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Abstract—In this article, we propose a method exploiting irreg-
ular and unaligned Sentinel-2 satellite image time series (SITS)
for large-scale land cover pixel-based classification. We perform
end-to-end learning by combining a time and space informed
kernel interpolator with a Sparse Variational Gaussian Pro-
cesses (SVGP) classifier. The interpolator embeds irregular and
unaligned SITS onto a fixed and reduced size latent represen-
tation. The spatial information is taken into account by using a
spatial positional encoding. The obtained latent representation is
given to the SVGP classifier and all the parameters are jointly
optimized w.r.t. the classification task. We run experiments with
irregular and unaligned Sentinel-2 SITS of the full year 2018
over an area of 200 000 km2 (about two billion pixels) in the
south of France (27 MGRS tiles). Such experimental condition
exacerbates the irregular and unaligned issues of SITS. In terms
of overall accuracy, with the learned latent representation instead
of linearly interpolated SITS, the results of the SVGP classifier
are improved by about 10 points. Moreover, with the learned
latent representation, the SVGP classifier outperforms the main
state-of-the-art methods from the literature at large scale (e.g.,
seven points for the Multi-layer Perceptron) and is robust to the
available timestamps used for training and testing.

Index Terms—Satellite Image Time-Series (SITS), Sentinel-2,
Land Cover Map, Large Scale Classification, Sparse Variational
Gaussian Processes, Representation Learning.

I. INTRODUCTION

IN March 2023, the final synthesis report of the Sixth
Assessment Report was released by the Intergovernmental

Panel on Climate Change. Its main conclusions are that climate
impacts on ecosystems are more intense and widespread than
expected [1]. Among other recommendations, they proposed to
expand the use of digital technology for land use monitoring
and sustainable land management which can help to reduce
emissions from deforestation and land-use changes.

Earth observation (EO) satellites provide a huge amount of
raw data of different types (e.g. optical or radar). Extracting
meaningful information from these raw EO data enables the
monitoring of the Earth’s surface changes and therefore can
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help to solve the challenges of climate change [2], [3]. For
instance, the Sentinel-2 twin satellites provide free and open-
access data with relevant features: short revisit time (five days)
and high spectral and spatial resolutions (four spectral bands
at 10m, six at 20m and three at 60m per pixel) [4].

These satellite image time-series (SITS), covering large
continental surfaces with a short revisit cycle, bring the
opportunity of large scale mapping. For example, land use
or land cover (LULC) maps provide information about the
physical and functional characteristics of the Earth’s surface
for a particular period of time. More precisely, land cover
usually refers to the physical land type (i.e. corn field or
grassland) whereas land use map indicates how people are
using the land (i.e. agriculture). To produce these LULC
maps from massive SITS, automatic methods are mandatory.
In the last years, Machine Learning (ML) and then Deep
Learning (DL) methods have shown outstanding results in
terms of performance accuracy [5]–[7].

A widely used ML algorithm for pixel-wise classification,
with very good performances even in large scale, is the Ran-
dom Forest (RF) [8]–[10]. However, this classifier is not able
to take into account the spectro-temporal structure of the SITS.
In recent years, DL methods have been developed and have
shown very accurate results. Indeed, they are able to extract
features (i.e spatial, spectral or/and temporal) of the SITS.
For example, a combination of Convolutional Neural Net-
work (CNN) and Recurrent Neural Network (RNN) has shown
good performances by including the spatial information [11].
Temporal CNN, by combining temporal and spatial features,
have also shown satisfactory results [12]. Recently, methods
based on attention mechanisms were proposed in order to take
into account the spectro-temporal structure of the data [13].
However, DL methods have a huge number of parameters
which are sometimes difficult to interpret and to optimize.
Recently we proposed a method based on Sparse Variational
Gaussian Processes (SVGP). This method takes into account
the spatio-spectro-temporal structure of the data through a
covariance function and its parameters are interpretable. It
provides similar classification performance to the state-of-
the-art methods such as conventional ML or DL methods.
However, we identified two limiting factors: the need of pre-
imputation or resampling of the data in the temporal domain,
like most of the methods in literature which require data with



2

a constant number of features per pixel, and the high number
of spectro-temporal features that can perturb the optimization
process.

