be preferential [4] if it satisfies the well-known KLM preferential postulates

below:

(Ref) α |∼ α (LLE)
|= α ↔ β, α |∼ γ

β |∼ γ

(And)
α |∼ β, α |∼ γ

α |∼ β ∧ γ
(Or)

α |∼ γ, β |∼ γ

α ∨ β |∼ γ

(RW)
α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ

α ∧ γ |∼ β

If on top of the preferential postulates the relation |∼ also satisfies the fol-

lowing rational monotonicity postulate, then |∼ is said to be rational :

(RM)
α |∼ β, α ̸|∼ ¬γ

α ∧ γ |∼ β
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The merits of these postulates have been addressed extensively in the liter-100

ature [4, 22], and we shall not repeat them here.

A suitable semantics for rational consequence relations is provided by or-

dered structures called ranked interpretations (alternative semantics have also

been proposed in the literature, in particular, Spohn’s ordinal conditional func-

tions [23]).105

Definition 2.1 (Ranked Interpretation). A ranked interpretation R is a

total function from U to N∪{∞}, satisfying the following convexity property:

for every u ∈ U and every i ∈ N, if R(u) = i, then, for every j s.t. 0 ≤ j < i,

there is a u′ ∈ U for which R(u′) = j.

For a given ranked interpretation R and valuation v, we denote with R(v)110

the rank of v. The number R(v) indicates the degree of atypicality of v. So the

valuations judged most typical are those with rank 0, while those with an infinite

rank are deemed so atypical as to be seen as implausible. We can therefore

partition the set U w.r.t. R into the set of plausible valuations Uf
R

def= {u ∈ U |

R(u) ∈ N}, and implausible valuations U∞
R

def= U \ Uf
R. It goes without saying115

that Uf
R or U∞

R (but not both) can be empty. (Throughout the paper, we shall

use the symbol f to refer to finiteness.) With JiKR, for i ∈ N∪{∞}, we indicate

all the valuations with rank i in R (we omit the subscript whenever it is clear

from the context).

Assuming P = {b, f, p}, with the intuitions as above, Figure 1 below shows120

an example of a ranked interpretation.

∞ pbf pbf

2 pbf

1 pbf pbf

0 pbf pbf pbf

Figure 1: A ranked interpretation for P = {b, f, p} with both Uf
R and U∞

R nonempty.

Let R be a ranked interpretation and let α ∈ L. Then JαKfR
def= Uf

R ∩ JαK,
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and minJαKfR
def= {u ∈ JαKfR | R(u) ≤ R(v), for all v ∈ JαKfR}. A defeasible

consequence relation α |∼ β can be given an intuitive semantics in terms of

ranked interpretations as follows: α |∼ β is satisfied in R (denoted R ⊩ α |∼ β)125

if minJαKfR ⊆ JβK, with R referred to as a ranked model of α |∼ β. In the

example in Figure 1, we have R ⊩ b |∼ f, R ⊩ ¬(p → b) |∼ ⊥, R ⊩ p |∼ ¬f,

R ̸⊩ f |∼ b, and R ⊩ p ∧ ¬b |∼ b. It is easily verified that R ⊩ ¬α |∼ ⊥ if and

only if Uf
R ⊆ JαK. Hence we frequently abbreviate ¬α |∼ ⊥ as α. Two defeasible

statements α |∼ β and γ |∼ δ are said to be rank equivalent if they have the130

same ranked models, i.e., if for every ranked interpretation R, R ⊩ α |∼ β if

and only if R ⊩ γ |∼ δ.

The correspondence between rational consequence relations and ranked in-

terpretations is formalised by the following representation result.

Theorem 2.1 (Lehmann & Magidor [5]; Gärdenfors & Makinson [24]). A de-135

feasible consequence relation |∼ is rational iff there is a ranked interpretation R

such that, for every pair of formulae α and β, α |∼ β iff R ⊩ α |∼ β.

2.2. Rational closure

It is possible to represent knowledge as a set of defeasible statements and to

use such a set to infer other defeasible statements from it. This is the stance140

adopted by Lehmann and Magidor [5]. A conditional knowledge base C is a finite

set of defeasible statements of the form α |∼ β, with α, β ∈ L. As before, in

knowledge bases, we shall also abbreviate ¬α |∼ ⊥ with α. As an example, let

C = {b |∼ f, p → b, p |∼ ¬f}.

Given a conditional knowledge base C, a ranked model of C is a ranked145

interpretation satisfying all statements in C. As it turns out, the ranked in-

terpretation in Figure 1 is a ranked model of the above C. It is not hard to

see that, in every ranked model of C, the valuations bfp and bfp are deemed

implausible—note, however, that they are still possible from a logical point of

view, which is the reason why they feature in all ranked interpretations.150

A conditional knowledge base C is consistent if it has a ranked model R s.t.

J0KR ̸= ∅. That is, C is consistent if it has a ranked model R that does not
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satisfy ⊤ |∼ ⊥. Two conditional knowledge bases are rank equivalent if they

have exactly the same ranked models.

An important reasoning task in this setting is determining which conditionals155

follow from a conditional knowledge base. Of course, even when interpreted as

a conditional in (and under) a given knowledge base C, |∼ is expected to adhere

to the postulates of Section 2.1. Intuitively, that means whenever appropriate

instantiations of the premises in a postulate are sanctioned by C, so should the

suitable instantiation of its conclusion.160

To be more precise, we can take the defeasible conditionals in C as the core

elements of a defeasible consequence relation |∼C . By closing the latter under

the preferential postulates (in the sense of exhaustively applying them as rules),

we get a preferential extension of |∼C . Since there can be more than one such

extension, the most cautious approach consists in taking their intersection. The165

resulting set, which also happens to be closed under the preferential postulates,

is the preferential closure of |∼C , which we denote by |∼C
PC . It turns out that

the preferential closure of |∼C contains exactly the conditionals entailed by C.

(Hence, the notions of closure of and entailment from a conditional knowledge

base are two sides of the same coin.)170

The same process and definitions from above carry over when one requires

the defeasible consequence relations also to be closed under the rule RM, in

which case we talk of rational extensions of |∼C . Nevertheless, as pointed out

by Lehmann and Magidor [5, Section 4.2], the intersection of all such rational

extensions does not generally yield a rational consequence relation: it coincides175

with preferential closure and, therefore, may fail RM. Among other things,

this means that the corresponding entailment relation, which is called rank

entailment and defined as C |=R α |∼ β if every ranked model of C also satisfies

α |∼ β, is monotonic (in that it is defined as a standard Tarskian entailment

relation). Therefore rank entailment falls short of being a suitable form of180

entailment in a defeasible reasoning setting. As a result, several alternative

notions of entailment from conditional knowledge bases have been explored in

the literature on non-monotonic reasoning [25, 26, 27, 28, 29, 30, 31], with
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rational closure [5] commonly acknowledged as the ‘gold standard’ in the matter.

Rational closure (RC) is a form of inferential closure extending the notion185

of rank entailment above. It formalises the principle of presumption of typi-

cality [25, p. 63], which, informally, specifies that a situation (in our case, a

valuation) should be assumed to be as typical as possible (w.r.t. background

information in a knowledge base).

Multiple equivalent characterisations of RC have been proposed [5, 32, 26,190

33, 34], and here we rely on the one by Giordano and others [29]. Assume an

ordering ⪯C on all ranked models of a knowledge base C, which is defined as

follows: R1 ⪯C R2, if, for every v ∈ U , R1(v) ≤ R2(v). Intuitively, ranked

models lower down in the ordering correspond to descriptions of the world in

which the typicality of each situation (valuation) is maximised. It is easy to195

see that ⪯C is a weak partial order. Giordano et al. [29] showed that there is

a unique ⪯C-minimal element. The rational closure of C is defined in terms of

this minimum ranked model of C.

Definition 2.2 (Rational Closure). Let C be a conditional knowledge base, and

let RC
RC be the minimum element of ⪯C on ranked models of C. The rational200

closure of C is the defeasible consequence relation |∼C
RC

def= {α |∼ β | RC
RC ⊩

α |∼ β}.

As an example, Figure 1 shows the minimum ranked model of C = {b |∼

f, p → b, p |∼ ¬f} w.r.t. ⪯C . Hence we have that ¬f |∼ ¬b is in the rational

closure of C (but note it is not in the preferential closure of C).205

Observe that there are two levels of typicality at work for rational closure,

namely within ranked models of C, where valuations lower down are viewed as

more typical, but also between ranked models of C, where ranked models lower

down in the ordering are viewed as more typical. The most typical ranked

model RC
RC is the one in which valuations are as typical as C allows them to be210

(the principle of presumption of typicality we alluded to above).

Rational closure is commonly viewed as the basic (although certainly not

the only acceptable) form of non-monotonic entailment, on which other, more
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venturous forms can be and have been constructed [25, 35, 36, 30, 31].

3. Situated conditionals215

We now turn to the heart of the paper, the introduction of a logic-based

formalism for the specification of and reasoning with situated conditionals. For

a more detailed motivation, let us consider a more technical version of the

penguin-dodo example introduced in Section 1.

Example 3.1. We know that birds usually fly (b |∼ f), and that penguins are220

birds (p → b) that usually do not fly (p |∼ ¬f). Also, we know that dodos were

birds (d → b) that usually did not fly (d |∼ ¬f), and that dodos do not exist

anymore. Using the standard ranked semantics (Definition 2.1), we have two

ways of modelling the information above.

The first option is to formalise what an agent believes by referring to the225

valuations with rank 0 in a ranked interpretation. That is, the agent believes α

is true if and only if ⊤ |∼ α holds. In such a case, ⊤ |∼ ¬d means that the agent

believes that dodos do not exist. The minimal model for this conditional knowl-

edge base is shown in Figure 2 (left). The main limitation of this representation

is that all exceptional entities have the same status as dodos since they cannot230

be satisfied at rank 0. Hence, one of the consequences of the agent’s beliefs is

the statement ⊤ |∼ ¬p, just as we have ⊤ |∼ ¬d, and, as a result, we are not

able to distinguish between the status of the dodos (they do not exist anymore)

and the status of the penguins (they do exist and are simply exceptional birds).

The second option is to represent what an agent believes in terms of all235

valuations with finite ranks. That is, an agent believes α to hold if and only if

¬α |∼ ⊥ holds. If dodos do not exist, we add the statement d |∼ ⊥. The minimal

model for this case is depicted in Figure 2 (right). Here we can distinguish

between what is considered false (dodos exist) and what is exceptional (penguins),

but we are unable to reason coherently about counterfactuals since from d |∼ ⊥240

we can conclude anything about dodos (via |= ⊥ → α and RW, for any α ∈ L).
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∞ U \ (J0K ∪ J1K ∪ J2K)

2 pdbf pdbf pdbf

1 pdbf pdbf pdbf pdbf

0 pdbf pdbf pdbf

∞ U \ (J0K ∪ J1K ∪ J2K)

2 pdbf

1 pdbf pdbf

0 pdbf pdbf pdbf

Figure 2: Left: minimal ranked model of the KB in Example 3.1 satisfying ⊤ |∼ ¬d. Right:

minimal ranked model of the KB expanded with d |∼ ⊥.

A situated conditional (SC for short) is a statement of the form α |∼γ β,

with α, β, γ ∈ L, which is read as ‘given the situation γ, β usually holds on

condition that α holds’. Formally, a situated conditional |∼ is a ternary relation

on L. We shall write α |∼γ β as an abbreviation for ⟨α, β, γ⟩ ∈ |∼. To provide245

a suitable semantics for SCs, we define a refined version of the ranked inter-

pretations of Section 2 that we refer to as epistemic interpretations. Following

the provision of the semantics, we illustrate it with a representative example in

Example 3.2.

A ranked interpretation can differentiate between plausible valuations (those250

in Uf
R) but not between implausible ones (those in U∞

R ). In contrast, an epis-

temic interpretation can also tell implausible valuations apart. We thus dis-

tinguish between two classes of valuations: plausible valuations with a finite

rank, and implausible valuations with an infinite rank. Within implausible val-

uations, we further distinguish between those considered as possible and those255

that would be impossible. This is formalised by assigning to each valuation u

a tuple of the form ⟨f, i⟩, where i ∈ N, or ⟨∞, i⟩, where i ∈ N ∪ {∞}. The f

in ⟨f, i⟩ is meant to indicate that u has a finite rank, while the ∞ in ⟨∞, i⟩ is

intended to denote that u has an infinite rank, where finite ranks are viewed

as more typical than infinite ranks. Implausible valuations that are considered260

possible have an infinite rank ⟨∞, i⟩, where i ∈ N, while those considered impos-

sible have the infinite rank ⟨∞,∞⟩, where ⟨∞,∞⟩ is taken to be less expected

than any of the other infinite ranks.

