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A higher-order homogenization method for linear elastic structures is proposed. While most existing
approaches to homogenization start from the equations of equilibrium, this one works at the energy level.
We start from an energy functional depending on microscopic degrees of freedom on the one hand and on
macroscopic variables on the other hand; the homogenized energy functional is derived by relaxing the
microscopic degrees of freedom and applying a formal two-scale expansion. This method delivers the
energy functional of the homogenized model directly, including boundary terms that have not been
discussed in previous work. Our method is formulated in a generic setting which makes it applicable to a
variety of geometries in dimension 1, 2 or 3. An implementation using a symbolic calculation language is
proposed and it is distributed as an open-source library. Simple illustrations to elastic trusses having
pre-stress or graded elastic properties are presented. The approach is presented in the context of discrete
elastic structures and the connection with previous work on the higher-order homogenization of periodic
continua is discussed.

Keywords: asymptotic homogenization, discrete elasticity, strain-gradient models

1 Introduction
This work addresses the growing need for effective models capturing accurately the mechanical
response of architected materials produced, e.g., by additive manufacturing techniques. In
these materials, finite-size effects are not captured by standard (Cauchy) continuum models.
Generalized continua theories, including higher-order (gradient) terms or micropolar fields have
been introduced to overcome this limitation. Among various strategies proposed to obtain such
models, asymptotic analysis offers a rigorous and fully predictive tool to derive exact higher-order
or micropolar contributions without resorting to ad-hoc kinematic assumptions (Boutin 2019).

Asymptotic homogenization is a well-established technique for either discrete or continuous
periodic microstructures. It aims at deriving an equivalent macroscopic set of equilibrium
equations by means of a formal two-scale expansion, see (Sanchez-Palencia 1980; Bakhvalov and
Panasenko 1989; Cioranescu and Donato 1999; Cioranescu and Paulin 1999) among others. The
results of classical periodic homogenization are recovered at leading order. Later contributions
focussed on pushing the asymptotic expansion to higher-orders, with the aim of deriving gradient
contributions, either as small correctors to the leading-order prediction (Gambin and Kröner
1989; Boutin 1996; Smyshlyaev and Cherednichenko 2000; Hans and Boutin 2008; Bacigalupo
2014; Le and Marigo 2018; Abali and Barchiesi 2021) or as a non-local leading-order model when
the standard equivalent medium is degenerate (Boutin and Soubestre 2011; Abdoul-Anziz and
Seppecher 2018a; Abdoul-Anziz and Seppecher 2018b; Abdoul-Anziz et al. 2019; Durand et al.
2022). Asymptotic analysis has also been used to derive micropolar effective theories (Bažant and
Christensen 1972; Dos Reis and Ganghoffer 2012; Nassar et al. 2020).

In spite of a large body of existing work, some aspects of higher-order homogenization remain
elusive. Besides the question of applicable boundary conditions which is largely overlooked
in existing work, most contributions typically start from the strong form of the equilibrium
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B. Audoly and C. Lestringant An energy approach to higher-order homogenization

equations thus loosing the variational structure of the initial problem (some try to reconstruct
the effective energy a posteriori, but systematically ignore boundary terms). Besides, natural
extensions such as pre-stress or slow spatial variations of the elastic or geometric properties of
the microstructure are rarely addressed, especially in higher-order contributions.

In this paper, we adapt our earlier work on higher-order, nonlinear asymptotic dimension
reduction (Lestringant and Audoly 2020) to linear homogenization of discrete elastic structures,
such as elastic trusses or networks of elastic beams. Based on formal arguments, we propose a
homogenization method that is directly applicable to any given discrete microstructure (the
connection with the homogenization of periodic continua is discussed in Section 7. We carry out
homogenization at the energy level, thereby following the pioneering work of (Le and Marigo
2018). As a benefit, important simplifications are made during the homogenization procedure,
allowing the higher-order homogenized model to be obtained in compact form via a formal,
systematic expansion. In addition, our method is versatile and allows for natural extensions such
as the case of pre-stressed structures. We also keep track of boundary terms that have been
ignored in previous work. Lastly, our method is implemented in a symbolic calculation language
and distributed as an open-source library named shoal, for Second-order HOmogenization
Automated in a Library (Audoly 2023).

Ourmethod starts from an energy formulation derived by applying a continuum approximation
to a linear discrete microstructure. This preliminary continualization step is not strictly part of
this paper; it is briefly illustrated based on an example. We apply to this continualized energy a
two-scale expansion, assuming slow variations for macroscopic quantities such as strains and
lattice properties, and rapid variations for the degrees of freedom at the microstructural scale.
Our method aims at condensing out these rapidly varying fields, by solving an energy stationarity
problem order by order. Constraints are included from the onset in the energy formulation,
which helps making the derivation compact. The procedure involves solving a set of elementary
linear-algebra problems, and is implemented in a formal calculation language.

2 Input to the homogenization procedure

In this section, we present the elastic model serving as the starting point of the homogenization
procedure. It is formulated in a continuous domain Ω ⊂ R𝑑 of the 𝑑-dimensional Euclidean
space. The elastic model is specified in an abstract and generic form, making the homogenization
procedure applicable to a broad range of situations including both periodic continua and
discrete structures—such as one-dimensional (beam-like), two-dimensional (plate-like) and
three-dimensional (bulk) elastic trusses. It is also versatile enough to handle structures possessing
slowly modulated properties or pre-stress, as illustrated in Sections 4.1 and 4.2, respectively.

The task of casting a given problem into the generic form proposed in this section is not
particularly difficult but has to be carried out on a case-by-case basis: this aspect is barely touched
upon in Section 4 and will be illustrated in follow-up papers. When the structure under study is a
discrete elastic truss, this preliminary step involves a so-called continualization assumption that
turns the original discrete energy into the continuous energy functional used as a starting point in
this paper, see Equation (4) and the discussion in Section 4.1.

We limit attention to linear homogenization problems. The extension to nonlinear homoge-
nization can be done by adapting our previous work on nonlinear dimension reduction (Lestringant
and Audoly 2020; Audoly and Lestringant 2021).

2.1 Energy formulation of the input model

We proceed to specify the continuous elastic model used as an input to the homogenization
procedure. The presentation is intentionally abstract: illustrations will be provided in Section 4.

The model is formulated over a continuous domain Ω ⊂ R𝑑 , and we denote by 𝑿 ∈ Ω the
space variable, see Figure 1. A deformed configuration of the elastic body is parameterized by
three vector fields 𝒚(𝑿 ), 𝒍 (𝑿 ) and 𝒎(𝑿 ) defined over Ω:

• microscopic degrees of freedom 𝒚(𝑿 ) ∈ R𝑛𝑦 which we seek to eliminate using the homogenization
procedure,
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Figure 1 Typical application of the method: homogenization of a beam lattice in a domain Ω ⊂ R𝑑 , here with
𝑑 = 2. In this stylized representation of the beam lattice, the gradient of material parameters ∇𝒎 includes
both gradients of elastic properties (varying thickness of beams) and geometry (mesh curvature). The
mathematical domain Ω where we carry out homogenization is strictly included in the physical domain
of the lattice to avoid boundary layers. The elastic lattice depicted above serves as an illustration: the
homogenization method is presented in an abstract setting that does not make any reference to a lattice.

• macroscopic variables which are held fixed during homogenization, namely:
– the macroscopic strain 𝒍 (𝑿 ) ∈ R𝑛𝑙
– variable material parameters 𝒎(𝑿 ) ∈ R𝑛𝑚 .

The integers 𝑛𝑦 , 𝑛𝑙 and 𝑛𝑚 are input parameters of the homogenization procedure. The goal of
the procedure is to slave the microscopic degrees of freedom 𝒚 to the macroscopic variables 𝒍
and 𝒎, thereby delivering a homogenized model depending on 𝒍 and 𝒎 only. The difference
between the macroscopic variables 𝒍 and 𝒎 is that 𝒎 captures the slowly variable properties of
the elastic structure which are prescribed once for all, although 𝒍 is considered fixed during
the homogenization procedure but is actually an unknown of the structural problem that the
homogenized energy helps solving.

In addition, the input model makes use of microscopic strain variables, which are collected
into a vector 𝑬 ∈ R𝑛𝐸 . The geometric definition of the strain 𝑬 is assumed to be of the form

𝑬 = 𝑬 (𝒎(𝑿 ); 𝒍 (𝑿 ),∇𝒍 (𝑿 ),∇2𝒍 (𝑿 ), . . . ;𝒚(𝑿 ),∇𝒚(𝑿 ),∇2𝒚(𝑿 ), . . .) (1)

where the dependence on the macroscopic strain 𝒍 and of the microscopic degrees of freedom 𝒚
and their gradients is linear in the context of linear elasticity,

𝑬 (𝒎; 𝒍, 𝒍 ′, 𝒍 ′′, . . . ;𝒚,𝒚′,𝒚′′, . . .) = 𝑬 𝑙 (𝒎) · 𝒍 + 𝑬 ′
𝑙
(𝒎) : 𝒍 ′ + 𝑬 ′′

𝑙
(𝒎) ∴ 𝒍 ′′ + . . .

+ 𝑬𝑦 (𝒎) · 𝒚 + 𝑬 ′
𝑦 (𝒎) : 𝒚′ + 𝑬 ′′

𝑦 (𝒎) ∴ 𝒚′′ + · · ·
(2)

Here, 𝒍 ∈ R𝑛𝑙 , 𝒍 ′ = ∇𝒍 ∈ T(𝑛𝑙 ,𝑑) , 𝒍 ′′ = ∇2𝒍 ∈ T(𝑛𝑙 ,𝑑,𝑑) , 𝒚 ∈ R𝑛𝑦 , 𝒚′ = ∇𝒚 ∈ T(𝑛𝑦,𝑑) , 𝒚′′ = ∇2𝒚 ∈
T(𝑛𝑦,𝑑,𝑑) are dummy variables representing the local values of 𝒍 , 𝒚 and their successive gra-
dients. The homogenization procedure is implemented in a symbolic calculation language,
and the tensors 𝑬 𝑙 (𝒎) ∈ T(𝑛𝐸 ,𝑛𝑙 ) , 𝑬 ′

𝑙
(𝒎) ∈ T(𝑛𝐸 ,𝑛𝑙 ,𝑑) , 𝑬 ′′

𝑙
(𝒎) ∈ T(𝑛𝐸 ,𝑛𝑙 ,𝑑,𝑑) , ..., 𝑬𝑦 (𝒎) ∈ T(𝑛𝐸 ,𝑛𝑦) ,

𝑬 ′
𝑦 (𝒎) ∈ T(𝑛𝐸 ,𝑛𝑦,𝑑) and 𝑬 ′′

𝑦 (𝒎) ∈ T(𝑛𝐸 ,𝑛𝑦,𝑑,𝑑) are provided as input, see Table 1, in the form of
symbolic, tensor-valued functions of 𝒎. Expressions for these tensors that are applicable to
specific examples are provided in Section 4, see Table 4. Our tensor notations such as T(𝑛𝑙 ,𝑑,𝑑) for
tensor spaces are given in Appendix A.

Remark 1 We work in the discrete case, i.e., assume a finite number (𝑛𝑦 < ∞) of microscopic degrees of
freedom. This is typically relevant to elastic truss structures, see Section 4. The extension of
the method to infinitely many microscopic degrees of freedom (𝑛𝑦 = ∞), relevant to periodic
continua, is discussed in Section 7.

Remark 2 We will present the homogenization method without providing definitions of the macroscopic
strain 𝒍 , variable material parameters 𝒎 and microscopic degrees of freedom 𝒚. These quantities
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can be anything as long as they match the postulated forms of the strain, constraints and energy
in Equations (2) to (5). This abstract presentation makes the method quite versatile, and opens up
the way for extensions that we will cover in future work. Specific choices of 𝒍 , 𝒎 and 𝒚 are
proposed in the illustration examples (Section 4).

The model used on input may make use of constraints and we denote by 𝑛c ⩾ 0 the number
of applicable (scalar) kinematic constraints. By convention, the left-hand sides of these kinematic
constraints are incorporated into the microscopic strain vector 𝑬 ∈ R𝑛𝐸 , and are extracted from
𝑬 using an appropriate matrix Q ∈ T(𝑛c,𝑛𝐸 ) . In view of this, the kinematic constraints are written
in the form

Q · 𝑬 (𝒎(𝑿 ); 𝒍 (𝑿 ),∇𝒍 (𝑿 ), . . . ;𝒚(𝑿 ),∇𝒚(𝑿 ), . . .) = 0𝑛c ∀𝑿 . (3)

Section 4 provides a specific illustration on how 𝑬 andQ can be set up to conform to Equation (3).
The constant tensor Q is provided as an input of the homogenization procedure, see Table 1.

In the input model, the strain energy is assumed to be of the form

Φ[𝒎, 𝒍 ;𝒚] =
∫
Ω
𝑊 (𝒎(𝑿 ), 𝑬 (𝒎(𝑿 ); 𝒍 (𝑿 ),∇𝒍 (𝑿 ), . . . ;𝒚(𝑿 ),∇𝒚(𝑿 ), . . .))d𝑿 , (4)

where the strain energy density in the bulk term is given in the context of linear elasticity by

𝑊 (𝒎, 𝑬) = 1
2
𝑬 ·K (𝒎) · 𝑬 . (5)

Explicit expressions of the strain 𝑬 , energy Φ and elasticity matrix K appearing in (4–5)
will be provided in the illustration Section 4, see for example (33–34) The elasticity tensor
K (𝒎) ∈ T(𝑛𝐸 ,𝑛𝐸 ) is provided as an input to the homogenization method in the form of a
tensor-valued, symbolic function of 𝒎, see Table 1.

The square brackets around the arguments of Φ[𝒎, 𝒍 ;𝒚] in the left-hand side of Equation (4)
denote a functional dependence: the strain energy Φ depends on the functions 𝒎, 𝒍 and 𝒚 over the
entire domain Ω.

The list of parameters passed as an input to the homogenization procedure is recapitulated in
Table 1.

nature tensor space symmetries

𝑑 ⩾ 1 space dimension
𝑛𝑚 ⩾ 0 number of material parameters
𝑛𝑙 ⩾ 0 number of macroscopic degrees of freedom
𝑛𝑦 ⩾ 0 number of microscopic degrees of freedom
𝑛𝐸 ⩾ 𝑛c number of strain variables
𝑛c number of kinematic constraints

𝑬𝑙 (𝒎) dependence of strain on 𝒍 T(𝑛𝐸 ,𝑛𝑙 )

𝑬 ′
𝑙
(𝒎) dependence of strain on ∇𝒍 T(𝑛𝐸 ,𝑛𝑙 ,𝑑)

𝑬 ′′
𝑙
(𝒎) dependence of strain on ∇2𝒍 T(𝑛𝐸 ,𝑛𝑙 ,𝑑,𝑑) 𝑆34

𝑬𝑦 (𝒎) dependence of strain on 𝒚 T(𝑛𝐸 ,𝑛𝑦)

𝑬 ′
𝑦 (𝒎) dependence of strain on ∇𝒚 T(𝑛𝐸 ,𝑛𝑦 ,𝑑)

𝑬 ′′
𝑦 (𝒎) dependence of strain on ∇2𝒚 T(𝑛𝐸 ,𝑛𝑦 ,𝑑,𝑑) 𝑆34

Q constraint extraction, see Equation (3) T(𝑛c,𝑛𝐸 )

K (𝒎) stiffness matrix, see Equation (5) T(𝑛𝐸 ,𝑛𝐸 ) 𝑆12

Table 1 List of parameters passed as an input to the homogenization procedure. The notation used in the last two
columns is defined in Appendix A.

Remark 3 This formulation of the input model is designed to be versatile. For instance, the presence of
pre-strain can be accommodated by adding a coefficient capturing the pre-strain intensity as an
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additional entry in the vector 𝒍 (whose definition is up to the user), and by propagating it to 𝑬
by an appropriate definition of 𝑬 𝑙 (𝒎), as illustrated in Section 4.2. Similarly, the presence of
pre-stress can be accommodated by including a constant entry with value 1 in 𝒍 , propagating it to
𝑬 , and inserting the pre-stress into the corresponding rows and column ofK.

2.2 Assumption of slow variations
One of the key assumptions of homogenization is that there is a separation of scales between a
microscopic length ℓ (typically the spatial period of the underlying discrete lattice or periodic
continuum) and the size 𝐿 of the domain, ℓ ≪ 𝐿, as sketched in Figure 1. The goal of homoge-
nization is to deliver an effective model applicable at the macroscopic scale 𝐿, by hiding the
‘details’ taking place at the microscopic scale ℓ .

Mathematically, this separation of scale is captured by the small parameter

[ =
ℓ

𝐿
≪ 1. (6)

The various fields 𝒇 (𝑿 ), such as 𝒇 = 𝒎, 𝒇 = 𝒍 or 𝒇 = 𝒚, are assumed to depend on the variable 𝑿
evolving on the slow scale 𝐿 = ℓ/[, implying that their successive gradients scale as

∇𝑘𝒇 (𝑿 ) = O([𝑘 ) . (7)

In the following, the gradient ∇ = 𝜕/𝜕𝑿 will therefore be treated implicitly as a small quantity
of order [. This implicit notation has the benefit of avoiding a large number of predictable
occurrences of the parameter [, as discussed in Remark 4 below.

The scaling assumption Equation (7) is not applicable in the layers that are present near the
boundaries or near the point of application of point-like force. The homogenization domain Ω
therefore needs to be slightly smaller than the actual physical domain of the elastic body, as
shown in Figure 1 (see also Equation [1] in the work of (Abdoul-Anziz and Seppecher 2018b) for
an accurate description of how Ω can be shrunk). Alternatively, boundary layers can be solved
rigorously and represented in the homogenized model by means of effective boundary terms, see
for example (David et al. 2012), but this is beyond the scope of the present work.

Remark 4 The scaling assumption Equation (7) can be motivated as follows. By convention, we consider
the microscopic length ℓ to be ℓ = O(1) and the macroscopic length to be 𝐿 = O([−1). In our
notation, any macroscopic field 𝒇 such as 𝒎, 𝒍 or 𝒚 is implicitly a function of the slow variable
𝑿 = [𝑿 , i.e., what we write as 𝒇 (𝑿 ) should be spelled out as 𝒇 (𝑿 ) = 𝒇 ([𝑿 ), where 𝒇 is a
dimensionless function, independent of [. The gradients can then be obtained as

∇𝑘𝒇 (𝑿 ) = 𝜕𝑘𝒇

𝜕𝑿𝑘
(𝑿 ) = [𝑘 𝜕

𝑘𝒇

𝜕𝑿
𝑘
([𝑿 ) = [𝑘∇𝑘

𝒇 ([𝑿 ), (8)

where ∇𝑘
𝒇 = O(1) denotes the gradient with respect to the slow variable: this implies the scaling

assumption ∇𝑘𝒇 (𝑿 ) = O([𝑘 ) in Equation (7). The formal rule (7) dispenses with a notation for
the slow variable.

Remark 5 The dependence on 𝒎(𝑿 ) of the strain 𝑬 in Equations (1) to (2) and of the energy density𝑊 in
Equations (4) to (5) allows one to handle the case of structures whose elastic properties vary
over the large scale 𝐿 = ℓ/[, as conveyed by the variations in thickness of the microstructure
sketched in Figure 1. The definition of 𝒎(𝑿 ) is entirely up to the user. For a 2D elastic truss
possessing rotational symmetry, for instance, one could define 𝒎(𝑿 ) = (𝑋 2

1 + 𝑋 2
2 )1/2 and 𝑛𝑚 = 1

to capture the dependence of the local truss properties on the distance to the center of symmetry.
In the case of variable properties without any particular symmetry, one should set 𝒎(𝑿 ) = 𝑿
and 𝑛𝑚 = 𝑑 . When specifying the input model, one should ensure that any dependence of the
properties of the elastic medium on the slow variable 𝑿 takes place through the quantity 𝒎(𝑿 ),
as illustrated in Section 4. For structures having uniform properties over the large scale, one can
ignore any dependence on 𝒎 and set 𝑛𝑚 = 0, see Appendix D.
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3 Summary of the main results

3.1 Homogenization as a partial energy relaxation

In this paper, we identify an equivalent continuum by making stationary the functional Φ
in Equation (4) over the microscopic degrees of freedom 𝒚(𝑿 ) for a fixed distribution of the
macroscopic variables 𝒎(𝑿 ) and 𝒍 (𝑿 ). The stationary point is denoted as 𝒚★[𝒎, 𝒍], and will be
assumed to be unique—as indicated by the square brackets, the stationary point 𝒚★ is a functional
of 𝒎 and 𝒍 ; it is also a function of 𝑿 , whose values are denoted as 𝒚★[𝒎, 𝒍] (𝑿 ).

In view of (2–3), the kinematic constraint can be written asQ ·
(
𝑬𝑦 (𝒎(𝑿 )) ·𝒚(𝑿 )+𝑬 ′

𝑦 (𝒎(𝑿 )) :
∇𝒚(𝑿 ) + . . . + 𝑬 𝑙 (𝒎(𝑿 )) · 𝒍 (𝑿 ) + 𝑬 ′

𝑙
(𝒎(𝑿 )) : ∇𝒍 (𝑿 ) + . . .

)
= 0 ∀𝑿 . It is treated using Lagrange

multipliers 𝒈(𝑿 ) ∈ R𝑛c . The variational problem takes the following form: for given 𝒎 and 𝒍 , we
seek the solution (𝒚,𝒈) = (𝒚★[𝒎, 𝒍],𝒈★[𝒎, 𝒍]) of

Q ·
(

𝑬𝑦 (𝒎(𝑿 )) · 𝒚(𝑿 ) + 𝑬 ′
𝑦 (𝒎(𝑿 )) : ∇𝒚(𝑿 ) + . . .

+ 𝑬 𝑙 (𝒎(𝑿 )) · 𝒍 (𝑿 ) + 𝑬 ′
𝑙
(𝒎(𝑿 )) : ∇𝒍 (𝑿 ) + . . .

)
= 0, ∀𝑿

D𝒚Φ[𝒎, 𝒍,𝒚;𝛿𝒚] +
∫
Ω
𝒈(𝑿 ) ·Q ·

(
𝑬𝑦 (𝒎(𝑿 )) · 𝛿𝒚(𝑿 )
+ 𝑬 ′

𝑦 (𝒎(𝑿 )) : ∇𝛿𝒚(𝑿 ) + . . .

)
d𝑿 = 0, ∀𝛿𝒚.

(9a)

(9b)

where D𝒚Φ[𝒎, 𝒍,𝒚;𝛿𝒚] = lim𝜏→0 (Φ[𝒉,𝒚 + 𝜏𝛿𝒚] − Φc [𝒉,𝒚]) /𝜏 denotes the directional derivative
and 𝛿𝒚(𝑿 ) is an arbitrary perturbation. Equation (9a) warrants that the stationary point
𝒚 = 𝒚★[𝒎, 𝒍] satisfies the kinematic constraint, while Equation (9b) warrants that it is indeed a
stationary point among the 𝒚’s satisfying the kinematic constraints—the integral term takes care
of these constraints by multiplying the Lagrange multipliers by the incremental form of the
constraint, as usual in the calculus of variations.

