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In this article, we propose a method exploiting irregular and unaligned Sentinel-2 satellite image time series (SITS) for large-scale land cover pixel-based classification. We perform end-to-end learning by combining a time and space informed kernel interpolator with a Sparse Variational Gaussian Processes (SVGP) classifier. The interpolator embeds irregular and unaligned SITS onto a fixed and reduced size latent representation. The spatial information is taken into account by using a spatial positional encoding. The obtained latent representation is given to the SVGP classifier and all the parameters are jointly optimized w.r.t. the classification task. We run experiments with irregular and unaligned Sentinel-2 SITS of the full year 2018 over an area of 200 000 km 2 (about two billion pixels) in the south of France (27 MGRS tiles). Such experimental condition exacerbates the irregular and unaligned issues of SITS. In terms of overall accuracy, with the learned latent representation instead of linearly interpolated SITS, the results of the SVGP classifier are improved by about 10 points. Moreover, with the learned latent representation, the SVGP classifier outperforms the main state-of-the-art methods from the literature at large scale (e.g., seven points for the Multi-layer Perceptron) and is robust to the available timestamps used for training and testing.

help to solve the challenges of climate change [START_REF] Persello | Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current Approaches, Open Challenges, and Future Opportunities[END_REF], [START_REF] Tuia | Artificial intelligence to advance earth observation: a perspective[END_REF]. For instance, the Sentinel-2 twin satellites provide free and openaccess data with relevant features: short revisit time (five days) and high spectral and spatial resolutions (four spectral bands at 10m, six at 20m and three at 60m per pixel) [START_REF] Bertini | Sentinel-2 esa's optical high-resolution mission for gmes operational services[END_REF].

These satellite image time-series (SITS), covering large continental surfaces with a short revisit cycle, bring the opportunity of large scale mapping. For example, land use or land cover (LULC) maps provide information about the physical and functional characteristics of the Earth's surface for a particular period of time. More precisely, land cover usually refers to the physical land type (i.e. corn field or grassland) whereas land use map indicates how people are using the land (i.e. agriculture). To produce these LULC maps from massive SITS, automatic methods are mandatory. In the last years, Machine Learning (ML) and then Deep Learning (DL) methods have shown outstanding results in terms of performance accuracy [START_REF] Camps | Machine learning in remote sensing data processing[END_REF]- [START_REF] Zhu | Deep learning in remote sensing: A comprehensive review and list of resources[END_REF].

A widely used ML algorithm for pixel-wise classification, with very good performances even in large scale, is the Random Forest (RF) [START_REF] Belgiu | Random forest in remote sensing: A review of applications and future directions[END_REF]- [START_REF] Pelletier | Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas[END_REF]. However, this classifier is not able to take into account the spectro-temporal structure of the SITS. In recent years, DL methods have been developed and have shown very accurate results. Indeed, they are able to extract features (i.e spatial, spectral or/and temporal) of the SITS. For example, a combination of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) has shown good performances by including the spatial information [START_REF] Rußwurm | Multi-temporal land cover classification with sequential recurrent encoders[END_REF]. Temporal CNN, by combining temporal and spatial features, have also shown satisfactory results [START_REF] Pelletier | Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series[END_REF]. Recently, methods based on attention mechanisms were proposed in order to take into account the spectro-temporal structure of the data [START_REF] Sainte Fare | Lightweight temporal self-Attention for classifying satellite images time series[END_REF]. However, DL methods have a huge number of parameters which are sometimes difficult to interpret and to optimize. Recently we proposed a method based on Sparse Variational Gaussian Processes (SVGP). This method takes into account the spatio-spectro-temporal structure of the data through a covariance function and its parameters are interpretable. It provides similar classification performance to the state-ofthe-art methods such as conventional ML or DL methods. However, we identified two limiting factors: the need of preimputation or resampling of the data in the temporal domain, like most of the methods in literature which require data with a constant number of features per pixel, and the high number of spectro-temporal features that can perturb the optimization process.

Unfortunately, Sentinel-2 pixel time series are irregularly sampled in the temporal domain: observations are not equally spaced in time due to the presence of clouds or shadows. These time series are also unaligned: observations from two different satellite swaths have different temporal sampling grids. Preprocessing techniques can be used to transform these irregular and unaligned time series into regular time series that can be used by the classifier. For instance, Inglada et al. [START_REF] Inglada | Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series[END_REF] proposed to linearly resample the observations onto a common set of latent dates. The obtained resampled observations from a full year were successfully used to produce land cover classification maps at country scale using SVGP [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF]. However, relevant information for the classification task can be lost when producing these resampled observations. Indeed, Li et al. [START_REF] Li | A scalable end-to-end gaussian process adapter for irregularly sampled time series classification[END_REF] showed that an independent interpolation method directly followed by a classification method performed worse than methods trained end-to-end.

In this sense, Constantin et al. [START_REF] Constantin | Joint Supervised Classification and Reconstruction of Irregularly Sampled Satellite Image Times Series[END_REF] proposed to jointly classify and reconstruct irregular pixel time series. Despite the quality of the reconstruction, the model did not compete with state-of-the-art classifiers such as RF or Support Vector Machine (SVM) because of too strong statistical assumption. Besides, Petitjean et al. [START_REF] Petitjean | Satellite image time series analysis under time warping[END_REF] proposed to use Dynamic Time Warping (DTW). DTW allows to find the best alignment between two time series, however it does not include information on inter and intra-annual phenological cycles. [START_REF] Maus | dtwsat: Timeweighted dynamic time warping for satellite image time series analysis in r[END_REF]. Thus, the Time-Weighted Dynamic Time Warping (TWDTW) was proposed by introducing time weight factor, as an extension of the DTW [START_REF] Maus | A time-weighted dynamic time warping method for land-use and land-cover mapping[END_REF]. Later, a parallel version of the TWDTW was proposed, taking into account the spatial dimension [START_REF] De Oliveira | A parallel and distributed approach to the analysis of time series on remote sensing big data[END_REF]. Even if it achieved almost linear speed up, it was not able to deal with very large data-sets.