To capture this formally, let Rk def= {⟨f, i⟩ | i ∈ N} ∪ {⟨∞, i⟩ | i ∈ N ∪ {∞}}

denote henceforth the set of all possible ranks. We define the total ordering ⪯265
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over Rk as follows: ⟨x1, y1⟩ ⪯ ⟨x2, y2⟩ if x1 = x2 and y1 ≤ y2, or x1 = f and

x2 = ∞, where i < ∞ for all i ∈ N.

Definition 3.1 (Epistemic Interpretation). An epistemic interpretation E

is a total function from U to Rk for which the following convexity property

holds: ( i) for every u ∈ U and every i ∈ N, if E (u) = ⟨f, i⟩, then, for all j270

s.t. 0 ≤ j < i, there is a uj ∈ U s.t. E (uj) = ⟨f, j⟩, and ( ii) for every u ∈ U and

every i ∈ N, if E (u) = ⟨∞, i⟩, then, for all j s.t. 0 ≤ j < i, there is a uj ∈ U

s.t. E (uj) = ⟨∞, j⟩.

Observe that the version of convexity satisfied by epistemic interpretations

is a straightforward extension of the convexity of ranked interpretations (Defini-275

tion 2.1). Figure 3 depicts an epistemic interpretation in our running example.

⟨∞,∞⟩ Jp ∧ ¬bK ∪ Jd ∧ ¬bK

⟨∞, 1⟩ pdbf pdbf

⟨∞, 0⟩ pdbf pdbf

⟨f, 2⟩ pdbf

⟨f, 1⟩ pdbf pdbf

⟨f, 0⟩ pdbf pdbf pdbf

Figure 3: Epistemic interpretation for P = {b, d, f, p}.

Casini et al. [37] have a similar definition of epistemic interpretations, but

they do not allow for the rank ⟨∞,∞⟩.

We let Uf
E

def= {u ∈ U | E (u) = ⟨f, i⟩, for some i ∈ N} and U∞
E

def= {u ∈ U |

E (u) = ⟨∞, i⟩, for some i ∈ N}. Note that U∞
E does not contain valuations280

with rank ⟨∞,∞⟩. We let minJαKE
def= {u ∈ JαK | E (u) ⪯ E (v), for all v ∈

JαK}, minJαKfE
def= {u ∈ JαK ∩ Uf

E | E (u) ⪯ E (v), for all v ∈ JαK ∩ Uf
E }, and

minJαK∞E
def= {u ∈ JαK ∩ U∞

E | E (u) ⪯ E (v), for all v ∈ JαK ∩ U∞
E }.

Observe that epistemic interpretations are allowed to have no plausible valua-

tions (Uf
E = ∅), as well as no implausible valuations that are possible (U∞

E = ∅).285

This means it is possible that E (u) = ⟨∞,∞⟩ for all u ∈ U , in which case
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E ⊩ α |∼γ β, for all α, β, γ (cf. Definition 3.2 below). Epistemic interpretations

also allow for cases where all valuations are possible (that is, either plausible

or implausible but possible). This corresponds to the case where an epistemic

interpretation does not have any valuation with rank ⟨∞,∞⟩.290

Armed with the notion of epistemic interpretation, we can provide an intu-

itive semantics to situated conditionals.

Definition 3.2 (Satisfaction and Generation of Situated Conditionals). Let E

be an epistemic interpretation and let α, β, γ ∈ L. We say E satisfies α |∼γ β,

denoted as E ⊩ α |∼γ β and often abbreviated as α |∼E
γ β, if minJα ∧ γKfE ⊆ JβK, if JγK ∩ Uf
E ̸= ∅;

minJα ∧ γK∞E ⊆ JβK, otherwise.

We say that E generates the situated conditional |∼ if, for every α, β, γ ∈ L,

⟨α, β, γ⟩ ∈|∼ iff α |∼E
γ β.

Intuitively, the satisfaction of situated conditionals works as follows. If the295

situation γ is compatible with the plausible part of E (the valuations in Uf
E ),

then α |∼γ β holds if the most typical plausible models of α∧ γ are also models

of β. On the other hand, if the situation γ is not compatible with the plausible

part of E , i.e., all models of γ have an infinite rank, then α |∼γ β holds if the

most typical implausible (but possible) models of α ∧ γ are also models of β.300

An immediate corollary of Definition 3.2 is that the rational conditionals

defined in terms of ranked interpretations can be simulated with SCs by setting

the situation to ⊤.

Definition 3.3 (Extracted Ranked Interpretation). For an epistemic interpre-

tation E , we define the ranked interpretation RE extracted from E as305

follows: for u ∈ Uf
E , RE (u) = i, where E (u) = ⟨f, i⟩, and RE (u) = ∞ for

u ∈ U \ Uf
E .

Corollary 3.1. Let E be an epistemic interpretation. Then RE ⊩ α |∼ β iff

E ⊩ α |∼⊤ β.
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Proof. Assume E ⊩ α |∼⊤ β. Then, by definition, we have minJα∧⊤KfE ⊆ JβK if310

Uf
E ̸= ∅, and minJα∧⊤K∞E ⊆ JβK otherwise. If the former is the case, then, by the

construction of RE , we have minJαKfRE ⊆ JβK, and therefore RE ⊩ α |∼ β. If,

instead, the latter holds, then JαKfE = ∅, from which it follows that JαKfRE = ∅,

and therefore RE ⊩ α |∼ β. For the other direction, assume RE ⊩ α |∼ β. If

JαKfRE = ∅, then, from the construction of RE , we have JαKfE = ∅, from which315

we get E ⊩ α |∼⊤ β. If JαKfRE ̸= ∅, then, since minJαKfRE ⊆ JβK, we must have

minJαKfE ⊆ JβK, too. From the latter it follows that minJα ∧ ⊤KfE ⊆ JβK, and

therefore E ⊩ α |∼⊤ β.

The principal advantage of situated conditionals and their associated en-

riched semantics in terms of epistemic interpretations is that they allow us to320

represent different degrees of epistemic involvement, with the finite ranks (the

plausible valuations) representing the expectations of an agent. So ⊤ |∼⊤ α

being satisfied in E indicates that α is expected. What an agent believes to be

true corresponds to what is true in all the valuations with finite ranks. That is,

the agent believes α to be true if and only if E ⊩ ¬α |∼⊤ ⊥, and we will abbre-325

viate ¬α |∼⊤ ⊥ with α, extending to epistemic interpretations the convention

introduced above for ranked interpretations (see Section 2.2).

Another advantage of our framework is that it also allows for reasoning

counterfactual: we can express that dodos would not fly if they existed in a

coherent way. We can talk about dodos in a counterfactual situation or context,330

for example, assuming that Mauritius had never been colonised (¬mc): the

conditional d |∼¬mc ¬f is read as ‘In the situation of Mauritius not having been

colonised, the dodo would not fly’. Importantly, we can reason coherently with a

situated conditional, even when not knowing whether its premises are plausible

or counterfactual. To do so, it is sufficient to introduce statements of the form335

α |∼α β. If α is plausible, this conditional is evaluated in the context of the

finite ranks, exactly as if α |∼⊤ β were being evaluated. On the other hand, if

α |∼⊤ ⊥ holds, α |∼α β will be evaluated referring to the infinite ranks. So, in

the case of penguins and dodos, p |∼p ¬f and d |∼d ¬f express the information
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that penguins usually do not fly in the situation of penguins existing, and that340

dodos usually do not fly in the situation of dodos existing, regardless of whether

the agent is aware of penguins or dodos existing or not. In contrast, a statement

such as d |∼⊤ ¬f cannot be used to reason counterfactually about dodos, once

we are aware that they do not exist (that is, d |∼⊤ ⊥): given the latter, once we

consider all the valuations satisfying ⊤ (that is, all the valuations), we have to345

evaluate every defeasible conditional d |∼ α (for any α) looking at the valuations

with finite ranks. In all such valuations, the sentence d is not satisfied; hence any

SC d |∼⊤ α, for any α, would be satisfied. Also, note that it is still possible to

impose that something necessarily holds, both in plausible and counterfactual

situations. The conditional α |∼α ⊥ holds only in epistemic interpretations350

in which all valuations satisfying α have ⟨∞,∞⟩ as their rank. The following

example illustrates these claims more concretely.

Example 3.2. Consider the following rephrasing of the statements in Exam-

ple 3.1. ‘Birds usually fly’ becomes b |∼⊤ f. Defeasible information about pen-

guins and dodos are modelled using p |∼p ¬f and d |∼d ¬f. Given that dodos355

don’t exist anymore, the statement d |∼⊤ ⊥ leaves open the existence of dodos in

the infinite ranks, which allow for coherent reasoning under the assumption that

dodos exist (the situation d). Moreover, information such as dodos and penguins

necessarily being birds can be modelled by the conditionals p ∧ ¬b |∼p∧¬b ⊥ and

d ∧ ¬b |∼d∧¬b ⊥, relegating the valuations in Jp ∧ ¬bK ∪ Jd ∧ ¬bK to the rank360

⟨∞,∞⟩. Figure 3 (below Definition 3.1) shows a model of these statements.

(We shall address how certain models of given conditionals are excluded from

the picture in Section 4, where we define a suitable form of entailment from a

set of situated conditionals.)

Next, we consider the class of situated conditionals from the perspective of

a list of situated rationality postulates in the KLM style. We start with the
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following ones:

(Ref) α |∼γ α (LLE)
|= α ↔ β, α |∼γ δ

β |∼γ δ

(And)
α |∼γ β, α |∼γ δ

α |∼γ β ∧ δ
(Or)

α |∼γ δ, β |∼γ δ

α ∨ β |∼γ δ

(RW)
α |∼γ β, |= β → δ

α |∼γ δ
(RM)

α |∼γ β, α ̸|∼γ ¬δ
α ∧ δ |∼γ β

Observe that they correspond exactly to the original KLM postulates, except365

that the notion of situation has been added. As for α and β, the γ occurring in

the postulates should be viewed as a meta-variable ranging over L.

Definition 3.4 (Basic Situated Conditional). An SC |∼ is a basic situated

conditional (BSC, for short) if it satisfies the situated rationality postulates.

An immediate corollary of this definition is that for a BSC with the situa-370

tion γ fixed, |∼γ is a rational conditional. We then get the following result.

Theorem 3.1. Every epistemic interpretation generates a BSC (see Defini-

tion 3.2). Nevertheless, the converse does not hold, i.e., some BSCs cannot be

generated by any epistemic state.

The reason why the converse of Theorem 3.1 does not hold is that the struc-

ture of a BSC is completely independent of the situation γ referred to in the

situated KLM postulates. As a very simple instance of this problem, observe

that BSCs are not even syntax-independent w.r.t. the situation. That is, we

may have α |∼γ β but α ̸|∼δ β, where γ ≡ δ. To put it another way, a BSC is

simply a rational defeasible consequence relation with the situation playing no

role in determining the BSC’s structure. To remedy this, we require BSCs to

satisfy the following additional postulates:

(Inc)
α |∼γ β

α ∧ γ |∼⊤ β
(Vac)

⊤ ̸|∼⊤ ¬γ, α ∧ γ |∼⊤ β

α |∼γ β

(Ext)
γ ≡ δ

α |∼γ β iff α |∼δ β
(SupExp)

α |∼γ∧δ β

α ∧ γ |∼δ β
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(SubExp)
δ |∼⊤ ⊥, α ∧ γ |∼δ β

α |∼γ∧δ β

We shall refer to these as the situated AGM postulates for reasons to be375

outlined below.

Definition 3.5 (Full Situated Conditional). A BSC is a full SC (FSC) if it

satisfies the situated AGM postulates.

One way to interpret the addition of a situation to conditionals, from a

technical perspective, is to think of it as similar to belief revision. That is, α |∼γ380

β can be thought of as stating that if a revision with γ has taken place, then β

will hold on condition that α holds. With this view of situated conditionals,

the situated AGM postulates above are seen as versions of the AGM postulates

for belief revision [38]. The names of these postulates were chosen with the

names of their AGM analogues in mind. The situated AGM postulates can be385

motivated intuitively as follows.

Together, Inc and Vac require that when the situation (or revision with) γ

is compatible with what is currently plausible, then a conditional w.r.t. the sit-

uation γ (a ‘revison by’ γ) is the same as a conditional where the situation is ⊤

(where there is no ‘revision’ at all), but with γ added to the premise of the390

conditional. Ext ensures that BSCs are syntax-independent of the situation.

Finally, SupExp and SubExp together require that if the situation δ is implau-

sible (that is, the ‘revision’ with δ is incompatible with what is plausible), then

a conditional w.r.t. the situation γ ∧ δ (a ‘revision by’ γ ∧ δ) is the same as

a conditional where the situation (or ‘revision’) is δ, but with γ added to the395

premise of the conditional.

It turns out that FSCs are characterised by epistemic interpretations, result-

ing in the following representation result.

Theorem 3.2. Every epistemic interpretation generates an FSC. Every FSC

can be generated by an epistemic interpretation.400

The AGM-savvy reader may have noticed that the following two obvious

analogues of the suite of situated AGM postulates are missing from our list
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above.