Having slaved the microscopic degrees of freedom 𝒚 = 𝒚★[𝒎, 𝒍] to the macroscopic variables,
we can define a homogenized energy functional Φ★[𝒎, 𝒍] by inserting the stationary point
𝒚★[𝒎, 𝒍] into the original Φ,

Φ★[𝒎, 𝒍] = Φ[𝒎, 𝒍,𝒚★[𝒎, 𝒍]] . (10)

The main goal of this paper is to derive an explicit expression of the homogenized functional Φ★.
The stationary point problem in (9) can be written formally as

𝒚★[𝒎, 𝒍] = stpt
𝒚 such that Q ·𝑬=0 ∀𝑿

Φ[𝒎, 𝒍,𝒚] . (11)

Equations (10) and (11) are at the heart of our variational approach to homogenization. They can
be motivated as follows, by considering the broader structural problem of interest: a discrete
truss, for instance, is governed by a total potential energy Ψ[𝒎, 𝒍] + Φ[𝒎, 𝒍,𝒚], where Φ[𝒎, 𝒍,𝒚]
is the strain energy of the truss and Ψ[𝒎, 𝒍] is the potential energy of the applied loading
(under standard scaling assumptions, the latter does not depend on the microscopic degrees
of freedom 𝒚). Recalling that the variable elastic properties 𝒎(𝑿 ) are fixed by design, the full
elastic problem is solved by making the total potential energy Ψ[𝒎, 𝒍] + Φ[𝒎, 𝒍,𝒚] stationary
with respect to both the macroscopic unknowns 𝒍 (𝑿 ) and the microscopic ones 𝒚(𝑿 ), subjected
to the kinematic conditions Q · 𝑬 = 0, ∀𝑿 . Homogenization consists simply in enforcing the
stationarity conditions sequentially, with respect to the microscopic degrees of freedom 𝒚 first
and to the macroscopic strain 𝒍 next. Indeed, the stationarity condition of Ψ[𝒎, 𝒍] + Φ[𝒎, 𝒍,𝒚]
with respect to 𝒚 is nothing but that considered in (11), given that Ψ[𝒎, 𝒍] does not depend on 𝒚.
Next, it can be checked that the stationarity condition with respect to 𝒍 of Ψ[𝒎, 𝒍] + Φ[𝒎, 𝒍,𝒚] is
equivalent to the stationarity condition of the modified functional Ψ[𝒎, 𝒍] + Φ★[𝒎, 𝒍] based
on the homogenized strain energy Φ★ introduced in (10). This argument not only provides a
justification to Equations (10) and (11), it also explains why the homogenized energy Φ★[𝒎, 𝒍] can
be used as a substitute for the original energy Φ[𝒎, 𝒍,𝒚] in the analysis of the structural problem.
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The homogenization works under the assumption that the energy is positive-definite in the
subspace of admissible microscopic degrees of freedom, i.e.,(

∀(𝒎,𝒚 ≠ 0) such that Q ·𝑬𝑦 (𝒎) ·𝒚 = 0
)

(𝑬𝑦 (𝒎) ·𝒚) ·K (𝒎) · (𝑬𝑦 (𝒎) ·𝒚) > 0. (12)

As we will see, this is a necessary condition for the variational problem (9) to have a unique
solution at leading order. It is also a sufficient condition for the homogenization procedure to
produce a result up to second-order.

3.2 Homogenization results in compact form
The variational problem (9) is impossible to solve in closed form in general but thanks to the
assumption of scale separation (Section 2.2), we can derive the following approximation of
Φ★[𝒎, 𝒍],

Φ★[𝒎, 𝒍] =
∫
Ω

(
𝑲 [𝒎] :

𝒍 ⊗ 𝒍

2
+𝑨[𝒎] ∴ (𝒍 ⊗ ∇𝒍) + 𝑩[𝒎] ::

∇𝒍 ⊗ ∇𝒍
2

)
d𝑿+∮

𝜕Ω

[
𝒌 [𝒎] ∴

(
𝒍 ⊗ 𝒍

2
⊗ 𝒏

)
+ 𝒂 [𝒎] :: (𝒍 ⊗ ∇𝒍 ⊗ 𝒏)

]
d𝑎 + O(𝐿𝑑[3) .

(13)

In the boundary terms
∮
𝜕Ω
. . . d𝑎 in the second line, 𝜕Ω denotes the boundary of the domain, 𝒏

is the unit outward normal, and d𝑎 the area (if 𝑑 = 3) or the length (if 𝑑 = 2) of a boundary
element, see Figure 1. The typographical variant of the integral sign

∮
will be used throughout

for boundary integrals.
The dimension and symmetries of the homogenized tensors 𝑲 , 𝑨, 𝑩, 𝒌 and 𝒂 are specified in

Table 2. Our main result is to derive their expansion in the successive gradients ∇𝑘𝒎 = O([𝑘 ),

𝑲 [𝒎] = 𝑲0(𝒎) + 𝑲1(𝒎) : ∇𝒎 + 𝑲2(𝒎) :: (∇𝒎 ⊗ ∇𝒎) + · · ·
𝑨[𝒎] = 𝑨0(𝒎) + 𝑨1(𝒎) : ∇𝒎 + · · ·
𝑩[𝒎] = 𝑩0(𝒎) + · · ·
𝒌 [𝒎] = 𝒌1(𝒎) : ∇𝒎 + · · ·
𝒂 [𝒎] = 𝒂0(𝒎) + · · ·

(14)

The tensors 𝑲 𝑖 (𝒎), 𝑨𝑖 (𝒎), 𝑩0(𝒎), 𝒌1(𝒎) and 𝒂0(𝒎) appearing in the right-hand sides of (14)
are obtained in explicit form in terms of the local material parameters𝒎 in Appendix B, see (B.12),
and in Appendix C, see Appendices C.5 and C.10. Their properties are listed in Table 3.

This completes the specification of the homogenized model (13) up to order [2 included.

Table 2 Dimensions and symmetries of the ten-
sors appearing in the homogenized energy
functional in (13).

tensor space symmetry

𝑲 [𝒎] T(𝑛𝑙 ,𝑛𝑙 ) 𝑆12

𝑨[𝒎] T(𝑛𝑙 ,𝑛𝑙 ,𝑑) –
𝑩[𝒎] T(𝑛𝑙 ,𝑑,𝑛𝑙 ,𝑑) 𝑆 {12}{34}
𝒌 [𝒎] T(𝑛𝑙 ,𝑛𝑙 ,𝑑) 𝑆12

𝒂 [𝒎] T(𝑛𝑙 ,𝑛𝑙 ,𝑑,𝑑) –

𝒀 [𝒎] T(𝑛𝑦 ,𝑛𝑙 ) –
𝒀 ′[𝒎] T(𝑛𝑦 ,𝑛𝑙 ,𝑑) –

The expansion (13–14) is established in Section 5 by solving the variational problem (9) for 𝒚
order by order in [. The solution is found in the form

𝒚★[𝒎, 𝒍] (𝑿 ) = 𝒀 [𝒎] (𝑿 ) · 𝒍 (𝑿 ) + 𝒀 ′[𝒎] (𝑿 ) : ∇𝒍 (𝑿 ) + O([2) (15)

where 𝒀 [𝒎] and 𝒀 ′[𝒎] are given as expansions in the successive gradients of 𝒎,

𝒀 [𝒎] (𝑿 ) = 𝒀 0(𝒎(𝑿 )) + 𝒀 1(𝒎(𝑿 )) : ∇𝒎(𝑿 ) + · · ·
𝒀 ′[𝒎] (𝑿 ) = 𝒀 ′

0(𝒎) + · · ·
(16)
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tensor space symmetry usage

𝑲0 (𝒎) T(𝑛𝑙 ,𝑛𝑙 ) 𝑆12 Φ★[0] =
∫
Ω 𝑲0 : 𝒍⊗𝒍

2 d𝑿

𝑲1 (𝒎) T(𝑛𝑙 ,𝑛𝑙 ,𝑛𝑚,𝑑) 𝑆12 Φ★[1] =
∫
Ω
(𝑲1 : ∇𝒎) : 𝒍⊗𝒍

2 d𝑿 + · · ·
𝑲2 (𝒎) T(𝑛𝑙 ,𝑛𝑙 ,𝑛𝑚,𝑑,𝑛𝑚,𝑑) 𝑆12, 𝑆 {34}{56} Φ★[2] =

∫
Ω
(𝑲2 :: (∇𝒎 ⊗ ∇𝒎)) : 𝒍⊗𝒍

2 d𝑿 + · · ·
𝑨0 (𝒎) T(𝑛𝑙 ,𝑛𝑙 ,𝑑) – Φ★[1] =

∫
Ω 𝑨0 ∴ (𝒍 ⊗ ∇𝒍)d𝑿 + · · ·

𝑨1 (𝒎) T(𝑛𝑙 ,𝑛𝑙 ,𝑑,𝑛𝑚,𝑑) – Φ★[2] =
∫
Ω
(𝑨1 : ∇𝒎) ∴ (𝒍 ⊗ ∇𝒍)d𝑿 + · · ·

𝑩0 (𝒎) T(𝑛𝑙 ,𝑑,𝑛𝑙 ,𝑑) 𝑆 {12}{34} Φ★[2] =
∫
Ω 𝑩0 :: ∇𝒍⊗∇𝒍

2 d𝑿 + · · ·
𝒌1 (𝒎) T(𝑛𝑙 ,𝑛𝑙 ,𝑑,𝑛𝑚,𝑑) 𝑆12 Φ★[2] =

∮
𝜕Ω

(𝒌1 [𝒎] : ∇𝒎) ∴
(
𝒍⊗𝒍

2 ⊗ 𝒏
)

d𝑎 + · · ·
𝒂0 (𝒎) T(𝑛𝑙 ,𝑛𝑙 ,𝑑,𝑑) – Φ★[2] =

∮
𝜕Ω 𝒂0 [𝒎] :: (𝒍 ⊗ ∇𝒍 ⊗ 𝒏)d𝑎 + · · ·

𝒀 0 (𝒎) T(𝑛𝑦 ,𝑛𝑙 ) – 𝒚★[0] = 𝒀 0 (𝒎) · 𝒍
𝒀 1 (𝒎) T(𝑛𝑦 ,𝑛𝑚,𝑑,𝑛𝑙 ) – 𝒚★[1] = (𝒀 1 (𝒎) : ∇𝒎) · 𝒍 + · · ·
𝒀 ′

0 (𝒎) T(𝑛𝑦 ,𝑛𝑙 ,𝑑) – 𝒚★[1] = 𝒀 ′
0 (𝒎) : ∇𝒍 + · · ·

𝑮0 (𝒎) T(𝑛c,𝑛𝑙 ) – 𝒈★[0] = 𝑮0 (𝒎) · 𝒍

Table 3 Tensors delivered by the homogenization procedure, defining the homogenized model in Equations (13)
and (14).

and the localization tensors 𝒀 0(𝒎), 𝒀 1(𝒎) and 𝒀 ′
0(𝒎) are derived in explicit form in terms of the

variable material parameters 𝒎 in the Appendix, see (B.8) and (C.48).

3.3 Homogenization results in the form of a systematic expansion
The various contributions to Φ★ in (13) can be grouped order by order as follows, by inserting (14)
into (13) and using (7):

• The leading-order contribution Φ★
[0] = 𝑂 (𝐿𝑑[0) is given by

Φ★
[0] [𝒎, 𝒍] =

∫
Ω
𝑲0(𝒎) :

𝒍 ⊗ 𝒍

2
d𝑿 , (17)

and characterizes an equivalent Cauchy medium through a homogenized stiffness tensor 𝑲0(𝒎)
depending only on the local material parameters 𝒎: this homogenized stiffness 𝑲0(𝒎) matches
that predicted by classical homogenization.

• The first correction Φ★
[1] = 𝑂 (𝐿𝑑[1) is given by

Φ★
[1] [𝒎, 𝒍] =

∫
Ω

(
(𝑲1(𝒎) : ∇𝒎) :

𝒍 ⊗ 𝒍

2
+𝑨0(𝒎) ∴ (𝒍 ⊗ ∇𝒍)

)
d𝑿 . (18)

• The second correction Φ★
[2] = 𝑂 (𝐿𝑑[2) is given by

Φ★
[2] [𝒎, 𝒍] =

∫
Ω

(
(𝑲2(𝒎) :: (∇𝒎 ⊗ ∇𝒎)) : 𝒍⊗𝒍

2

+ (𝑨1(𝒎) : ∇𝒎) ∴ (𝒍 ⊗ ∇𝒍) + 𝑩0(𝒎) :: ∇𝒍⊗∇𝒍
2

)
d𝑿

+
∮
𝜕Ω

[
(𝒌1(𝒎) : ∇𝒎) ∴

(
𝒍 ⊗ 𝒍

2
⊗ 𝒏

)
+ 𝒂0(𝒎) :: (𝒍 ⊗ ∇𝒍 ⊗ 𝒏)

]
d𝑎.

(19)

The homogenized energy Φ★[𝒎, 𝒍] in (13) is nothing but the sum

Φ★[𝒎, 𝒍] = Φ★
[0] + Φ★

[1] + Φ★
[2] + O(𝐿𝑑[3), (20)

and it is asymptotically exact up to a higher-order contribution Φ★
[3] = O(𝐿𝑑[3) which we do not

attempt to resolve.

Remark 6 The actual derivation of the homogenized model proceeds in the reverse order than the high-level
presentation above: the order-by-order expansion (17–20) is derived first, and the compact
form (13–14) is obtained next by rearranging the terms.
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The solution for𝒚 in (15–16) is derived based on the assumption that the microscopic variables
𝒚 = 𝒚★[𝒎, 𝒍] can be expanded in powers of [,

𝒚(𝑿 ) = 𝒚 [0] (𝑿 ) +𝒚 [1] (𝑿 ) +𝒚 [2] (𝑿 ) + · · · , (21)

where 𝒚 [𝑘 ] (𝑿 ) = O([𝑘 ) denotes the contribution of order [𝑘 to 𝒚. Specifically, the microscopic
solution 𝒚★ = 𝒚★[𝒎, 𝒍] = 𝒚★[0] (𝑿 ) +𝒚★[1] (𝑿 ) + · · · is derived order by order as

𝒚★[0] (𝑿 ) = 𝒀 0(𝒎(𝑿 )) · 𝒍 (𝑿 )
𝒚★[1] (𝑿 ) = (𝒀 1(𝒎(𝑿 )) : ∇𝒎(𝑿 )) · 𝒍 (𝑿 ) + 𝒀 ′

0(𝒎(𝑿 )) : ∇𝒍 (𝑿 ),
(22a)

(22b)

which yields (15–16) by rearranging the terms.

Remark 7 As discussed in Section 2.2, there are implicit scaling factors [𝑘 in all our formulas. Their
consistency can be checked as follows. Take Equation (22b), for instance: the subscript ‘[1]’ in
the left-hand side indicates that this is a quantity of order [; this is consistent with the fact that
the right-hand side is homogeneous of degree 1 with respect to the symbol ∇ = O([). When
checking homogeneity, the boundary terms must be treated with special care: in Equation (19),
for instance, the integrand of the bulk integral is as quantity of order [2, in line with the subscript
‘[2]’ appearing in the left-hand. The integrand of the boundary integral is however a quantity of
order [1; the paradox is resolved by noting that the measure of the domain O(𝐿𝑑 ) for the bulk
integral, but O(𝐿𝑑−1) = O(𝐿𝑑[) for the boundary integral—recall that ℓ = O(1) and 𝐿 = O([−1).
Ultimately, both integrals are of order O(𝐿𝑑[2).

4 Illustrations

In this section, we provide simple illustrations of the homogenization method. Equivalent
high-order beam models are derived for various truss lattices, in the same line as a number
of earlier works on periodic 1D structures, including (Hans and Boutin 2008; Abdoul-Anziz
and Seppecher 2018b). This is not a fundamentally new contribution, our main goal being to
illustrate how the abstract method can be applied to specific problems. The first two examples
demonstrate that the homogenization can naturally handle elastic structures possessing graded
properties (Section 4.1) and pre-strain (Section 4.2), two features that are not commonly addressed
in the literature. A variant of this truss, this time including rigid bars arranged in a way that
the macroscopic strain is constrained, is proposed in the Appendix (Appendix E.9). We also
demonstrate how the method can be extended to a frame made up of beams (rather than springs),
and show that the homogenization method can be adapted to deliver a Timoshenko beam model
(Section 4.3).

4.1 A truss lattice having slowly variable elastic properties

We consider a truss lattice comprising elastic bars connected by perfect hinges, arranged in
rectangular geometry made up of square cells with side length 𝑎, see Figure 2.

3
S̄α S̄

tφ

(a) (b)

εφ

Xβφ1
δβφ1

δβφ2

Xβφ2

S̄φc

α+

α−e1

e2

a

451 K

2

Figure 2 Truss lattice example. (a) General view, (b) a specific bar.
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Discrete model. Let (𝒆1, 𝒆2) be a frame of orthonormal directors with 𝒆1 aligned with the
longitudinal direction of the truss. The nodes are labelled with indices 𝛼± = (𝛼,±) where 𝛼 in an
integer spanning the longitudinal direction, and the symbol ± is a discrete transverse coordinate
labelling the lower versus upper layer of nodes. We denote by 𝑿𝛼± = 𝑆𝛼𝒆1 ± 𝑎

2 𝒆2 with 𝑆𝛼 = 𝑎𝛼

the (undeformed) position of node 𝛼±, and by 𝜹𝛼± its infinitesimal displacement.
Given a bar labelled by 𝜑 , we assign to it an orientation and denote by 𝛽1

𝜑 and 𝛽2
𝜑 its ordered

end-nodes in reference configuration, by 𝑙𝜑 = ∥𝑿𝛽2
𝜑
− 𝑿𝛽1

𝜑
∥ its undeformed length and by

𝒕𝜑 = (𝑿𝛽2
𝜑
− 𝑿𝛽1

𝜑
)/𝑙𝜑 its undeformed unit tangent. The (dimensionless) axial strain in the bar is

given by

Y𝜑 =
(𝜹𝛽2

𝜑
− 𝜹𝛽1

𝜑
) · 𝒕𝜑

𝑙𝜑
. (23)

The discrete elastic energy in the lattice is written in the form

Φd =
∑︁
𝜑

𝑤𝜑 (Y𝜑 ) with 𝑤𝜑 (Y𝜑 ) =
1
2
𝐾 (𝑆𝑐𝜑 )Y2

𝜑 . (24)

The lattice has graded properties as the elastic constant 𝐾 of the bars depends on the midpoint
coordinate 𝑆𝑐𝜑 = 1

2 (𝑆𝛽1
𝜑
+ 𝑆𝛽2

𝜑
). In order to keep the homogenization results as simple as possible,

we make the simplifying assumption that the different types of bars have identical elastic
constants 𝐾 : the more natural assumption that all bars have identical cross-sections (and thus
that their elastic constants 𝐾 is proportional to the length 𝑙𝜑 ) could be addressed by making 𝐾 a
function of not only 𝑆𝑐𝜑 but also of the type of the bar 𝜑 , which does not raise any particular
difficulty.

Continualization, scaling assumptions Our continuous model is one-dimensional (𝑑 = 1)
and involves macroscopic fields that are functions of the longitudinal coordinate 𝑆 . As part of the
continualization step, the nodal displacement 𝜹𝛼± is sought in terms of continuous fields in the
longitudinal direction as

𝜹𝛼± =

(
𝑈 (𝑆𝛼 ) ∓

𝑎

2
𝑉 ′(𝑆𝛼 ) + 𝑌±

1 (𝑆𝛼 )
)
𝒆1 + (𝑉 (𝑆𝛼 ) + 𝑌±

2 (𝑆𝛼 ))𝒆2, (25)

where𝑈 (𝑆) and 𝑉 (𝑆) denote the macroscopic longitudinal and transverse displacement of the
equivalent rod, respectively, and 𝑌±

𝑖 (𝑆) are the components of the microscopic displacement
for either row of nodes (±). The special case 𝑌±

1 = 𝑌±
2 = 0 corresponds to the (asymptotically

incorrect) assumption of an unshearable model having rigid cross-sections—note that the term
∓𝑎𝑉 ′/2 represents the rigid rotation of the cross-section imposed by the centerline. We do not
impose 𝑌±

1 and 𝑌±
2 to be zero.

We impose the kinematic constraint

⟨𝑌±
𝑖 (𝑆)⟩ = 0 , ∀𝑆 ∀𝑖 ∈ {1, 2}, (26)

where ⟨·⟩ denotes the average over the top and bottom rows, i.e., ⟨𝑌±
𝑖 ⟩ = 1

2 (𝑌
−
𝑖 + 𝑌 +

𝑖 ). This
warrants that (𝑈 (𝑆),𝑉 (𝑆)) capture the average nodal displacement at coordinate 𝑆 : indeed, by
combining (25–26), we have ⟨𝜹𝛼±⟩ = 𝑈 (𝑆𝛼 )𝒆1 +𝑉 (𝑆𝛼 )𝒆2. As a result, the equivalent rod passes
through the midpoints of the sections [𝑿𝛼−𝑿𝛼+]. This choice is somewhat arbitrary: by using
different weights in the average (26), we could introduce a lateral offset in the definition of the
centerline.

We define the macroscopic length to be 𝑎/[, with [ ≪ 1 the scale separation parameter; see
Equation (6). A standard scaling analysis yields the macroscopic stretching strain as Y ∼ 𝑈 ′(𝑆),
the macroscopic rotation as \ (𝑆) ∼ 𝑉 ′(𝑆), the relative rotation between successive transverse
links as 𝑎\ ′(𝑆), and thus the differential stretching strain of bars located on the inner and outer
sides (curvature effect) as Y ∼ 𝑎\ ′(𝑆). Natural scales are found by balancing the two sources of
stretching strain Y, yielding Y ∼ 𝑈 ′ ∼ 𝑎\ ′ ∼ 𝑎𝑉 ′′, which suggests introducing dimensionless
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quantities in the form

𝑈 (𝑆) = 𝑎

[
𝑢

(
𝑆

𝑎/[

)
𝑉 (𝑆) = 𝑎

[2 𝑣

(
𝑆

𝑎/[

)
𝒀±
𝑖 (𝑆) = 𝑎𝒚±

𝑖

(
𝑆

𝑎/[

)
,

(27a)

(27b)

(27c)

where 𝑢, 𝑣 and 𝒚±
𝑖 are dimensionless unknowns and 𝑆 = 𝑆/(𝑎/[) = 𝑆[/𝑎 is a slow variable, i.e.,

the arclength scaled by the macroscopic length 𝑎/[.
In addition, we assume that the variations of elastic properties take place on the macroscopic

scale, i.e.,

𝐾 (𝑆) = 𝑘
(
𝑆

𝑎/[

)
. (28)

In what follows, we eliminate the original quantities in favor of the dimensionless ones, 𝑢 (𝑆),
𝑣 (𝑆), 𝒚±

𝑖 (𝑆) and 𝑘 (𝑆) everywhere. By contrast with the rest of the paper, we keep explicit track
of the small coefficient [ in the present section.

Setting up the input of the homogenization procedure In the classical theory of linear,
planar beams, the two relevant strain measures are the stretching strain 𝑒 (𝑆) := 𝑢 ′(𝑆) and the
bending strain 𝑐 (𝑆) := 𝑣 ′′(𝑆). We thus anticipate that the homogenized energy will depend on
the macroscopic strain 𝒍 (𝑛𝑙 = 2) which we define as

𝒍 (𝑆) = (𝑒 (𝑆), 𝑐 (𝑆)) := (𝑢 ′(𝑆), 𝑣 ′′(𝑆)) . (29)

In terms of the unscaled displacement (𝑈 ,𝑉 ), the dimensionless strain measures are given by
𝑒 (𝑆) = 𝑈 ′ (𝑎𝑆/[) and 𝑐 (𝑆) = 𝑎𝑉 ′′ (𝑎𝑆/[).

In addition, we define the vector of microscopic degrees of freedom (𝑛𝑦 = 4) as

𝒚(𝑆) = (𝑦−1 (𝑆), 𝑦−2 (𝑆), 𝑦+1 (𝑆), 𝑦+2 (𝑆)) . (30)

These quantities 𝒍 and 𝒚 were chosen in such a way that the strain of a bar 𝜑 can be expressed in
terms of 𝒍 , 𝒚 and their successive gradients at the midpoint coordinate 𝑆𝑐𝜑 , see Equation (32)
below.