Few DL methods can directly deal with these irregular and unaligned time series. For example, Long Short-Term Memory (LTSM) [START_REF] Neil | Phased lstm: Accelerating recurrent network training for long or event-based sequences[END_REF] can take into account irregular time series, however, they do not support unaligned time series. In land cover classification, Ienco et al. [START_REF] Ienco | Land cover classification via multitemporal spatial data by deep recurrent neural networks[END_REF] used LSTM combined with linear interpolation in order to deal with missing (i.e. cloudy) observations. Moreover, LSTM are slow to train because of the lack of parallelization abilities. Transformer architectures [START_REF] Vaswani | Attention is all you need[END_REF], via the self-attention mechanism, are able to process sequences in parallel, and dealing with irregular and unaligned time series is done via temporal positional encoding and padding. Rußwurm and Körner [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF] pioneered the use of self-attention for land cover mapping using Sentinel-2 SITS. Garnot et al. [START_REF] Sainte Fare | Lightweight temporal self-Attention for classifying satellite images time series[END_REF] improved the approach by reducing the computational complexity with the Lightweight Temporal Self-Attention (LTAE). The method outperforms most of stateof-the-art time series classification algorithms. However, these DL methods still require a huge number of parameters which are often not interpretable.

To take advantage of the above-mentioned SVGP approach [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF], we propose to learn a fixed-size latent representation as a pre-processing step to the classifier. This strategy was explored in [START_REF] Shukla | Interpolation-prediction networks for irregularly sampled time series[END_REF], [START_REF] Shukla | Multi-time attention networks for irregularly sampled time series[END_REF], where the authors proposed a method called Multi-Time Attention Networks (mTAN) which enables working with irregular and unaligned time series. By using end-to-end training, a learned kernel interpolator (the mTAN) followed by an encoder-decoder task provided accuracies similar to or better than the state-of-the-art for a classification task [START_REF] Shukla | Multi-time attention networks for irregularly sampled time series[END_REF]. Although kernel interpolators have been known for a long time, the improved learning capacity of mTAN results from the temporal attention used as the similarity kernel learned from the data.

In this work, we propose to further elaborate on a learned kernel interpolator for the classification of irregular and unaligned SITS. Our first contribution is to propose a time and space informed kernel interpolator based on the mTAN for solving the issues identified in our previous work with SVGP. This module learns a constant-size latent representation from irregular and unaligned multivariate time series, in a end-toend learning framework with SVGP. The mTAN is modified to 1) take into account the geographic coordinates of the pixel thanks to a spatial positional encoding, 2) perform a learned spectro-temporal feature reduction. We also propose a formal interpretation of the resulting kernel operator: to the best of our knowledge, this is the first time that such a kernel operator is proposed for the classification of SITS.

Our second contribution is the evaluation of the proposed model with existing state-of-the-art methods from the literature (limited to those that can be used at large scale), on 27 Sentinel-2 tiles in the south of France. Such experimental condition exacerbates the irregular and unaligned issues of SITS, which have scarcely been analyzed in the Geosciences and Remote Sensing community.

Beyond improved classification accuracy and reduced training time, the proposed model is versatile w.r.t. the temporal sampling: during inference it can classify any irregular and unaligned pixel time series even if its timestamps were not seen during the training process.

The remainder of this paper is organized as follows. Section II-A describes how the learned kernel interpolator (the mTAN) is used to process irregular and unaligned pixel time series. Section II-B defines our contributions for large scale land cover classification with irregular and unaligned satellite image time series. The experimental setup is detailed in Section III. The results obtained with the end-to-end trained model (time and space informed kernel interpolator coupled with SVGP) are provided in Section IV. Comparison with existing state-of-the-art methods from the literature are provided in Section V. Finally, Section VII concludes this paper and opens discussions on future works.

II. METHODS

This section describes how irregular and unaligned pixel time series are projected onto a fixed temporal grid in order to be used by the classifier. First, some notations and definitions which are used throughout this paper are introduced. Then, the latent interpolator at the core of the proposed method is presented. Finally, the last part describes our several contributions. x i j Fig. 1: x i j and x i j are two irregular and unaligned time series for pixels i and i respectively, for the spectral feature j.

A. Attention-based temporal interpolator 1) Notations and definitions: In this paper, the ith pixel time series x i (t k ) at time t k is defined by its spectral measurements {x i 1 (t k ), . . . , x i j (t k ), . . . , x i D (t k )} with i ∈ {1, . . . , N }, N the number of pixels and D the number of spectral features. Additionally, two spatial coordinates ψ i 1 and ψ i 2 are associated to the pixel x i . Moreover, y i ∈ {1, . . . , C} is the target value (i.e. the class label) associated to the pixel x i , with C the number of classes.

For a pixel i, a spectral feature j is observed at T i j timestamps: T i j = {t i j1 , . . . , t i jk , . . . , t i jT i j }, where T i j is the number of valid observations (e.g., no clouds or shadows). As discussed in Section I, because of satellite swaths and weather we usually have unaligned time series, i.e., T i j = T i j . In this work, we assume that all spectral features are available for each timestamp, i.e., T i j = T i j = T i . This is commonly the case when working with only one sensor, but the proposed method can be extended to multi-source data straightforwardly. As an illustration, Fig. 1 represents two real irregular and unaligned pixel time series acquired by Sentinel-2. We define the set of all timestamps T such as:

T = N i=1 T i = {t 1 , . . . , t k , . . . , t T }
with T the total number of observations. For each pixel, we define a mask time series m i ∈ {0, 1} T such as

m i (t k ) = 1 if t k ∈ T i 0 otherwise ∀t k ∈ T, (1) 
which indicates whether the feature j of pixel i at time t k is observed or not. We further define an augmented pixel time series x i * j as the pixel

x i * j (t k ) = x i j (t k ) if m i (t k ) = 1 0 otherwise ∀t k ∈ T, (2) 
Using ( 1) and (2) will simplify the presentation of the interpolator in the following section.