(Succ) α |∼γ γ (Cons) ⊤ |∼γ ⊥ iff γ ≡ ⊥

Succ requires situations to matter: a ‘revision’ by γ will always be success-

ful. Cons states that we obtain an inconsistency only when the situation is

inconsistent.

It turns out that Succ holds for epistemic interpretations: it follows from

the combination of the situated KLM and AGM postulates. On the other hand,405

just one direction of Cons holds.

Corollary 3.2. Every FSC satisfies Succ, but there are FSCs for which Cons

does not hold. However, the right-to-left direction of Cons holds: If γ ≡ ⊥, then

⊤ |∼γ ⊥.

Proof. To prove that Succ holds, it suffices, by Theorem 3.1, to show that410

E ⊩ α |∼γ γ for all epistemic interpretations E and all α, γ. To see that this

holds, observe that Jα ∧ γKE ⊆ JγKE .

To prove that Cons does not hold, it suffices, by Theorem 3.1, to show that

there is an epistemic interpretation E such that E ⊩ ⊤ |∼γ ⊥ but γ ̸≡ ⊥. To

construct such an E , let Uf
E = U∞

E = ∅ (and so E (u) = ⟨∞,∞⟩ for all u ∈ U).415

It is easy to see that by picking any γ s.t. γ ̸≡ ⊥ the result follows.

To prove that if γ ≡ ⊥ then ⊤ |∼γ ⊥, note that, by Definition 3.2 and

Theorem 3.2, ⊤ |∼γ ⊥ iff minJ⊤ ∧ γK∞E ⊆ J⊥K whenever γ ≡ ⊥, which holds

since minJ⊤ ∧ γK∞E = J⊥K = ∅.

We conclude this section by considering the following two properties.

(Incons) α |∼⊥ β (Cond) If γ ̸|∼⊤ ⊥, then α ∧ γ |∼⊤ β iff α |∼γ β

Incons requires that all conditionals hold when the situation is inconsistent,420

while Cond requires that conditionals w.r.t. the situation γ be equivalent to the

same conditional with γ added to the premise and with a tautologous situation

(i.e., the situation is ⊤), provided that γ is not inconsistent w.r.t. the tautologous

situation.

18



Proposition 3.1. Every FSC satisfies Incons and Cond.425

Proof. To prove that Incons holds, it suffices, by Theorem 3.1, to show that E ⊩

α |∼⊥ β for all epistemic interpretations E , and all α, β. To see that this holds,

observe that Jα ∧ ⊥KE = ∅.

To prove that Cond holds, it suffices, by Theorem 3.1, to show that if E ̸⊩

γ |∼⊤ ⊥, then E ⊩ α∧γ |∼⊤ β iff E ⊩ α |∼γ β for all epistemic interpretations E ,430

and all α, β, γ. So, suppose that E ̸⊩ γ |∼⊤ ⊥. By Definition 3.2, this means

that Uf
E ∩ JγK ̸= ∅ and also that Uf

E ∩ J⊤K ̸= ∅. From this, by Definition 3.2, we

need to show that Jα ∧ γ ∧ ⊤KfE ⊆ JβK iff Jα ∧ γKfE ⊆ JβK for the result to hold,

which follows immediately.

4. Reasoning with Situated Conditionals435

The previous section provides a framework for characterising the class of full

situated conditionals in terms of epistemic interpretations. In this section, we

move to an investigation of how we can reason within this framework. More

precisely, the question of interest is the following: given a finite set of situated

conditionals, or a situated conditional knowledge base (SCKB) KB, which situ-440

ated conditionals can be said to be entailed from it? That is, for example, given

an SCKB consisting of the conditionals ‘birds typically fly’ (b |∼⊤ f), ‘penguins

are birds’ (p∧¬b |∼p∧¬b ⊥), ‘emperor penguins are penguins’ (ep∧¬p |∼ep∧¬p ⊥),

and ‘penguins typically do not fly’ (p |∼p ¬f), should or should we not derive

that emperor penguins typically do not fly (ep |∼ep ¬f)? In a non-monotonic445

framework, it is generally not appropriate to consider entailment relations that

are Tarskian in nature, i.e., that determine the consequences of a knowledge

base by looking at what holds in all the models of the knowledge base. This is

because such entailment relations are, by definition, monotonic: let KB and KB′

be two SCKB’s s.t. KB ⊆ KB′, and let α |∼γ β be a consequence of KB. That450

is, it is satisfied by every model of KB. Since every model of KB′ is also a model

of KB, α |∼γ β is satisfied by every model of KB′ too. That is, α |∼γ β is also

a consequence of KB′. Because of monotonicity, if we reason with a Tarskian
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approach in a conditional setting, we are relegated to very weak inferences. For

example, if we only know that ‘birds typically fly’ (b |∼⊤ f) and ‘robins are birds’455

(r∧¬b |∼r∧¬b ⊥), we could not even draw a simple conclusion based on property

inheritance such as ‘robins typically fly’ (r |∼r f), since the initial information

can also be satisfied by interpretations in which robins are atypical non-flying

birds. Hence in a monotonic framework, we cannot, for example, reason under

the principle of presumption of typicality [25], assuming that everything behaves460

according to our expectations unless we are explicitly informed that this is not

the case.

Since Tarskian inference relations tend to be too weak, inferentially speak-

ing [5], in the framework of non-monotonic reasoning, more suitable entailment

relations can be defined by choosing a single model of the knowledge base that465

satisfies some desirable postulates. It is generally accepted that there is not a

unique entailment relation for defeasible reasoning, with different forms of en-

tailment being dependent on the kind of reasoning one wants to model [25, 31].

In the framework of preferential semantics, rational closure, recalled in Sec-

tion 2, is generally recognised as a core form of entailment, with other suitable470

forms of entailment being refinements of rational closure.

We now define a form of entailment for situated conditionals, which we call

minimal closure (MC). It is based on a semantic construction that reformulates

in the framework of situated conditionals the semantic construction charac-

terising rational closure for defeasible conditionals: we adapt the notion of a475

minimal model [29], recalled in Section 2, for our framework, and show that for

any SCKB the minimal model is unique.

In the rest of the section, we proceed as follows: we first define the notion of

consistency in the present setting. Then, we connect the notions of satisfaction

in epistemic states for situated and classic conditionals, respectively. Such a con-480

nection, expressed in particular by the content of Corollary 4.1 below, allows us

to use known results, regarding entailment relations for defeasible conditionals

in ranked interpretations, for the definition of an entailment relation for situated

conditionals and epistemic interpretations. In particular, using known results
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about minimal ranked models [29], we can define our minimal closure on top of485

the well-known rational closure. Moving from that, in Section 5, we define a

decision procedure for entailment that is based on a series of decision steps for

classical propositional logic.

Starting from rational closure, which is defined for defeasible conditionals

and ranked interpretations, we define minimal closure, defined for situated con-490

ditionals and epistemic interpretations, using the connections between the for-

mer framework and the latter one. First, we can extend the notion of consis-

tency for defeasible conditionals to situated conditionals. We have seen (Section

2.2) that a set C of defeasible conditionals is consistent if and only if it has a

ranked model R s.t. J0KR ̸= ∅. Such a condition indicates that the agent has495

a consistent set of expectations since such a model does not satisfy the condi-

tional ⊤ |∼ ⊥, which captures absurdity in the conditional framework. This

condition can easily be translated into our framework.

Definition 4.1 (SCKB Consistency). An SCKB is consistent if it has an

epistemic model E s.t. J⟨f, 0⟩KE ̸= ∅.500

In other words, an SCKB is consistent if it has an epistemic model E that

does not satisfy ⊤ |∼⊤ ⊥. J⟨f, 0⟩KE is a notation for epistemic interpretations

that mirrors the notation J0KR for ranked interpretations, that is, J⟨x, y⟩KE

represents the set of worlds that have rank ⟨x, y⟩ in E . On the other hand, given

Corollary 3.1, ⊤ |∼⊤ ⊥ is a situated conditional that has the same meaning as505

the defeasible conditional ⊤ |∼ ⊥, that is, an agent believing ⊤ |∼⊤ ⊥ believes

to be in an inconsistent situation since it expects ⊥ to hold.

Given Corollary 3.1, we can intuitively introduce a notion of satisfaction of

defeasible conditionals also for epistemic interpretations:

E ⊩ α |∼ β iff E ⊩ α |∼⊤ β

Note that an epistemic interpretation E satisfies exactly the same defeasi-

ble conditionals of its extracted ranked interpretation RE (see Definition 3.3).

That is, the ranks specified in the interval U∞
E ∪ J⟨∞,∞⟩K are totally irrelevant510
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w.r.t. the satisfaction of the defeasible conditionals of the form α |∼ β. We can

also intuitively define the converse operation w.r.t. the extraction of a ranked

interpretation from an epistemic one (Definition 3.3): we can extract an epis-

temic interpretation from a given ranked interpretation. Such an extraction is

simply a direct translation of the ranks of the ranked interpretations into the515

formalism of the epistemic interpretations, simply associating the value ⟨∞,∞⟩

to all the worlds that have the rank ∞ in the ranked interpretation.

Definition 4.2 (Extracted Epistemic Interpretation). For a ranked interpreta-

tion R, we define the epistemic interpretation E R extracted from R as

follows: for u ∈ Uf
R, E R(u) = ⟨f, i⟩, where R(u) = i, and E R(u) = ⟨∞,∞⟩,520

for u ∈ U \ Uf
R.

It is easy to see that R and E R are equivalent w.r.t. the satisfaction of

defeasible conditionals.

The following corollary of Proposition 3.1, which is simply a semantic refor-

mulation of the postulate Cond, will be central in connecting the satisfaction of525

situated conditionals to that of defeasible ones.

Corollary 4.1. For every epistemic interpretation E , if Uf
E ∩ JγK ̸= ∅, then

E ⊩ α |∼γ β iff E ⊩ α ∧ γ |∼ β.

Proof. Since it is just a semantic reformulation of the postulate Cond, it follows

directly from the proof that Cond holds (Proposition 3.1).530

Given Corollary 4.1, we define a simple transformation of situated condi-

tional knowledge bases.

Definition 4.3. Let KB be an SCKB; with KB∧ we denote its conjunctive

classical form, defined as follows: KB∧ def= {α ∧ γ |∼ β | α |∼γ β ∈ KB}.

We can use the conjunctive classical form to define two models for an SCKB:535

the classical epistemic model and the minimal epistemic model. The former will

allow us to prove that checking the logical consistency of an SCKB can be

reduced to a consistency check in propositional logic (see Corollary 4.2 below).
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The latter is the epistemic model, which characterises the MC of an SCKB.

Given an SCKB KB, both its classical epistemic model and its minimal epistemic540

model are defined starting from the minimal ranked model of its conjunctive

classical form KB∧ (see Definitions 4.4 and 4.6 below).

Definition 4.4 (Classical Epistemic Model). Let KB be an SCKB, KB∧ its con-

junctive classical form, and R the minimal ranked model of KB∧. The classical

epistemic model of KB is the epistemic interpretation E R extracted from R545

(see Definition 4.2).

Since R is a ranked model of KB∧, so is E R. We need to check whether E R

is also a model of KB.

Proposition 4.1. Let KB be an SCKB, and let E R be defined as in Defini-

tion 4.4. Then, we have that E R is a model of KB.550

Proof. Let α |∼γ β ∈ KB. Since E R is an epistemic model of KB∧ and we have

Corollary 4.1, if JγK ∩ Uf
E R ̸= ∅, then we conclude E R ⊩ α |∼γ β. Otherwise,

suppose JγK ∩ Uf
E R = ∅. Since E R is an extracted epistemic interpretation

(Definition 4.2), its only infinite rank is ⟨∞,∞⟩, and we have JγK ⊆ J⟨∞,∞⟩K,

which implies Jα ∧ γK ⊆ J⟨∞,∞⟩K, which in turn implies E R ⊩ α |∼γ β.555

From Proposition 4.1 and Corollary 4.1, we can prove the following result.

Proposition 4.2. Let KB be an SCKB. KB has an epistemic model with

J⟨f, 0⟩K ̸= ∅ iff KB∧ has a ranked model with J0K ̸= ∅.

Proof. Proposition 4.1 and Definitions 4.2 and 4.4 show that if KB∧ has a ranked

model with J0K ̸= ∅, then KB has an epistemic model with J⟨f, 0⟩K ̸= ∅. For the

opposite direction, assume that KB has an epistemic model E s.t. J⟨f, 0⟩KE ̸= ∅.

From E , we define an epistemic model Erk in the following way:

Erk(u) =

 E (u), if E (u) = ⟨f, i⟩ for some i;

⟨∞,∞⟩, otherwise.