In our discrete model (24), the elastic constants 𝑘 (𝑆𝑐𝜑 ) depend on the midpoint coordinate 𝑆𝑐𝜑 .
This makes the energy density𝑊 in (34) depend explicitly on 𝑆 . Since𝑊 is required by design to
depend on 𝒎 and 𝑬 only, see (5), we pack up the coordinate 𝑆 into the list of material parameters
𝒎(𝑆),

𝒎(𝑆) =
(
𝑆

)
, 𝑛𝑚 = 1. (31)

An alternative (and ultimately equivalent) approach would be to define 𝒎(𝑆) as 𝑘 (𝑆).
Next, we define the strain 𝑬 as the concatenation of (i) the discrete strains 𝐸𝑖 = Y𝜑 given

in (23), in each of the 5 types 𝑖 of bars that make up the lattice, see Figure 2, together with (ii) the
left-hand sides of the two kinematic constraints appearing in (26),

𝑬 =

(
𝐸1 · · · 𝐸5 𝐸6 = ⟨𝑦±1 ⟩ 𝐸7 = ⟨𝑦±2 ⟩

)
. (32)

We therefore have 𝑛𝐸 = 7 strain variables.
Having included the left-hand sides of the kinematic constraint (26) at positions 6 and 7 in 𝑬 ,

we can easily express the 𝑛c = 2 constraints in the form Q · 𝑬 = 0 expected in Equation (3), by
defining the constraint extraction matrix as Q =

(
02×5 12×2

)
using block-matrix notation.
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Inserting the expression (25) of the nodal displacement in the expression of 𝑬 , using the
scaled quantities introduced in (27), and performing Taylor expansions about the midpoints of
the bars, we get

𝐸1 = 𝑦
+
2 − 𝑦−2

𝐸2 = 𝑙1 +
𝑙2

2
+[𝑦−1 ′ + [

2

48
(2𝑙 ′′1 + 𝑙 ′′2 ) + O([3)

𝐸3 =
𝑙1 − 𝑦−1 − 𝑦−2 + 𝑦+1 + 𝑦+2

2
− [

24
(
𝑙 ′2 − 6

(
𝑦−1

′+𝑦−2 ′+𝑦+1
′+𝑦+2

′) )
+ [

2

48
(
𝑙 ′′1 − 3

(
𝑦−1

′′+𝑦−2 ′′−𝑦+1
′′−𝑦+2

′′) ) + O([3)

𝐸4 = 𝑙1 −
𝑙2

2
+[𝑦+1

′ + [
2

48
(2𝑙 ′′1 − 𝑙 ′′2 ) + O([3)

𝐸5 =
𝑙1 + 𝑦−1 − 𝑦−2 − 𝑦+1 + 𝑦+2

2
+ [

24
(
𝑙 ′2 + 6

(
𝑦−1

′−𝑦−2 ′+𝑦+1
′−𝑦+2

′) )
+ [

2

48
(
𝑙 ′′1 + 3

(
𝑦−1

′′−𝑦−2 ′′−𝑦+1
′′+𝑦+2

′′) ) + O([3)

𝐸6 = (𝑦−1 + 𝑦+1 )/2
𝐸7 = (𝑦−2 + 𝑦+2 )/2,

(33)

which is of the form 𝑬 = 𝑬 (𝒎; 𝒍, 𝒍 ′, 𝒍 ′′, . . . ;𝒚,𝒚′,𝒚′′, . . .) expected in Equation (2). In (33), the
argument of the functions 𝒍, 𝒍 ′, 𝒍 ′′,𝒚,𝒚′,𝒚′′ is implicitly assumed to be the midpoint 𝑆𝑐𝜑 of each
bar. The details of the calculations can be found in the companion Mathematica notebook.

The discrete energy (24) is finally continualized in the canonical form (4–5) as

Φd ≈
∫ +∞

−∞
𝑊 (𝒎, 𝑬)d𝑆 where𝑊 (𝒎, 𝑬) = 𝑘 (𝑚1)

2[

5∑︁
𝑖=1

𝐸2
𝑖 . (34)

The notation 𝑘 (𝑚1) conveys the fact that the argument𝑚1 = 𝑆 to be passed to the stiffness
distribution 𝑘 (𝑆) is the first (and only) component𝑚1 of 𝒎, see (31).

In (34), the discrete energy (24) has been continualized by using the formal rule∑︁
𝜑

𝑤𝜑 =

5∑︁
𝑖=1

∑︁
𝜑 ∈𝑖

𝑤𝜑 ≈
5∑︁

𝑖=1

∫ +∞

−∞
𝑤𝑖

d𝑆
[

=

5∑︁
𝑖=1

∫ +∞

−∞

1
2
𝑘𝐸2

𝑖

d𝑆
[

=

∫ +∞

−∞
𝑊 d𝑆, (35)

where 𝑖 is an index running over the 5 different types of links, 𝜑 ∈ 𝑖 is included in the partial sum
of all links 𝜑 belonging to a particular family 𝑖 , and𝑤𝑖 denotes the expression of the energy
𝑤𝜑 relevant to the links 𝜑 belonging to a particular family 𝑖 . The coefficient 1/[ appearing
in the definition of𝑊 in (34) is nothing but the lineic density of links of each type per unit
dimensionless length 𝑆 . Thanks to the assumed periodicity of the lattice, we have been able to
rewrite the discrete sum in (24) into an integral in (34).

Remark 8 In the argument sketched above, the continualization is based on the formal approximation rule
for a discrete sum in terms of an integral,

∑
𝜑 ∈𝑖 𝑤𝜑 ≈

∫
𝑤𝑖

d𝑆
[
, which has been used in a number

of earlier work. A rigorous justification of this approximation is known as the Euler–MacLaurin
formula: it is correct to order [2 in an infinite domain, but needs to be corrected by boundary
terms in a finite domain.

At this point, we can identify the quantities that are required on input of the homogenization
method, as specified in Table 1: they are listed in Table 4. The integer constants appearing in the
left column of Table 4 and the constraint extraction matrix Q have been collected from the above
discussion. The tensors 𝑬 𝑙 , ..., 𝑬 ′′

𝑙
collect the numerical coefficients appearing in (33) and are found

by identification with Equation (2). The elastic stiffness tensor K (𝑆) is found by identifying (34)
with (5). Expressions in Table 4 make use of the notation 𝜹𝑛

𝑖 = (01 . . . 0𝑖−1 1𝑖 0𝑖+1 . . . 0𝑛) ∈ R𝑛
for the 𝑖-th Kronecker vector with length 𝑛; for example, 𝜹5

2 = (0 1 0 0 0).
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𝑑 = 1

𝑛𝑚 = 1

𝒎 =
(
𝑆
)

𝑛𝑙 = 2

𝑛𝑦 = 4

𝑛𝐸 = 7

𝑛c = 2

𝑬𝑙 (𝑆) =

(
𝜹7

2 + 𝜹7
4 +

𝜹7
3+𝜹7

5
2

)
⊗ 𝜹2

1 +
𝜹7

2−𝜹7
4

2 ⊗ 𝜹2
2

𝑬 ′
𝑙
(𝑆) = 1

24 (−𝜹
7
3 + 𝜹7

5) ⊗ 𝜹2
2 ⊗ 𝜹1

1

𝑬 ′′
𝑙
(𝑆) = 1

24𝑬𝑙 (𝑆) ⊗ 𝜹1
1 ⊗ 𝜹1

1

𝑬𝑦 (𝑆) = 𝜹7
1 ⊗ . . . + 𝜹7

3 ⊗ . . . + 𝜹7
5 ⊗ . . . + 𝜹7

6 ⊗ 𝜹4
1+𝜹4

3
2 + 𝜹7

7 ⊗ 𝜹4
2+𝜹4

4
2

𝑬 ′
𝑦 (𝑆) = . . .

𝑬 ′′
𝑦 (𝑆) = 1

16

(
𝜹7

3 ⊗
(
−𝜹4

1 − 𝜹4
2 + 𝜹4

3 + 𝜹4
4
)
+ 𝜹7

5 ⊗
(
𝜹4

1 − 𝜹4
2 − 𝜹4

3 + 𝜹4
4
) )

⊗ 𝜹1
1 ⊗ 𝜹1

1

K (𝑆) =
𝑘 (𝑆)
[

∑5
𝑖=1 𝜹

7
𝑖
⊗ 𝜹7

𝑖

Q(𝑆) =
∑2
𝑖=1 𝜹

2
𝑖 ⊗ 𝜹7

5+𝑖

Table 4 Input parameters used for the homogenization of the truss lattice. The spring constant 𝑘 (𝑆) is set up as a
symbolic function of 𝑆 . For the sake of brevity, the terms denoted by ellipses are omitted: full expressions
are available in the input file inhomogeneous-truss.nb included in the library (Audoly 2023).

Homogenization results We propose an implementation of the general homogenization
method described in this paper (Sections 5 and 6) in the form of an open-source library named
shoal (Audoly 2023). The quantities listed in Table 4 are passed to the library in symbolic
form, see the input file inhomogeneous-truss.nb1. The code executes without any further
input from the user. It delivers the tensors listed in Table 3, which we now proceed to interpret
using (13–16) and (29–30). We note that ∇𝒎 = 𝜹1

1 ⊗ 𝜹1
1 in view of the definition (31) of 𝒎.

The homogenization method returns

𝒀 0 =
1
6
(𝜹4

2 − 𝜹4
4) ⊗ 𝜹2

1, 𝒀 ′
0 =

11
24

(𝜹4
1 − 𝜹4

3) ⊗ 𝜹2
2 ⊗ 𝜹1

1,

𝒀 1 =
𝑘 ′(𝑆)
2𝑘 (𝑆) (𝜹

4
1 − 𝜹4

3) ⊗ 𝜹2
2 ⊗ 𝜹1

1 ⊗ 𝜹1
1.

(36)

In view of (15–16), the microscopic displacement 𝒚 = 𝒀 0 · 𝒍 + 𝒀 ′
0 : ∇𝒍 + (𝒀 1 : ∇𝒎) · 𝒍 + · · · is

found with the help of (29–30) as

𝑦−1 = + 11
24[𝑐

′(𝑆) + [𝑘′ (𝑆)
2𝑘 (𝑆) 𝑐 (𝑆) + O([2)

𝑦−2 = + 𝑒 (𝑆)
6 + O([2)

𝑦+1 = − 11
24[𝑐

′(𝑆) − [𝑘′ (𝑆)
2𝑘 (𝑆) 𝑐 (𝑆) + O([2)

𝑦+2 = − 𝑒 (𝑆)
6 + O([2)

(37)

The quantities ±𝑒 (𝑆)/6 of order [0 in the right-hand side represent the predictions of classical
(leading-order) homogenization. Note that the correction of order [1 includes not only a
contribution proportional to the strain gradient 𝑐 ′ but also one proportional to the gradient 𝑘 ′ of
elastic properties—this corresponds, respectively, to the ∇𝒍 and ∇𝒎 contributions appearing in
the right-hand side of (22b).

The homogenized energy functional is obtained by interpreting the output of the code
similarly using Table 3, see also (13–14),

Φ★ =

∫ +∞

−∞

[1
2

(
7𝑘
3
𝑒2 +

(
𝑘

2
− [2𝑘 ′2

2𝑘

)
𝑐2

)
− [2𝑘 ′

(
𝑒𝑒 ′

12
+ 23

48
𝑐𝑐 ′

)
− [2𝑘

2

(
1
6
𝑒 ′2 + 11

24
𝑐 ′2

)
+ O([3)

] d𝑆
[
. (38)

The detailed expressions of the tensors 𝑲0, 𝑲1, ... underlying the above expression of Φ★ can be
found in the Mathematica notebook inhomogeneous-truss.nb included in the library. The
energy Φ★ in (38) depends on the stretching strain 𝑒 (𝑆), on the dimensionless curvature strain

1 See shoal-library-v1.0/discrete_engine/illustrations/JTCAM2023-paper/inhomogeneous-truss.nb
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𝑐 (𝑆), as well as on their gradients 𝑒 ′(𝑆) and 𝑐 ′(𝑆), and on the gradients of elastic properties 𝑘 ′(𝑆)
(the dependence of 𝑒 , 𝑐 and 𝑘 on 𝑆 implicit in the above integral). This result is valid for any
given slowly varying distribution of spring stiffness 𝑘 (𝑆) since 𝑘 (𝑆) is treated as a symbolic
function. As we consider an infinite structure, we have ignored in (38) the boundary terms that
are returned by the homogenization library.

In view of the negative coefficients −1/6 and −11/24 appearing in the last term in the integral,
the energy Φ★ can be made arbitrarily large and negative by incorporating oscillations into the
unknowns 𝑒 (𝑆) and 𝑐 (𝑆), having both small amplitude and small wavelength. This holds even
in the simple case where the elastic properties are uniform (𝑘 ′ = 0). This points to the lack of
lower semi-continuity of the homogenized energy Φ★, an undesirable property of higher-order
gradient models that has been documented by several authors for various elastic structures, see
for instance (Le and Marigo 2018). It calls for a regularization of the functional Φ★, a point which
we address in future work.

Remark 9 Alternatively, the homogenized functional Φ★ can be expressed in terms of the original unscaled
quantities, namely the elastic constant 𝐾 (𝑆), the axial strain 𝑒 (𝑆) = 𝑈 ′(𝑆) = 𝑒

(
𝑆[/𝑎

)
and the

curvature 𝑐 (𝑆) = 𝑉 ′′(𝑆) = 1
𝑎
𝑐
(
𝑆[/𝑎

)
. The result is free of the parameter [,

Φ★ =

∫ +∞

−∞

[1
2

(
7𝐾
3
𝑒2 +

(
𝐾

2
− 𝑎2𝐾 ′2

2𝑘

)
𝑐2

)
− 𝑎2𝐾 ′

(
𝑒 𝑒 ′

12
+ 23

48
𝑐 𝑐 ′

)
− 𝑎2𝐾

2

(
1
6
𝑒 ′2 + 11

24
𝑐 ′2

)
+ O(𝑎3)

] d𝑆
𝑎
.

(39)

4.2 A truss lattice with pre-strain
In order to illustrate the ability of our method to handle pre-strain, we now include an additional
tensile pre-strain +𝑝 (𝑆)/2 in the lower layer of bars, and a contractile pre-strain −𝑝 (𝑆)/2 in the
upper layer of bars. For the sake of simplicity, we focus on the case of uniform elastic properties
across the length, taking 𝑘 to be independent of 𝑆 .

Accordingly, we change the strain definition for the two diagonal bars to 𝐸2 = 𝐸
0
2 − 𝑝 (𝑆)/2

and 𝐸4 = 𝐸
0
4 − (−𝑝 (𝑆)/2), where the quantities 𝐸0

𝑖 refer to the expressions of 𝐸𝑖 in the absence of
pre-strain given in the right-hand sides of (33) (Section 4.1).

Since 𝑬 is required to be a function of 𝒍 and𝒚 and their derivatives, we add a third component
𝑙3 = 𝑝 to the macroscopic strain 𝒍 and rewrite 𝐸2 = 𝐸

0
2 − 𝑙3(𝑆)/2 and 𝐸4 = 𝐸

0
4 + 𝑙3(𝑆)/2. Note that

the pre-strain is subtracted from the original element strain, so that the energy in the bar labelled
2 in Figure 2, for instance, is given by 𝑘

2 (𝐸
0
2 − 𝑝 (𝑆)/2)2 and is minimum when 𝐸0

2 = 𝑝 (𝑆)/2.
To sum up, we make the following changes in the specification of the input problem:

𝒎 = (), 𝑛𝑚 = 0, 𝑛𝑙 = 3, 𝒍 = (𝑒 = 𝑢 ′, 𝑐 = 𝑣 ′′, 𝑝) ,

𝐸2 = 𝐸
0
2 −

𝑙3(𝑆)
2

, 𝐸4 = 𝐸
0
4 +

𝑙3(𝑆)
2

, K =
𝑘

[

5∑︁
𝑖=1

𝜹7
𝑖 ⊗ 𝜹7

𝑖 .
(40)

The tensors 𝑬𝑦 , 𝑬 ′
𝑦 and 𝑬 ′′

𝑦 are unchanged. The dimension of the tensors 𝑬 𝑙 , 𝑬 ′
𝑙
and 𝑬 ′′

𝑙
is

increased to reflect the new dimension 𝑛𝑙 = 3 of the macroscopic strain vector 𝒍 . This change
of dimension takes place simply by adding zero entries to 𝑬 ′

𝑙
and 𝑬 ′′

𝑙
, and by including a new

contribution 𝑬 𝑙 = · · · + 1
2 (−𝜹

7
2 + 𝜹7

4) ⊗ 𝜹3
3 to 𝑬 𝑙 , to reflect the new 𝑙3-terms in 𝐸2 and 𝐸4.

The homogenization code is run again with the modified set of input parameters, see the
notebook prestrained-truss.nb included in the library. The homogenized energy is obtained
as

Φ★ =

∫ +∞

−∞

[
𝑘

2

(
7
3
𝑒2 + (𝑐 − 𝑝)2

2

)
+ [

2𝑘

2

(
−𝑒

′2

6
− 11

24
𝑐 ′2 + 23

24
𝑐 ′𝑝 ′ − 𝑝 ′2

2

)
+ O([3)

]
d𝑆
[
. (41)

In the leading-order term, the pre-strain sets the natural curvature of the equivalent beam as
𝑐0(𝑆) = 𝑝 (𝑆), as could be anticipated. Note that the gradient of pre-strain 𝑝 ′(𝑆) contributes to
the energy at order [2.
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Figure 3 An elastic frame made up of identical beams having length 𝑎, stretching modulus 𝐸𝐴 and bending modulus
𝐸𝐼 . (a) General view, (b) the three modes of deformation of a linear beam, illustrated here for a beam 𝛽 in
the family 𝜑 = 1: stretching Y𝜑 , bending ^𝜑 and shearing 𝜏𝜑 .

4.3 Homogenizing an elastic frame into a Timoshenko model
We now analyze the frame made up of linear elastic beams, shown in Figure 3. Specifically,
we show that the homogenization procedure can deliver a Timoshenko beam model, when
the rotation of the cross-sections is added to the list of macroscopic parameter 𝒍 , implying
that this parameter is kept fixed during the energy relaxation. This example has been treated
in (Abdoul-Anziz and Seppecher 2018b) and we use their results to verify our method.

Changes to the homogenization procedure To address the elastic frame, we start over from
the model in Section 4.1, with the following changes.

• There are 3 families of beams (and not 5) as indicated by the labels 𝜑 ∈ {1, 2, 3} in Figure 3(a).
• We revert to the case of uniform properties by discarding the parameter 𝒎.
• We change the scaling assumption on the transverse displacement 𝑉 in (27b) to

𝑉 (𝑆) = 𝑎

[
𝑣

(
𝑆

𝑎/[

)
, (42)

in such a way that the rotation 𝑉 ′ (and not the curvature 𝑉 ′′) is of order [0: this delivers the
Timoshenko model is a more convenient form.

• To model the stiff junctions, we introduce the nodal rotation \𝛼± at a node 𝛼± (in addition to the
nodal displacement 𝜹𝛼± from (25)): \𝛼± is given in terms of two additional unknown continuous
functions 𝑌−

\
(𝑆) and 𝑌 +

\
(𝑆) as

\𝛼± = 𝑉 ′(𝑆𝛼 ) + 𝑌±
\
(𝑆𝛼 ) . (43)

Including the centerline rotation𝑉 ′ as the first term in the right-hand side makes the microscopic
displacements 𝑌±

\
invariant by rigid-body rotations, so that they can be expressed in terms of the

strain as assumed in our procedure.
• For a beam of type 𝜑 , the classical theory of linear (Euler-Bernoulli) beams can be summarized as
follows. In addition to the stretching strain Y𝜑 in (23), one has to consider a curvature strain ^𝜑
and a shearing strain 𝜏𝜑 , as sketched in Figure 3(b),

^𝜑 = \𝛽2
𝜑
− \𝛽1

𝜑
, 𝜏𝜑 =

\𝛽1
𝜑
+ \𝛽2

𝜑

2
−

(𝜹𝛽2
𝜑
− 𝜹𝛽1

𝜑
) · (𝒆3 × 𝒕𝜑 )
𝑙𝜑

. (44)

Here, 𝜏𝜑 is an apparent shearing strain at the scale of unit cells, which actually resolves into
bending microscopically, see Figure 3(b): our Euler-Bernoulli ‘microscopic’ beam model is
shearless. The elastic energy of the beam is then of the form

𝑤𝜑 =
𝐸𝐴𝑎

2
Y2
𝜑 + 𝐸𝐼

2𝑎
(^2

𝜑 + 12𝜏2
𝜑 ) . (45)

• We define the (apparent) rotation of the cross-sections 𝛾 as the rotation of the line passing
through the nodes 𝛼− and 𝛼+ facing each other,

𝛾 (𝑆) = −1
𝑎
(𝜹𝛼+ − 𝜹𝛼−) · 𝒆1 = 𝑉

′(𝑆) −
𝑌 +

1 (𝑆) − 𝑌−
1 (𝑆)

𝑎
. (46)

Journal of Theoretical, Computational and Applied Mechanics

��
December 2023

��
jtcam.episciences.org 15

��
46

https://jtcam.episciences.org


B. Audoly and C. Lestringant An energy approach to higher-order homogenization

• Next, we consider the following scaled macroscopic parameters: centerline extensional strain
𝑒 (𝑆) = 𝑢 ′(𝑆) = 𝑈 ′ (𝑎𝑆/[), centerline curvature 𝑐 (𝑆) = 𝑣 ′′(𝑆) = 𝑎

[
𝑉 ′′ (𝑎𝑆/[), rotation of

cross-sections 𝛾 (𝑆) = 𝑣 ′(𝑆) − (𝑦+
\
(𝑆) − 𝑦−

\
(𝑆)) = 𝛾 (𝑎𝑆/[) and shear angle

𝑔(𝑆) = 𝛾 (𝑆) − 𝑣 ′(𝑆) = −(𝑦+
\
(𝑆) − 𝑦−

\
(𝑆)) . (47)

• The vector of microscopic degrees of freedom 𝒚 is extended to reflect the presence of the two
additional fields capturing nodal rotation: Equation (30) is changed to

𝒚(𝑆) = (𝑦−1 (𝑆), 𝑦−2 (𝑆), 𝑦−\ (𝑆), 𝑦
+
1 (𝑆), 𝑦+2 (𝑆), 𝑦+\ (𝑆)) . (48)

• A key modification to the homogenization procedure is that we include the shear angle in the list
of macroscopic parameters,

𝒍 (𝑆) = (𝑒 (𝑆), 𝑐 (𝑆), 𝑔(𝑆)), (49)

by contrast with (29). Equation (47) can then be rewritten as

𝑙3(𝑆) + 𝑦+\ (𝑆) − 𝑦
−
\
(𝑆) = 0 ∀𝑆. (50)

This kinematic constraint is taken care of by including the left-hand side of the above equation as
a component of strain (specifically, 𝐸12) and by extending the constraint matrix Q from Table 4 to
include a third row filled with zeros, except for an entry equal 1 in column 12, see Equation (3).

• The strain 𝑬 ∈ R12 is now a vector of length 12, made up of the three strain measures (Y𝜑 , ^𝜑 , 𝜏𝜑 )
for each of the three types of beams, 𝜑 ∈ {1, 2, 3}, the two left-hand sides in the zero-average-
displacement constraints (26), and the left-hand side of (50).