2) Projection onto a regular-temporal grid: As previously described, most of the classifiers are not able to deal with irregular and unaligned time series. Thus, the core idea is to learn a mapping of these irregular and unaligned time series onto a regular temporal grid of R latent dates: R = {r 1 , . . . , r l , . . . , r R }. In this work, we focus on the wellestablished Nadaraya-Watson kernel smoother [27, Chapter 6],

because it leads to an efficient interpolation as discussed in the next section.

For a given pixel time series x * j , the interpolated xj at latent timestamp r l using a kernel smoother is given by1 :

xj (r l ) = t T t k =t1 K(r l , t k )m(t k )x * j (t k ) t T t k =t1 K(r l , t k )m(t k ) (3) 
with K some similarity kernel [START_REF] Hastie | The Elements of Statistical Learning[END_REF]Chapter 6]. Usually, the radial basis function (RBF) kernel is used

K(r l , t k ) = exp (d(r l , t k )) with d(r l , t k ) = -σ -2 (r l -t k ) 2 . From (3), xj (r l
) is a convex combination of original pixel values, whose weights are computed using the kernel applied on the temporal domain. With a RBF kernel, the similarity is a decreasing function of the distance between two timestamps, whatever their location in the year. The parameter σ, learned from the training data, weights the temporal distance.

The performances of such method are strongly limited by the hand-crafted similarity kernel. A powerful extension is obtained using attention and embedding mechanisms, which are able to build more complex (anisotropic) kernels [START_REF] Zhang | Dive into deep learning[END_REF]Chapter 11]. In the following, the Multi-Time Attention Networks (mTAN) [START_REF] Shukla | Multi-time attention networks for irregularly sampled time series[END_REF] is discussed as an extension of the kernel smoother to build the kernel interpolator for the classification model in our end-to-end training.

3) Multi Time Attention Networks (mTAN): To build the kernel interpolator, Shukla et al. [START_REF] Shukla | Multi-time attention networks for irregularly sampled time series[END_REF] proposed using attention mechanisms and more precisely the scaled-dot product attention defined in [START_REF] Vaswani | Attention is all you need[END_REF]. Firstly, a learnable time embedding function (named temporal positional encoding) φ is defined. It maps a given timestamp t onto a higher dimensional space of size E such as:

φ : R →R E t →φ(t) =     ω 1 t + α 1 sin(ω 2 t + α 2 )
. . .

sin(ω E t + α E )     (4) 
with ω p and α p , p ∈ {1, . . . , E}, the learnable parameters. Then, this embedding φ is used to construct the similarity kernel K used in (3) such as:

d(r l , t k ) = φ(r l ) W q W k φ(t k ) √ E with W q
and W k two learnable matrices of size E × E, the indices q and k refer to query and key terms in the attention mechanism framework [START_REF] Vaswani | Attention is all you need[END_REF].

Finally, (3) can be re-written using a masked softmax operator [START_REF] Zhang | Dive into deep learning[END_REF]Chapter 11.3.2] such as:

xj (r l ) = softmax Φ(T) W k W q φ(r l ) m √ E x * j = γ r l x * j . (5) 
with Φ(T) = φ(t 1 ), . . . , φ(t T ) , the matrix of embeddings of T and being the Hadamard product. x * j refers to value term attention mechanism framework [START_REF] Vaswani | Attention is all you need[END_REF].

X * h θ1 ∇ θ1 L Z f θ2 ∇ θ2 L ŷ L(ŷ, y; θ 1 , θ 2 )
Fig. 2: End-to-end learning for the classification of one irregular and unaligned pixel time series X * and its associated representation Z.

The authors of [START_REF] Shukla | Multi-time attention networks for irregularly sampled time series[END_REF] further propose to use multi-head attention, i.e., H matrices of embeddings with Φ H (T) = {Φ h (T)} H h=1 , and also H time embedding functions with

φ H (r l ) = [φ 1 (r l ), . . . , φ H (r l )]. A learnable linear layer β H of size H is used to produce the interpolated value xj (r l ) = β H Γ H r l x * j . (6) 
with

Γ H r l = [γ 1 r l , . . . , γ H r l ]
. This equation can be computed for every spectral feature j and every latent date r l .

The mTAN, as defined in ( 6), has extended interpolation flexibility w.r.t. the conventional kernel smoother. Also, it is worth noting that (6) benefits from the computational efficiency of attention mechanism (parallel computation) and all parameters are learnable during the training step.

In [START_REF] Shukla | Multi-time attention networks for irregularly sampled time series[END_REF], the mTAN was used as input and output layers in a encoder-decoder architecture and a classifier was jointly learned using feature from the latent-space. The next section describes how we extend the mTAN to use the spatial information and to reduce the spectral dimension of the SITS.

B. Spatially informed interpolator for classification

Fig. 2 represents the workflow for the classification of one irregular and unaligned pixel time series X * through its latent representation Z. In this paper, we propose to use end-toend learning by combining a spatially informed interpolator h θ1 with the Sparse Variational Gaussian Processes (SVGP) classifier f θ2 defined in [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF]. The SVGP classifier uses kernel functions, i.e. RBF covariance functions, and no changes were made from [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF] (i.e. same loss). Indeed, the loss L is used to optimize θ 1 and θ 2 (i.e. the parameters of h θ1 and f θ2 , respectively) and to minimize the error between the predicted class ŷ and the true class y.