Clearly J⟨f, 0⟩KErk
̸= ∅. It is easy to check that Erk is an epistemic model

of KB. Moreover, thanks to Corollary 4.1, we can prove that it is also an560
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epistemic model of KB∧: for every α |∼γ β ∈ KB, if JγK ∩ Uf
Erk

̸= ∅, then Erk ⊩

α ∧ γ |∼ β by Corollary 4.1; if JγK ∩ Uf
Erk

= ∅, then Jα ∧ γK ⊆ J⟨∞,∞⟩K, and we

can conclude Erk ⊩ α ∧ γ |∼ β.

Let R be the ranked model corresponding to Erk, that is,

R(u) =

 i, if Erk(u) = ⟨f, i⟩ for some i;

∞, otherwise.

We have that J⟨f, 0⟩KErk
̸= ∅ implies J0K ̸= ∅. Since for every pair of val-

uations u, v in U , u is preferred to v in Erk iff u is preferred to v in R, it is565

easy to see that if Erk is an epistemic model of KB∧, then R is a ranked model

of KB∧.

Proposition 4.2 tells us that the consistency of an SCKB KB corresponds to

the consistency of the conditional knowledge base KB∧, the conjunctive form

of KB. By linking the satisfaction of an SCKB KB to the satisfaction of its con-

junctive form KB∧, we can define a simple method for checking the consistency

of an SCKB, based on the materialisation KB∧ of KB∧. The materialisation C

of a set of defeasible conditionals C is the set of material implications corre-

sponding to the conditionals in C, defined in the following way:

C def= {α → β | α |∼ β ∈ C}

Corollary 4.2. An SCKB KB is consistent iff KB∧ ̸|= ⊥.

This corollary is an immediate consequence of Proposition 4.2 and the well-

known property that a finite set of defeasible conditionals is consistent if and570

only if its materialisation is a consistent propositional knowledge base [5, Lemma

5.21].

Example 4.1. Consider an SCKB KB = {α |∼α ⊥,⊤ |∼⊤ α∧β}. The meaning

of α |∼α ⊥ is that α is necessarily false, while ⊤ |∼⊤ α ∧ β indicates that the

agent presumes that α ∧ β holds (see Example 3.2). Clearly, this is a simple575

inconsistent knowledge base since it is not rational to consider α as presumably
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true and necessarily false at the same time. In fact, its only epistemic model is

the epistemic model in which all the worlds have rank ⟨∞,∞⟩.

We can actually check the inconsistency of KB easily: according to Proposi-

tion 4.2, KB has an epistemic model with J⟨f, 0⟩K ̸= ∅ iff KB∧ has a ranked580

model with J0K ̸= ∅, and, in turn, KB∧ has a ranked model with J0K ̸= ∅

iff KB∧ ̸|= ⊥ (Corollary 4.2). KB∧ = {α ∧ α |∼ ⊥,⊤ ∧ ⊤ |∼ α ∧ β}, and

KB∧ = {(α∧α) → ⊥, (⊤∧⊤) → α∧ β}, which is logically equivalent to the set

{¬α, α ∧ β}, which is clearly inconsistent (that is, KB∧ |= ⊥).

Hence, the classical epistemic model allows reducing SCKB consistency check-585

ing to a simple propositional satisfiability checking. This is because it is a direct

translation of a ranked interpretation into an equivalent epistemic interpreta-

tion. At the same time, since classical epistemic models do not cater for an

immediate definition of appropriate forms of entailment (at least in a non-

monotonic setting), we now move to the definition of the minimal epistemic590

model, referring to the minimality order introduced for ranked interpretations

in Section 2. We need to adapt, in an intuitive way, the notion of minimality

defined for ranked interpretations to the present framework. In Section 3, we

defined a total ordering ⪯ over the tuples ⟨x, y⟩ representing the ranks in epis-

temic interpretations. Let the ordering ⪯KB on all the epistemic models of an595

SCKB KB be defined as follows: E1 ⪯KB E2, if, for every v ∈ U , E1(v) ⪯ E2(v).

We use E1 ≺KB E2 to denote its strict counterpart (E1 ⪯KB E2 and E2 ̸⪯KB E1).

Definition 4.5 (Minimal Epistemic Model). Let KB be a consistent SCKB,

and EKB be the set of its epistemic models. E ∈ EKB is a minimal epistemic

model of KB if there is no E ′ ∈ EKB s.t. E ′ ≺KB E .600

We first define the construction of a model, given a consistent SCKB KB.

Then we prove that it is actually the unique minimal epistemic model of KB

w.r.t. the ordering ≺KB.

Definition 4.6 (Construction of a Minimal Epistemic Model). Let KB be a

consistent SCKB, KB∧ its conjunctive classical form, and let R be the mini-605
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mal ranked model of KB∧. We pick out in a set KB∞ the conditionals in KB

associated with a situation that has infinite rank in R, that is,

• KB∞
def= {α |∼γ β ∈ KB | R(γ) = ∞}.

And from KB∞ we define the set KB∧
∞↓:

• KB∧
∞↓

def= {α ∧ γ |∼ β | α |∼γ β ∈ KB∞} ∪ {sent(Uf
R) |∼ ⊥}.610

We construct the interpretation EKB in the following way:

1. For every u ∈ Uf
R, if R(u) = i, then EKB(u) = ⟨f, i⟩;

2. Let R′ be the minimal ranked model of KB∧
∞↓. For every u ∈ U∞

R ,

if R′(u) = i, with i ∈ N ∪ {∞}, then EKB(u) = ⟨∞, i⟩.

Definition 4.6 proceeds as follows. First, we want to partition the condition-615

als that can be considered plausible (that is, the associated situation can be

satisfied by valuations with a finite rank) from those that must be considered

implausible (that is, the associated situation can be satisfied only by valuations

with infinite ranks). This is the set KB∞. According to Definition 3.2, given

an epistemic interpretation, a conditional α |∼γ β is evaluated w.r.t. plausible620

valuations if and only if γ is satisfied by some plausible valuation. It is eval-

uated w.r.t. implausible valuations otherwise. Given an SCKB KB, γ is not

satisfied by any plausible valuation in any model of KB if and only if γ |∼⊤ ⊥ is

satisfied by every model of KB, which, by Corollaries 4.1 and 3.1, justifies the

use of the minimal ranked model R of the conjunctive form KB∧ for identifying625

KB∞. We then specify the minimal configuration satisfying KB, considering

first the finite ranks, and then the infinite ones. Corollary 4.1 tells us that,

w.r.t. the plausible situations (i.e., finite ranks), the minimal configuration is

associated with the conjunctive classical form. Hence, we refer again to the

minimal ranked model R of KB∧ to decide the configuration of the plausible630

valuations (Point 1 in Definition 4.6). We move to configure the infinite ranks,

which need to have the minimal configuration satisfying KB∞, the counterfac-

tual conditionals in our knowledge base. In order to decide such a configuration,
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we consider KB∧
∞↓: all the conditionals in KB∞, plus the conditional negating

the formula characterising all the plausible valuations (sent(Uf
R) |∼ ⊥). The635

idea behind the use of KB∧
∞↓ is as follows. We want to construct a minimal

ranking of the counterfactual situations. In order to do that, we need to con-

sider matters from the perspective of being in the counterfactual situations.

To do that, we introduce sent(Uf
R) |∼ ⊥. In this way, all the situations that

are plausible w.r.t. KB are now considered impossible, and the plausible situa-640

tions w.r.t. KB∧
∞↓ are the ones that were counterfactual w.r.t. KB. The rank of

the implausible valuations in EKB is then determined by the rank of the same

valuations in the minimal model of KB∧
∞↓: R′ defines the minimal configura-

tion satisfying the conditionals in KB∧
∞↓, and, at Point 2 in Definition 4.6, we

put such a configuration ‘on top’ of the finite ranks to define EKB. There is645

the possibility that the conditional knowledge base KB∧
∞↓ is not consistent (see

Section 2.2). In such a case, Definition 4.6 still holds: the only model of KB∧
∞↓

is the one associating to every valuation the rank ∞, and consequently for every

u ∈ U∞
R , EKB(u) = ⟨∞,∞⟩.

We need to prove that EKB is an epistemic model of KB, and that, moreover,650

it is the unique minimal epistemic model of KB.

Let E be an epistemic interpretation. We build an interpretation E ∞
↓ , the

counterfactual shifting of E , in the following way. For every valuation u,

E ∞
↓ (u) def=

 ⟨f, i⟩, if E (u) = ⟨∞, i⟩, with i < ∞;

⟨∞,∞⟩, otherwise.

Intuitively, E ∞
↓ simply shifts the infinite ranks in E to the finite ranks.

For E ∞
↓ , we can prove a lemma corresponding to Corollary 4.1.

Lemma 4.1. For every epistemic interpretation E , if Uf
E ∩ JγK = ∅, then E ⊩

α |∼γ β iff E ∞
↓ ⊩ α ∧ γ |∼ β.655

Using Corollary 4.1 and Lemma 4.1, it becomes easy to prove that EKB is

indeed an epistemic model of KB.

Proposition 4.3. Let KB be a consistent SCKB, and let EKB be the epistemic

interpretation built as in Definition 4.6. Then, EKB is an epistemic model of KB.
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Proof. Let KB∞ be defined as in Definition 4.6. We distinguish two possible660

cases.

• α |∼γ β ∈ KB \ KB∞, that is, EKB(γ) = ⟨f, i⟩, for some i. By the

construction of EKB (Definition 4.6), EKB is an epistemic model of KB∧,

that is, it is an epistemic model of α ∧ γ |∼ β. From Corollary 4.1, it

follows that EKB ⊩ α |∼γ β.665

• α |∼γ β ∈ KB∞, that is, EKB(γ) = ⟨∞, i⟩, for some i. By the construction

of EKB (Definition 4.6), EKB is an epistemic model of KB∧, that is, it

is an epistemic model of α ∧ γ |∼ β. Let E ∞
KB↓ be the counterfactual

shifting of EKB. From Lemma 4.1, we know that, since E ∞
KB↓ ⊩ α∧ γ |∼ β,

E ∞
KB↓ ⊩ α |∼γ β holds. Since Jα ∧ γKEKB = Jα ∧ γK∞EKB

= Jα ∧ γKE ∞
KB↓

,670

for every u ∈ U , we have u ∈ Jα ∧ γKE ∞
KB↓

iff u ∈ Jα ∧ γKEKB , that is,

EKB ⊩ α |∼γ β.

Therefore, for every α |∼γ β ∈ KB, we have EKB ⊩ α |∼γ β, and the result

follows.

We proceed by showing that EKB above is actually the only minimal epis-675

temic model of KB.

Proposition 4.4. Let KB be a consistent SCKB, and let EKB be the epistemic

interpretation built as in Definition 4.6. Then EKB is the only minimal epistemic

model of KB.

Example 4.2. Assume the SCKB KB = {b |∼⊤ f, p |∼p ¬f, d |∼d ¬f, d |∼⊤680

⊥, p ∧ ¬b |∼p∧¬b ⊥, d ∧ ¬b |∼d∧¬b ⊥} from Example 3.2. Then we have KB∧ =

{b∧⊤ |∼ f, p∧p |∼ ¬f, d∧d |∼ ¬f, d∧⊤ |∼ ⊥, p∧¬b∧p∧¬b |∼ ⊥, d∧¬b∧d∧¬b |∼

⊥}, which is rank equivalent to {b |∼ f, p |∼ ¬f, d |∼ ¬f, d |∼ ⊥, p ∧ ¬b |∼

⊥, d∧¬b |∼ ⊥}. Figure 4 depicts the minimal ranked model of KB∧. Following

Definition 4.6, we have KB∞ = {d |∼d ¬f, p ∧ ¬b |∼p∧¬b ⊥, d ∧ ¬b |∼d∧¬b ⊥}.685

From KB∞, we get KB∧
∞↓ = {d ∧ d |∼ ¬f, p ∧ ¬b ∧ p ∧ ¬b |∼ ⊥, d ∧ ¬b ∧ d ∧

¬b |∼ ⊥, (p → b) ∧ ¬d |∼ ⊥}, which is rank equivalent to {d |∼ ¬f, p ∧ ¬b |∼
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⊥, d ∧ ¬b |∼ ⊥, (p → b) ∧ ¬d |∼ ⊥} (note that (p → b) ∧ ¬d |∼ ⊥ ∈ KB∧
∞↓ since

(p → b) ∧ ¬d |∼ ⊥ corresponds to the conditional sent(Uf
R) |∼ ⊥, as indicated

in Definition 4.6). Following Steps 1 and 2 in Definition 4.6, we construct690

the minimal epistemic model of the original knowledge base, which is shown in

Figure 5.

∞ U \ (J0K ∪ J1K ∪ J2K)

2 pdbf

1 pdbf, pdbf,

0 pdbf, pdbf, pdbf

Figure 4: Minimal ranked model of KB∧ in Example 4.2.

The minimal closure of KB is defined in terms of the minimum epistemic

model of KB constructed in this way.