• The discrete energy is finally approximated by a continuous integral Φ =
∫ +∞
−∞ 𝑊 d𝑆 capturing the

elastic potentials of the beams (45)

𝑊 (𝑬) = 𝐸𝐴𝑎

2[

(
𝐸2

1 + 𝐸2
4 + 𝐸2

7

)
+ 𝐸𝐼

2𝑎[

(
(𝐸2

2 + 𝐸2
5 + 𝐸2

8) + 12(𝐸2
3 + 𝐸2

6 + 𝐸2
9)

)
. (51)

The coefficient [ in the denominators is produced when the discrete sum over beams is approxi-
mated by an integral, as earlier in (34).
The scale separation parameter [ ≪ 1 is unspecified so far, and we set it to be the small
aspect-ratio of the beams, i.e., we set

[ :=
√︂

𝐸𝐼

𝑎2𝐸𝐴
. (52)

Doing so, we are anticipating that, in the forthcoming Timoshenko model, the shearing mode will
relax over a typical macroscopic length 𝑎/[ (this macroscopic length 𝑎/[ has been introduced
earlier in the definition of the scaled arclength 𝑆 = 𝑆[/𝑎). The validity of this assumption will be
checked later, by verifying that the the various terms in the Timoshenko model are produced
with consistent powers of [, see Equation (55) below.

Equation (52) is used to eliminate 𝐸𝐼 in favor of 𝐸𝐴 and [ in the elastic potential (51): in the
homogenization procedure, the energy Φ provided on input may depend explicitly on [.

Results of the homogenization procedure The homogenization procedure is carried out in
the Mathematica notebook frame-timoshenko.nb included in the library. With the boundary
terms omitted (case of an infinitely long truss), the result of the homogenization procedure are
interpreted as

Φ★ =

∫ +∞

−∞

(
𝑊★

ext(𝑒 (𝑆), 𝑒 ′(𝑆)) +𝑊★
Tm(𝑔(𝑆), 𝑐 (𝑆), 𝑔

′(𝑆)) + O([3)
) d𝑆
[
, (53)

where𝑊★
ext(𝑒, 𝑒 ′) is a higher-order gradient bar model applicable to the longitudinal displacement

𝑢,

𝑊★
ext(𝑒, 𝑒 ′) =

𝑎𝐸𝐴

2

(
2𝑒2 − [2

6
𝑒 ′2

)
, (54)
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and𝑊★
Tm(𝑔, 𝑐, 𝑔

′) is a Timoshenko beam model applicable to the transverse displacement 𝑣 ,

𝑊★
Tm(𝑔, 𝑐, 𝑔

′) = [2𝑎𝐸𝐴

2

(
1
2
(𝑐 + 𝑔′)2 + 8𝑔2

)
. (55)

The details can be found in the Mathematica notebook.

Remark 10 The square term [2(𝑐 + 𝑔′)2 appearing in𝑊★
Tm is first obtained in expanded form, with the

different terms [2𝑐2, 2[2𝑐𝑔′ and [2𝑔′2 appearing respectively in the successive contributions
Φ★
[0] , Φ

★
[1] and Φ★

[2] to the energy. The factored form in the equation above emerges when
Φ★ = Φ★

[0] + Φ★
[1] + Φ★

[2] is simplified.

With𝑊★
ext(𝑒, 𝑒 ′) = O([0) while𝑊★

Tm(𝑔, 𝑐, 𝑔
′) = O([2), the stretching energy is dominant:

this agrees with the fact that Abdoul-Anziz and Seppecher (Abdoul-Anziz and Seppecher 2018b)
reported an inextensible model (𝑒 ≡ 0).

Turning therefore attention to the transverse displacement, we eliminate the shear angle 𝑔 in
favor of the apparent rotation 𝛾 = 𝑣 ′ + 𝑔 of cross-sections. Recalling the definition of the scaled
curvature 𝑐 = 𝑣 ′′, and rearranging using (52), we obtain the Timoshenko model in standard form,

𝑊★
Tm =

1
2

(
_𝑇

(
[𝛾 ′(𝑆)

)2 + Z𝑇
(
𝑣 ′(𝑆) − 𝛾 (𝑆)

)2
)
, (56)

and the elastic moduli are identified as

_𝑇 =
𝑎𝐸𝐴

2
, Z𝑇 =

8𝐸𝐼
𝑎
. (57)

The same elastic frame has been homogenized in (Abdoul-Anziz and Seppecher 2018b) and the
authors reported homogenized moduli _𝑇 = 1/2 and Z𝑇 = 2. These values are a special case
of (57), implying that our homogenization results are consistent. Indeed, a careful analysis of
the beam model used by these authors reveals that they limited attention to the special case
𝐸𝐴 = 1/𝑎 and 𝐸𝐼 = 𝑎/4 (when setting both their elastic moduli 𝑎AS and 𝑓AS to 1, see the note
frame-timoshenko-AS18-beam-model.pdf in the library).

Remark 11 In terms of the original (un-scaled) deflection 𝑉 (𝑆) and cross-section rotation 𝛾 (𝑆) = 𝛾
(
𝑆[/𝑎

)
,

the Timoshenko model appearing in (53–56) can be rewritten as

Φ★
transv =

∫ +∞

−∞

1
2

(
𝐸𝐴𝑎2

2
𝛾 ′2(𝑆) + 8𝐸𝐼

𝑎2 (𝑉 ′(𝑆) − 𝛾 (𝑆))2
)

d𝑆. (58)

Remark 12 We obtained a Timoshenko model as a consequence of the fact that the shear angle 𝑔 = 𝑙3 is
treated as a macroscopic parameter, and not just because the lattice is made up of beams. Indeed,
lattices made up of bars (𝐸𝐼 = 0) can yield Timoshenko models as well when homogenized. The
motivation for using beams in this example was to compare with the earlier work of (Abdoul-Anziz
and Seppecher 2018b).

5 Derivation of the homogenized model

5.1 Leading order (classical homogenization)
At order [0, the microscopic displacement (21) is given by 𝒚(𝑿 ) = 𝒚 [0] (𝑿 ) + O([). The gradients
terms ∇𝑘𝒎, ∇𝑘 𝒍 and ∇𝑘𝒚 are of order [𝑘 by (7) and can be ignored for 𝑘 ⩾ 1. With the gradients
neglected, we denote the microscopic strain in (2) as

𝑬 (0) (𝒎, 𝒍,𝒚) = 𝑬 (𝒎; 𝒍, 0, 0, . . . ;𝒚, 0, 0, . . .) = 𝑬 𝑙 (𝒎) · 𝒍 + 𝑬𝑦 (𝒎) · 𝒚, (59)

and the bulk energy density in (5) as

𝑊 (0) (𝒎, 𝒍,𝒚) =𝑊 (𝒎, 𝑬 (0) (𝒎, 𝒍,𝒚)) . (60)
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The order [0 approximation of the strain energy (4) can then be obtained as Φ[𝒎, 𝒍,𝒚] =

Φ[0] [𝒎, 𝒍,𝒚 [0]] + O(𝐿𝑑[), where

Φ[0] [𝒎, 𝒍,𝒚 [0]] =
∫
Ω
𝑊 (0) (𝒎(𝑿 ), 𝒍 (𝑿 ),𝒚 [0] (𝑿 ))d𝑿 . (61)

At leading order [0, the variational problem (9) can be written as
Q · (𝑬𝑦 (𝒎(𝑿 )) · 𝒚 [0] (𝑿 ) + 𝑬 𝑙 (𝒎(𝑿 )) · 𝒍 (𝑿 )) = 0 ∀𝑿

D𝒚Φ[0] [𝒎, 𝒍,𝒚 [0] ;𝛿𝒚] +
∫
Ω
((Q · 𝑬𝑦 (𝒎(𝑿 ))𝑇 · 𝒈 [0] (𝑿 )) · 𝛿𝒚(𝑿 )d𝑿 = 0 ∀𝛿𝒚.

(62a)

(62b)

Its solution is denoted as (𝒚 [0],𝒈 [0]) = (𝒚★[0],𝒈
★
[0]).

No gradient of ∇𝒚 [0] is present in the expression of Φ[0] in (61) nor in the integral in (62b),
implying that this variational problem is local: at any point 𝑿 , we must solve the following
problem for the unknowns 𝒚★[0] (𝑿 ) and 𝒈★[0] (𝑿 ),

Q · 𝑬𝑦 (𝒎(𝑿 )) · 𝒚★[0] (𝑿 ) +Q · 𝑬 𝑙 (𝒎(𝑿 )) · 𝒍 (𝑿 ) = 0
𝜕𝑊 (0)

𝜕𝒚
(𝒎(𝑿 ), 𝒍 (𝑿 ),𝒚★[0] (𝑿 )) + (Q · 𝑬𝑦 (𝒎(𝑿 ))𝑇 · 𝒈★[0] (𝑿 ) = 0,

(63)

where we have used the expression of Φ[0] in (61). The solution (𝒚★[0] (𝑿 ),𝒈★[0] (𝑿 )) at any
particular point 𝑿 depends on the local values of 𝒎(𝑿 ) and 𝒍 (𝑿 ) only. In Appendix B, the
solution 𝒚★[0] (𝑿 ) is obtained in the form announced earlier in (22a),

𝒚★[0] (𝑿 ) = 𝒀 0(𝒎(𝑿 )) · 𝒍 (𝑿 ), (64)

and an explicit expression for the localization tensor 𝒀 0(𝒎) is given in (B.7–B.8).
Inserting (64) into (61), we derive in Appendix B the dominant contribution to the energy

Φ★
[0] [𝒎, 𝒍] = Φ[0] [𝒎, 𝒍,𝒚★[0]] that was announced in (17), namely

Φ★
[0] [𝒎, 𝒍] =

∫
Ω

1
2
𝒍 (𝑿 ) · 𝑲0(𝒎(𝑿 )) · 𝒍 (𝑿 )d𝑿 . (65)

The expression of the leading-order stiffness tensor 𝑲0(𝒎) is given in Equation (B.12) in the
Appendix.

5.2 Analysis of the gradient effect
We now proceed to solve the next orders in the microscopic displacement, see (21) and (64),

𝒚(𝑿 ) = 𝒀 0(𝒎(𝑿 )) · 𝒍 (𝑿 ) +𝒚 [1] (𝑿 ) +𝒚 [2] (𝑿 ) + · · · (66)

Inserting this into (4), we derive a Taylor expansion of the energy as

Φ = Φ★
[0] [𝒎, 𝒍] + Φ★

[1] [𝒎, 𝒍] + Φ[2] [𝒎, 𝒍,𝒚 [1]] (67)

where Φ[𝑘 ] denotes the term of order [𝑘 , and the star is used to mark energy contributions that
do not depend on the yet-unknown corrector 𝒚 [1] . The dominant term Φ★

[0] is the functional
found earlier in (65), while the next-order terms Φ[1] and Φ[2] are obtained in Equations (C.20)
and (C.24) in Appendix C as

Φ★
[1] [𝒎, 𝒍] =

∫
Ω
(A(𝒎) : 𝒉 ⊗ 𝒉) : ∇𝒉(𝑿 )d𝑿

Φ[2] [𝒎, 𝒍,𝒚 [1]] =
∫
Ω

©«
(

“B (0) (𝒎) : (𝒉 ⊗ 𝒉)
)

::
∇𝒉 ⊗ ∇𝒉

2

+ ( “B (1) (𝒎) · 𝒉) ∴ (∇𝒉 ⊗ 𝒚 [1]) +W𝑦𝑦 (𝒎) :
𝒚 [1] ⊗ 𝒚 [1]

2

ª®®®¬ d𝑿

+
∫
Ω

((
C
(0) (𝒎) : (𝒉 ⊗ 𝒉)

)
∴ ∇2𝒉 +

(
C
(1) (𝒎) · 𝒉

)
: ∇𝒚 [1]

)
d𝑿 ,

(68a)

(68b)
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Closed-form expressions for the operators appearing in the right-hand side are derived in
Appendix C. In the right-hand sides above, we have introduced the vector 𝒉 = (𝒍,𝒎, (1))
obtained by concatenating the macroscopic variables 𝒍 and 𝒎, and adding a trailing entry 1,
see Appendix C.1: this notation trick simplifies the calculations significantly.

It is remarkable that Φ★
[1] [𝒎, 𝒍] does not depend on the corrector 𝒚 [1] , even though both are

of order [. As a result, the first correction Φ★
[1] depends on the macroscopic variables (𝒎, 𝒍)

only, as conveyed by the star notation which we reserve for the output of the homogenization
procedure.

For a similar reason explained in the Appendix, Φ[2] [𝒎, 𝒍,𝒚 [1]] does not depend on 𝒚 [2] even
though both are of order [2. It does depend on the unknown correction 𝒚 [1] , however. The
gradient term ∇𝒚 [1] appearing in the integrand of Φ[2] in (68b) can be removed by integrating
by parts the C (1) term—the benefit is that the problem of optimizing Φ[2] with respect to the
function 𝒚 [1] (𝑿 ) then becomes a local problem. We choose to integrate the C (0) by parts as well,
as the result can be merged with the “B (0) (𝒎) term. These two integration by parts are carried
out in the Appendix and the result is

Φ[2] [𝒎, 𝒍,𝒚 [1]] = Φbt
[2] [𝒎, 𝒍,𝒚 [1]] + Φit

[2] [𝒎, 𝒍,𝒚 [1]], (69)

where the boundary terms Φbt
[2] and integral terms Φit

[2] are given in (C.29), respectively, as

Φbt
[2] [𝒎, 𝒍,𝒚 [1]] =

∮
𝜕Ω

((
C
(0) (𝒎) : (𝒉 ⊗ 𝒉)

)
∴ (∇𝒉 ⊗ 𝒏) + (C (1) (𝒎) ·𝒉) : (𝒚 [1] ⊗ 𝒏)

)
d𝑎 (70)

and

Φit
[2] [𝒉,𝒚 [1]] =

∫
Ω

©«
(
B

(0) (𝒎) : (𝒉 ⊗ 𝒉)
)

::
∇𝒉 ⊗ ∇𝒉

2

+ (B (1) (𝒎) · 𝒉) ∴ (∇𝒉 ⊗ 𝒚 [1]) +W𝑦𝑦 (𝒎) :
𝒚 [1] ⊗ 𝒚 [1]

2

ª®®®¬ d𝑿 . (71)

As anticipated, the gradient terms ∇𝒚 [1] have all disappeared.
Having worked out the expansion of the energy, we proceed to solve the variational problem (9)

at order [: inserting the expansion 𝒚(𝑿 ) = 𝒚★[0] (𝑿 ) +𝒚 [1] (𝑿 ) + · · · into the energy (67) we get
a variational problem for the corrector 𝒚 [1] and a Lagrange multiplier 𝒈 [1] ,

Q ·
(
𝑬𝑦 (𝒎(𝑿 )) · 𝒚 [1] (𝑿 ) + (J1(𝒎(𝑿 )) · 𝒉(𝑿 )) : ∇𝒉(𝑿 )

)
= 0 ∀𝑿

D𝒚Φ[2] [𝒎, 𝒍,𝒚 [1] ;𝛿𝒚] +
∫
Ω
𝒈 [1] (𝑿 ) ·Q · 𝑬𝑦 (𝒎(𝑿 )) · 𝛿𝒚(𝑿 )d𝑿 = 0 (∀𝛿𝒚) .

(72a)

(72b)

The incremental form of the kinematic constraint appearing in (72a) above is established in the
Appendix in terms of an operator J1(𝒎), see (C.13), (C.10a) and (C.12a).

In the absence of any gradient of 𝒚 [1] , see (71), the variational problem for 𝒚 [1] in (72) is local.
This variational problem is solved in the Appendix, §C.8:

• The boundary integral Φbt
[2] from Equation (70) yields a stationarity condition applicable on

the boundary 𝜕Ω of the domain, see Equation (C.31) in the Appendix. This condition does not
depend on 𝒚 [1] and it warrants variational consistency of the input model Φ. We will analyze this
condition further in future work.

• The bulk integral Φit
[2] from Equation (71) yields a stationarity condition applicable in the interior

Ω◦ of the domain, that yields the corrector 𝒚★[1] (𝑿 ) and Lagrange multiplier 𝒈★[1] (𝑿 ). The
solution is of the form announced in (22b),

𝒚★[1] (𝑿 ) = (𝒀 1(𝒎(𝑿 )) : ∇𝒎(𝑿 )) · 𝒍 (𝑿 ) + 𝒀 ′
0(𝒎(𝑿 )) : ∇𝒍 (𝑿 ), (73)

where the localization tensors 𝒀 1(𝒎) and 𝒀 ′
0(𝒎(𝑿 )) are derived in Equation (C.48) in the

Appendix.
Inserting this solution into (69–71) yields the functional Φ★

[2] [𝒎, 𝒍] = Φit
[2] [𝒎, 𝒍,𝒚

★
[1]]+

Φbt
[2] [𝒎, 𝒍,𝒚

★
[1]] that has been announced in (19).
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6 Symbolic implementation: The shoal library
We have implemented the method in the symbolic calculation language Wolfram Mathemat-
ica (Wolfram Research, Inc. 2021), and we distribute it as an open-source library named shoal
(for Second-order HOmogenization Automated using a Library) (Audoly 2023).

The data listed in Table 1 describing the problem at hand is passed to this library, which
then returns the tensors listed in Table 3. The extension to rank-deficient problems presented
in Appendix E is implemented. The homogenization proceeds by computing the following
quantities, in the following order:

• W𝑦𝑙 (𝒎), W𝑦𝑦 (𝒎) using (B.3b–B.3c),
• 𝑷 (𝒎) using (B.5), its null vectors 𝑵 𝑷 (𝒎) in (E.3), its Moore–Penrose inverse 𝑷†(𝒎), as well as Ǐ
and Î in (E.8),

• R(𝒎) using (E.19), 𝒀 0(𝒎), 𝑮0(𝒎) using (B.8–B.9), and then 𝑭 0(𝒎), 𝑲0(𝒎) and 𝑺0(𝒎) us-
ing (B.11), (B.12) and (B.14), see also Table 5,

• V𝑙 ,V𝑚 ,V1 using (C.2),
• L(𝒎) using (C.5), L1(𝒎), L11(𝒎), L2(𝒎) using (C.7), J1(𝒎), J11(𝒎), J2(𝒎) using (C.10),
• A(𝒎) using (C.21), and then 𝑨0(𝒎) 𝑲1(𝒎) using (C.23),
• “B (0) (𝒎), “B (1) (𝒎), C (0) (𝒎), C (1) (𝒎) using (E.24),
• ΔB (0) (𝒎), ΔB (1) (𝒎) using (C.28), and then B

(0) (𝒎), B (1) (𝒎) using (C.30),
• R

′(𝒎), Y ′(𝒎), G′(𝒎) using (C.35–C.37), and then 𝒀 1(𝒎), 𝒀 ′
0(𝒎) using (C.48a–C.48b),

• B(𝒎), C (𝒎) using (C.45) and (C.39), and then𝑲2(𝒎),𝑨1(𝒎),𝑩0(𝒎), 𝒌1(𝒎), 𝒂0(𝒎) using (C.48c–
C.48g),

• if 𝑛d > 0, the solvability conditions appearing in (E.14), (E.25) and (E.30).
The implementation makes use of standard tensor algebra operations on symbolic tensors,
including general transpositions and multiple contractions, as well as symbolic differentiation
with respect to𝒎, see (C.28). Note that the vector 𝒍 never appears explicitly in the implementation.

At leading order and in the non-deficient case, the procedure is implemented by the equations
listed in Table 5, corresponding to the first three bullet points above. The homogenization at the
two following orders makes use of the subsequent bullet points. The special case of uniform
properties, when the parameter 𝒎 is absent, is worked out in Appendix D, see Table D.2 in
particular.

Table 5 Implementation of the leading-order
procedure in the non-deficient case
(𝑛d = 0), based on the formulas refer-
enced in the first three items in the
bullet list from Section 6.

W𝑦𝑦 (𝒎) = 𝑬𝑇𝑦 (𝒎) ·K (𝒎) · 𝑬𝑦 (𝒎)

W𝑦𝑙 (𝒎) = 𝑬𝑇𝑦 (𝒎) ·K (𝒎) · 𝑬𝑙 (𝒎)

𝑷 (𝒎) =
©«

W𝑦𝑦 (𝒎) (Q · 𝑬𝑦 (𝒎))𝑇

Q · 𝑬𝑦 (𝒎) 0𝑛c×𝑛c

ª®¬
R(𝒎) = −𝑷−1 (𝒎) · ©«

W𝑦𝑙 (𝒎)

Q · 𝑬𝑙 (𝒎)
ª®¬

𝒀 0 (𝒎) =

(
𝑰𝑛𝑦

0𝑛𝑦×𝑛c

)
· R(𝒎)

𝑮0 (𝒎) =

(
0𝑛c×𝑛c 𝑰𝑛c

)
· R(𝒎)

𝑭 0 (𝒎) = 𝑬𝑙 (𝒎) + 𝑬𝑦 (𝒎) · 𝒀 0 (𝒎)

𝑲0 (𝒎) = 𝑭𝑇0 (𝒎) ·K (𝒎) · 𝑭 0 (𝒎)

𝑺0 (𝒎) = K (𝒎) · 𝑭 0 (𝒎) +Q𝑇 · 𝑮0 (𝒎)

7 Connection with the second-order homogenization of periodic
continua
In this section, we show that the extension of the proposed homogenization method to the
case of periodic elastic continuum gives similar results to the classical approach (Smyshlyaev
and Cherednichenko 2000; Boutin 2019; Durand et al. 2022). Similarly to the discrete example
discussed earlier, we consider an infinite medium, so that boundary terms do not matter. We
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consider a periodic microstructure: the extension to slowly varying material properties or
geometry could be considered as well, and would yield a derivation similar to the one proposed
in (Le and Marigo 2018).

Figure 4 A continuum with a periodic microstructure.

X
x

𝒰

It is possible to derive the homogenization for periodic continua from the homogenization
results for discrete systems established in the previous sections but this is quite technical. We
thus prefer to carry out homogenization from scratch, following the same sequence of steps
again. In addition, we do not attempt to link the various quantities relevant to the periodic
continua to those relevant to discrete systems in a detailed way: we will content ourselves with
formal analogies between them.

7.1 Canonical form
We consider a linear elastic continuum of dimension 𝑑 = 2 or 𝑑 = 3 with a periodic microstructure
of unit cellU, as illustrated in Figure 4 for 𝑑 = 2. The displacement field in the composite depends
on a slow coordinate 𝑿 and a fast coordinate 𝒙 , with 𝑿 = [𝒙 where [ is a small parameter,
see (6), as

𝒖 (𝑿 , 𝒙) = 𝑼 (𝑿 ) +𝒚(𝑿 , 𝒙) (74)

where 𝒚(𝑿 , 𝒙) ∈ R𝑑 denotes a rapidly fluctuating field,U-periodic with respect to its second
argument and subject to a zero-average constraint over one unit-cell,

⟨𝒚(𝑿 , ·)⟩ =
∫
U
𝒚(𝑿 , 𝒙)d𝒙 = 0, ∀𝑿 . (75)

This constraint ensures that 𝑼 (𝑿 ) captures the average displacement, ⟨𝒖 (𝑿 , ·)⟩ = 𝑼 (𝑿 ). We
define the macroscopic strain 𝒍 as the symmetrized gradient of 𝑼 (𝑿 )

𝒍 (𝑿 ) = ∇s𝑼 ∈ T(𝑑,𝑑) , (76)

where the symbol ∇s denotes the symmetrized gradient with respect to the slow coordinate 𝑿 .
The microscopic strain is the pair 𝑬 =

(
𝜺 (𝑿 , 𝒙), ⟨𝒚(𝑿 , ·)⟩

)
with 𝜺 ∈ T(𝑑,𝑑) ,

𝜺 (𝑿 , 𝒙) = 𝒍 (𝑿 ) + ∇s𝒚(𝑿 , 𝒙) + 𝜕s𝒚(𝑿 , 𝒙), (77)

where 𝜕s denotes the symmetrized gradient with respect to the fast coordinate 𝒙 . This definition
is formally similar to (2): we can identify 𝑬 𝑙 · 𝒍 ∼

(
𝒍 (𝑿 ), 0

)
, 𝑬𝑦 ·𝒚 ∼

(
𝜕s𝒚(𝑿 , 𝒙), 0

)
and 𝑬𝑦′ · ∇𝒚 ∼(

∇s𝒚(𝑿 , 𝒙), 0
)
and cast the constraint (75) in a form similar to (3): Q · 𝑬 (𝑿 , 𝒙) = ⟨𝒚(𝑿 , ·)⟩ = 0

∀𝑿 , with Q = ( 0 1 ).
The energy is postulated in the form

Φ =

∫
Ω
𝑊 (𝑿 )d𝑿 where𝑊 (𝑿 ) = 1

2|U|

∫
U
𝜺 (𝑿 , 𝒙) : C(𝒙) : 𝜺 (𝑿 , 𝒙)d𝒙 , (78)

and where 𝜺 (𝑿 , 𝒙) =
(
1, 0

)
· 𝑬 (𝑿 , 𝒙). In (78), C(𝒙) ∈ T(𝑑,𝑑,𝑑,𝑑) is a U-periodic elasticity tensor

(slowly varying properties could be considered here by including an additional dependency
on 𝑿 , i.e., by considering C(𝑿 , 𝒙), see (Le and Marigo 2018)). Note that no boundary integral
is present in the above expression of Φ. Boundary integrals do emerge, however, when one
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attempts to justify rigorously the hierarchy in the integrations postulated in (78)—over 𝒙 first and
over 𝑿 next—, starting from the elastic energy of a periodic continuum in the limit of scale
separation [ → 0. In addition, boundary terms make it possible to account for the incomplete
unit cells located at the boundary of the structure. The analysis of these boundary terms is
however beyond the scope of this paper.