1) Spectro-temporal feature reduction: The mTAN interpolation allows to perform feature reduction, in the temporal domain, in the spectral domain or in both of them. Indeed, the interpolated feature j is of size R and by taking R < T we can perform a temporal feature reduction. We propose to add a linear layer after the interpolation in order to perform spectral feature reduction. Noting x(r l ) ∈ R D the vector of all interpolated spectral features at timestamp r l , B a matrix of size D ×D with D ≤ D, the final latent interpolated pixel z(r l ) can be written as

z(r l ) = Bx(r l ) (7) 
The overall spectro-temporal feature reduction can be written as:

Z = BX * Γ ( 8 
)
where

Z = [z(r 1 ), . . . , z(r R )] ∈ R D ×R , X * = [x * (t 1 ), . . . , x * (t T )] ∈ R D×T and Γ = [γ r1 , . . . , γ r R ] ∈ R T ×R .
As defined in [START_REF] Belgiu | Random forest in remote sensing: A review of applications and future directions[END_REF], the matrix Γ does not depend on the spectral features and the matrix B does not depend on time. Thus, as in Constantin et al. [START_REF] Constantin | Joint Supervised Classification and Reconstruction of Irregularly Sampled Satellite Image Times Series[END_REF], the temporal reconstruction does not depend on the spectral features and the spectral feature reduction does not depend on the time. This constrained spectro-temporal structure reduces the complexity (number of parameters) of the model.

Yet, the spatial information is not taken into account. In the following section, we discuss how the spatial coordinates are integrated in the processing by means of spatial positional encoding.

2) Spatial positional encoding: We propose to add the spatial information in the estimation of Z by using a spatial positional encoding. As in [START_REF] Baudoux | Toward a Yearly Country-Scale CORINE Land-Cover Map without Using Images: A Map Translation Approach[END_REF], the spatial coordinates (ψ 1 , ψ 2 ) are mapped onto a higher dimensional space of dimension F using ϕ:

ϕ : R 2 →R F (ψ 1 , ψ 2 ) →ϕ(ψ 1 , ψ 2 ) = sin(ψ 1 ν 1 ), cos(ψ 1 ν 1 ), . . . , cos(ψ 2 ν F/4 )
with ν q = 10000 -(2l)/F and q ∈ {1, . . . , F/4}. ϕ(ψ 1 , ψ 2 ) is then given to a two-layer perceptron with ReLu activation functions to obtain a vector of size D which is finally duplicated for each timestamp to get a spatial positional encoding matrix P of the same shape as X * (i.e. D × T ). This matrix is added to the raw input data X * before the spectro-temporal interpolation:

X * = X * + P.

The parameters of the perceptron are jointly optimized with the time and space informed kernel interpolator and the SVGP during the learning step.

The SVGP classifier f θ2 uses a kernel function over the latent spectro-temporal representations of two pixels respectively noted Z i and Z i defined as:

k(Z i , Z i ) = exp - Z i -Z i 2 F 2 2 ,
with • F and •, • F the Frobenius norm and inner product over matrices and the lengthscale parameter of the kernel. The square Frobenius norm can be written as

Z i -Z i 2 F = BX i * Γ i -BX i * Γ i 2 F A + BP i Γ i -BP i Γ i 2 F B + 2 B(X i * Γ i -X i * Γ i ), B(P i Γ i -P i Γ i ) F C .
Terms A and B correspond to the distance between two pixels for spectro-temporal latent variables and for spatial latent variables, respectively. Term C corresponds to an interaction term between spectro-temporal and spatial latent variables.

TABLE I: Description of the time and space informed kernel interpolator parameters θ 1 and their corresponding sizes. The Multi-layer Perceptron (MLP) corresponds to the parameters of a two-layer perceptron used to obtain the spatial positional encoding matrix P described in the previous section.

Parameters Size

{ωp, αp} E p=1 2(HE) Wq, W k 2(HE 2 ) B D D β H H MLP L 2 (L 1 + D)
By comparison to our previous works [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF], the covariance function k(Z i , Z i ) is composed of an additional element: the interaction term C, and in addition, the spatial distance is learned. With formulation ( 9), we have a supplementary source of information that links spectro-temporal and spatial terms. In the following section, the complexity of the model is discussed.

3) Model complexity: The parameters θ 1 of the time and space informed kernel interpolator h θ1 and their corresponding sizes are summarized in Table I and the total number of learnable parameters is given by:

2HE(1 + E) + DD + H + L 1 (L 2 + D).
As a reminder, the parameters θ 2 of the SVGP classifier f θ2 were highly dependent on the number of spectro-temporal features T × D. By using an end-to-end training with the time and space informed kernel interpolator, this number is significantly reduced to R × D with R < T and D < D and therefore the total number of parameters θ 2 is reduced as well. Numbers of parameters for our data set are given in the experimental section IV-B.

III. DATA SET AND EXPERIMENTAL SET-UP

The study area covers approximately 200 000 km 2 in the south of metropolitan France. It is composed of 27 Sentinel-2 tiles, as displayed in Fig. 3.

A. Irregular and unaligned Sentinel-2 time series

All available acquisitions of level 2A between January and December 2018 for the 27 Sentinel-2 tiles were used, as described in [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF]. Surface reflectance time-series and cloud/shadow masks have been produced using the MAJA preprocessing chain [START_REF] Baetens | Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure[END_REF] and were downloaded from the Theia Data Center 2 . All the bands at 20m/pixel were spatially upsampled to 10m/pixel using bicubic interpolation [START_REF] Team | Orfeo ToolBox 7.1[END_REF]. A total of 10 spectral bands with three spectral indices (normalized difference vegetation index (NDVI), normalized difference water index (NDWI) and Brightness) were used. Compared to [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF], no temporal sampling preprocessing has been used (i.e. no linear interpolation as in [START_REF] Inglada | Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series[END_REF] or other types of temporal synthesis). As described in Section I, the resulting data is irregular and unaligned. Following the notations defined in Section II-A3, the union of the acquisition dates of the 27 tiles results in T = 303 dates. Besides, the spectral dimension is equal to D = 13.