Definition 4.7 (Minimal Entailment and Closure). α |∼γ β is minimally

entailed by an SCKB KB, denoted as KB |=m α |∼γ β, if EKB ⊩ α |∼γ β,

where EKB is the minimal model of KB. The corresponding closure operation

Cm(KB) def= {α |∼γ β | KB |=m α |∼γ β}

is the minimal closure of KB.695

Example 4.3. We proceed from Example 4.2. Looking at the model in Figure 5,

we are able to check what is minimally entailed. For every α |∼γ β ∈ KB,

KB |=m α |∼γ β. In particular, while KB |=m d |∼⊤ ⊥, we do not have

KB |=m d |∼d ⊥, that is, it is possible to reason counterfactually about dodos.

From the point of view of the actual situation (that is, in the situation ⊤), we700

can conclude anything about dodos, since they do not exist. Indeed, we have

both KB |=m d |∼⊤ ¬f and KB |=m d |∼⊤ f. Nevertheless, we are able to reason

coherently about dodos once we assume a point of view in which they would exist.

To witness, we have KB |=m d |∼d ¬f, but KB ̸|=m d |∼d f.
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⟨∞,∞⟩ Jp ∧ ¬bK ∪ Jd ∧ ¬bK

⟨∞, 1⟩ pdbf, pdbf

⟨∞, 0⟩ pdbf, pdbf

⟨f, 2⟩ pdbf

⟨f, 1⟩ pdbf, pdbf

⟨f, 0⟩ pdbf, pdbf, pdbf

Figure 5: Minimal epistemic model of the knowledge base in Example 4.2.

Definition 4.6 shows that the minimal epistemic model can be defined us-705

ing the minimal ranked models for two sets of defeasible conditionals, KB∧

and KB∧
∞↓. If a valuation is associated with a finite rank i in the minimal

ranked model of KB∧, then we associate to it the corresponding rank ⟨f, i⟩ in

the minimal epistemic model. All the other valuations, those that have rank

∞ in the minimal model of KB∧, will have a rank determined by the minimal710

ranked model of KB∧
∞↓: for each one of such valuations, if its rank in the min-

imal model of KB∧
∞↓ is i (i ∈ N ∪ {∞}), it will have the rank ⟨∞, i⟩ in the

minimal epistemic model.

As we are going to see in the next section, since the construction of the min-

imal epistemic model relies on the construction of two minimal ranked models,715

it is possible to decide whether an SC is in the minimal entailment of an SCKB

fully relying on a series of propositional decision steps.

5. Computing entailment from situated conditional knowledge bases

In this section, we define a procedure to decide whether a conditional is in

the minimal closure of an SCKB. The procedure is described by Algorithm 6,720

MinimalClosure, and it relies on a series of propositional entailment checks.

Hence, it can be implemented on top of any propositional reasoner.

We will start by looking at Algorithms Exceptional (1), ComputeRanking (2),

Rank (3), and RationalClosure (4), which formalise known procedures (see the
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work of Freund [39] and of Casini and Straccia [40, Section 2]) that together725

define a decision procedure for rational closure (RC). As indicated in Section 2,

on the semantic side, the RC of a knowledge base C containing defeasible con-

ditionals can be characterised using the minimal ranked model RC
RC [29], that

is, α |∼ β is in the RC of a set of defeasible conditionals C if and only if

RC
RC ⊩ α |∼ β (Definition 2.2).730

It has been proved [39, 40] that α |∼ β is in the RC of C, that is, RC
RC ⊩

α |∼ β, if and only if RationalClosure(C, α |∼ β) returns true. In what

follows, we provide an explanation of all the algorithms involved in the process.

We shall often refer to Figure 1 (repeated in Figure 6 below for the reader’s

convenience), which is the minimal ranked model of the knowledge base C =735

{b |∼ f, p |∼ ¬f, p ∧ ¬b |∼ ⊥}.

∞ bfp, bfp

2 bfp

1 bfp, bfp

0 bfp, bfp, bfp

Figure 6: Minimal ranked model of the knowledge base C = {b |∼ f, p |∼ ¬f, p ∧ ¬b |∼ ⊥}.

• Exceptional(C) (Algorithm 1) takes as input a finite set C of defeasible

conditionals and gives back the exceptional elements, that is, the con-

ditionals α |∼ β s.t. ⊤ |∼ ¬α holds in the minimal ranked model of C.

For example, from Figure 6, one can check that the conditionals p |∼ ¬f740

and p ∧ ¬b |∼ ⊥ are exceptional, since none of the valuations in layer 0

satisfies p, and in fact Exceptional(C) = {p |∼ ¬f, p ∧ ¬b |∼ ⊥}. The

procedure fully relies on a series of decision steps in classical propositional

logic, since it uses the materialisation of the KB C (see Section 4).

• ComputeRanking(C) (Algorithm 2) ranks each conditional in the KB C745

w.r.t. its exceptionality level. E0 contains all the conditionals, E1 the

exceptional ones w.r.t. E0, and so on. E∞ contains the fixed point of
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the exceptionality procedure, that is, the conditionals having antecedents

that cannot be satisfied in any valuation that is ranked as finite in any

ranked model of C. ComputeRanking(C) returns E0 = C = {b |∼ f, p |∼750

¬f, p ∧ ¬b |∼ ⊥}, E1 = {p |∼ ¬f, p ∧ ¬b |∼ ⊥}, E∞ = {p ∧ ¬b |∼ ⊥}.

• Rank(C, α) (Algorithm 3) decides the rank of a proposition, that is, the low-

est rank in the minimal ranked model containing a valuation that satisfies

the proposition. For example, the reader can check that Rank(C,¬p) = 0,

Rank(C, p) = 1, Rank(C, p ∧ f) = 2, Rank(C, p ∧ ¬b) = ∞, values that, for755

each of the propositions, correspond exactly to the lowest layer in the min-

imal ranked model in which there is a valuation satisfying the proposition

(see Figure 6).

• RationalClosure(C, α |∼ β) (Algorithm 4) tells us whether α |∼ β is in

the RC of C, that is, whether RC
RC ⊩ α |∼ β. For example, RationalClosure(C, p |∼760

¬f) is true, since: Rank(C, p) = 1, E1 = {p |∼ ¬f, p ∧ ¬b |∼ ⊥}, and

E1 ∪ {p} |= ¬f.

Note that all the procedures fully rely on a series of decision steps in classical

propositional logic.

Algorithm 1: Exceptional(C)
input : a set of defeasible conditionals C

output: E ⊆ C s.t. E is exceptional w.r.t. C

1 E := ∅

2 C := {α → β | α |∼ β ∈ C}

3 foreach α |∼ β ∈ C do

4 if C |= ¬α then

5 E := E ∪ {α |∼ β}

6 end

7 end

8 return E
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Algorithm 2: ComputeRanking(C)
input : a set of defeasible conditionals C

output: an exceptionality ranking rC

1 i := 0

2 E0 := C

3 E1 := Exceptional(E0)

4 while Ei+1 ̸= Ei do

5 i := i+ 1

6 Ei+1 := Exceptional(Ei)

7 end

8 E∞ := Ei
9 rC := (E0, . . . , Ei−1, E∞)

10 return rC

Algorithms Partition (5) and MinimalClosure (6) are novel. They define a765

procedure to decide minimal entailment |=m, given an SCKB, and they are built

on top of ComputeRanking, Rank, and RationalClosure. Let us go through

them:

• Partition(KB) (Algorithm 5) takes as input an SCKB KB and identifies

the set KB∞ and the set of defeasible conditionals KB∧
∞↓, in a way that,770

as we shall prove, corresponds to Definition 4.6. That is, KB∞ is the set

of conditionals of which the situations are ranked as infinite w.r.t. KB∧.

• MinimalClosure(KB, α |∼γ β) (Algorithm 6) tells us whether α |∼γ β

is in the minimal closure of KB. First, the algorithm checks if KB is a

consistent SCKB (see Definition 4.1): by Corollary 4.2, it is sufficient to775

check whether KB∧ |= ⊥. Then, in case it is consistent, it checks the rank

of the situation γ. If the situation’s rank is finite, then it checks whether

the conjunctive form α∧ γ |∼ β is in the RC of KB∧. Otherwise, it checks

whether the conjunctive form α ∧ γ |∼ β is in the RC of KB∧
∞↓.
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We need to prove that Algorithm 6 is complete and correct w.r.t. minimal780

entailment |=m. Before the main theorem, we need to prove the following lemma.

Lemma 5.1. Let KB be a consistent SCKB, let KB∧ be its conjunctive classical

form, and let R be the minimal ranked model of KB∧. Moreover, let µ be defined

as in Algorithm 5, and let sent(Uf
R) be as in Definition 4.6. Then we have that µ

is logically equivalent to sent(Uf
R).785

Proof. First, we prove that sent(Uf
R) |= µ. Let α |∼ β ∈ E∞. This implies that

rkKB∧(α) = ∞, that is, all the valuations satisfying α have rank ∞. That is,

Uf
R ⊆ J¬αK for every α s.t. α |∼ β ∈ E∞. That implies

Uf
R ⊆

⋂
{J¬αKR | α |∼ β ∈ E∞},

and, consequently, sent(Uf
R) |= µ.

Now we prove that µ |= sent(Uf
R). Assume this is not the case. That is,

there is a valuation w ∈ U∞
R s.t. w ⊩ µ. Let n be the highest finite rank in R,

and consider the ranked model R′ obtained from R just by re-assigning the

valuation w from the rank ∞ to the rank n+ 1 (note that if the valuation w is790

the only valuation in U∞
R and, consequently, U∞

R′ = ∅, then R′ is still a ranked

interpretation since it is compatible with Definition 2.1). R′ is preferred to R,

and it is easy to see that R′ is a ranked model of KB: for every α |∼ β ∈ Ei, for

some i < ∞, there is a valuation in a lower rank satisfying α∧β, while for every

α |∼ β ∈ E∞, w ⊩ ¬α, and consequently w is irrelevant w.r.t. the satisfaction795

of α |∼ β by R′, since it is not in minJαKfR′ . Hence, we have that R′ ≺KB R,

against the hypothesis that R is the minimal element in ≺KB, which leads to a

contradiction. Therefore, µ |= sent(Uf
R).

Now we can state the main result of the present section.

Theorem 5.1. Let KB be an SCKB. MinimalClosure(KB, α |∼γ β) returns800

true iff KB |=m α |∼γ β.

Example 5.1. Let us model a more practically-oriented scenario. The agent

knows that the Kitchen has been cleaned (¬ck |∼⊤ ⊥), and has a series of
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(defeasible) expectations: the pan is clean (cl) and positioned in Cupboard1 (cb1)

(⊤ |∼⊤ cl and ⊤ |∼⊤ cb1), but in case the pan is in Cupboard2 (cb2), the agent805

will need a stool (st) to reach the pan (cb2 |∼⊤ st). We can also model the

agent’s expectations about counterfactual situations, that is, situations that are

not compatible with the information the agent has about the actual situation: if

the kitchen has not been cleaned, the pan will presumably be in the sink (⊤ |∼¬ck

si), and it will be dirty (⊤ |∼¬ck ¬cl). Also, we have some constraints that810

must necessarily hold, simply stating that the pan must be in exactly one place:

¬cb1 ∧ ¬cb2 ∧ ¬si |∼¬cb1∧¬cb2∧¬si ⊥, cb1 ∧ cb2 |∼cb1∧cb2 ⊥, cb1 ∧ si |∼cb1∧si ⊥,

cb2∧si |∼cb2∧si ⊥. Note that the conditionals α |∼α ⊥ impose that the valuations

satisfying α can be placed only in rank ⟨∞,∞⟩, that is, ¬α cannot be falsified,

even in the counterfactual situations (see Example 3.2).815

Let KB = {¬cb1 ∧ ¬cb2 ∧ ¬si |∼¬cb1∧¬cb2∧¬si ⊥, cb1 ∧ cb2 |∼cb1∧cb2 ⊥, cb1 ∧

si |∼cb1∧si ⊥, cb2 ∧ si |∼cb2∧si ⊥,¬ck |∼⊤ ⊥,⊤ |∼⊤ cl,⊤ |∼⊤ cb1, cb2 |∼⊤

st,⊤ |∼¬ck si,⊤ |∼¬ck ¬cl} be an SCKB formalising the scenario in Example 5.1.

We apply Algorithm 5, Partition, to KB:

• The algorithm creates the conjunctive form KB∧ = {¬cb1∧¬cb2∧¬si |∼820

⊥, cb1 ∧ cb2 |∼ ⊥, cb1 ∧ si |∼ ⊥, cb2 ∧ si |∼ ⊥,¬ck |∼ ⊥,⊤ |∼ cl,⊤ |∼

cb1, cb2 |∼ st,¬ck |∼ si,¬ck |∼ ¬cl} (we have simplified the formulas in

the conditionals w.r.t. the definition of KB∧ in Section 4, for example

substituting formulas α ∧ α or α ∧ ⊤ with α).