7.2 Leading order homogenization

At leading order, we neglect slow gradients by setting ∇s𝒚(𝑿 , 𝒙) = 0, the energy writes in the
form (61) with

𝑊 (0) (𝒍,𝒚) = 1
2|U|

∫
U
(𝒍 + 𝜕s𝒚(𝒙)) : C(𝒙) : (𝒍 + 𝜕s𝒚(𝒙)) d𝒙 . (79)

For a given symmetric strain tensor 𝒍 ∈ T(𝑑,𝑑) , we seek the stationary point 𝒚(𝒙) = 𝒚 [0] (𝒙)
subject to the constraint ⟨𝒚⟩ = 0. This writes, using Lagrange multiplier 𝒈 = 𝒈 [0] ,

⟨𝒚⟩ = 0∫
U (𝒍 + 𝜕s𝒚(𝒙)) : C(𝒙) : 𝜕s𝛿𝒚(𝒙)d𝒙 + 𝒈 · ⟨𝛿𝒚⟩ = 0 ∀𝛿𝒚

(80)

where 𝛿𝒚(𝒙) is a test function. This problem is similar to (63).
Replacing by a constant 𝛿𝒚 shows that 𝒈 = 0. Integration by parts provides the strong form

of equilibrium.

div𝒙 𝝈 (0) (𝒍,𝒚, 𝒙) = 0 onU,

⟨𝒚⟩ = 0
(81)

where we have defined the microscopic stress

𝝈 (0) (𝒍,𝒚, 𝒙) = C(𝒙) : (𝒍 + 𝜕s𝒚(𝒙)) . (82)

Note that 𝝈 (0) is automatically periodic in 𝒙 , which warrants the equilibrium at the boundary of
a cell U. In (81), we use the notation div𝒙 for the divergence with respect to the microscopic
(fast) coordinate 𝒙 .

We denote the solution of (81) as 𝒚 = 𝒚★[0] (𝒍, 𝒙) and build catalog such that 𝒚★[0] (𝒍, 𝒙) =

𝒀 0(𝒙) : 𝒍 . We further define the strain in homogeneous solution as 𝜺 [0] = 𝑭 0(𝒍, 𝒙) where

𝑭 0(𝒍, 𝒙) = (𝒍 + 𝜕s (𝒀 0(𝒙) : 𝒍)) , (83)

as well as the stress 𝑺0(𝒍, 𝒙) = 𝝈 (0) (𝒍,𝒚★[0], 𝒙) = C(𝒙) : 𝑭 0(𝒍, 𝒙).
The principle of virtual work at dominant order (81) then takes the form∫
U
𝑺0(𝒍, 𝒙) : 𝜕s𝛿𝒚(𝒙)d𝒙 = 0 ∀𝛿𝒚. (84)

We eventually obtain the leading order energy of the form (17), (65) as

Φ★
[0] [𝒍] =

∫
𝑊★

[0] (𝒍 (𝑿 ))d𝑿 where𝑊★
[0] (𝒍) =

1
2|U|

∫
U
𝑭 0(𝒍, 𝒙) : C(𝒙) : 𝑭 0(𝒍, 𝒙)d𝒙 . (85)

The expression (85) is formally identical to the leading order energy (35) in (Durand et al. 2022),
which has been derived based on the approach of (Smyshlyaev and Cherednichenko 2000). This is
akin to standard periodic homogenization (see also Equation (22) in (Le and Marigo 2018)).
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7.3 Gradient correction
As done earlier in (C.12), we further expand the microscopic strain 𝑬 order by order:

𝑬 (1) =
(
𝜺 (1) (𝑿 , 𝒙), ⟨𝒚 [1] (𝑿 , ·)⟩

)
, 𝑬 (2) =

(
𝜺 (2) (𝑿 , 𝒙), ⟨𝒚 [2] (𝑿 , ·)⟩

)
, (86)

with

𝜺 (1) (𝑿 , 𝒙) = ∇s (𝒀 0(𝒙) : 𝒍 (𝑿 )) + 𝜕s𝒚 [1] (𝑿 , 𝒙)
𝜺 (2) (𝑿 , 𝒙) = ∇s𝒚 [1] (𝑿 , 𝒙) + 𝜕s𝒚 [2] (𝑿 , 𝒙) .

(87)

Following (C.17), (C.18), we eliminate 𝒚 [1] from the energy at order 1 using (84) and obtain

Φ[1] =

∫
Ω
𝑺0(𝒍 (𝑿 ), 𝒙) : ∇s (𝒀 0(𝒙) : 𝒍 (𝑿 )) d𝑿 . (88)

In (Durand et al. 2022), odd-order tensors are considered to be zero due to centro-symmetry
assumption: here we work in a more general setting. A similar order-1 energy contribution is
derived in (Le and Marigo 2018), see their equation (36), with an additional contribution coming
from the macroscopic gradient of elastic properties.

The energy at order 2 further writes, see (C.17),

Φ[2] =

∫
Ω

1
|U|

∫
U

(
1
2
𝜺 (1) (𝑿 , 𝒙) : C(𝒙) : 𝜺 (1) (𝑿 , 𝒙) + 𝑺0(𝒍 (𝑿 ), 𝒙) : 𝜺 (2) (𝑿 , 𝒙)

)
d𝒙 d𝑿 . (89)

Using relation (84), we can eliminate 𝒚 [2] from the second term∫
U
𝑺0(𝒍 (𝑿 ), 𝒙) : 𝜺 (2) (𝑿 , 𝒙)d𝒙 =

∫
U
𝑺0(𝒍 (𝑿 ), 𝒙) : ∇s𝒚 [1] (𝑿 , 𝒙) d𝒙 . (90)

Next, we identify the terms (C.26) and (𝐶.27) that require an integration by parts∫
Ω

(
C (0) : (𝒉(𝑿 ) ⊗ 𝒉(𝑿 ))

)
∴ ∇2𝒉(𝑿 ) d𝑿 = 0,∫

Ω
(C (1) · 𝒉(𝑿 )) : ∇𝒚 [1] (𝑿 )d𝑿 =

∫
Ω

1
|U |

∫
U 𝑺0(𝒍 (𝑿 ), 𝒙) : ∇s𝒚 [1] (𝑿 , 𝒙) d𝒙 d𝑿 .

(91)

After integration by parts, the energy (89) writes

Φ[2] =

∫
Ω

1
|U|

∫
U

©«
1
2𝜺

(1) (𝑿 , 𝒙) : C(𝒙) : 𝜺 (1) (𝑿 , 𝒙)

− div𝑿 𝑺0(𝒍 (𝑿 ), 𝒙) · 𝒚 [1] (𝑿 , 𝒙)
ª®¬ d𝒙 d𝑿

+
∮
𝜕Ω

(
1
|U|

∫
U
𝑺0(𝒍 (𝑿 ), 𝒙) · 𝒚 [1] (𝑿 , 𝒙)d𝒙

)
· 𝒏 d𝑎,

(92)

where 𝒏 is the unit normal to the domain boundary. In (92), we use the notation div𝑿 for the
divergence with respect to the slow coordinate 𝑿 . The domain being infinite, we can ignore the
boundary term and the associated stationarity condition on the boundary.

The corrector 𝒚 = 𝒚 [1] (∇𝒍, 𝒙) is eventually found as a solution to the local variational
problem, similar to (72),

⟨𝒚⟩ = 0∫
U

(
𝝈 (1) · 𝜕s𝛿𝒚 − div𝑿𝑺0(𝒍, 𝒙) · 𝛿𝒚

)
d𝒙 + 𝒈 [1] · ⟨𝛿𝒚⟩ = 0 ∀𝛿𝒚,

(93)

where we have identified the first order correction to the microscopic stress 𝝈 (1) (∇𝒍, 𝒍,𝒚, 𝒙) =
C(𝒙) : ∇s (𝒀 0(𝒙) : 𝒍) + 𝜕s𝒚(𝒙). After integrating by parts, we obtain

div𝒙 𝝈 (1) (𝒍,𝒚, 𝒙) − 𝒈 [1] = − div𝑿 𝑺0(𝒍, 𝒙) onU,

⟨𝒚⟩ = 0
(94)
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The microscopic stress 𝝈 (1) is automatically periodic in 𝒙 , which warrants the equilibrium at the
boundary of a cell U. This microscopic problem (94) is similar to equation (16) in (Durand et al.
2022).

The correction 𝒚★[1] (∇𝒍, 𝒙) to the microscopic degrees of freedom writes, following (73),
𝒚★[1] (∇𝒍, 𝒙) = 𝒀 ′

0(𝒙) ∴ ∇𝒍 . We can thus write the first order correction to strain as 𝜺 [1] =

𝑭 1(𝒍,∇𝒍, 𝒙) where

𝑭 1(𝒍,∇𝒍, 𝒙) = ∇s (𝒀 0(𝒙) : 𝒍) + 𝜕s
(
𝒀 ′

0(𝒙) ∴ ∇𝒍
)
. (95)

Inserting into (92) allows us to identify the second order contribution to the homogenized energy
in the form (19) as

Φ★
[2] [𝒍,∇𝒍] =

∫
Ω
𝑩0 ::

∇𝒍 ⊗ ∇𝒍
2

d𝑿 , (96)

with

𝑩0 ::
∇𝒍 ⊗ ∇𝒍

2
=

1
|U|

∫
U

©«
1
2
𝑭 1(𝒍,∇𝒍, 𝒙) : C(𝒙) : 𝑭 1(𝒍,∇𝒍, 𝒙)

− div𝑿 𝑺0(𝒍, 𝒙) ·
(
𝒀 ′

0(𝒙) ∴ ∇𝒍
) ª®¬ d𝒙 . (97)

Boundary integrals have been removed in (96) due to the fact that we consider an infinite domain.
This result is similar to equation (35) in (Durand et al. 2022) and equation (50) in (Le and Marigo
2018) (this latter work reports additional terms that capture the effect of a gradient of elastic
properties).

Note that it is possible to identify the tensors 𝑲0,𝑨0 and 𝑩0 appearing in (13–14), by factoring
out 𝒍 , ∇𝒍 and 𝒏 in equations (85), (88), (96) and (97). However, this introduces cumbersome
expressions and we prefer to ignore this step.

8 Discussion and conclusion
We have proposed an asymptotically exact, second-order homogenization procedure for linear,
discrete elastic structures, such as elastic trusses or networks of elastic beams. Our homogenization
method works at the energy level, see Equations (10) and (11), and is similar in this respect to the
approach to dimension reduction developed by (Berdichevskii 1981; Hodges 2006; Lestringant
and Audoly 2020). It uses an abstract energy formulation as a starting point, see Section 2, and as
a result can equally cover two-dimensional or three-dimensional lattices made up of beams or
springs. It is designed to be generic, and addresses the case of pre-stress or pre-strain as well
as slowly modulated elastic or geometric properties—in their work on the homogenization of
periodic continua, (Le and Marigo 2018) address the case of slowly modulated elastic properties
but assume that the geometry of the unit cell is invariant. The method can also account for
kinematic constraints, and can be readily applied to, e.g., a lattice made up of inextensible beams,
see Appendix E. Besides, the connection with existing approaches on the homogenization of
periodic continua has been pointed out in Section 7.

The homogenization procedure involves a series of linear algebra calculations that have been
implemented once for all in the form of an open-source library, named shoal and based on the
symbolic calculation language Wolfram Mathematica. This work will serve as a foundation for
a series of applications which we will cover in follow-up papers. In one particular follow-up
paper, we will analyze more advanced beam lattices than those treated in the illustration
section (Section 4).

The uniqueness of the solutions 𝒚★[0] and 𝒚
★
[1] to the variational problems (B.4) and (C.33)

follows from the assumption (12) thatW𝑦𝑦 (𝒎) is positive definite on the subspace of kinematically
admissible microscopic degrees of freedom 𝒚 defined by Q · 𝑬𝑦 (𝒎(𝑿 )) · 𝒚 = 0. In these
circumstances, 𝒚★[0] and 𝒚

★
[1] do not only make the strain energy stationary, as mentioned in the

paper, but also minimum.
Classical work on homogenization postulates the displacement in the form of an expansion

𝒖 (𝑿 , 𝒙) = ∑
𝑖 [

𝑖𝒗𝑖 (𝑿 , 𝒙), where (𝑿 , 𝒙) are the slow and fast variables, respectively, and identifies
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a potential Φ̃★[⟨𝒗0⟩, ⟨𝒗1⟩, . . .] depending separately on each one of the macroscopic averages
⟨𝒗𝑖⟩ = ⟨𝒗𝑖 (𝑿 , ·)⟩, see (Le and Marigo 2018) for instance. As a result, the stationarity condition for
Φ̃★ takes the form of separate problems for ⟨𝒗0⟩, ⟨𝒗1⟩, etc. It has apparently not been appreciated
that the homogenized energy has to be a functional Φ★[⟨𝒗0⟩ + [⟨𝒗1⟩ + [2⟨𝒗2⟩ + · · · ] of the total
macroscopic displacement ⟨𝒖⟩ = ⟨𝒗0⟩ + [⟨𝒗1⟩ + [2⟨𝒗2⟩ + · · · : this warrants that its value is
unaffected by a re-parameterization of [ leaving the physical displacement 𝒖 unchanged. Our
approach works differently: with the notation of the continuous case from Section 7, we postulate
𝒖 (𝑿 , 𝒙) = 𝑼 (𝑿 ) + ∑

𝑖 [
𝑖𝒚𝑖 (𝑿 , 𝒙), subject to the constraint ⟨𝒚𝑖 (𝑿 , ·)⟩ = 0 (for any 𝑿 and any 𝑖),

see (74–75), compute the strain 𝒍 in terms of the (total) macroscopic displacement 𝑼 = ⟨𝒖⟩, and
obtain a homogenized energy Φ★[𝒍] depending on the total macroscopic strain 𝒍 (and not on
each of the various contributions 𝒍𝑖 to the strain separately). This is simpler than the traditional
approach, and ultimately equivalent.

Among the perspectives opened up by the present work, we can mention the extension
to non-linear elastic structures (which can be addressed by adapting our previous work on
non-linear dimension reduction (Lestringant and Audoly 2020)) and a careful treatment of the
boundary layers (which we could incorporate into the homogenized model by means of effective
boundary terms, along the lines of what has been done by (David et al. 2012)).

Appendix

A Tensor algebra

The dimension of the Euclidean space is denoted as 𝑑 . The Euclidean space is endowed with an
orthonormal Cartesian basis (𝒆1, . . . , 𝒆𝑑 ). A generic point in the Euclidean space is denoted as
𝑿 ∈ R𝑑 .

We denote as T(𝑛1,𝑛2,...,𝑛𝑝 ) the tensor space T(𝑛1,𝑛2,...,𝑛𝑝 ) = R𝑛1 ⊗ R𝑛2 ⊗ . . . ⊗ R𝑛𝑝 made of
tensors 𝑹 of rank 𝑝 and dimensions 𝑛1 × 𝑛2 × · · · × 𝑛𝑝 . In particular, 𝑰𝑘 ∈ T(𝑘,𝑘) denotes the
identity matrix in dimension 𝑘 and 0𝑛1×···×𝑛𝑝 ∈ T(𝑛1,𝑛2,...,𝑛𝑝 ) the null tensor with dimensions
𝑛1 × · · · × 𝑛𝑝 .

Tensors and vectors are denoted using bold symbols, while scalars (including tensor compo-
nents) are denoted using non-bold symbols.

Given two tensors 𝑹 ∈ T(𝑛1,𝑛2,...,𝑛𝑝 ) and 𝑹 ′ ∈ T(𝑛′1,𝑛′2,...,𝑛′𝑝 ) , we denote as
• 𝑹 · 𝑹 ′ ∈ T(𝑛1,𝑛2,...,𝑛𝑝−1,𝑛

′
2,...,𝑛

′
𝑝 ) their simple contraction (whose existence requires 𝑛𝑝 = 𝑛′1),

• 𝑹 : 𝑹 ′ ∈ T(𝑛1,𝑛2,...,𝑛𝑝−2,𝑛
′
3,...,𝑛

′
𝑝 ) their double contraction (whose existence requires 𝑛𝑝−1 = 𝑛

′
1 and

𝑛𝑝 = 𝑛′2),
• 𝑹 ∴ 𝑹 ′ ∈ T(𝑛1,𝑛2,...,𝑛𝑝−3,𝑛

′
4,...,𝑛

′
𝑝 ) their triple contraction, (whose existence requires 𝑛𝑝−2 = 𝑛′1,

𝑛𝑝−1 = 𝑛
′
2 and 𝑛𝑝 = 𝑛′3),

• etc.
If they exist, the contracted tensors are given by

(𝑹 · 𝑹 ′)𝑖1 ...𝑖𝑝−1𝑖
′
2 ...𝑖

′
𝑝
= 𝑅𝑖1 ...𝑖𝑝−1 𝑗𝑅

′
𝑗𝑖′2 ...𝑖

′
𝑝

(𝑹 : 𝑹 ′)𝑖1 ...𝑖𝑝−2𝑖
′
3 ...𝑖

′
𝑝
= 𝑅𝑖1 ...𝑖𝑝−1 𝑗𝑘𝑅

′
𝑗𝑘𝑖′2 ...𝑖

′
𝑝

(𝑹 ∴ 𝑹 ′)𝑖1 ...𝑖𝑝−3𝑖
′
4 ...𝑖

′
𝑝
= 𝑅𝑖1 ...𝑖𝑝−1 𝑗𝑘𝑙𝑅

′
𝑗𝑘𝑙𝑖′2 ...𝑖

′
𝑝
.

(A.1)

Note the ordering of the contracted indices 𝑗 , 𝑘 , 𝑙 , etc. in the right-hand sides—in particular, the
double contraction of two rank-2 tensors 𝑨 and 𝑩 is given in our notation by 𝑨 : 𝑩 = tr(𝑨 · 𝑩𝑇 ).
Here and elsewhere in the paper, we use Einstein summation whereby any index that is repeated
on one side of the equal sign is implicitly summed.

The action of a matrix 𝑹 on a vector 𝒗 is viewed as a special case of the contraction of a
tensor of rank 2 with a tensor of rank 1, and is denoted as 𝑹 · 𝒗, with a dot.

The outer product of two tensors 𝑻 and 𝑻 ′ is denoted as 𝑻 ⊗ 𝑻 ′. In particular, the outer
product of two vectors is denoted as 𝒗 ⊗ 𝒗 ′. Vector transposition is not a meaningful operation in
our notation.
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Given a tensor 𝑹 ∈ T(𝑛1,𝑛2,...,𝑛𝑝 ) and a permutation (𝜎1, . . . , 𝜎𝑝) of the levels (1, . . . , 𝑝) of the
tensor, we denote as 𝑹𝑇𝜎1 ...𝜎𝑝 the generalized transpose of 𝑹, such that the level 𝑖 in the original
tensor becomes level 𝜎𝑖 in the transpose:(

𝑹𝑇𝜎1 ...𝜎𝑝
)
𝑖1 ...𝑖𝑝

= 𝑅𝑖𝜎1 ...𝑖𝜎𝑝
. (A.2)

For a tensor of rank 𝑝 = 4 and the permutation (𝜎1, 𝜎2, 𝜎3, 𝜎4) = (1, 3, 4, 2), for instance, we have
(𝑅𝑇1342)𝑖 𝑗𝑘𝑙 = 𝑅𝑖𝑘𝑙 𝑗 .

Transposing will allow us to reorder the indices of a tensor in any desired order. Suppose
for instance that we wish to rewrite an expression 𝑅𝑖𝑘𝑙 𝑗 as the component 𝑅′

𝑖 𝑗𝑘𝑙
of another

tensor whose indices must appear in alphabetical order: 𝑹 ′ is clearly a transpose of 𝑹, and the
permutation is found by noting that the levels (1, 2, 3, 4) in the original tensor 𝑹, corresponding to
the indices (𝑖, 𝑘, 𝑙, 𝑗), become respectively the levels (1, 3, 4, 2) = (𝜎1, 𝜎2, 𝜎3, 𝜎4) in 𝑹 ′. This yields

𝑅𝑖𝑘𝑙 𝑗 = (𝑹𝑇1342)𝑖 𝑗𝑘𝑙 . (A.3)

Index reordering using transposition will be routinely used in combination with contractions to
remove indices in tensor algebra, as in 𝑅𝑖𝑘𝑙 𝑗𝑅′

𝑖 𝑗𝑘𝑙
= 𝑹𝑇1324 :: 𝑹 ′.

The transpose 𝑹𝑇 of a matrix 𝑹 ∈ T(𝑛1,𝑛2) is a particular case of the generalized transpose,
𝑹𝑇 = 𝑹𝑇21 .