The reference data used in this work is composed of C = 23 land cover classes ranging from artificial areas to vegetation and water bodies constructed with different data sources as described in [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF]. The nomenclature of the 23 land cover classes can be found in Table III.

Pixels were randomly sampled from polygons over the full study area (i.e. 27 tiles) to create three spatially disjoint data subsets: training, validation and test. The polygons are disjoint between the three data sets. The three data sets are classbalanced: 4 000 pixels per class in the training data set, 1 000 pixels per class in the validation data set and 10 000 pixels per class in the test data set. The total number of pixels for each data set is provided in Table II. Classification metrics such as overall accuracy (OA) or F-score were computed for each model using the test data set with nine runs with different random pixel samplings. Standardization was performed for the valid acquisitions dates. Mean and standard deviation were estimated for each spectral band and for each spectral index on the training data set and then used to standardize the other data sets (validation, test) [START_REF] Kuhn | Feature Engineering and Selection: A Practical Approach for Predictive Models[END_REF].

B. Competitive methods

Linearly interpolated data was feed into a simple SVGP classifier called Gapfilled-SVGP model and is used as baseline to compare with the extended mTAN combined with the SVGP, called mTANe-SVGP model. Two other classifiers are also compared in terms of classification accuracy and processing time: • Multi-layer Perceptron (MLP) with the same setup as in [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF],

• Lightweight Temporal Self-Attention (LTAE) described in [START_REF] Sainte Fare | Lightweight temporal self-Attention for classifying satellite images time series[END_REF]. The end-to-end trained models are called mTANe-SVGP, mTANe-MLP and mTANe-LTAE, respectively.

Unlike SVGP or MLP classifiers, the LTAE classifier uses attention mechanisms. It may be redundant to use attention mechanisms both in the time and space informed kernel interpolator and in the LTAE. Therefore, the LTAE classifier was also studied without the extended mTAN (mTANe) and this method is called raw-LTAE. However, the LTAE classifier was not defined to deal with the irregular and unaligned time series pixels. Thus, the mask m was used as an additional feature. Besides, the spatial positional encoding matrix P was also used in this classifier, as defined in [START_REF] Inglada | Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series[END_REF].

The optimizer parameters (i.e. number of epochs, learning rate and batch size) for each model were found by trial and error and are described in Table VIII in Appendix A. To train all models, one NVIDIA Tesla V100 GPU was used.

IV. MODEL EVALUATION

This section presents the different results obtained by the mTANe-SVGP model. Firstly, a comparison with linear interpolation is provided. Then, the influence on the classification accuracy and processing time of latent representation sizes as well as the use of the spatial positional encoding matrix are investigated. Finally, the influence of the number of inducing points is studied.

A. Comparison with linear interpolation

Firstly, the mTANe-SVGP was implemented with a vector of latent dates R defined with a regular sampling of τ = 10 days and a total number of R = 37 dates3 . The number of latent spectral features was equal to the number of spectral features such as D = D = 13. The latent representation Z obtained using the extended mTAN is described by R × D = 481 spectro-temporal features. The Gapfilled-SVGP model was implemented with the same number of spectro-temporal features.

A detailed evaluation of the Gapfilled-SVGP model was done in [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF].

The comparison in terms of overall accuracy between the Gapfilled-SVGP and mTANe-SVGP models is given in Table IV. The F-score, recall and precision per class for both models are represented in Appendix C. As shown in Table IV, the mTANe-SVGP model is 10 points above the Gapfilled-SVGP model in terms of classification accuracy. The learned latent representation Z obtained by the time and space informed kernel interpolator contains more meaningful information for the classification task for the SVGP classifier compared to the linearly interpolated data. It can be seen that it is possible to reduce the number of parameters θ 2 by a factor four (i.e. from 584 200 to 165 600 parameters) and the training times by a factor two, while reaching the same OA. Indeed, as shown in Fig. 4, reducing R from 37 to 13 and D from 13 to 9 has a negligible effect on the OA (i.e. from 77.44 to 77.23).

B. Spectral and temporal feature reduction

In addition, the number of heads H has a little impact on the classification performances as shown in Fig. 14 

C. Spatial positional encoding

The spatial information used to compute the positional encoded matrix P is composed of the spatial coordinates (northing ψ 1 and easting ψ 2 ) in meters in the Lambert 93 projection. The number of neurons in the first and second layers are respectively L 1 and L 2 and were found by trial and error: L 1 = 16 and L 2 = 14.

As shown in Table V, the use of the spatial positional encoding in the extended mTAN for the mTANe-SVGP model increased by nearly 1.5 points the overall accuracy. Besides, by using the spatial information through a spatial covariance function in [START_REF] Bellet | Land cover classification with gaussian processes using spatio-spectro-temporal features[END_REF], the OA was increased by nearly two points which is comparable to the results we obtained with the spatial positional encoding. The metrics per class for both models (without and with spatial positional encoding) are represented in Appendix C. Fig. 6 represents the value of P for the features number 4 and number 12. This value was computed using different spatial coordinates on a regularly spaced grid over the 27 tiles. Fig. 6a and Fig. 6b exhibit smooth spatial transitions and anisotropric spatial similarity (see ( 9)). 13) to 117 (R = 13, D = 9) results in a significant reduction of the number of learnable parameters θ 2 as shown in Fig. 7, with no loss in terms of classification accuracy (see previous discussion in Section IV-B). Furthermore, it is possible to double the number of inducing points from 50 to 100, while keeping the number of parameters θ 2 with R = 13, D = 9 lower than with 50 inducing points and R = 37, D = 13.