Unfortunately, Sentinel-2 pixel time series are irregularly
sampled in the temporal domain: observations are not equally
spaced in time due to the presence of clouds or shadows.
These time series are also unaligned: observations from two
different satellite swaths have different temporal sampling
grids. Preprocessing techniques can be used to transform these
irregular and unaligned time series into regular time series
that can be used by the classifier. For instance, Inglada et
al. [9] proposed to linearly resample the observations onto a
common set of latent dates. The obtained resampled observa-
tions from a full year were successfully used to produce land
cover classification maps at country scale using SVGP [14].
However, relevant information for the classification task can
be lost when producing these resampled observations. Indeed,
Li et al. [15] showed that an independent interpolation method
directly followed by a classification method performed worse
than methods trained end-to-end.

In this sense, Constantin et al. [16] proposed to jointly
classify and reconstruct irregular pixel time series. Despite
the quality of the reconstruction, the model did not compete
with state-of-the-art classifiers such as RF or Support Vector
Machine (SVM) because of too strong statistical assumption.
Besides, Petitjean et al. [17] proposed to use Dynamic Time
Warping (DTW). DTW allows to find the best alignment
between two time series, however it does not include informa-
tion on inter and intra-annual phenological cycles. [18]. Thus,
the Time-Weighted Dynamic Time Warping (TWDTW) was
proposed by introducing time weight factor, as an extension
of the DTW [19]. Later, a parallel version of the TWDTW
was proposed, taking into account the spatial dimension [20].
Even if it achieved almost linear speed up, it was not able to
deal with very large data-sets.

Few DL methods can directly deal with these irregular
and unaligned time series. For example, Long Short-Term
Memory (LTSM) [21] can take into account irregular time
series, however, they do not support unaligned time series. In
land cover classification, Ienco et al. [22] used LSTM com-
bined with linear interpolation in order to deal with missing
(i.e. cloudy) observations. Moreover, LSTM are slow to train
because of the lack of parallelization abilities. Transformer
architectures [23], via the self-attention mechanism, are able
to process sequences in parallel, and dealing with irregular
and unaligned time series is done via temporal positional
encoding and padding. Rußwurm and Körner [24] pioneered
the use of self-attention for land cover mapping using Sentinel-
2 SITS. Garnot et al. [13] improved the approach by reducing
the computational complexity with the Lightweight Temporal
Self-Attention (LTAE). The method outperforms most of state-
of-the-art time series classification algorithms. However, these
DL methods still require a huge number of parameters which
are often not interpretable.

To take advantage of the above-mentioned SVGP ap-
proach [14], we propose to learn a fixed-size latent represen-
tation as a pre-processing step to the classifier. This strategy
was explored in [25], [26], where the authors proposed a

method called Multi-Time Attention Networks (mTAN) which
enables working with irregular and unaligned time series.
By using end-to-end training, a learned kernel interpolator
(the mTAN) followed by an encoder-decoder task provided
accuracies similar to or better than the state-of-the-art for
a classification task [26]. Although kernel interpolators have
been known for a long time, the improved learning capacity
of mTAN results from the temporal attention used as the
similarity kernel learned from the data.

In this work, we propose to further elaborate on a learned
kernel interpolator for the classification of irregular and un-
aligned SITS. Our first contribution is to propose a time and
space informed kernel interpolator based on the mTAN for
solving the issues identified in our previous work with SVGP.
This module learns a constant-size latent representation from
irregular and unaligned multivariate time series, in a end-to-
end learning framework with SVGP. The mTAN is modified
to 1) take into account the geographic coordinates of the pixel
thanks to a spatial positional encoding, 2) perform a learned
spectro-temporal feature reduction. We also propose a formal
interpretation of the resulting kernel operator: to the best of
our knowledge, this is the first time that such a kernel operator
is proposed for the classification of SITS.

Our second contribution is the evaluation of the proposed
model with existing state-of-the-art methods from the literature
(limited to those that can be used at large scale), on 27
Sentinel-2 tiles in the south of France. Such experimental
condition exacerbates the irregular and unaligned issues of
SITS, which have scarcely been analyzed in the Geosciences
and Remote Sensing community.