The symmetrization of a tensor 𝑹 with respect to a pair of indices (𝑖, 𝑗) is denoted as 𝑹𝑆𝑖 𝑗 .
For a tensor 𝑹 of rank 𝑝 = 4, for instance, the symmetrization with respect to the first and third
indices is given by

𝑹𝑆13 =
1
2
(𝑹 + 𝑹𝑇3214), (A.4)

where 𝑹𝑇3214 is obtained from 𝑹 by permuting the first and third levels.
A tensor invariant by a permutation of its levels 𝑖 and 𝑗 will be said to satisfy the 𝑆𝑖 𝑗 symmetry;

for instance, 𝑹𝑆13 is 𝑆13 symmetric, by construction. More generally, a tensor will be said to
satisfy the 𝑆 {𝑖 𝑗 }{𝑘𝑙 } symmetry if it is symmetric by the combined permutation of indices 𝑖 ↔ 𝑘

and 𝑗 ↔ 𝑙 . For instance,

𝑹 is 𝑆 {23}{45} symmetric ⇔ 𝑅𝑖 𝑗𝑘𝑙𝑚 = 𝑅𝑖𝑙𝑚𝑗𝑘 . (A.5)

The symmetrization with respect to pairs of indices works similarly,

𝑹𝑆{23}{45} =
1
2
(𝑹 + 𝑹𝑇14523) . (A.6)

Clearly, 𝑹 is 𝑆 {23}{45} symmetric if and only if 𝑹𝑆{23}{45} = 𝑹.
The composition of symmetrizations is represented by the symbol ◦. In Equation (C.7), for

instance, it stands for

𝑹𝑆23◦𝑆{45}{67} = (𝑹𝑆{45}{67} )𝑆23 . (A.7)

Given a tensor 𝑹 (𝒒) ∈ T(𝑛1,𝑛2,...,𝑛𝑝 ) taking an argument 𝒒 ∈ R𝑛𝑞 , we denote as d𝑹/d𝒒 ∈
T(𝑛1,𝑛2,...,𝑛𝑝 ,𝑛𝑞) its gradient,(

d𝑹
d𝒒

)
𝑖1 ...𝑖𝑝 𝑗

=
𝜕𝑅𝑖1 ...𝑖𝑝

𝜕𝑞 𝑗
. (A.8)

By a standard convention, the index 𝑗 corresponding to differentiation appears last in the gradient.
When the parameter 𝒒 coincides with the spatial variable 𝑿 ∈ R𝑑 , we use the nabla notation,

∇𝑹 =
d𝑹
d𝑿

. (A.9)

The alternate notation 𝑹∇ has the advantage of respecting the order of indices but is also less
standard.
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B Detailed analysis of leading order (classical homogenization)

Inserting the microscopic strain 𝑬 (0) (𝒎, 𝒍,𝒚) given in (59) into the expression (60) of the strain
energy density𝑊 (0) (𝒉,𝒚), we have

𝑊 (0) (𝒎, 𝒍,𝒚) = 𝑊 (𝒎, 𝑬 𝑙 (𝒎) · 𝒍 + 𝑬𝑦 (𝒎) · 𝒚) (B.1)

Using the expression of𝑊 in (5) and expanding, we rewrite this in block-matrix notation as

𝑊 (0) (𝒎, 𝒍,𝒚) = 1
2
©«
𝒍

𝒚

ª®¬ ·W (𝒎) · ©«
𝒍

𝒚

ª®¬ , whereW (𝒎) = ©«
W𝑙𝑙 (𝒎) W

𝑇
𝑦𝑙
(𝒎)

W𝑦𝑙 (𝒎) W𝑦𝑦 (𝒎)
ª®¬ , (B.2)

and the tensorsW (𝒎) ∈ T(𝑛𝑙+𝑛𝑦,𝑛𝑙+𝑛𝑦) ,W𝑙𝑙 (𝒎) ∈ T(𝑛𝑙 ,𝑛𝑙 ) ,W𝑦𝑙 (𝒎) ∈ T(𝑛𝑦,𝑛𝑙 ) andW𝑦𝑦 (𝒎) ∈
T(𝑛𝑦,𝑛𝑦) are given by

W𝑙𝑙 (𝒎) = 𝑬𝑇
𝑙
(𝒎) ·K (𝒎) · 𝑬 𝑙 (𝒎)

W𝑦𝑙 (𝒎) = 𝑬𝑇𝑦 (𝒎) ·K (𝒎) · 𝑬 𝑙 (𝒎)
W𝑦𝑦 (𝒎) = 𝑬𝑇𝑦 (𝒎) ·K (𝒎) · 𝑬𝑦 (𝒎) .

(B.3a)
(B.3b)

(B.3c)

Using (B.2), the optimality condition (63) for 𝒚★[0] and 𝒈
★
[0] takes the form

𝑷 (𝒎(𝑿 )) · ©«
𝒚★[0] (𝑿 )

𝒈★[0] (𝑿 )
ª®¬ + ©«

W𝑦𝑙 (𝒎(𝑿 ))

Q · 𝑬 𝑙 (𝒎(𝑿 ))
ª®¬ · 𝒍 (𝑿 ) = 0. (B.4)

where

𝑷 (𝒎) = ©«
W𝑦𝑦 (𝒎) (Q · 𝑬𝑦 (𝒎))𝑇

Q · 𝑬𝑦 (𝒎) 0𝑛c×𝑛c

ª®¬ ∈ T(𝑛𝑦+𝑛c,𝑛𝑦+𝑛c) . (B.5)

We focus on the case where 𝑷 (𝒎) is invertible: the non-invertible (rank-deficient) case is treated
in Appendix E. The solution (𝒚★[0] (𝑿 ),𝒈★[0] (𝑿 )) is then found by inverting this linear system as

©«
𝒚★[0] (𝑿 )

𝒈★[0] (𝑿 )
ª®¬ = R(𝒎(𝑿 )) · 𝒍 (𝑿 ) (B.6)

where

R(𝒎) = −𝑷−1(𝒎) · ©«
W𝑦𝑙 (𝒎)

Q · 𝑬 𝑙 (𝒎)
ª®¬ . (B.7)

In the code, we implemented a more general expression of R that applies to rank-deficient
matrices, see Appendix E and Equation (E.19) in particular.

Equation (B.6) matches the form of the solution 𝒚★[0] (𝑿 ) = 𝒀 0(𝒎) · 𝒍 announced in (64) and
the localization tensor is identified as

𝒀 0(𝒎) =
(
𝑰𝑛𝑦

0𝑛𝑦×𝑛c

)
· R(𝒎). (B.8)

The solution for the Lagrange multipliers is 𝒈★[0] (𝑿 ) = 𝑮0(𝒎) · 𝒍 where

𝑮0(𝒎) =
(
0𝑛c×𝑛𝑦

𝑰𝑛c

)
· R(𝒎) . (B.9)
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We proceed to introduce important additional quantities that characterize the leading-order
solution.

The strain 𝑬 [0] (𝒎, 𝒍) = 𝑬 (0) (𝒎, 𝒍,𝒚 = 𝒀 0(𝒎) · 𝒍) is found using (59) as

𝑬 [0] (𝒎, 𝒍) = 𝑭 0(𝒎) · 𝒍, (B.10)

where the strain localization tensor 𝑭 0(𝒎) is given by

𝑭 0(𝒎) = 𝑬 𝑙 (𝒎) + 𝑬𝑦 (𝒎) · 𝒀 0(𝒎) . (B.11)

The leading-order strain energy𝑊★
[0] (𝒎, 𝒍) =𝑊

(0) (𝒎, 𝒍,𝒚 = 𝒀 0(𝒎) · 𝒍) can then be written
with the help of (B.2–B.3) and (B.11) in a form that matches that announced in (65), namely
𝑊★

[0] (𝒎, 𝒍) =
1
2 𝒍 · 𝑲0(𝒎) · 𝒍 , where the elasticity tensor 𝑲0(𝒎) characterizing the equivalent

Cauchy-type elastic continuum at order [0 is identified as

𝑲0(𝒎) = 𝑭𝑇0 (𝒎) ·K (𝒎) · 𝑭 0(𝒎). (B.12)

To complete the analysis of solutions at order [0, we derive a useful identity that will help
simplify the higher orders in the energy expansion. Inserting the solution 𝒚★[0] (𝑿 ) = 𝒀 0(𝒎) · 𝒍
and 𝒈★[0] (𝑿 ) = 𝑮0(𝒎) · 𝒍 into the stationarity condition (B.4) and using (B.3) and identifying 𝑭 0
from (B.11), we get

𝑬𝑇𝑦 (𝒎) · (K (𝒎) · 𝑭 0(𝒎) +Q
𝑇 · 𝑮0(𝒎)) · 𝒍 = 0

Q · 𝑬 [0] (𝒎, 𝒍) = 0.

(B.13a)

(B.13b)

The quantity (K (𝒎) · 𝑭 0(𝒎) +Q
𝑇 · 𝑮0(𝒎)) · 𝒍 appearing in the first equation can be identified

as the leading-order stress, consisting of the elastic stress K (𝒎) · 𝑭 0(𝒎) · 𝒍 = K (𝒎) · 𝑬 [0] plus
the stress Q𝑇 · 𝑮0(𝒎) · 𝒍 enforcing the constraint. We therefore introduce the stress localization
tensor as

𝑺0(𝒎) = K (𝒎) · 𝑭 0(𝒎) +Q
𝑇 · 𝑮0(𝒎), (B.14)

and rewrite Equation (B.13), after simplification by the arbitrary factor 𝒍 , as

𝑬𝑇𝑦 (𝒎) · 𝑺0(𝒎) = 0

Q · 𝑭 0(𝒎) = 0.

(B.15a)

(B.15b)

Equation (B.15a) is the principle of virtual work at leading order: multiplying by a virtual
displacement 𝛿𝒚 on the left-hand side and by 𝒍 on the right-hand side, and rearranging, it takes
the usual form (𝑺0(𝒎) · 𝒍) · (𝑬𝑦 (𝒎) · 𝛿𝒚) = 0, where the left-hand side is the stress contracted
with the virtual increment of strain.

C Detailed analysis of the gradient effect

C.1 Packed macroscopic variables
For the analysis of the gradient effect, it is convenient to introduce the quantity 𝒉(𝑿 ) obtained
by concatenating the microscopic variables 𝒍 and 𝒎 together with a trailing 1: in block-vector
notation,

𝒉(𝑿 ) =
(
𝒍 (𝑿 ) 𝒎(𝑿 ) (1)

)
∈ R𝑛ℎ where 𝑛ℎ = 𝑛𝑙 + 𝑛𝑚 + 1. (C.1)

With the help of the matrices V𝑙 ∈ T(𝑛𝑙 ,𝑛ℎ) , V𝑚 ∈ T(𝑛𝑚,𝑛ℎ) and the vector V1 ∈ R𝑛ℎ defined in
block-matrix notation by

V
𝑙 =

(
𝑰𝑛𝑙 0𝑛𝑙×(𝑛𝑚+1)

)
, V

𝑚 =

(
0𝑛𝑚×𝑛𝑙 𝑰𝑛𝑚 0𝑛𝑚×1

)
, V

1 =
(
0(𝑛𝑙+𝑛𝑚) 1

)
, (C.2)
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ℎ
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ℎ
,𝑛

ℎ
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=
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𝒉
⊗
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ℎ
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ℎ
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ℎ
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ℎ
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ℎ
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Φ
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]
=
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𝒉
⊗
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∇𝒉
⊗
∇𝒉

2
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+
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·
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⊗
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,∇
𝒍)
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C
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)
T
( 𝑛

ℎ
,𝑑
,𝑑
,𝑛

ℎ
,𝑛

ℎ
)

𝑆
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Φ
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]
=
..
.
+

∮ 𝜕
Ω
( C

:(
𝒉
⊗
𝒉
))
∴
(∇

𝒉
⊗
𝒏
)d
𝑎

𝒍
⊗
(𝒍
⊗
∇𝒎

,∇
𝒍)
⊗
𝒏

Y
′ (
𝒎
)

T
(𝑛

𝑦
,𝑛

ℎ
,𝑑
,𝑛

ℎ
)

–
𝒚
★ [1

]
=
(Y

′ ·
𝒉
):

∇𝒉
(𝒍
⊗
∇𝒎

,∇
𝒍)

G
′ (
𝒎
)

T
( 𝑛

c,
𝑛
ℎ
,𝑑
,𝑛

ℎ
)

–
𝒈
★ [1

]
=
(G

′ ·
𝒉
):

∇𝒉
(𝒍
⊗
∇𝒎

,∇
𝒍)

Table C.1 Summary of the tensors used internally by the homogenization procedure in Appendix C. All these tensors
make use of the compact 𝒉 notation, see (C.1).
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on can rewrite the definition of 𝒉 in (C.1) as

𝒉(𝑿 ) = (V𝑙 )𝑇 · 𝒍 (𝑿 ) + (V𝑚)𝑇 ·𝒎(𝑿 ) +V
1. (C.3)

The converse (unpacking) operation is implemented as

𝒍 (𝑿 ) = V
𝑙 · 𝒉(𝑿 ), 𝒎(𝑿 ) = V

𝑚 · 𝒉(𝑿 ) . (C.4)

C.2 Structure coefficients
The leading-order prediction (22a) for the microscopic degrees of freedom,𝒚★[0] = 𝒀 0(𝒎(𝑿 )) · 𝒍 (𝑿 )
can be expressed in terms of 𝒉(𝑿 ) with the help of (C.4) as

𝒚★[0] = L(𝒎(𝑿 )) · 𝒉(𝑿 ) where L(𝒎) = 𝒀 0(𝒎) ·V𝑙 . (C.5)

The successive gradients of 𝒚(𝑿 ) in (66) can then be calculated as

𝒚(𝑿 ) = L(𝒎(𝑿 )) · 𝒉(𝑿 ) +𝒚 [1] (𝑿 ) +𝒚 [2] (𝑿 ) + O([3)
∇𝒚(𝑿 ) = (L1(𝒎(𝑿 )) · 𝒉(𝑿 )) : ∇𝒉(𝑿 ) + ∇𝒚 [1] (𝑿 ) + O([3)
∇2𝒚(𝑿 ) = (L11(𝒎(𝑿 )) · 𝒉(𝑿 )) :: (∇𝒉(𝑿 ) ⊗ ∇𝒉(𝑿 ))

+ (L2(𝒎(𝑿 )) · 𝒉(𝑿 )) ∴ ∇2𝒉(𝑿 ) + O([3)

(C.6)

where the symbol O([3) stands for terms of order [3 and higher, such as ∇2𝒚 [1] = O([2+1) and
∇𝒚 [2] = O([1+2).

By design, the tensor L1(𝒎), L11(𝒎) and L
2(𝒎) capture the successive gradients of 𝒚★[0]

as ∇𝒚★[0] = (L1(𝒎) · 𝒉) : ∇𝒉 and ∇2𝒚★[0] = (L11(𝒎) · 𝒉) :: (∇𝒉 ⊗ ∇𝒉) + (L2(𝒎) · 𝒉) ∴ (∇2𝒉).
They are identified by differentiating (C.5) with respect to 𝑿 , which yields

L
1(𝒎) =

(
dL
d𝒎

·V𝑚 ⊗ 𝑰𝑑

)𝑇15324

+ (L(𝒎) ⊗ V
1 ⊗ 𝑰𝑑 )𝑇13524

L
11(𝒎) =

[(
dL1

d𝒎
·V𝑚 ⊗ 𝑰𝑑

)𝑇12678435

+ (L1(𝒎) ⊗ V
1 ⊗ 𝑰𝑑 )𝑇12456837

]𝑆23◦𝑆{45}{67}

L
2(𝒎) = [(L1(𝒎) ⊗ 𝑰𝑑 )𝑇1245736]𝑆23◦𝑆56

(C.7a)

(C.7b)

(C.7c)

Table C.1 lists the properties of all the tensors used in this appendix, starting with the tensors L,
L

1, L11 and L
2 just defined.

The symmetrization operations outside the square brackets in (C.7b–C.7c) are a matter
of convention. They reflect the symmetries of the tensors with which the operators L are
contracted.

The ‘content’ column in Table C.1 can be explained as follows. By design, 𝒚★[0] = L(𝒎) · 𝒉
can be ‘unpacked’ (i.e., expressed in terms of 𝒍 and 𝒎) as 𝒚★[0] = 𝒀 0(𝒎) · 𝒍 , which is a function of
𝒎 contracted with 𝒍 : the dependence on 𝒎 will be treated implicitly, and we express this by
writing that the content of 𝒚★[0] = L(𝒎) · 𝒉 is 𝒍 , hence the symbol 𝒍 appearing in the ‘content’
column for the row L. Similarly, ∇𝒚★[0] = (L1(𝒎) · 𝒉) : ∇𝒉 can be unpacked as

∇𝒚★[0] =∇(𝒀 0(𝒎(𝑿 )) · 𝒍 (𝑿 )) = (d𝒀 0/d𝒎)𝑦𝑙,𝑚 𝒍𝑙∇𝒎𝑚,𝑎 + (𝒀 0)𝑦𝑙∇𝒍𝑙,𝑎 =

(d𝒀 0/d𝒎) (𝒎) : (𝒍 ⊗ ∇𝒎) + 𝒀 0(𝒎) · ∇𝒍
(C.8)

this is the sum of two terms, one being a function of𝒎 contracted with 𝒍 ⊗∇𝒎, the other one being
a function of 𝒎 contracted with ∇𝒍 : this is conveyed by the content column in the table, which
shows (𝒍⊗∇𝒎,∇𝒍) for the row labelledL1(𝒎) used for reconstructing ∇𝒚★[0] = (L1(𝒎) · 𝒉) : ∇𝒉.

The point of the 𝒉 notation is to deal in a simple way with the multiplicity of terms appearing
in the last column of Table 1. The remainder of the appendix will make use of this higher-level 𝒉
notation. On the other hand, we use Table 1 to keep track of the actual content of the various
tensors.
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Now, we proceed to represent the strain in terms of 𝒉 and its successive gradients. Insert-
ing (C.6) into the strain expression 𝑬 in (2), identifying 𝑬 [0] (𝒎, 𝒍) using (B.10), and rearranging
the other terms, we get

𝑬 = 𝑬 [0] (𝒎, 𝒍) + (J1(𝒎(𝑿 )) · 𝒉(𝑿 )) : ∇𝒉(𝑿 )
+ (J11(𝒎(𝑿 )) · 𝒉(𝑿 )) :: (∇𝒉(𝑿 ) ⊗ ∇𝒉(𝑿 ))
+ (J2(𝒎(𝑿 )) · 𝒉(𝑿 )) ∴ ∇2𝒉(𝑿 )
+ 𝑬𝑦 (𝒎) · (𝒚 [1] (𝑿 ) +𝒚 [2] (𝑿 )) + 𝑬 ′

𝑦 (𝒎) : ∇𝒚 [1] (𝑿 ) + O([3)

(C.9)

where the so-called structure coefficients are identified by

J
1(𝒎) =

(
𝑬 ′
𝑙
𝑇132 (𝒎) ·V𝑙 ⊗ V

1
)𝑇1324

+ 𝑬 ′
𝑦 (𝒎) : L1(𝒎)

J
11(𝒎) = 𝑬 ′′

𝑦 (𝒎) ∴ L
11(𝒎)

J
2(𝒎) =

(
𝑬 ′′
𝑙
𝑇1423 (𝒎) ·V𝑙 ⊗ V

1
)𝑇13425

+ 𝑬 ′′
𝑦 (𝒎) ∴ L

2(𝒎)

(C.10a)

(C.10b)

(C.10c)

As indicated in Table 1, J11 is 𝑆 {23}{45}-symmetric: this is a consequence of the fact that L11 is
𝑆 {45}{67}-symmetric. The 𝑆34-symmetry of J2 can be justified by a similar argument.

Grouping the terms order by order, we can rewrite the strain in (C.9) as

𝑬 = 𝑬 [0] (𝒎, 𝒍) + 𝑬 [1] + 𝑬 [2] + O([3), (C.11)

where the contributions 𝑬 [1] = O([) and 𝑬 [2] = O([2) are given, respectively, by

𝑬 [1] = (J1(𝒎) · 𝒉) : ∇𝒉 + 𝑬𝑦 (𝒎) · 𝒚 [1]

𝑬 [2] = (J11(𝒎) · 𝒉) :: (∇𝒉 ⊗ ∇𝒉)
+ (J2(𝒎) · 𝒉) ∴ ∇2𝒉 + 𝑬 ′

𝑦 (𝒎) : ∇𝒚 [1] + 𝑬𝑦 (𝒎) · 𝒚 [2] .

(C.12a)

(C.12b)

Inserting (C.11–C.12) into the kinematic constraintQ ·𝑬 = 0, see (3), we obtain the expression
of the constraint order by order in [ as

Q · 𝑬 [𝑖 ] = 0 for 𝑖 = 0, 1, 2, . . . (C.13)

The constraint Q · 𝑬 [0] (𝒎, 𝒍) = 0 has been enforced during the solution of the leading order,
see (B.13b).

C.3 Strain energy expansion in terms of corrective displacement
Inserting (C.11) into the energy (4), and using the quadratic expression (5) of the energy density,
we obtain a Taylor expansion of the energy as

Φ =

∫
Ω

©«
1
2
𝑬 [0] (𝒎, 𝒍) ·K (𝒎) ·𝑬 [0] (𝒎, 𝒍) +

(
K (𝒎) · 𝑬 [0] (𝒎, 𝒍)

)
· (𝑬 [1] + 𝑬 [2])

+ 1
2
𝑬 [1] ·K (𝒎) · 𝑬 [1] + O([3)

ª®®¬ d𝑿 . (C.14)

Grouping the terms in the integrand order by order, identifying the term of order [0 as 1
2 𝒍 · 𝑲0 · 𝒍

using (B.12), and the quantity K (𝒎) ·𝑬 [0] (𝒎, 𝒍) = K (𝒎) ·𝑭 [0] (𝒎) · 𝒍 = (𝑺0(𝒎) −Q
𝑇 ·𝑮0(𝒎)) · 𝒍

by (B.10) and (B.14), we obtain the energy expansion as

Φ = Φ★
[0] [𝒎, 𝒍] + Φ[1] + Φ[2] + · · · (C.15)

where Φ[𝑖 ] = O([𝑖) are the successive terms in the expansion, the leading term is the quantity
Φ★
[0] [𝒎, 𝒍] identified earlier in (65) and the higher-order terms are given by

Φ[1] =
∫
Ω
((𝑺0(𝒎) −Q

𝑇 · 𝑮0(𝒎)) · 𝒍) · 𝑬 [1]d𝑿

Φ[2] =
∫
Ω

(
1
2𝑬

[1] ·K (𝒎) · 𝑬 [1] + ((𝑺0(𝒎) −Q
𝑇 · 𝑮0(𝒎)) · 𝒍) · 𝑬 [2]

)
d𝑿 .

(C.16)
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The Q𝑇 terms appearing in both bulk integrals can be removed, as −(Q𝑇 · 𝑮0(𝒎) · 𝒍) · 𝑬 [𝑖 ] =
−(𝑮0(𝒎) · 𝒍) · (Q · 𝑬 [𝑖 ]) = 0 by (C.13). This yields

Φ[1] =

∫
Ω
(𝑺0(𝒎) · 𝒍) · 𝑬 [1]d𝑿

Φ[2] =

∫
Ω

(
1
2
𝑬 [1] ·K (𝒎) · 𝑬 [1] + (𝑺0(𝒎) · 𝒍) · 𝑬 [2]

)
d𝑿 .

(C.17a)

(C.17b)

Inserting the expression of 𝑬 [1] from (C.12a) in Φ[1] and using the principle of virtual work
at dominant order in (B.15a), we have

Φ[1] =
∫
Ω
(𝑺0(𝒎) · 𝒍) ·

(
(J1(𝒎) · 𝒉) : ∇𝒉 + 𝑬𝑦 (𝒎) · 𝒚 [1]

)
d𝑿

=
∫
Ω

(
(𝑺0(𝒎) · 𝒍) · (J1(𝒎) · 𝒉) : ∇𝒉 + ([𝑬𝑇𝑦 (𝒎) · 𝑺0(𝒎)] · 𝒍) · 𝒚 [1]

)
d𝑿

=
∫
Ω
(𝑺0(𝒎) · 𝒍) · (J1(𝒎) · 𝒉) : ∇𝒉d𝑿

(C.18)

By a similar argument, the expression of 𝑬 [2] in (C.12b) can be inserted in the bulk integral
appearing in Φ[2] , which shows that the term (𝑺0(𝒎) · 𝒍) · 𝑬𝑦 (𝒎) · 𝒚 [2] is zero. This yields

Φ[1] =

∫
Ω
(𝑺0(𝒎) · 𝒍) · (J1(𝒎) · 𝒉) : ∇𝒉d𝑿

Φ[2] =

∫
Ω

©«
1
2𝑬

[1] ·K (𝒎) · 𝑬 [1]

+ (𝑺0(𝒎) · 𝒍) ·
(
(J11(𝒎) · 𝒉) :: (∇𝒉 ⊗ ∇𝒉)

+ (J2(𝒎) · 𝒉) ∴ ∇2𝒉 + 𝑬 ′
𝑦 (𝒎) : ∇𝒚 [1]

)
ª®®®®®¬

d𝑿 .