D. Influence of the number of inducing points

It is known that the learning capacity of SVGP is strongly influenced by the number of inducing points, and a trade-off should be found between the computational complexity and the learning capacity [START_REF] Hensman | Scalable Variational Gaussian Process Classification[END_REF]. By benefiting of a reduced computational load thanks to the dimension reduction, we perform several experiments with increasing number of inducing points M = {100, 150, 200}. Table VI represents Training time is only slightly affected by this increase in the number of inducing points, i.e. 834s to 967s. Hence, spectrotemporal reduction made possible to use higher number of inducing points and thus to increase the performances, while maintaining a reduced computational load.

V. COMPARISON WITH COMPETITIVE METHODS

This section presents a comparison of the mTANe-SVGP model with different models: mTANe-MLP, mTANe-LTAE and raw-LTAE. Firstly, the performance results are studied quantitatively and qualitatively.

In the following, from the results obtained in the previously in Section IV, the interpolator is set-up with R = 13 latent dates, D = 9 latent spectral features, H = 1 head, spatial positional encoding matrix P and M = 200 inducing points. As the raw-LTAE model is the only one not using the interpolator, no spectral or temporal reduction was implemented in this model.

A. Quantitative results

Classification accuracies are given in Fig. 8. From the results, the SVGP model took greater advantage of the inter- polator than the MLP or the LTAE models. Indeed, the overall accuracy of the mTANe-SVGP model is seven points above the mTANe-MLP model and around four points above the mTANe-LTAE model. On the other hand, the mTANe-SVGP model is in average two points below the raw-LTAE model. The Fscore, recall and precision per class for the mTANe-SVGP, mTANe-MLP, mTANe-LTAE and raw-LTAE are represented in Appendix C.

The number of trainable parameters and the training times for each method are summarized in Table VII. The mTANe-SVGP model has more trainable parameters that the raw-LTAE model. However, the training time of the mTANe-SVGP model is about 1.3 times shorter than the raw-LTAE as shown in Table VII. By using a spectro-temporal reduction with our interpolator, the number of trainable parameters for the mTANe-SVGP is just over 2.5 times lower than the simple SVGP (i.e. 1 005 675 versus 2 680 075), as described in Fig. 7. The number of parameters of the raw-LTAE is also very large because it is not able to deal with unaligned time series and therefore has to combine all the dates. By using our interpolator, for the LTAE, the number of trainable parameters is reduced by four. However, as shown in Fig. 8, the overall accuracy of the mTANe-LTAE model is seven points below the raw-LTAE model.

B. Qualitative results

Land cover maps have been produced for each model (mTANe-SVGP, mTANe-MLP, mTANe-LTAE, raw-LTAE) using the iota 2 processing chain [START_REF] Inglada | a25386[END_REF] on two different tiles: 31TCJ and 31TDJ. Inference was performed using the model trained on the 27 tiles with the best overall accuracy over the nine runs. The results obtained by respectively the mTANe-SVGP and raw-LTAE are shown in Fig. 9. The results obtained on this agricultural area on the 31TCJ tile showed that the main structures of the map are clearly represented (i.e. crop field border). Indeed, the classification map does not exhibit rounded borders as it is often the case with Convolutional Neural Network (CNN) model [START_REF] Stoian | Land cover maps production with high resolution satellite image time series and convolutional neural networks: Adaptations and limits for operational systems[END_REF]. The mTANe-SVGP takes into account spatial information without spatial oversmoothing. Fig. 10 also represents land cover maps obtained with the mTANe-SVGP and raw-LTAE but in a mountainous area ("Montagne noire"). These maps clearly show some errors in predictions. Indeed, WAT class was predicted instead of GRA class for raw-LTAE. Moreover, STC and COR were predicted instead of WOM, for mTANe-SVGP and raw-LTAE, respectively. There are several reasons for these errors. Firstly, there are no pixels from the training or test data set in this area. Moreover, this area has a fairly high relief, at an altitude of 850 meters. All the generated land cover maps are available for download. 4 

VI. DISCUSSION

In this section, the latent representation and the similarity kernel learned by the interpolator are discussed. Moreover, an additional comparative study is made between the mTANe-SVGP and the raw-LTAE to evaluate the temporal sampling robustness.

A. Latent representation

It is possible to visualize the learned latent representation xj . Fig. 11 represents the comparison of three NDVI time series profiles from one pixel labeled as "CORN": the raw data, the gapfilled data (i.e. linearly interpolated) and the learned latent representation obtained by our time and space informed kernel interpolator.

The latent representation obtained in Fig. 11 clearly does not minimize the reconstruction error of the original time series. For instance, the second minimum of the NDVI observed around the day of the year 280 is not reconstructed. Yet, this is the representation that minimizes the classification loss function of the SVGP.

B. Versatility of the similarity kernel

As defined in Section II-A3, by using attention and embedding mechanisms, the similarity kernel is able to adapt to the pixel temporal sampling. The versatility of the similarity kernel can be shown by computing the attention value γ r l defined in [START_REF] Camps | Machine learning in remote sensing data processing[END_REF] for different latent dates r l and for different sets of observed dates T. In Fig. 12, two different latent dates are studied r l = 181 and r l = 361 5 . For each latent date r l , two different sets of observed dates T are considered. Firstly, the attention value was computed with a regular set of observed dates: T = {1, . . . , 365} with an interval of τ = 1 day (in red in Fig. 12). Then, the attention value was computed with a random set of observed dates 4 DOI: https://doi.org/10.5281/zenodo.8033902 5 The attention value plotted was normalized (cf Fig. 12) in order to have the same vertical scale. from a pixel i with T = T i (in blue in Fig. 12).