Beyond improved classification accuracy and reduced train-
ing time, the proposed model is versatile w.r.t. the temporal
sampling: during inference it can classify any irregular and
unaligned pixel time series even if its timestamps were not
seen during the training process.

The remainder of this paper is organized as follows. Sec-
tion II-A describes how the learned kernel interpolator (the
mTAN) is used to process irregular and unaligned pixel time
series. Section II-B defines our contributions for large scale
land cover classification with irregular and unaligned satellite
image time series. The experimental setup is detailed in Sec-
tion III. The results obtained with the end-to-end trained model
(time and space informed kernel interpolator coupled with
SVGP) are provided in Section IV. Comparison with existing
state-of-the-art methods from the literature are provided in
Section V. Finally, Section VII concludes this paper and opens
discussions on future works.

II. METHODS

This section describes how irregular and unaligned pixel
time series are projected onto a fixed temporal grid in order to
be used by the classifier. First, some notations and definitions
which are used throughout this paper are introduced. Then,
the latent interpolator at the core of the proposed method is
presented. Finally, the last part describes our several contribu-
tions.
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Fig. 1: xi
j and xi′

j are two irregular and unaligned time series
for pixels i and i′ respectively, for the spectral feature j.

A. Attention-based temporal interpolator

1) Notations and definitions: In this paper, the ith pixel
time series xi(tk) at time tk is defined by its spectral measure-
ments {xi1(tk), . . . , xij(tk), . . . , xiD(tk)} with i ∈ {1, . . . , N},
N the number of pixels and D the number of spectral features.
Additionally, two spatial coordinates ψi

1 and ψi
2 are associated

to the pixel xi. Moreover, yi ∈ {1, . . . , C} is the target value
(i.e. the class label) associated to the pixel xi, with C the
number of classes.

For a pixel i, a spectral feature j is observed at T i
j

timestamps: Ti
j = {tij1, . . . , tijk, . . . , tijT i

j
}, where T i

j is the
number of valid observations (e.g., no clouds or shadows). As
discussed in Section I, because of satellite swaths and weather
we usually have unaligned time series, i.e., Ti

j 6= Ti′

j . In this
work, we assume that all spectral features are available for
each timestamp, i.e., Ti

j = Ti
j′ = Ti. This is commonly the

case when working with only one sensor, but the proposed
method can be extended to multi-source data straightforwardly.
As an illustration, Fig. 1 represents two real irregular and
unaligned pixel time series acquired by Sentinel-2.
We define the set of all timestamps T such as:

T =

N⋃
i=1

Ti

= {t1, . . . , tk, . . . , tT }

with T the total number of observations. For each pixel, we
define a mask time series mi ∈ {0, 1}T such as

mi(tk) =

{
1 if tk ∈ Ti

0 otherwise ∀tk ∈ T, (1)

which indicates whether the feature j of pixel i at time tk is
observed or not. We further define an augmented pixel time
series xi∗

j as the pixel

xi∗j (tk) =

{
xij(tk) if mi(tk) = 1
0 otherwise ∀tk ∈ T, (2)

Using (1) and (2) will simplify the presentation of the inter-
polator in the following section.

2) Projection onto a regular-temporal grid: As previously
described, most of the classifiers are not able to deal with
irregular and unaligned time series. Thus, the core idea is
to learn a mapping of these irregular and unaligned time
series onto a regular temporal grid of R latent dates: R =
{r1, . . . , rl, . . . , rR}. In this work, we focus on the well-
established Nadaraya-Watson kernel smoother [27, Chapter 6],

because it leads to an efficient interpolation as discussed in the
next section.

For a given pixel time series x∗j , the interpolated x̂j at latent
timestamp rl using a kernel smoother is given by1:

x̂j(rl) =

∑tT
tk=t1

K(rl, tk)m(tk)x∗j (tk)∑tT
t′k=t1

K(rl, t′k)m(t′k)
(3)

with K some similarity kernel [27, Chapter 6]. Usually,
the radial basis function (RBF) kernel is used K(rl, tk) =
exp (d(rl, tk)) with d(rl, tk) = −σ−2(rl − tk)2. From (3),
x̂j(rl) is a convex combination of original pixel values, whose
weights are computed using the kernel applied on the temporal
domain. With a RBF kernel, the similarity is a decreasing
function of the distance between two timestamps, whatever
their location in the year. The parameter σ, learned from the
training data, weights the temporal distance.