(C.19a)

(C.19b)

C.4 Correction at order [
We can rewrite (C.19a) in terms of the packed macroscopic variable 𝒉 as

Φ★
[1] =

∫
Ω
(A(𝒎) : 𝒉 ⊗ 𝒉) : ∇𝒉(𝑿 )d𝑿 , (C.20)

where

A(𝒎) = [(J1(𝒎))𝑇4123 · 𝑺0(𝒎) ·V𝑙 ]𝑆34 . (C.21)

In (C.20), we use the star notation Φ★
[1] to emphasize that the right-hand side no longer depends

on the unknown corrector 𝒚 [1] and only depends on the macroscopic fields 𝒎 and 𝒉, thanks to
the elimination of the unknown corrector 𝒚 [1] done earlier in (C.18).

C.5 Extraction of 𝑨0 and 𝐾1

As announced in Table C.1, the content of A(𝒎) is 𝒍 ⊗ 𝒍 ⊗ ∇𝒎 and 𝒍 ⊗ ∇𝒍 , which means that the
right-hand side of Equation (C.20) can be unpacked using (C.3) as

Φ★
[1] =

∫
Ω

(
𝑨0(𝒎) ∴ (𝒍 ⊗ ∇𝒍) + (𝑲1(𝒎) : ∇𝒎) :

𝒍 ⊗ 𝒍

2

)
d𝑿 , (C.22)

where the tensors 𝑨0(𝒎) and 𝑲1(𝒎) are extracted fromA(𝒎) as

𝑨0(𝒎) = 2
[
A𝑇2134 (𝒎) ∴

(
(V𝑙 )𝑇 ⊗ (V𝑙 )𝑇 ⊗ V1

)𝑇14253
]𝑇321

𝑲1(𝒎) = 2
[
A𝑇2134 (𝒎) ∴

(
(V𝑚)𝑇 ⊗ (V𝑙 )𝑇 ⊗ (V𝑙 )𝑇

)𝑇142536
]𝑇4312 (C.23)

No other term can be present in the right-hand side of (C.22): a term such as 𝑫0(𝒎) :: (𝒍 ⊗ 𝒍 ⊗∇𝒍),
for instance, would be inconsistent with the fact that the energy is homogeneous with degree 2 in
𝒍 and ∇𝒍 , see (2) and (5).

The properties of the tensors 𝑨0(𝒎) and 𝑲1(𝒎) are listed in Table 3.
The expression of the first correction Φ★

[1] to the energy in (C.22) was announced in (18).
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C.6 Energy correction at order [2

We now turn attention to the correction Φ[2] in (C.19b). Inserting the expression of 𝑬 [1] in (C.12a),
we get after rearranging the terms

Φ[2] =

∫
Ω

©«
(

“B (0) (𝒎) : (𝒉 ⊗ 𝒉)
)

::
∇𝒉 ⊗ ∇𝒉

2

+ ( “B (1) (𝒎) · 𝒉) ∴ (∇𝒉 ⊗ 𝒚 [1]) +W𝑦𝑦 (𝒎) :
𝒚 [1] ⊗ 𝒚 [1]

2

ª®®®¬ d𝑿

+
∫
Ω

((
C
(0) (𝒎) : (𝒉 ⊗ 𝒉)

)
∴ ∇2𝒉 +

(
C
(1) (𝒎) · 𝒉

)
: ∇𝒚 [1]

)
d𝑿 ,

(C.24)

whereW𝑦𝑦 (𝒎) is the tensor introduced in the analysis of the leading order, see (B.3c), and

“B (0) (𝒎) =
( (
J

1(𝒎)
)𝑇4123 ·K (𝒎) ·J1(𝒎)

)𝑇125346
+ 2

(
J

11(𝒎)
)𝑇612345 · 𝑺0(𝒎) ·V𝑙

“B (1) (𝒎) =
( (
J

1(𝒎)
)𝑇4123 ·K (𝒎) · 𝑬𝑦 (𝒎)

)𝑇1243

C
(0) (𝒎) = [(J2(𝒎))𝑇51234 · 𝑺0(𝒎) ·V𝑙 ]𝑆45

C
(1) (𝒎) = (𝑬 ′

𝑦 (𝒎))𝑇312 · 𝑺0(𝒎) ·V𝑙 .

(C.25)

As indicated by the ‘delayed’ keyword in Table C.1, we do not yet enforce the natural symmetries
of “B (0) , which reflect the symmetries of the tensor 1

2 (∇𝒉 ⊗ ∇𝒉) ⊗ (𝒉 ⊗ 𝒉) with which it gets
contracted: they will be enforced later on the children of “B (0) .

In the code, we implemented an extension of (C.25) that covers the rank-deficient case as
well, see Equation (E.24) in Appendix E.

Note that Φ[2] no longer depends on 𝒚 [2] thanks to the work done in Appendix C.3. It still
depends on 𝒚 [1] (𝑿 ) and its gradient, however. We proceed to remove the dependence on the
gradient ∇𝒚 [1] (𝑿 ) by integrating by parts.

C.7 Integration by parts

The C (𝑖) terms appearing in (C.24) can be integrated by parts as∫
Ω

(
C
(0) (𝒎(𝑿 )) : (𝒉(𝑿 ) ⊗ 𝒉(𝑿 ))

)
∴ ∇2𝒉(𝑿 )d𝑿 =∮

𝜕Ω

(
C
(0) (𝒎(𝑿 )) : (𝒉(𝑿 ) ⊗ 𝒉(𝑿 ))

)
∴ (∇𝒉(𝑿 ) ⊗ 𝒏(𝑿 ))d𝑎

+
∫
Ω

(
ΔB (0) (𝒎(𝑿 )) : (𝒉(𝑿 ) ⊗ 𝒉(𝑿 ))

)
::
∇𝒉(𝑿 ) ⊗ ∇𝒉(𝑿 )

2
d𝑿

(C.26)

and ∫
Ω
(C (1) (𝒎(𝑿 )) · 𝒉(𝑿 )) : ∇𝒚 [1] (𝑿 )d𝑿 =∮

𝜕Ω
(C (1) (𝒎(𝑿 )) · 𝒉(𝑿 )) : (𝒚 [1] (𝑿 ) ⊗ 𝒏(𝑿 ))d𝑎

+
∫
Ω
(ΔB (1) (𝒎(𝑿 )) · 𝒉(𝑿 )) ∴ (∇𝒉(𝑿 ) ⊗ 𝒚 [1] (𝑿 ))d𝑿

(C.27)

where

ΔB (0) (𝒎) = −2
(
dC (0)

d𝒎
(𝒎) ·V𝑚

)𝑇342561

− 4(C (0) (𝒎))𝑇12435 ⊗ V
1

ΔB (1) (𝒎) = −
(
dC (1)

d𝒎
(𝒎) ·V𝑚

)𝑇3241

− (C (1) (𝒎))𝑇321 ⊗ V
1,

(C.28)
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Note that the operator acting on (∇𝒉 ⊗ ∇𝒉) in the first equation above has been symmetrized
with respect to an exchange of the ∇𝒉’s.

Inserting (C.26–C.27) into (C.24), we have

Φ[2] =

∮
𝜕Ω

((
C
(0) (𝒎) : (𝒉 ⊗ 𝒉)

)
∴ (∇𝒉 ⊗ 𝒏) + (C (1) (𝒎) · 𝒉) : (𝒚 [1] ⊗ 𝒏)

)
d𝑎

+
∫
Ω

©«
(
B

(0) (𝒎) : (𝒉 ⊗ 𝒉)
)

::
∇𝒉 ⊗ ∇𝒉

2

+ (B (1) (𝒎) · 𝒉) ∴ (∇𝒉 ⊗ 𝒚 [1]) +W𝑦𝑦 (𝒎) :
𝒚 [1] ⊗ 𝒚 [1]

2

ª®®®¬ d𝑿
(C.29)

where

B
(0) (𝒎) = “B (0) (𝒎) + ΔB (0) (𝒎)

B
(1) (𝒎) = “B (1) (𝒎) + ΔB (1) (𝒎)

(C.30)

Equation (C.29) has been announced in (69–71).

C.8 Optimal corrective displacement
The integrand of Φ[2] in (C.29) depends on 𝒚 [1] but not on its gradient, thanks to the integration
by parts, Appendix C.7. It does not depend on 𝒚 [2] either.

The variational problem (72) for 𝒚 [1] is therefore local and we proceed to solve it. The
functional Φ[2] is given in (C.29) as the sum of a bulk integral and a boundary integral. The
variational problem (72) therefore yields two sets of local conditions:

• at any point 𝑿 ∈ 𝜕Ω on the boundary, the increment (C (1) (𝒎) · 𝒉) : (𝛿𝒚 ⊗ 𝒏) coming from the
boundary integral should vanish for any perturbation 𝛿𝒚 satisfying the incremental constraint
Q · 𝑬𝑦 (𝒎) · 𝛿𝒚 = 0; using a Lagrange multiplier �̃�, we must solve (C (1) (𝒎) · 𝒉) : (𝛿�̃� ⊗ 𝒏) +
�̃� · Q · 𝑬𝑦 (𝒎) · 𝛿�̃� = 0 for any 𝛿�̃� ∈ R𝑛𝑦 . Eliminating the virtual quantity 𝛿�̃�, we can rewrite
this as C (1) (𝒎) : (𝒏 ⊗ 𝒉) + (Q · 𝑬𝑦 (𝒎))𝑇 · �̃� = 0. A solution �̃� exists if and only if the vector
C (1) (𝒎) : (𝒏⊗𝒉) is contained in the image of the operator (Q ·𝑬𝑦 (𝒎))𝑇 . Inserting the expression
of 𝒉 in (C.3), we therefore obtain the stationarity condition in the form

C
(1) (𝒎) : (𝒏 ⊗ ((V𝑙 )𝑇 · 𝒍 + (V𝑚)𝑇 ·𝒎 +V

1)) ∈ Im(Q · 𝑬𝑦 (𝒎))𝑇 . (C.31)

• at any point 𝑿 ∈ Ω◦ in the interior of the domain Ω, the problem for 𝒚★[1] (𝑿 ) is a quadratic
optimization problem with a linear constraint. Using a Lagrange multiplier 𝒈★[1] (𝑿 ), its solution
(�̃�, �̃�) = (𝒚★[1] (𝑿 ),𝒈★[1] (𝑿 )) must satisfy

Q ·
(
𝑬𝑦 (𝒎(𝑿 )) · �̃� + (J1(𝒎(𝑿 )) · 𝒉(𝑿 )) : ∇𝒉(𝑿 )

)
= 0

W𝑦 𝑦 (𝒎(𝑿 )) : (�̃� ⊗ 𝛿�̃�) + (B (1) (𝒎) · 𝒉) ∴ (∇𝒉(𝑿 ) ⊗ 𝛿�̃�)
+ �̃� ·Q · 𝑬𝑦 (𝒎(𝑿 )) · 𝛿�̃� = 0, (∀𝛿�̃� ∈ R𝑛𝑦 ) .

(C.32)

We take note of the stationarity condition (C.31) on the boundary, which we will address in
future work, and proceed to solve the problem (C.32) in the interior. The latter can be rewritten
in matrix form as

𝑷 (𝒎(𝑿 )) ·
©«
𝒚★[1] (𝑿 )

𝒈★[1] (𝑿 )

ª®®¬ +
©«
(B (1) (𝒎(𝑿 )))𝑇2314

Q ·J1(𝒎(𝑿 ))

ª®®¬ ∴ (∇𝒉(𝑿 ) ⊗ 𝒉(𝑿 )) = 0. (C.33)

The matrix 𝑷 in the left-hand side above is identical to the one which appeared in the analysis of
the leading order, see (B.4).

The solution (𝒚★[1] (𝑿 ),𝒈★[1] (𝑿 )) is obtained by inverting 𝑷 (the case where 𝑷 is non-invertible
is treated in Appendix E). This yields the correction 𝒚★[1] (𝑿 ) to the microscopic degrees of
freedom in form

𝒚★[1] (𝑿 ) = (Y ′(𝒎(𝑿 )) · 𝒉(𝑿 )) : ∇𝒉(𝑿 ), (C.34)
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with the localization tensor given by

Y
′(𝒎) =

(
𝑰𝑛𝑦

0𝑛𝑦×𝑛c

)
· R′(𝒎) (C.35)

where

R
′(𝒎) = −𝑷−1(𝒎) ·

©«
(B (1) (𝒎))𝑇2314

Q ·J1(𝒎)

ª®®¬ . (C.36)

Compared to the leading-order in (B.7), only the second factor in the right-hand side has
changed. To handle the rank-deficient case, we implement an extension of (C.36) that uses the
pseudo-inverse rather than the inverse, see Equation (E.27) in Appendix E.

The Lagrange multiplier is given as a byproduct as

𝒈★[1] (𝑿 ) = (G′(𝒎(𝑿 )) ·𝒉(𝑿 )) :∇𝒉(𝑿 ) where G
′(𝒎) =

(
0𝑛c×𝑛𝑦

𝑰𝑛c

)
· R′(𝒎) . (C.37)

C.9 Relaxed energy correction at order [2

Inserting the solution 𝒚 [1] (𝑿 ) = 𝒚★[1] (𝑿 ) given in (C.34), we can rewrite the boundary terms
in (C.29) as(

Φbt
[2]

)★
[𝒉] =

∮
𝜕Ω

(C (𝒎) : (𝒉 ⊗ 𝒉)) ∴ (∇𝒉 ⊗ 𝒏)d𝑎. (C.38)

where

C (𝒎) = C
(0) (𝒎) + [((C (1) (𝒎))𝑇312 ·Y ′(𝒎))𝑇34125]𝑆45 . (C.39)

The optimality condition (C.33) can be split in two sets of equations, namely

(B (1) (𝒎))𝑇2314 ∴ (∇𝒉 ⊗ 𝒉) +W𝑦𝑦 (𝒎) · 𝒚★[1] (𝑿 ) + 𝒈★[1] (𝑿 ) ·Q · 𝑬𝑦 (𝒎) = 0 (C.40)

and

Q · 𝑬𝑦 (𝒎) · 𝒚★[1] (𝑿 ) +Q ·J1(𝒎) ∴ (∇𝒉 ⊗ 𝒉) = 0. (C.41)

Taking the dot products of the first equation by 𝒚★[1] (𝑿 ) and of the second equation by 𝒈★[1] (𝑿 )
and subtracting, we obtain

(B (1) (𝒎) · 𝒉) ∴ (∇𝒉(𝑿 ) ⊗ 𝒚★[1] (𝑿 )) +W𝑦𝑦 (𝒎) : (𝒚★[1] (𝑿 ) ⊗ 𝒚★[1] (𝑿 ))
− 𝒈★[1] (𝑿 ) ·Q ·

(
(J1(𝒎) · 𝒉) : ∇𝒉

)
= 0.

(C.42)

This identity can be used to eliminate the B (1) term appearing in the bulk integral Φit
[2] over Ω

in (C.29) as

Φit
[2] =

∫
Ω

©«
(
B

(0) (𝒎) : (𝒉 ⊗ 𝒉)
)

::
∇𝒉 ⊗ ∇𝒉

2

+ 𝒈★[1] ·Q ·
(
(J1(𝒎) · 𝒉) : ∇𝒉

)
−W𝑦𝑦 (𝒎) :

𝒚 [1] ⊗ 𝒚 [1]
2

ª®®®¬ d𝑿 . (C.43)

Inserting the expressions of 𝒚★[1] and 𝒈
★
[1] obtained earlier in (C.34) and (C.37), we can rewrite

this as(
Φit
[2]

)★
[𝒉] =

∫
Ω
(B(𝒎) : (𝒉 ⊗ 𝒉)) ::

∇𝒉 ⊗ ∇𝒉
2

d𝑿 , (C.44)
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where

B(𝒎) =
B (0) (𝒎) +

(
2G′𝑇4123 (𝒎) ·Q ·J1(𝒎)
−Y

′𝑇4123 (𝒎) ·W𝑦𝑦 (𝒎) · Y ′(𝒎)

)𝑇125346
𝑆{12}{34}◦𝑆56

. (C.45)

By Equations (C.38) and (C.44), the energy contribution Φ★
[2] [𝒉] =

(
Φit
[2]

)★
[𝒉] +

(
Φbt
[2]

)★
[𝒉] is

given by

Φ★
[2] [𝒉] =

∫
Ω

(B(𝒎) : (𝒉 ⊗ 𝒉)) ::
∇𝒉 ⊗ ∇𝒉

2
d𝑿 +

∮
𝜕Ω

(C (𝒎) : (𝒉 ⊗ 𝒉)) ∴ (∇𝒉 ⊗ 𝒏)d𝑎. (C.46)

C.10 Final extraction
The last step in the homogenization procedure is to unpack the tensors Y ′, B and C appearing
in (C.34) and (C.46), following a similar procedure as earlier in Appendix C.5. This allows to
remove any reference to the quantity 𝒉 used internally in this Appendix in favor of 𝒍 and 𝒎.

With the help of the ‘content tracking’ done in Table C.1, we obtain the unpacked form of
these tensors as

(Y ′(𝒎) · 𝒉) : ∇𝒉 = (𝒀 1(𝒎) : ∇𝒎) · 𝒍 + 𝒀 ′
0(𝒎) : ∇𝒍

(B(𝒎) : (𝒉 ⊗ 𝒉)) ::
∇𝒉 ⊗ ∇𝒉

2
= (𝑲2(𝒎) :: (∇𝒎 ⊗ ∇𝒎)) :

𝒍 ⊗ 𝒍

2

+ (𝑨1(𝒎) : ∇𝒎) ∴ (𝒍 ⊗ ∇𝒍) + 𝑩0(𝒎) ::
∇𝒍 ⊗ ∇𝒍

2

(C (𝒎) : (𝒉 ⊗ 𝒉))∴(∇𝒉 ⊗ 𝒏) = (𝒌1(𝒎) :∇𝒎) ∴
(
𝒍 ⊗ 𝒍

2
⊗ 𝒏

)
+ 𝒂0(𝒎) :: (𝒍 ⊗ ∇𝒍 ⊗ 𝒏)

(C.47a)

(C.47b)

(C.47c)

where the sub-tensors 𝒀 1(𝒎), 𝒀 ′
0(𝒎), 𝑲2(𝒎), 𝑨1(𝒎), 𝑩0(𝒎), 𝒌1(𝒎) and 𝒂0(𝒎) are identified as

𝒀 1(𝒎) =
(
Y

′𝑇1324 :
(
(V𝑚)𝑇 ⊗ (V𝑙 )𝑇

)𝑇1324
)𝑇1432

𝒀 ′
0(𝒎) =

(
Y

′𝑇1324 :
(
(V𝑙 )𝑇 ⊗ V

1
)𝑇132

)𝑇132

𝑲2(𝒎) =
(
B

𝑇314256 (𝒎) ::
(
(V𝑚)𝑇 ⊗ (V𝑚)𝑇 ⊗ (V𝑙 )𝑇 ⊗ (V𝑙 )𝑇

)𝑇15263748
)𝑇463512

𝑨1(𝒎) = 2
(
B

𝑇314256 (𝒎) ::
(
(V𝑙 )𝑇 ⊗ (V𝑚)𝑇 ⊗ (V𝑙 )𝑇 ⊗ V

1
)𝑇1526374

)𝑇35241

𝑩0(𝒎) =
(
B

𝑇314256 (𝒎) ::
(
(V𝑙 )𝑇 ⊗ (V𝑙 )𝑇 ⊗ V

1 ⊗ V
1
)𝑇152634

)𝑇2413

𝒌1(𝒎) = 2
(
C
𝑇31245 (𝒎) ∴

(
(V𝑚)𝑇 ⊗ (V𝑙 )𝑇 ⊗ (V𝑙 )𝑇

)𝑇142536
)𝑇53412

𝒂0(𝒎) = 2
(
C
𝑇31245 (𝒎) ∴

(
(V𝑙 )𝑇 ⊗ (V𝑙 )𝑇 ⊗ V

1
)𝑇14253

)𝑇3421

(C.48a)

(C.48b)

(C.48c)

(C.48d)

(C.48e)

(C.48f)

(C.48g)

The expression of 𝒚★[1] announced in (73) then follows from (C.34) and (C.47a), whereas the
expression of Φ★

[2] announced in (19) follows from (C.46) and (C.47b-C.47c).

D Special case of homogeneous properties
The special case of homogeneous properties (applicable to a perfectly periodic elastic truss for
instance) is considered here. In this special case, the parameter 𝒎(𝑿 ) goes away (𝑛𝑚 = 0).
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The analysis of leading order is unchanged: it delivers 𝒀 0 and 𝑺0, which are no longer
functions of 𝒎, as illustrated in Table 5 for the non-deficient case. There are many simplifications
at the next orders and the corresponding, specialized formulas are provided in Table D.2. Note
that the tensor dimensions are changed compared to the general case, see also the ‘usage’ column
in the table. As a consequence, the indices used in the transpose operations are affected. Although
it is straightforward in principle, the specialization of the general formulas to this special case is
cumbersome—to a point that we found it easier to re-derive them from scratch. Their consistency
with the general formulas is checked in a dedicated Mathematica notebook2.

As can be expected, all tensors that get contracted with gradients of 𝒎 are zero, 𝑲1 = 0,
𝑲2 = 0, 𝑨1 = 0, 𝒌1 = 0, 𝒀 1 = 0.

E Extension to a rank-deficient matrix

E.1 Special form of null vectors
Assuming that they exist, let us first characterize the null vectors of the symmetric matrix 𝑷 (𝒎)
introduced in (B.5), entering in both the leading order problem (B.4) and in the determination of
the corrective displacement (C.33).

For any 𝒛 = (𝒛𝑦, 𝒛𝑐) ∈ R𝑛𝑦+𝑛c such that 𝑷 (𝒎) · 𝒛 = 0, we have

W𝑦𝑦 (𝒎) · 𝒛𝑦 + 𝒛𝑐 ·Q · 𝑬𝑦 (𝒎) = 0
Q · 𝑬𝑦 (𝒎) · 𝒛𝑦 = 0

(E.1)

Multiplying the first equation by 𝒛𝑦 , and using the second equation, we get 𝒛𝑦 ·W𝑦𝑦 (𝒎) · 𝒛𝑦 = 0.
We observe that the assumption (12) (positive-definiteness of the energy on the subspace
of admissible microscopic degrees of freedom) can be rewritten as: Q · 𝑬𝑦 (𝒎) · 𝒚 = 0 and
𝒚 ·W𝑦𝑦 (𝒎) ·𝒚 > 0 implies𝒚 = 0. Therefore, we have 𝒛𝑦 = 0, which then yields (Q ·𝑬𝑦 (𝒎))𝑇 ·𝒛𝑐 =
0, i.e., the 𝒛𝑐 block is a null vector of (Q · 𝑬𝑦 (𝒎))𝑇 . We have just shown

𝑷 (𝒎) · 𝒛 = 0 ⇒ 𝒛 =

(
0𝑛𝑦

, 𝒛𝑐
)
with (Q · 𝑬𝑦 (𝒎))𝑇 · 𝒛𝑐 = 0. (E.2)

The only way that the matrix 𝑷 (𝒎) can be singular is because of the Q · 𝑬𝑦 (𝒎) block.
With 𝑛d denoting the rank deficiency of the matrix 𝑷 or (Q · 𝑬𝑦 (𝒎))𝑇 (both are the same

by the argument above), we denote as 𝑵 (𝒎) ∈ T(𝑛d,𝑛c) a list of null vectors of (Q · 𝑬𝑦 (𝒎))𝑇 ,
arranged in rows. Equation (E.2) then shows that the null vectors of 𝑷 (𝒎) are the rows of

𝑵 𝑷 (𝒎) = 𝑵 (𝒎) ·
(
0𝑛c×𝑛𝑦

𝑰𝑛c

)
∈ T(𝑛d,𝑛𝑦+𝑛c) . (E.3)

E.2 Solutions of the linear equation
We consider the linear equation for a vector 𝑿 ∈ R𝑛𝑦+𝑛c ,

𝑷 (𝒎) · 𝑿 = 𝒀 . (E.4)

Multiplying by any null vector 𝒛 of 𝑷 and using the symmetry 𝑷𝑇 = 𝑷 , we obtain 𝒛 · 𝒀 = 0.
Repeating this argument with all the null vectors that have been arranged into 𝑵 𝑷 (𝒎), we obtain
𝑛d solvability conditions

𝑵 𝑷 (𝒎) · 𝒀 = 0. (E.5)

When (E.5) is satisfied, the solutions𝑿 of (E.4) can be expressed with the help of theMoore-Penrose
inverse 𝑷†(𝒎) of 𝑷 (𝒎) as

𝑿 = 𝑷†(𝒎) · 𝒀 + 𝑵𝑇
𝑷 (𝒎) · �̂� . (E.6)

2 See shoal-library-v1.0/discrete_engine/tests/verifySpecialFormulasHomogeneousCase.nb
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Table D.2 Higher-order homogenization in the special case of homogeneous properties. A complete implementation
of the method in this special case is possible based on Table 5 (leading order, ignoring any dependence on
𝒎) and on the definitions appearing in the first column of the table above. The quantities appearing in the
grey rows are the main results (localization tensors for corrective displacement 𝒀 ′

0, Lagrange multipliers
𝑮 ′

0, bulk energy contributions 𝑨0 and 𝑩0 and boundary contribution 𝑨0).
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for an arbitrary choice of the coefficients �̂� ∈ R𝑛d . In the right-hand side, the first term is a
particular solution furnished by the pseudo-inverse 𝑷†(𝒎), and the second term is a linear
combination of the column-vectors in 𝑵𝑇

𝑷 (𝒎) forming a basis of ker 𝑷 (𝒎), with arbitrary
coefficients (𝑙𝑖)1⩽𝑖⩽𝑛d .