• Calling algorithm ComputeRanking, we rank KB∧ in E0 = {⊤ |∼ cl,⊤ |∼825

cb1}∪E1, E1 = {cb2 |∼ st}∪E∞, E∞ = {¬cb1∧¬cb2∧¬si |∼ ⊥, cb1∧cb2 |∼

⊥, cb1 ∧ si |∼ ⊥, cb2 ∧ si |∼ ⊥,¬ck |∼ ⊥,¬ck |∼ si,¬ck |∼ ¬cl}.

• We then call the procedure Rank(KB∧, γ) for every formula γ appearing

in some conditional α |∼ β in KB. It turns out that Rank(KB∧, γ) = ∞

for γ ∈ {¬cb1∧¬cb2∧¬si, cb1∧ cb2, cb1∧ si, cb2∧ si,¬ck}. Consequently,830

KB∞ = {¬cb1 ∧ ¬cb2 ∧ ¬si |∼¬cb1∧¬cb2∧¬si ⊥, cb1 ∧ cb2 |∼cb1∧cb2 ⊥, cb1 ∧

si |∼cb1∧si ⊥, cb2 ∧ si |∼cb2∧si ⊥,⊤ |∼¬ck si,⊤ |∼¬ck ¬cl}.
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• Eventually, the algorithm constructs the set KB∧
∞↓: first, from E∞, we

define µ as
∧
{cb1∨ cb2∨ si,¬cb1∨¬cb2,¬cb1∨¬si,¬cb2∨¬si, ck}; then

we set KB∧
∞↓ as {¬cb1 ∧ ¬cb2 ∧ ¬si |∼ ⊥, cb1 ∧ cb2 |∼ ⊥, cb1 ∧ si |∼835

⊥, cb2 ∧ si |∼ ⊥,¬ck |∼ si,¬ck |∼ ¬cl, µ |∼ ⊥}.

Once we have KB∧ and KB∧
∞↓, we can give queries to Algorithm 6 (MinimalClosure).

For example, we can check whether the agent should expect the pan to be in

the sink (⊤ |∼⊤ si).

• Given KB∧, we define its materialisation KB∧, which contains the im-840

plications (α ∧ γ) → β corresponding to the conditionals α ∧ γ |∼ β in

KB∧. Using KB∧, the algorithm checks whether the knowledge base KB

is inconsistent by checking whether KB∧ |= ⊥ (the reader can check that

it is not the case.)

• We then have to check the rank of the situation ⊤ in ⊤ |∼⊤ si, which,845

being ⊤, must be 0. Hence, semantically, since ⊤ cannot be an excep-

tional proposition, ⊤ |∼⊤ si is a conditional whose satisfaction needs to be

checked w.r.t. the valuations in the finite ranks of the minimal epistemic

model of KB, in particular, w.r.t. the valuations in the rank ⟨f, 0⟩. This

corresponds to checking in Algorithm MinimalClosure whether ⊤ |∼ si is850

in the rational closure of KB∧. That is, whether RationalClosure(KB∧,⊤ |∼

si) returns true.

In the procedure RationalClosure(KB∧,⊤ |∼ si), the rank 0 is associated

to ⊤, and E0 = KB∧. Consequently, ⊤ |∼ si is in the rational closure of

KB∧ if and only if E0 |= si, which is not the case. Actually, we have that855

⊤ |∼⊤ ¬si is in the minimal closure of KB, since, due to the presence of

⊤ → cb1 and (cb1 ∧ si) → ⊥ in E0, we have E0 |= ¬si.

We now consider a counterfactual situation, checking whether the agent be-

lieves that, in case the kitchen has not been cleaned, the pan is not in Cupboard2

(⊤ |∼¬ck ¬cb2).860
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• As for the previous query, the algorithm starts by checking whether KB

is consistent.

• We then have to check the rank of the situation ¬ck in ⊤ |∼¬ck ¬cb2. Since

in KB we have the conditional ¬ck |∼⊤ ⊥, that is, the agent knows that the

kitchen has been cleaned, the immediate conclusion is that Rank(KB∧) =865

∞.

• Hence, semantically, ⊤ |∼¬ck ¬cb2 is a conditional that needs to be checked

w.r.t. the valuations in the infinite ranks of the minimal epistemic model

of KB. This corresponds to checking whether ¬ck |∼ ¬cb2 follows from

KB∧
∞↓, that is, whether RationalClosure(KB∧

∞↓,¬ck |∼ ¬cb2) returns870

true. RationalClosure(KB∧
∞↓,¬ck |∼ ¬cb2) associates the rank 0 to

¬ck, and E0 = KB∧
∞↓. Consequently, ¬ck |∼ ¬cb2 is in the rational closure

of KB∧
∞↓ if and only if KB∧

∞↓ ∪ {¬ck} |= ¬cb2, which is the case, since

KB∧
∞↓ contains ¬ck → si and cb2 ∧ si → ⊥.

5.1. Computational complexity of minimal entailment875

We now turn our attention to the computational complexity of deciding

minimal entailment. We have seen that the entire procedure can be reduced

to a sequence of classical propositional entailment tests, with propositional en-

tailment known to be co-NP-complete. Therefore, we have to check, given an

SCKB as input, how many classical entailment tests are required in the worst880

case. We examine each algorithm in turn.

• Given a set of defeasible conditionals C, Algorithm Exceptional performs

|C| propositional entailment tests.

• Given a set of defeasible conditionals C, Algorithm ComputeRanking runs

the algorithm Exceptional at most |C| times in the case where each con-885

ditional from C has a distinct antecedent, and each rank contains exactly

one conditional. In such a case, we have that the first iteration of the

algorithm Exceptional performs |C| entailment checks, the second one
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|C| − 1 entailment checks, the third one |C| − 2 entailment checks, and so

on. That is, the i-th iteration of Exceptional performs |C| − i+1 propo-890

sitional entailment checks. So there are fewer than |C|2 entailment checks

and hence Algorithm ComputeRanking performs a polynomial number of

propositional entailment checks. Note that, given a conditional knowledge

base C, we need to run ComputeRanking only once.

• Given a set of defeasible conditionals C and a formula α, Algorithm Rank895

calls ComputeRanking (which performs at most |C|2 entailment checks),

and then performs at most a number of entailment checks that corresponds

to the number of ranks, which is |C| at most. Hence Algorithm Rank

performs a polynomial number of propositional entailment checks.

• Given a set of defeasible conditionals C and a conditional α |∼ β, Algorithm900

RationalClosure calls Algorithm ComputeRanking once and Algorithm

Rank once, plus it makes a final entailment check. Hence, the algorithm

performs a polynomial number of propositional entailment checks.

• Given an SCKB KB, Algorithm Partition runs Algorithm ComputeRanking

once and Algorithm Rank at most |KB| times. Since |KB∧| = |KB|, run-905

ning ComputeRanking consists of |KB|2 entailment checks at most. The

same holds for each run of Rank. Hence running Partition consists of at

most |KB|2 · (|KB|+ 1) = |KB|3 + |KB|2 entailment checks.

• Given an SCKB KB and a situated conditional α |∼γ β, Algorithm MinimalClosure

runs Algorithm Partition once, followed by one entailment check (line 2),910

one call to Algorithm Rank and one call to algorithm RationalClosure

(with either KB∧ or KB∧
∞,↓ as argument):

– Partition performs at most |KB|3 + |KB|2 entailment checks.

– Rank performs at most |KB|2 entailment checks.

– RationalClosure performs at most |KB|2 entailment checks.915
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Hence Algorithm MinimalClosure performs a polynomial number of propo-

sitional entailments checks.

In summary then, deciding minimal entailment using Algorithm MinimalClosure

involves a polynomial number of propositional entailment checks, and is there-

fore in PcoNP = ∆P
2 . Whether this decision problem is ∆P

2 -complete is currently920

an open question.

6. Related work

With regard to the distinction between a plausible and an implausible state

of affairs, a similar distinction has been used by Booth et al. [41], where some

pieces of information are considered credible while others are not, and a new925

piece of information is accepted only if it is credible. Nonetheless, in case it

is not credible, its plausibility increases every time such a piece of information

is iterated. The distinction between plausible and implausible valuations links

such an approach with our proposal, but the reasoning problems they model

are different. Booth et al. deal with the credibility of a new piece of informa-930

tion, also considering whether the agent is repeatedly exposed to such a piece

of information. Here we deal with the distinction between expectations and

counterfactuals: given an SC α |∼γ β, we could say that if γ is credible, then

the defeasible conditional α |∼ β is evaluated w.r.t. one ranked interpretation

(represented by the finite ranks), while it is evaluated w.r.t. another ranked935

interpretation (represented by the infinite ranks) otherwise.

The connection between our conditional system and belief change is already

made quite clear by the situated AGM postulates (See Section 3), but it still

needs to be properly investigated. Such an investigation should proceed not

only from the point of view of the possible definition of interesting revision940

operators corresponding to our situated conditionals (for example, via some

modified version of the Ramsey test) but also from the point of view of the

definition of appropriate revision operators modelling the dynamics of SCKB’s,

in line with what has been done for conditional knowledge bases [42, 43]. With
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respect to this latter problem, the work of Booth et al. [41] offers an interest-945

ing perspective on modelling the dynamics of a semantics with plausible and

implausible state of affairs.

The literature on the notion of context, which is akin to our use of situation,

is vast, and several formalisations and applications of it have been studied across

many areas within AI [44, 45, 46, 47, 48]. The role of context in conditional-like950

statements has been explored recently, in particular in defeasible reasoning over

description logic ontologies and within semantic frameworks that are closely re-

lated to ours. Britz and Varzinczak [49, 50], for example, have put forward a

notion of defeasible class inclusion parameterised by atomic roles. Their seman-

tics allows for multiple preference relations on objects, which is more general955

than our single-preference approach, and allows for objects to be compared in

more than one way. This makes normality (or typicality) context-dependent and

gives more flexibility from a modelling perspective. Giordano and Gliozzi [51]

consider reasoning about multiple aspects in defeasible description logics where

the notion of aspect (or context) is linked to concept names (alias, atoms) also960

in a multi-preference semantics.

When compared with our framework, neither of the above-mentioned ap-

proaches allows for reasoning about objects that are ‘forbidden’ by the back-

ground knowledge. In that respect, our proposal is complementary to theirs,

and a contextual form of class inclusion along the lines of the ternary |∼ here965

studied, with potential applications going beyond that of defeasible reasoning

in ontologies, is worth exploring as future work.

7. Concluding remarks

In this paper, we have made the case for the provision of a simple situated

form of conditional. We have shown, using a number of representative exam-970

ples, that it is sufficiently general to be used in several application domains.

The proposed situated conditionals have an intuitive semantics which is based

on a semantic construction that has proved to be quite useful in the area of
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belief change, and is more general and also more fine-grained than the standard

preferential semantics. We also showed that the proposed conditionals can be975

described in terms of a set of postulates. We provided a representation result,

showing that the postulates capture exactly the constructions obtained from the

proposed semantics. An analysis in terms of the postulates shows that these

situated conditionals are suitable for knowledge representation and reasoning,

in particular when reasoning about information that is incompatible with back-980

ground knowledge.

With the basic semantic structures in place, we then proceeded to define a

form of entailment for situated conditional knowledge bases that is based on

the widely-accepted notion of rational closure for KLM-style reasoning. More-

over, we showed that, like rational closure, entailment for situated conditional985

knowledge bases is reducible to classical propositional reasoning.

Note that the semantics we have proposed in the present work can easily be

refined further. Our framework allows only for the distinction between the plau-

sible situations (the valuations with a finite rank that, with different degrees of

expectation, define the agent’s beliefs), and the implausible ones (the valuations990

with an infinite rank that are not compatible with the agent’s beliefs but are

still conceivable with different levels of expectation). All other valuations have

the inconceivable rank ⟨∞,∞⟩.

There is a fairly straightforward way of refining the framework by allowing for

different ranks of the kind ⟨∞1, i⟩, ⟨∞2, i⟩, etc., (i ∈ N). To illustrate the point,995

assume we add unicorns (u) to our vocabulary, and consider the interpretation in

Figure 7. In such a model, we would be able to represent the fact that we believe

that unicorns would not exist even if we move to situations in which dodos exist

(u |∼d ⊥), represented by the ranks ⟨∞1, 0⟩ and ⟨∞1, 1⟩. We would also be

able to move to a further level of implausibility (∞2) in which the existence1000

of unicorns is considered, making it possible to reason coherently about them.

For now, we shall leave such a refinement of our semantic framework for future

work.
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⟨∞,∞⟩ Jp ∧ ¬bK ∪ Jd ∧ ¬bK

⟨∞2, 0⟩ JuK \ (Jp ∧ ¬bK ∪ Jd ∧ ¬bK)

⟨∞1, 1⟩ pdbfu, pdbfu

⟨∞1, 0⟩ pdbfu, pdbfu

⟨f, 2⟩ pdbfu

⟨f, 1⟩ pdbfu, pdbfu

⟨f, 0⟩ pdbfu, pdbfu, pdbfu

Figure 7: An example of an interpretation extending the epistemic interpretation with further

infinite levels for more complex counterfactual reasoning.