From Fig. 12, we can see that contrary to conventional RBF kernel, the learned kernel is not centered on the latent date. It thus adapts itself according to the latent date r l and the available observations. Moreover, for the set of observed dates T = {1, . . . , 365} (i.e. continuous red line), the bandwidth is larger for the latent date r l = 361 than for the latent date r l = 181. Such property is referred to as a variable-bandwidth kernel in the statistical literature [START_REF] Terrell | Variable Kernel Density Estimation[END_REF]. While it has shown to perform well on several cases, such kernel was difficult to optimize with standard statistical models. Using the proposed framework, the optimization is efficient, scales well and can handle any timestamp.

C. Robustness to the temporal sampling

In Section V-A, the raw-LTAE showed better classification performances. However, to compute the inference on a specific area (e.g. on a specific Sentinel-2 tile), the raw-LTAE required to be able to classify a given area at inference time. This is not the case for our proposed model which is able to process pixels with any set of observed dates. This can make the time encoding of raw-LTAE not robust to variations of the temporal sampling between the train and test sets, with a possible overfit on the training dates. To investigate this possible issue, dates not seen during the training step and used only for the inference were artificially created. They correspond to the original acquisition dates T from the training data set that have been slightly shifted for the test data set. Different values for the shift were studied: δ = {0, 1, 2, 3, 5} days. Five days correspond to the maximum number of days between acquisition dates for pixels on two adjacent orbits. The overall accuracy was computed only on test samples from 31TCJ tile for two models mTANe-SVGP and raw-LTAE both trained on the 27 tiles.

From Fig. 13, we can say that the OA of the mTANe-SVGP model is not affected by this temporal shift δ. However, the OA of the raw-LTAE model is drastically impacted by the temporal shift δ. For a shit of one day, the OA is reduced by almost 3 points and it is almost divided by 1.5 with δ = 5 days. The use of a time and space informed kernel interpolator makes the mTANe-SVGP model more robust to this shift than the raw-LTAE model which uses spectro-temporal attention mechanisms but no interpolation. We conclude that the raw-LTAE is more sensitive to dates seen during the training step and may therefore be likely to over-fit.

VII. CONCLUSIONS AND PERSPECTIVES

This work introduces an approach to classify massive irregular and unaligned Sentinel-2 SITS. To deal with irregular and unaligned pixel time series, an end-to-end interpolation and learning strategy is proposed. A first module, a time and space informed kernel interpolator, enables to map irregular and unaligned SITS onto a fixed and reduced size latent space. Temporal reconstruction and spectral reduction were performed jointly but independently. This constrained spectrotemporal structure enables to reduce the complexity of the classifier. Indeed, the representation obtained is given to a SVGP classifier and all the parameters are jointly optimized during the optimization of the classifier. The spatial information is taken into account in the learned representation through a spatial positional encoding. Experiments were conducted on 27 Sentinel-2 tiles of the full year 2018 in the south of France.

In terms of accuracy, the end-to-end learning mTANe-SVGP model outperformed the simple SVGP classifier with linearly interpolated data (Gapfilled-SVGP). The significant reduction for the spectro-temporal features has allowed to use more inducing points while keeping the same complexity, resulting in improved classification performance. Moreover, the mTANe-SVGP model is above the mTANe-MLP and mTANe-LTAE models in terms of accuracy. While the proposed mTANe-SVGP does not outperform the raw-LTAE model, our model does not require for the inference the common temporal grid used during the training step. Besides, our result showed that the raw-LTAE model is sensitive to the set of available dates during inference, contrary to the proposed mTANe-SVGP which showed stable performances. The mTANe-SVGP is therefore more likely to generalize well to large scale scenario where irregular and variable sampling dates are prominent.

In this paper, the potential of the multi-head attention has not been fully taken into account. Indeed, only one head was used H = 1 and the performances with an increasing number of heads were not satisfying. A perspective of this work could be to inform the different heads with the spatial information: the linear layer β H in (6) could be replaced by the output of a perceptron using the spatial positional encoding. This could help the heads to specialize spatially and differentiate themselves.

Another perspective of this work is to combine multi-modal time series. Adding a radar sensor (i.e. Sentinel-1) or other type of optical sensors (i.e. Landsat 8 with its thermal bands) could improve the representation for the classification task. The ability of the interpolator to process unaligned time series would make the fusion of multi-sensor data straightforward. Moreover, in addition to spatial data (i.e. longitude and latitude), topographic data can be used to construct the spatial positional encoding in order to take better account of climatic, geographical and other differences.

In the interest of reproducible research, the implementation of all the models (mTANe-GP, mTANe-MLP, mTANe-LTAE and raw-LTAE) is made available in the following repository: https://gitlab.com/Valentine-Bellet/land cover southfrance mtan gp irregular sits. 
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 3 Fig. 3: Location of the 27 studied tiles where a blue square corresponds to one tile as provided by the Theia Data Center 2 . Each tile is displayed with its name in the MGRS nomenclature used for Sentinel-2 products (background map © OpenStreetMap contributors).
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 4 Fig. 4 and Fig. 5 represent respectively the averaged overall accuracies (OA) and the averaged training times computed with different number of latent dates R = {5, 7, 13, 15, 19, 25, 37} and different number of latent spectral features D = {4, 6, 9, 10, 11, 12, 13}.It can be seen that it is possible to reduce the number of parameters θ 2 by a factor four (i.e. from 584 200 to 165 600 parameters) and the training times by a factor two, while reaching the same OA. Indeed, as shown in Fig.4, reducing R from 37 to 13 and D from 13 to 9 has a negligible effect on the OA (i.e. from 77.44 to 77.23).In addition, the number of heads H has a little impact on the classification performances as shown in Fig.14in Appendix B. Besides, from H = 1 to H = 3, the training time can be increased by a factor of two as shown in Fig. 15 in Appendix B.
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 4 Fig. 4: Averaged overall accuracies (OA) for H = 1 (mean in % computed over nine different runs) with R the number of latent dates and D the number of latent spectral features.
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 5 Fig. 5: Averaged training times in seconds for H = 1 (mean computed over nine different runs) with R the number of latent dates and D the number of latent spectral features.