E.3 Extended macroscopic strain vector

When the matrix 𝑷 is rank deficient, we append the 𝑛d coefficients 𝑙𝑖 appearing in (E.6) to the
macroscopic strain vector 𝒍 , and write

𝒍 =

(
�̌� �̂�

)
∈ R(�̌�𝑙+𝑛d) , (E.7)

where �̌� are the usual macroscopic strain vector that defines the microscopic strain 𝑬 , see (2),
referred to as 𝒍 in the main body of the paper, while �̂� are the additional parameters parametrizing
the solution 𝑿 of the rank-deficient linear problem. The dimension of 𝒍 is now 𝑛𝑙 = �̌�𝑙 + 𝑛d. We
denote the injection matrices Ǐ and Î of �̌� and �̂� into 𝒍 , respectively,

Ǐ =

©«
𝑰 �̌�𝑙

0𝑛d×�̌�𝑙

ª®®®¬ ∈ T(𝑛𝑙×�̌�𝑙 ) (E.8a) Î =

©«
0�̌�𝑙×𝑛d

𝑰𝑛d

ª®®®¬ ∈ T(𝑛𝑙×𝑛d) (E.8b)

which enable us to rewrite 𝒍 as 𝒍 = Ǐ · �̌� + Î · �̂� . Since Ǐ · Ǐ𝑇 and Î · Î𝑇 are orthogonal projections
from the space R𝑛𝑙 in which 𝒍 lives onto the subspaces with equations �̂� = 0 and �̌� = 0, respectively,
the following identity holds,

Ǐ · Ǐ𝑇 + Î · Î𝑇 = 𝑰𝑛𝑙 . (E.9)

To capture the fact that the macroscopic strain 𝑬 in (2) is a function of the original set of
macroscopic degrees of freedom �̌� , but not of the added �̂� part, we require that any sub-block in
𝑬 𝑙 (𝒎), 𝑬 ′

𝑙
(𝒎) or 𝑬 ′′

𝑙
(𝒎) corresponding to a range of indices �̂� vanishes, i.e.,

𝑬 𝑙 (𝒎) · Î = 0, 𝑬 ′
𝑙
𝑇132 (𝒎) · Î = 0 𝑬 ′′

𝑙
𝑇1432 (𝒎) · Î = 0, (E.10)

Indeed, Equation (E.10) warrants that the strain in (2) can be rewritten in terms of �̌� and its
gradients as

𝑬 = �̌� 𝑙 (𝒎) · �̌� + �̌�
′
𝑙 (𝒎) : ∇�̌� + �̌�

′′
𝑙 (𝒎) ∴ ∇2 �̌� + . . .

+ 𝑬𝑦 (𝒎) · 𝒚 + 𝑬 ′
𝑦 (𝒎) : 𝒚′ + 𝑬 ′′

𝑦 (𝒎) ∴ 𝒚′′ + · · ·
(E.11)

where

�̌� 𝑙 (𝒎) = 𝑬 𝑙 (𝒎) · Ǐ, �̌�
′
𝑙 (𝒎) =

(
𝑬 ′
𝑙
𝑇132 (𝒎) · Ǐ

)𝑇132
, �̌�

′′
𝑙 (𝒎) =

(
𝑬 ′′
𝑙
𝑇1432 (𝒎) · Ǐ

)𝑇1432
. (E.12)

The proof of (E.11) is left to the reader.
In view of Equation (E.10) and Table 1, �̂� does not appear anywhere in the specification of the

problem: it is a set of free parameters that are reserved for parameterizing the solution (E.6) of
the rank-deficient linear problem.

E.4 Changes to leading-order analysis
The leading-order problem (B.4) is of the form (E.4) with

𝒀 = −
©«

W𝑦𝑙 (𝒎(𝑿 ))

Q · 𝑬 𝑙 (𝒎(𝑿 ))

ª®®®¬ · 𝒍 (𝑿 ) . (E.13)
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The solvability condition (E.5) yields

𝑵 𝑷 (𝒎) ·
©«

W𝑦𝑙 (𝒎)

Q · 𝑬 𝑙 (𝒎)

ª®®®¬
 · 𝒍 (𝒎) = 0. (E.14)

The vector in square brackets is an output of the homogenization procedure, representing 𝑛d
conditions that are linear in the macroscopic strain 𝒍 .

When (E.14) is satisfied, the solution is given by (E.6) as

©«
𝒚★[0] (𝑿 )

𝒈★[0] (𝑿 )

ª®®®¬ = −𝑷†(𝒎) ·
©«

W𝑦𝑙 (𝒎)

Q · 𝑬 𝑙 (𝒎)

ª®®®¬ · 𝒍 + 𝑵𝑇
𝑷 (𝒎) · �̂� . (E.15)

Thanks to the definition of the extended macroscopic strain vector 𝒍 in (E.7), this solutions
matches the form (B.6) used in the non-deficient case, provided we replace the inverse by the
Moore–Penrose inverse and include a new term in the definition of R in (B.7),

R(𝒎) = −𝑷†(𝒎) ·
©«

W𝑦𝑙 (𝒎)

Q · 𝑬 𝑙 (𝒎)

ª®®®¬ + 𝑵𝑇
𝑷 (𝒎) · Î𝑇 . (E.16)

It is convenient to rewrite this equation in a slightly different form, for a reason that will be
discussed later. Using (E.10), one can show that

©«
W𝑦𝑙 (𝒎)

Q · 𝑬 𝑙 (𝒎)

ª®®®¬ · Î = 0, (E.17)

i.e., the operatorsW𝑦𝑙 and 𝑬 𝑙 do not sense the added degrees of freedom �̂� . Combining with (E.9),
this shows that

©«
W𝑦𝑙 (𝒎)

Q · 𝑬 𝑙 (𝒎)

ª®®®¬ =

©«
W𝑦𝑙 (𝒎)

Q · 𝑬 𝑙 (𝒎)

ª®®®¬ · Ǐ · Ǐ𝑇 . (E.18)

Inserting into the expression of R(𝒎), we obtain

R(𝒎) = −𝑷†(𝒎) ·
©«

W𝑦𝑙 (𝒎)

Q · 𝑬 𝑙 (𝒎)

ª®®®¬ · Ǐ · Ǐ𝑇 + 𝑵𝑇
𝑷 (𝒎) · Î𝑇 . (E.19)

We use this expression of R(𝒎) in the code and not that proposed earlier in (B.7). Indeed, the
latter can be recovered as a particular case: when the matrix 𝑷 is invertible, 𝑛d = 0, implying
that 𝑷†(𝒎) = 𝑷−1(𝒎) and that 𝑵 𝑷 and Î are zero-dimension array, and the last term in (E.19)
vanishes.

The definitions (B.8–B.15) of the other leading-order quantities such as 𝒀 0, 𝑮0, etc. are
unchanged.

The following identity can be established using (B.8), (E.19), (E.3) and the orthogonality of the
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projectors Ǐ𝑇 · Î = 0 which follows from (E.8),

𝒀 0 · Î =

(
𝑰𝑛𝑦

0𝑛𝑦×𝑛c

)
· R(𝒎) · Î

=

(
𝑰𝑛𝑦

0𝑛𝑦×𝑛c

)
· 𝑵𝑇

𝑷 (𝒎)

=

©«𝑵 𝑷 (𝒎) ·
©«

𝑰𝑛𝑦

0𝑛𝑦×𝑛c

ª®®®¬
ª®®®¬
𝑇

=

©«𝑵 (𝒎) ·
(
0𝑛c×𝑛𝑦

𝑰𝑛c

)
·
©«

𝑰𝑛𝑦

0𝑛𝑦×𝑛c

ª®®®¬
ª®®®¬
𝑇

= 0.

(E.20)

As a result, the microscopic displacement 𝒚 [0] = 𝒀 0(𝒎) · 𝒍 can be expressed as 𝒚 [0] = 𝒀 0(𝒎) ·
(Ǐ · Ǐ𝑇 + Î · Î𝑇 ) · 𝒍 = �̌� 0(𝒎) · �̌� where �̌� 0(𝒎) = 𝒀 0(𝒎) · Ǐ: it depends on the original set of
degrees of freedom �̌� only and the matrix 𝒀 0 has a zero block in the range of indices associated
with �̂� , 𝒀 0(𝒎) =

(
�̌� 0(𝒎) 0𝑛𝑦×𝑛d

)
.

The stress 𝑮0 · 𝒍 , however, can depend on the �̂�-block of 𝒍 as well: by adapting the calculation
in (E.20), one can show that 𝑮0 · Î = 𝑵𝑇 (𝒎) is non-zero in the rank-deficient case. The
components of �̂� can therefore be interpreted as the stress associated with the macroscopic
kinematic constraint (E.14); this stress is akin to a Lagrange multiplier, i.e., is not set by any
constitutive law.

Combining (E.20) with (B.11) and (B.12), one can show that the strain localization tensor 𝑭 0
and the equivalent stiffness 𝑲0 are also uncoupled to �̂� , implying zero �̂�-sub-blocks,

𝑭 0(𝒎) =
(
�̌� 0(𝒎) 0𝑛𝑦×𝑛d

)
,

𝑲0(𝒎) =
©«
�̌�0(𝒎) 0�̌�𝑙×𝑛d

0𝑛d×�̌�𝑙 0𝑛d×𝑛d

ª®®®¬ .
(E.21a)

(E.21b)

In addition, we obtain the following identity by combining (B.14), (E.20) and (E.21a),

𝑺0 · Î = K (𝒎) · [𝑭 0(𝒎) · Î] +Q
𝑇 · 𝑮0(𝒎) · Î

= Q
𝑇 · 𝑵𝑇 (𝒎) .

(E.22)

The reason we prefer the expression of R in (E.19) to that derived first in (E.16) is that it
makes it much more evident 𝒀 0, 𝑭 0 and 𝑲0 are insensitive to the added degrees of freedom �̂� , see
the identities (E.20–E.21).
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E.5 Changes to the energy expansion
With the help of (E.9), (E.22), (C.13), (C.12b) and (B.15a), the second term in the integrand
in (C.17b) can be written as

(𝑺0(𝒎) · 𝒍) · 𝑬 [2] = (𝑺0(𝒎) · Ǐ · Ǐ𝑇 · 𝒍) · 𝑬 [2] + (𝑺0(𝒎) · Î · Î𝑇 · 𝒍) · 𝑬 [2]

= (𝑺0(𝒎) · Ǐ · Ǐ𝑇 · 𝒍) · 𝑬 [2] +
(
Q

𝑇 · 𝑵𝑇 (𝒎) · Î𝑇 · 𝒍
)
· 𝑬 [2]

= (𝑺0(𝒎) · Ǐ · Ǐ𝑇 · 𝒍) · 𝑬 [2] +
(
𝑵𝑇 (𝒎) · Î𝑇 · 𝒍

)
·����
Q · 𝑬 [2]

= (𝑺0(𝒎) · Ǐ · Ǐ𝑇 · 𝒍) ·
(
(J11(𝒎) · 𝒉) :: (∇𝒉 ⊗ ∇𝒉)

+(J2(𝒎) · 𝒉) ∴∇2𝒉 + 𝑬 ′
𝑦 (𝒎) :∇𝒚 [1]

)
+

(
�������
𝑬𝑇𝑦 (𝒎) · 𝑺0(𝒎) · Ǐ · Ǐ𝑇· 𝒍

)
· 𝒚 [2]

= (𝑺0(𝒎)·Ǐ ·Ǐ𝑇 · 𝒍) ·
(
(J11(𝒎) ·𝒉) :: (∇𝒉⊗∇𝒉) + (J2(𝒎) ·𝒉) ∴∇2𝒉 + 𝑬 ′

𝑦 (𝒎) :∇𝒚 [1]

)
,

(E.23)

where the terms that have been crossed out are zero. In view of this, the definition of the operators
“B (0) , “B (1) , C (0) , C (1) can be modified by including the projector Ǐ · Ǐ𝑇 onto the subspace �̂� = 0,
to the right of 𝑺0(𝒎),

“B (0) (𝒎) =
( (
J

1(𝒎)
)𝑇4123 ·K (𝒎) ·J1(𝒎)

)𝑇125346

+ 2(J11(𝒎))𝑇612345 · 𝑺0(𝒎) · Ǐ · Ǐ𝑇 ·V𝑙

“B (1) (𝒎) =
( (
J

1(𝒎)
)𝑇4123 ·K (𝒎) · 𝑬𝑦 (𝒎)

)𝑇1243

C
(0) (𝒎) = [(J2(𝒎))𝑇51234 · 𝑺0(𝒎) · Ǐ · Ǐ𝑇 ·V𝑙 ]𝑆45

C
(1) (𝒎) = (𝑬 ′

𝑦 (𝒎))𝑇312 · 𝑺0(𝒎) · Ǐ · Ǐ𝑇 ·V𝑙 .

(E.24)

The original and amended definitions in (C.25) and (E.24) are equally valid, but the latter has
the advantage that it yields final tensors 𝒂1 and 𝑩0 having zero �̂�-sub-blocks (the sub-blocks
obtained with the former set of definitions do evaluate to zero when the solvability constraints
are considered but this is much less evident, and potentially confusing).

Our implementation makes use of (E.24) and not (C.25), both definitions being identical for
non-singular matrices: when 𝑛d = 0, we have Ǐ · Ǐ𝑇

= 𝑰𝑛𝑙 by (E.9).

E.6 Changes to the corrective displacement
The linear problem (C.33) makes use of the same matrix 𝑷 as the leading-order problem. The
solvability condition for 𝒚 [1] is furnished by (E.5) as𝑵 𝑷 (𝒎) ·

©«
(B (1) (𝒎(𝑿 )))𝑇2314

Q ·J1(𝒎(𝑿 ))

ª®®®¬
 ∴ (∇𝒉(𝑿 ) ⊗ 𝒉(𝑿 )) = 0. (E.25)

The quantity in square brackets is an output of the homogenization procedure that encodes 𝑛d
conditions depending linearly on 𝒍 and ∇𝒍 .

As we did earlier at the leading order, the solution (𝒚★[1] (𝑿 ),𝒈★[1] (𝑿 )) of (C.33) is the sum of
a particular solution furnished by the Moore-Penrose inverse and a linear combination of the null
vectors of 𝑷 with new coefficients ˆ̂𝒍 ,

©«
𝒚★[1] (𝑿 )

𝒈★[1] (𝑿 )

ª®®®¬ = −𝑷†(𝒎) ·
©«
(B (1) (𝒎(𝑿 )))𝑇2314

Q ·J1(𝒎(𝑿 ))

ª®®®¬ ∴ (∇𝒉(𝑿 ) ⊗ 𝒉(𝑿 )) + 𝑵𝑇
𝑷 (𝒎) · ˆ̂𝒍 . (E.26)

The first term in the right-hand side is taken care of by replacing the inverse of 𝑷 (𝒎) by its
Moore-Penrose inverse in the definition of R′ in (C.36), as we did earlier with R. The second
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term 𝑵𝑇
𝑷 (𝒎) · ˆ̂𝒍 in 𝒚★[1] (𝑿 ) and 𝒈★[1] (𝑿 ) adds up in a straightforward way to the term 𝑵𝑇

𝑷 (𝒎) · �̂�
from leading order: the full microscopic displacement 𝒚★(𝑿 ) = 𝒚★[0] (𝑿 ) +𝒚★[1] (𝑿 ) + · · · and
Lagrange multipliers 𝒈★(𝑿 ) = 𝒈★[0] (𝑿 ) + 𝒈★[1] (𝑿 ) + · · · obtained by summing up the [0 and [1

contributions are now linear combinations of the null vectors in 𝑵 𝑷 (𝒎) with coefficients �̂� + ˆ̂𝒍
having both a leading order contribution (�̂�) and an order [ contribution (ˆ̂𝒍). A simple way to deal
with this complication is (i) to discard the 𝑵𝑇

𝑷 (𝒎) · ˆ̂𝒍 contribution in (E.26), and (ii) agree that �̂� is
a series in [. This avoids extending the vector 𝒍 with 𝑛d new entries for every homogenization
order.

Concretely, we simply replace the inverse appearing in (C.36) by the Moore–Penrose inverse:
our implementation uses

R
′(𝒎) = −𝑷†(𝒎) ·

©«
(B (1) (𝒎))𝑇2314

Q ·J1(𝒎)

ª®®®¬ . (E.27)

E.7 Solvability condition for 𝒚 [2]

The quantity 𝒚 [2] entering in

𝑬 [2] =
[
(J11 · 𝒉) :: (∇𝒉 ⊗ ∇𝒉) + (J2 · 𝒉) ∴ ∇2𝒉 + 𝑬 ′

𝑦 : ∇𝒚 [1]

]
+ 𝑬𝑇𝑦 · 𝒚 [2] (E.28)

has been eliminated from (E.23) using the constraint Q · 𝑬 [2] = 0. For 𝒚 [2] to exist, one must have

0 = Q · 𝑬 [2] = Q ·
[
(J11 · 𝒉) :: (∇𝒉 ⊗ ∇𝒉) + (J2 · 𝒉) ∴ ∇2𝒉 + 𝑬 ′

𝑦 : ∇𝒚 [1]

]
+Q · 𝑬𝑇𝑦 · 𝒚 [2] .

(E.29)

This leads to the compatibility condition

Q ·
[
(J11 · 𝒉) :: (∇𝒉 ⊗ ∇𝒉) + (J2 · 𝒉) ∴ ∇2𝒉 + 𝑬 ′

𝑦 : ∇𝒚 [1]

]
∈ Im(Q · 𝑬𝑇𝑦 ) . (E.30)

In the code, a basis of vectors perpendicular to Im(Q · 𝑬𝑇𝑦 ) is produced using a row-reduction
algorithm, and we print out the conditions that each of these vectors is perpendicular to the
vector Q · [. . .] appearing in the left-hand side above: this yields conditions depending linearly
on ∇𝒉 ⊗ ∇𝒉 ⊗ 𝒉 and ∇2𝒉 ⊗ 𝒉.

E.8 Summary: extension to rank-deficient problems
The following extension of the code enables us to deal with a rank-deficient matrix 𝑷 (𝒎):

• provide integers �̌�𝑙 and 𝑛d and the injection matrix Î as a optional arguments to the homog-
enization procedure and check the condition (E.10) on the tensors 𝑬 𝑙 , 𝑬 ′

𝑙
and 𝑬 ′′

𝑙
passed in

argument;
• compute a set of null vectors of the symmetric matrix 𝑷 (𝒎), check that there are 𝑛d such vectors
and that they are of the form (E.2), compute the Moore-Penrose inverse 𝑷†(𝒎) if 𝑛d > 0;

• return the solvability conditions (E.14), (E.25) and (E.30) whenever 𝑛d > 0;
• replace Equations (B.7), (C.25) and (C.36) yielding R, “B (0) , “B (1) , C (0) , C (1) and R

′ with their
extensions (E.19), (E.24) and (E.27)

E.9 Illustration: a truss lattice with inextensible beams
We consider again the truss lattice shown in Figure 2, but assume this time that the bars on the
upper side (+) are inextensible: the corresponding stretching strain is constrained to be zero,
𝑬4 = 0. In view of (33) and (29), the inextensibility condition for the upper beams can be rewritten
as

𝑒 (𝑆) − 1
2
𝑐 (𝑆) = 0 + O([) . (E.31)
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This is a constraint that applies to the macroscopic strain 𝒍 = (𝑒, 𝑐): this contrasts with the
illustrations presented in Section 4, where the macroscopic strain was unconstrained. The linear
problems encountered in the homogenization become rank-deficient, as we show now by running
the homogenization procedure.

We first run the homogenization procedure with similar input parameters as those listed in
Table 4, except that

• we limit attention to uniform spring constants, setting 𝒎 = () and 𝑛𝑚 = 0 and 𝑘 (𝑆) = 𝑘 ;
• we add the inextensibility constraint by incrementing 𝑛𝑐 = 2 + 1 = 3 and defining Q(𝑆) =

𝜹3
1 ⊗ 𝜹7

6 + 𝜹3
2 ⊗ 𝜹7

7 + 𝜹3
3 ⊗ 𝜹7

4, where the first two terms represent the zero-average conditions
⟨𝑦±1 ⟩ = 0 and ⟨𝑦±2 ⟩ = 0 already used earlier, and the last term encodes the new constraint 𝐸4 = 0
(we using the notation introduced in Table 4 for unit vectors);

• optionally, we drop the term 𝑖 = 4 in the assembly of the stiffness matrix K in Table 4—this does
not matter as the corresponding strain is zero anyway.
When run with these parameters, the homogenization returns an error message indicating
that the linear problem has a rank deficiency of 1, and that a single coefficient �̂� = (𝑙1) must be
appended to the list of macroscopic parameters 𝒍 = (𝑒, 𝑐), see (E.7).

We therefore modify the input further as follows:
• with 𝒍 = (𝑒, 𝑐, 𝑙1), we now set 𝑛𝑙 = 3, and we extend the dimensions of the tensors 𝑬 𝑙 , 𝑬 ′

𝑙
, 𝑬 ′′

𝑙

accordingly, by filling them up with zeros;
• we include the optional argument Î = 𝜹3

3 ⊗ 𝜹1
1 describing the injection �̂� into 𝒍 , see (E.8b).

When run with these parameters, the homogenization procedure returns
• the solvability condition for 𝒚 [0] , see (E.14), in the form that we had announced in (E.31)

𝑒 (𝑆) − 1
2
𝑐 (𝑆) = 0, (E.32)

• the solvability condition for 𝒚 [1] in (E.25) in the form 0 = 0 (it is automatically satisfied),
• the homogenized energy is obtained by interpreting the output of the code as earlier in Section 4,
except that we can now eliminate 𝑒 (𝑆) = 1

2𝑐 (𝑆) in favor of 𝑐 (𝑆) using the solvability condition:
the result is

Φ★[𝑐] =
∫ +∞

−∞

[
13𝑘
24
𝑐2 − 𝑘[2

4
𝑐 ′2 + O([3)

]
d𝑆
[
. (E.33)
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