The work described in this paper assumes classical propositional logic as the

underlying logical formalism, but it is worthwhile to consider extending this1005

to other, more expressive logics. In this regard, an extension to Description

Logics is perhaps an obvious starting point, particularly since rational closure

has already been reformulated for this case [29, 52, 40, 50]. A different kind

of extension of the work presented here is one in which other forms of entail-

ment are investigated. For this, the obvious initial candidate is lexicographic1010

closure [25] and its variants [36, 31, 53]. More generally, we intend to investigate

an extension to the class of entailment relations studied by Casini et al. [31].
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Appendix A. Proofs

Theorem 3.1. Every epistemic interpretation generates a BSC (see Defini-

tion 3.2). Nevertheless, the converse does not hold, i.e., some BSCs cannot be

generated by any epistemic state.
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Proof. Consider any epistemic interpretation E and pick any γ ∈ L. We consider1180

three disjoint and covering cases.

Case 1: If Uf
E ∩ JγK ̸= ∅, then define R from E as follows: (i) for all u ∈

Uf
E ∩JγK, R(u)def=i, where E (u) = ⟨f, i⟩; (ii) for all u ∈ U \Uf

E ∩JγK, R(u)def=∞. It

follows from Definition 3.2 and the definition of satisfaction of |∼-statements in

ranked interpretations that E ⊩ α |∼γ β iff R ⊩ α∧ γ |∼ β. From Theorem 2.1,1185

it follows that the |∼ generated by R satisfies the original KLM postulates.

Hence, it follows that |∼γ satisfies the situated rationality postulates.

Case 2: If Uf
E ∩ JγK = ∅ but U∞

E ∩ JγK ̸= ∅, then define R from E as

follows: (i) for all u ∈ U∞
E ∩ JγK, R(u) def= i, where E (u) = ⟨∞, i⟩; (ii) for all

u ∈ U \ (U∞
E ∩ JγK), R(u) def=∞. It follows from Definition 3.2 and the definition1190

of satisfaction for |∼-statements in ranked interpretations that E ⊩ α |∼γ β iff

R ⊩ α |∼ β. From Theorem 2.1, it follows that the |∼ generated by R satisfies

the original KLM postulates. For this specific γ it then follows that |∼γ satisfies

the situated rationality postulates.

Case 3: If JγK ⊆ U \ (Uf
E ∪ U∞

E ), then R(u) def= ∞ for all u ∈ JγK. Again,1195

it follows from Definition 3.2 and the definition of satisfaction for |∼ in ranked

interpretations that E ⊩ α |∼γ β iff R ⊩ α |∼ β. From Theorem 2.1, it follows

that the |∼ generated by R satisfies the original KLM postulates. For this

specific γ, it then follows that |∼γ satisfies the situated rationality postulates.

Putting the three cases above together, it then follows immediately that1200

the situated conditional |∼γ obtained from E satisfies the situated rationality

postulates.

Now, in order to show that the converse does not hold, consider the language

generated from (and only) {p, q}. Note first that there is a ranked interpreta-

tion R such that R ⊩ α |∼ β iff p ∧ q ∧ α |= β. From Theorem 2.1, it follows1205

that |∼, defined in this way, is a rational conditional, and therefore satisfies the

situated KLM postulates. Similarly, there is a ranked interpretation R′ such

that R′ ⊩ α |∼ β iff p∧q∧α |= β. From Theorem 2.1, it follows that |∼, defined

in this way, is a rational conditional, and therefore satisfies the situated KLM
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postulates. Now, define a situated conditional by letting α |∼p β iff p∧q∧α |= β,1210

and α |∼γ β iff α |= β, for every γ other than p. It then follows immediately

that this situated conditional is a BSC. However, it is easy to see that it cannot

be generated by an epistemic interpretation. To see why, observe that p |∼p q,

but that p ̸|∼p∨p q.

Theorem 3.2. Every epistemic interpretation generates an FSC. Every FSC1215

can be generated by an epistemic interpretation.

Proof. Let E be an epistemic interpretation and let γ ∈ L. Suppose Uf
E ∩JγK ̸= ∅.

Then if E ⊩ α |∼γ β, it follows by Definition 3.2 that E ⊩ α ∧ γ |∼⊤ β. On the

other hand, if Uf
E ∩ JγK = ∅, then E ⊩ α∧γ |∼⊤ β. This means that the situated

conditional |∼ obtained from E as follows satisfies Inc: α |∼γ β iff E ⊩ α |∼γ β.1220

Suppose E ̸⊩ ⊤ |∼⊤ ¬γ. This means that Uf
E ∩ JγK ̸= ∅. Then if E ⊩

α ∧ γ |∼⊤ β, it follows by Definition 3.2 that E ⊩ α |∼γ β. This means that

the situated conditional |∼ obtained from E as follows satisfies Vac: α |∼γ β iff

E ⊩ α |∼γ β.

That the situated conditional obtained from E as follows satisfies Ext follows1225

immediately from Definition 3.2: α |∼γ β iff E ⊩ α |∼γ β.

For SupExp we consider two cases. For Case 1, if Uf
E ∩ Jγ ∧ δK ̸= ∅, then

the result follows easily. For Case 2, suppose Uf
E ∩ Jγ ∧ δK = ∅. If Uf

E ∩ JδK =

∅, then the result follows easily. Otherwise the result follows from the fact

that Uf
E ∩ Jα ∧ γ ∧ δK = ∅.1230

For SubExp, suppose that E ⊩ δ |∼⊤ ⊥. This means E ⊩ α∧γ |∼δ β implies

that U∞
E ∩ Jα ∧ γ ∧ δK ⊆ JβK, from which it follows that E ⊩ α |∼γ∧δ β.

For the converse, consider any FSC |∼. We construct an epistemic interpre-

tation E as follows. First, consider |∼⊤. Since it satisfies the situated KLM

postulates, there is a ranked interpretation R such that R ⊩ α |∼ β iff α |∼⊤ β.1235

We set Uf
E

def=Uf
R, and for all u ∈ Uf

E , we let E (u)def=⟨f,R(u)⟩. Next, let U ′ def=U\Uf
E .

Let kf be a formula such that JkfK = Uf
E . Similarly, let k∞ be a formula such

that Jk∞K = U ′. Now, consider |∼k∞ . Since it satisfies the situated KLM pos-

tulates, there is a ranked interpretation R′ such that R′ ⊩ α |∼ β iff α |∼k∞ β.
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We let U∞
E

def={u ∈ U ′ | R′(u) ̸= ∞}, and for all u ∈ U ′, we let E (u)def=⟨∞,R′(u)⟩.1240

Observe that for some u ∈ U ′ it may be the case that E (u) = ⟨∞,∞⟩, which

means that for such a u, u /∈ U∞
E . It is easily verified that E is indeed an epis-

temic interpretation. Next we show that α |∼γ β iff E ⊩ α |∼γ β. We do so by

considering two cases.

Case 1: Uf
E ∩ JγK ̸= ∅. Note first that it follows easily from the construction1245

of E that α |∼⊤ β iff E ⊩ α |∼⊤ β. Suppose α |∼γ β. By Inc, α ∧ γ |∼⊤ β

and therefore E ⊩ α ∧ γ |∼⊤ β, and E ⊩ α |∼γ β, by definition. Conversely,

suppose E ⊩ α |∼γ β. Then by definition, E ⊩ α ∧ γ |∼⊤ β, and therefore

α ∧ γ |∼⊤ β. Since ⊤ ̸|∼⊤ ¬γ, it then follows from Vac that α |∼γ β.

Case 2: Uf
E ∩ JγK ̸= ∅. By the construction of E , it follows that α |∼k∞ β iff1250

E ⊩ α |∼k∞ β. Suppose α |∼γ β. Note that γ ≡ k∞. By Ext, α |∼γ∧k∞ β and

so, by SupExp, α ∧ γ |∼k∞ β. It then follows that E ⊩ α ∧ γ |∼k∞ β and, by

Definition 3.2, that E ⊩ α |∼γ β. Conversely, suppose that E ⊩ α |∼γ β.

Then E ⊩ α ∧ γ |∼k∞ β, by Definition 3.2, and, therefore, using Ext, we

have α ∧ γ |∼γ∧k∞ β. Note that E ⊩ kf |∼⊤ ⊥ and therefore kf |∼⊤ ⊥.1255

By SubExp it then follows that α |∼γ∧k∞ β, and by Ext that α |∼γ β holds.

Lemma 4.1. For every epistemic interpretation E , if Uf
E ∩ JγK = ∅, then E ⊩

α |∼γ β iff E ∞
↓ ⊩ α ∧ γ |∼ β.

Proof. In case α∧γ is not logically consistent, the lemma holds since E ⊩ α |∼γ β

and E ∞
↓ ⊩ α∧γ |∼ β for any β. Hence we assume that α∧γ is logically consistent.1260

Let E ⊩ ¬γ, that is, there are no valuations in the finite ranks satisfying γ.

Then the satisfaction of the conditionals with situation γ must be checked,

referring to the valuations that are ranked as infinite. E ⊩ α |∼γ β implies two

possible situations: either there are some valuations among the ones in JγK that

are ranked as infinite and satisfy α ∧ γ, and among them, all the minimal ones1265

satisfy also β; or all the valuations satisfying α∧γ have rank ⟨∞,∞⟩. γ has finite

rank in E ∞
↓ , or the rank ⟨∞,∞⟩. In the latter case, we have E ∞

↓ ⊩ α ∧ γ |∼ β.

In the former case, the rank of γ in E is ⟨∞, i⟩, with i < ∞, that is, the rank

of γ∧α in E ∞
↓ is ⟨f, j⟩, for some j s.t. i ≤ j < ∞, or ⟨∞,∞⟩. In the latter case,
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again, it is straightforward to conclude E ∞
↓ ⊩ α ∧ γ |∼ β. In the former case,1270

we have E ⊩ α |∼γ β, and the construction of E ∞
↓ imposes that the minimal

valuations in Jα ∧ γK satisfy also β, that is, E ∞
↓ ⊩ α ∧ γ |∼ β.

The proof is analogous in the opposite direction. Let E ⊩ ¬γ and E ↓∞ ⊩ α∧

γ |∼ β. Either the minimal valuations in E ↓∞ satisfying α∧γ are in rank ⟨f, i⟩,

for some i < ∞, and they all satisfy β (Case 1), or they are in ⟨∞,∞⟩ (Case1275

2). Since E ⊩ ¬γ, in E all the valuations satisfying γ are in U∞
E ∪ ⟨∞,∞⟩, and

consequently the satisfaction of the SC α |∼γ β needs to be judged considering

the valuations in U∞
E ∪ ⟨∞,∞⟩. If we are in Case 1, since a valuation w has

rank ⟨f, i⟩ in E ↓∞ iff w has rank ⟨∞, i⟩ in E (see the definition of counterfactual

shifting in Section 4), we have that the minimal valuations in E satisfying α∧γ1280

have rank ⟨∞, i⟩, for some i < ∞, and they all satisfy β. If we are in Case 2,

since E ⊩ ¬γ, a valuation w that satisfies γ can have rank ⟨∞,∞⟩ in E ↓∞ only

if w has rank ⟨∞,∞⟩ in E (again, see the definition of counterfactual shifting

in Section 4 and consider that no valuation with a finite rank satisfies γ in

E ); hence we have that the minimal valuations in E satisfying α ∧ γ are in1285

rank ⟨∞,∞⟩. In both cases, we have E ⊩ α |∼γ β.

Proposition 4.4. Let KB be a consistent SCKB, and let EKB be the epistemic

interpretation built as in Definition 4.6. Then EKB is the only minimal epistemic

model of KB.

Proof. We divide the proof into two parts. First, we prove that EKB is a minimal1290

epistemic model, then that it is also the only minimal epistemic model.

Regarding minimality, we proceed by contradiction. We know, by Propo-

sition 4.3, that EKB is an epistemic model of KB. Assume it is not minimal,

that is, assume there is an epistemic model E ′ of KB s.t., for every u ∈ U ,

E ′(u) ≤ EKB(u), and there is a w ∈ U s.t. E ′(w) < EKB(w). Regarding the1295

ranking of w, we have two possibilities:

Case 1. EKB(w) = ⟨f, i⟩, for some i, and E ′(w) = ⟨f, j⟩, for some j < i. Let KBf
E ′ =

{α |∼γ β ∈ KB | E ′ ̸⊩ ¬γ}. By Corollary 4.1, E ′ ⊩ α ∧ γ |∼ β, for ev-

52



ery α |∼γ β ∈ KBf
E ′ . Consider the ranked interpretation R′ defined as:

R′(u) =

 i, if E ′(u) = ⟨f, i⟩, for some i;

∞, otherwise.

R′ above is clearly a ranked model of every α∧γ |∼ β s.t. α |∼γ β ∈ KBf
E ′ .