Fig. 7

 7 Fig. 7 represents the number of learnable parameters θ 2 based on the number of latent spectro-temporal features R×D and the number of inducing points M . The reduction of the number of latent spectro-temporal from 481 (R = 37, D =

  averaged overall accuracies and training times computed with different number of inducing points. With M = 200, the overall accuracy is increased by almost one point compared to M = 50.
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 6669137 Fig. 6: Spatial positional encoding P computed over a regular grid of spatial coordinates (background map © OpenStreetMap contributors) (EPSG:2154).
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 8 Fig. 8: Boxplots of the overall accuracy for each model (mTANe-SVGP, mTANe-MLP, mTANe-LTAE and raw-LTAE) computed over nine runs.
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 9 Fig. 9: Land covers maps in an agricultural area. (a) Sentinel-2 true color composition, (b) Classification map obtained with mTANe-SVGP, (c) Classification map obtained with raw-LTAE and (d) the class color map (seeTable III for correspondence).

  Fig. 9: Land covers maps in an agricultural area. (a) Sentinel-2 true color composition, (b) Classification map obtained with mTANe-SVGP, (c) Classification map obtained with raw-LTAE and (d) the class color map (seeTable III for correspondence).
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 10 Fig. 10: Land covers maps in an agricultural area. (a) Sentinel-2 true color composition with referenced polygons, (b) Classification map obtained with mTANe-SVGP and (c) Classification map obtained with raw-LTAE. The class color map is represented in Fig. 9 (see Table III for correspondence).
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 1112 Fig. 11: NDVI time series profiles for a pixel labeled "CORN". Blue points • correspond to the raw data, the outlier values have been removed in order to have a comprehensive plot. Red points • correspond to the value obtained with a linear interpolation with an interval of 10 days for a total of 37 dates. Green points • correspond to the latent representation xj with j = NDVI obtained from the mTANe-SVGP model, before the spectral reduction (D = 9).
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 13 Fig. 13: Boxplots of the overall accuracy for the mTANe-SVGP and raw-LTAE models computed with the test data set only on the 31TCJ tile over nine runs. The models were trained and validated on the all 27 tiles. The acquisition dates T for the test data set were artificially shifted with different values: δ = {0, 1, 2, 3, 5} days.
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 314 Fig. 14: Averaged overall accuracies (OA) (mean in % computed over nine different runs) with R the number of latent dates, D the number of latent spectral features and H the number of heads.
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 315161718 Fig. 15: Averaged training times in seconds (mean computed over nine different runs) with R the number of latent dates, D the number of latent spectral features and H the number of heads.

TABLE II :

 II Number of pixels for each data set.

	Training Validation	Test
	92 000	23 000	230 000

TABLE III :

 III Land cover classes used for the experiments with their corresponding color code.

	Color	Code	Name
		CUF	Continuous urban fabric
		DUF	Discontinuous urban fabric
		ICU	Industrial and commercial units
		RSF	Road surfaces
		RAP	Rapeseed
		STC	Straw cereals
		PRO	Protein crops
		SOY	Soy
		SUN	Sunflower
		COR	Corn
		RIC	Rice
		TUB	Tubers / roots
		GRA	Grasslands
		ORC	Orchards and fruit growing
		VIN	Vineyards
		BLF	Broad-leaved forest
		COF	Coniferous forest
		NGL	Natural grasslands
		WOM Woody moorlands
		NMS	Natural mineral surfaces
		BDS	Beaches, dunes and sand plains
		GPS	Glaciers and perpetual snows
		WAT	Water bodies

TABLE IV :

 IV Averaged overall accuracies (OA) for the mTANe-SVGP and Gapfilled-SVGP models (mean % ± standard deviation computed with nine runs).

		mTANe-SVGP Gapfilled-SVGP
	OA	77.44 ± 0.15	67.25 ± 0.37
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		77.0
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	74.31 75.82 76.63 76.51 76.74 76.59 76.59	75.5
	73.45 75.06 76.17 76.00 76.15 76.08 76.05	
		75.0

TABLE V :

 V Averaged overall accuracies (OA) with and without the spatial positional encoded matrix P in our attention-based interpolator for the model mTANe-SVGP (mean % ± standard deviation computed with nine runs).OA 77.23 ± 0.17 78.63 ± 0.16

	Without P	With P

TABLE VI :

 VI 

			Number of inducing points M	
		50	100	150	200
	Averaged OA	78.63 ± 0.16 79.20 ± 0.21 79.43 ± 0.29 79.48 ± 0.17
	Training time	834	910	921	967

Averaged overall accuracies (OA) (mean %± standard deviation) and averaged training times (in sec) for the mTANe-SVGP with R = 13 latent dates, D = 9 latent spectral features, H = 1 head and the spatial positional encoded matrix P for different number of inducing points M (computed over nine runs).

TABLE VII :

 VII Averaged training times (in sec) computed over nine runs and number of trainable parameters for each model (mTANe-SVGP, mTANe-MLP, mTANe-LTAE and raw-LTAE).

		mTANe-SVGP mTANe-MLP	mTANe-LTAE raw-LTAE
	Training time	967	1207	840	1279
	# parameters	1 005 675	33 113	184 376	761 380
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For clarity, we consider only one pixel and we drop the index i in the remaining of the paper.

Experiments were also made with random irregular sampling and with selected dates from histogram of available dates. As modifying the positions of the latent dates do not have any influence on the performances, the simplest method was selected: regular sampling.
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