Since R′ has only one infinite rank, ∞, R′ is also a ranked model of ev-

ery α ∧ γ |∼ β s.t. α |∼γ β ∈ KB \ KBf
E ′ , since the minimal valuations

satisfying their premises are in J⟨∞,∞⟩K, and consequently they are triv-1300

ially satisfied. Hence, R′ is a ranked model of KB∧.

By Definition 4.6, EKB has been built using the minimal ranked model R

of KB∧. But now we have also a ranked model R′ of KB∧ s.t. R′ is a

ranked model of KB∧ and, moreover, R′ is preferred to R: by Defini-

tion 4.6, for every u ∈ U ,

R(u) =

 i, if EKB(u) = ⟨f, i⟩, for some i;

∞, otherwise.

Since we have assumed that E ′(u) ≤ EKB(u) for every u, and there is a w

s.t. EKB(w) = ⟨f, i⟩, for some i, and E ′(w) = ⟨f, j⟩, for some j < i, we

have that R′(u) ≤ R(u) for every u, and there is a w s.t. R(w) = i, for

some i ∈ N, and R′(w) = j, for some j < i. That is, for every u ∈ U1305

R′(u) ≤ R(u), and R′(w) < R(w). Hence R is not the minimal model of

KB∧, and this leads to a contradiction.

Case 2. EKB and E ′ are identical w.r.t. the finite ranks, and EKB(w) = ⟨∞, i⟩,

for some i. We have two subcases: E ′(w) = ⟨∞, j⟩, for some j < i,

or E ′(w) = ⟨f, j⟩, for some j. The latter subcase leads to a contradiction:1310

it can be proved analogously to Case 1. It remains to prove the first

subcase.

The proof is still close to the one for Case 1 above; we simply have to

refer to the counterfactual shiftings of EKB and E ′, E ∞
KB↓ and E ′∞

↓ (see

page 27). Since EKB and E ′ are epistemic models of KB∧, E ∞
KB↓ and E ′∞

↓1315
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are epistemic models of KB∧
∞, and E ′∞

↓ is preferred to E ∞
KB↓. From E ∞

KB↓

and E ′∞
↓ , we can extract two ranked interpretations, R∞

KB and R′∞ (see

Definition 3.3), that are both epistemic models of KB∧
∞. In the construc-

tion of EKB, following Definition 4.6, we have used for the infinite ranks

the ranked interpretation R∞
KB, which, also by Definition 4.6, must be the1320

minimal ranked model of KB∧
∞. But in the present case, R∞

KB cannot be

the minimal ranked model of KB∧
∞, since R′∞ is a ranked model of KB∧

∞

that is preferred to R∞
KB. This leads to a contradiction.

To conclude this part, in all the possible cases, if EKB is not a minimal

epistemic model of KB, then we end up with a contradiction. Hence EKB must1325

be a minimal epistemic model of KB.

The final step consists in proving that EKB is the only minimal epistemic

model of KB. The procedure is again by contradiction, assuming that EKB is

not the only minimal epistemic model of KB. Hence, let E ′ be another minimal

epistemic model of KB. The structure of the proof actually mirrors the one for1330

the previous part, about the minimality of EKB. Again, we can distinguish two

main cases.

Case 1. EKB and E ′ differ w.r.t. the ranking of some valuations among the ones

ranked as finite. From EKB and E ′, we can extract, respectively, the

ranked models R and R′, which are both ranked models of KB∧. But,1335

by Definition 4.5, R is the only minimal ranked model of KB∧, that is,

R ≺ R′, which implies that E ′ cannot be a minimal epistemic model

of KB.

Case 2. EKB and E ′ do not differ w.r.t. the ranking of the valuations that are

ranked as finite in both of them but differ w.r.t. the ranking of some1340

valuation, w, that is ranked as infinite in one of the two. W.l.o.g., we

assume that w is ranked as infinite in EKB. We have two subcases: E ′(w) =

⟨∞, j⟩, for some j, or E ′(w) = ⟨f, j⟩, for some j. The latter subcase leads

to a contradiction: it can be proved analogously to Case 1 using the

extracted ranked models. It remains to show the first subcase.1345
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The proof is still analogous to Case 2 above. We refer to the counterfac-

tual shiftings of EKB and E ′, E ∞
KB↓ and E ′∞

↓ . Since EKB and E ′ are epis-

temic models of KB∧ and they are identical w.r.t. the finite ranks, E ∞
KB↓

and E ′∞
↓ are epistemic models of KB∧

∞. From E ∞
KB↓ and E ′∞

↓ , we can ex-

tract two ranked interpretations, R∞
KB and R′∞ (see Definition 3.3), that1350

are both ranked models of KB∧
∞. In the construction of EKB, following

Definition 4.5, we have used for the infinite ranks the ranked interpre-

tation R∞
KB, which, also by Definition 4.5, must be the minimal ranked

model of KB∧
∞. If R∞

KB is the minimal ranked model of KB∧
∞, then R∞

KB

is preferred to R′∞, and, by construction, EKB must be preferred to E ′.1355

This leads to a contradiction.

To conclude, if we assume that there is another minimal epistemic model

of KB beyond EKB, we end up with a contradiction. Hence, EKB must be the

only minimal epistemic model of KB.

Theorem 5.1. Let KB be an SCKB. MinimalClosure(KB, α |∼γ β) returns1360

true iff KB |=m α |∼γ β.

Proof. We already know that algorithms Exceptional, ComputeRanking, Rank

and RationalClosure are complete and correct w.r.t. the corresponding seman-

tic notions.

As a first step, we need to prove that algorithm Partition returns the1365

correct result, that is, the sets KB∞ and KB∧
∞↓ correspond to the same sets

introduced in Definition 4.6.

The correspondence of KB∞ to the semantic notion introduced in Defini-

tion 4.6 is guaranteed by the correctness of algorithm ComputeRanking w.r.t. the

semantic definition of ranks w.r.t. the rational closure.1370

To prove the correspondence of KB∧
∞↓ to the semantic notion in Defini-

tion 4.6, we need to prove also that the defeasible conditionals µ |∼ ⊥ and

sent(Uf
R) |∼ ⊥ are equivalent, which is an immediate consequence of Lemma 5.1

and the LLE postulate.
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Now we can check the correctness of algorithm MinimalClosure. We con-1375

sider the possible cases as presented in the algorithm.

Case 1. KB∧ |= ⊥.

By Corollary 4.2, KB∧ |= ⊥ iff KB is inconsistent, and in such a case

KB |=m α |∼γ β for every α, γ, β, and the algorithm behaves correctly.

Case 2. KB∧ ̸|= ⊥ and Rank(KB∧, γ) < ∞.1380

We have to prove that in this case, α ∧ γ |∼ β is in the RC of KB∧ iff

α |∼γ β is in the minimal closure of KB.

Assume α ∧ γ |∼ β is in the RC of KB∧, and let R be the minimal

ranked model of KB∧. That means that minJα ∧ γKR ⊆ JβK. Also, since

Rank(KB∧, γ) < ∞, we have that JγK ∩ Uf
R ̸= ∅. By construction of1385

the minimal epistemic model of KB, EKB, Uf
EKB

= Uf
R, and the rank of

each valuation is the same. Consequently, we have that JγKfEKB
̸= ∅.

According to Definition 3.2, we have to check whether JγKfEKB
⊆ J¬αK or

Jα ∧ γKEKB ⊆ JβK. From R ⊩ α ∧ γ |∼ β, we single out two possible cases:

– Rank(KB∧, α) = ∞. This implies that JγKfEKB
⊆ J¬αK.1390

– Otherwise, in R we have minJα ∧ γKf ⊆ JβK. Since EKB preserves

in Uf
EKB

the same ranking as in Uf
R, we have Jα ∧ γKfEKB

⊆ JβK.

We can conclude that EKB ⊩ α |∼γ β.

Now we check the opposite direction: we assume EKB ⊩ α |∼γ β. Since

Rank(KB∧, γ) < ∞, by Definition 4.6 we have that JγKfEKB
̸= ∅. The1395

latter, together with EKB ⊩ α |∼γ β, implies Jα ∧ γKfEKB
⊆ JβK. By

Definition 4.6, this condition implies that Jα ∧ γKfR ⊆ JβK, which in turn

implies R ⊩ α ∧ γ |∼ β.

Case 3. KB∧ ̸|= ⊥ and Rank(KB∧, γ) = ∞.

We have to prove that in this case α ∧ γ |∼ β is in the RC of KB∧
∞↓ iff1400

α |∼γ β is in the minimal closure of KB.
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Since Rank(KB∧, γ) = ∞, we have that JγK ∩ Uf
R = ∅. By construction of

the minimal epistemic model of KB, EKB, Uf
EKB

= Uf
R. Consequently, we

have that JγKfEKB
= ∅ and JγKEKB all have rank ⟨∞, j⟩, for some j.

Assume α∧γ |∼ β is in the RC of KB∧
∞↓, and let R′ be the minimal ranked1405

model of KB∧
∞↓. According to Definition 3.2, we have to check whether

Jα ∧ γKEKB ⊆ JβK. Assume this is not the case, that is, EKB ̸⊩ α |∼γ β.

Since JγKfEKB
= ∅, all the valuations in JγKEKB are ranked as infinite, and

EKB ̸⊩ α |∼γ β implies that there is a valuation w in Jα∧γKEKB s.t. w ̸⊩ β.

Let w ∈ J⟨∞, i⟩K, for some i < ∞, and w ⪯ v, for every v ∈ Jα ∧ γK. By1410

Definition 4.5, in R′ we have w ∈ JiK, for some i < ∞, and w ⪯ v, for

every v ∈ Jα∧γK. Hence, we would have R′ ̸⊩ α∧γ |∼ β, which is against

our hypothesis that α ∧ γ |∼ β is in the RC of KB∧
∞↓.

Now we assume EKB ⊩ α |∼γ β. Again, since JγKfEKB
= ∅, all the valuations

in JγKEKB are ranked as infinite. The latter, together with Definition 4.5,1415

implies that JγKEKB = minJα ∧ γKR′ , and consequently JγKEKB ⊆ JβK

implies minJα ∧ γKR′ ⊆ JβK. We can conclude R′ ⊩ α ∧ γ |∼ β, that is,

α ∧ γ |∼ β is in the RC of KB∧
∞↓.

We have proved that in all possible cases MinimalClosure(KB, α |∼γ β)

returns true iff KB |=m α |∼γ β.1420
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Algorithm 3: Rank(C, α)
input : a set of defeasible conditionals C, a proposition α

output: the rank rkC(α) of α

1 rC = (E0, . . . , En, E∞) := ComputeRanking(C)

2 foreach 0 ≤ i ≤ n do

3 Ei := {α → β | α |∼ β ∈ Ei}

4 end

5 E∞ := {α → β | α |∼ β ∈ E∞}

6 i := 0

7 while Ei |= ¬α and i ≤ n do

8 i := i+ 1

9 end

10 if i ≤ n then

11 rkC(α) := i

12 end

13 else

14 if E∞ ̸|= ¬α then

15 rkC(α) := i+ 1

16 end

17 else

18 rkC(α) := ∞

19 end

20 end

21 return rkC(α)
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Algorithm 4: RationalClosure(C, α |∼ β)

input : a set of defeasible conditionals C, a query α |∼ β

output: true, if C |=RC α |∼ β, false otherwise

1 rKB = (E0, . . . , En, E∞) := ComputeRanking(C)

2 r := Rank(C, α)

3 return Er ∪ {α} |= β

Algorithm 5: Partition(KB)
input : an SCKB KB

output: the conjunctive forms KB∧ and KB∧
∞↓

1 KB∧ := {α ∧ γ |∼ β | α |∼γ β ∈ KB}

2 rKB∧ = (E0, . . . , En, E∞) := ComputeRanking(KB∧)

3 KB∞ := ∅

4 foreach α |∼γ β ∈ KB do

5 if Rank(KB∧, γ) = ∞ then

6 KB∞ := KB∞ ∪ {α |∼γ β}

7 end

8 end

9 µ :=
∧
{¬α | α |∼ β ∈ E∞}

10 KB∧
∞↓ := {α ∧ γ |∼ β | α |∼γ β ∈ KB∞} ∪ {µ |∼ ⊥}

11 return KB∧,KB∧
∞↓
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Algorithm 6: MinimalClosure(KB, α |∼γ β)

input : an SCKB KB, a query α |∼γ β

output: true, if KB |=m α |∼γ β, false otherwise

1 KB∧,KB∧
∞↓ := Partition(KB)

KB∧ = {(α ∧ γ) → β | α ∧ γ |∼ β ∈ KB∧}

2 if KB∧ |= ⊥ then

3 return true

4 end

5 else

6 if Rank(KB∧, γ) < ∞ then

7 return RationalClosure(KB∧, α ∧ γ |∼ β)

8 end

9 else

10 return RationalClosure(KB∧
∞↓, α ∧ γ |∼ β)

11 end

12 end
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