The performances of such method are strongly limited by
the hand-crafted similarity kernel. A powerful extension is
obtained using attention and embedding mechanisms, which
are able to build more complex (anisotropic) kernels [28,
Chapter 11]. In the following, the Multi-Time Attention Net-
works (mTAN) [26] is discussed as an extension of the kernel
smoother to build the kernel interpolator for the classification
model in our end-to-end training.

3) Multi Time Attention Networks (mTAN): To build the
kernel interpolator, Shukla et al. [26] proposed using atten-
tion mechanisms and more precisely the scaled-dot product
attention defined in [23]. Firstly, a learnable time embedding
function (named temporal positional encoding) φ is defined.
It maps a given timestamp t onto a higher dimensional space
of size E such as:

φ : R→RE

t 7→φ(t) =


ω1t+ α1

sin(ω2t+ α2)
...

sin(ωEt+ αE)

 (4)

with ωp and αp, p ∈ {1, . . . , E}, the learnable parameters.
Then, this embedding φ is used to construct the similarity

kernel K used in (3) such as:

d(rl, tk) =
φ(rl)

>W>
q Wkφ(tk)
√
E

with Wq and Wk two learnable matrices of size E ×E, the
indices q and k refer to query and key terms in the attention
mechanism framework [23].

Finally, (3) can be re-written using a masked softmax
operator [28, Chapter 11.3.2] such as:

x̂j(rl) = softmax

{(
Φ(T)>W>

k Wqφ(rl)
)
�m

√
E

}>
x∗j

= γ>rlx
∗
j .

(5)

with Φ(T) =
[
φ(t1), . . . , φ(tT )

]
, the matrix of embeddings

of T and � being the Hadamard product. x∗j refers to value
term attention mechanism framework [23].

1For clarity, we consider only one pixel and we drop the index i in the
remaining of the paper.
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Fig. 2: End-to-end learning for the classification of one ir-
regular and unaligned pixel time series X∗ and its associated
representation Z.

The authors of [26] further propose to use multi-head
attention, i.e., H matrices of embeddings with ΦH(T) =
{Φh(T)}Hh=1, and also H time embedding functions with
φH(rl) = [φ1(rl), . . . , φH(rl)]. A learnable linear layer βH

of size H is used to produce the interpolated value

x̂j(rl) = β>HΓH>

rl
x∗j . (6)

with ΓH
rl

= [γ1
rl
, . . . ,γH

rl
]. This equation can be computed for

every spectral feature j and every latent date rl.
The mTAN, as defined in (6), has extended interpolation

flexibility w.r.t. the conventional kernel smoother. Also, it
is worth noting that (6) benefits from the computational
efficiency of attention mechanism (parallel computation) and
all parameters are learnable during the training step.

In [26], the mTAN was used as input and output layers
in a encoder-decoder architecture and a classifier was jointly
learned using feature from the latent-space. The next section
describes how we extend the mTAN to use the spatial infor-
mation and to reduce the spectral dimension of the SITS.

B. Spatially informed interpolator for classification

Fig. 2 represents the workflow for the classification of one
irregular and unaligned pixel time series X∗ through its latent
representation Z. In this paper, we propose to use end-to-
end learning by combining a spatially informed interpolator
hθ1

with the Sparse Variational Gaussian Processes (SVGP)
classifier fθ2

defined in [14]. The SVGP classifier uses kernel
functions, i.e. RBF covariance functions, and no changes were
made from [14] (i.e. same loss). Indeed, the loss L is used
to optimize θ1 and θ2 (i.e. the parameters of hθ1

and fθ2
,

respectively) and to minimize the error between the predicted
class ŷ and the true class y.

1) Spectro-temporal feature reduction: The mTAN inter-
polation allows to perform feature reduction, in the temporal
domain, in the spectral domain or in both of them. Indeed,
the interpolated feature j is of size R and by taking R < T
we can perform a temporal feature reduction. We propose to
add a linear layer after the interpolation in order to perform
spectral feature reduction. Noting x̂(rl) ∈ RD the vector of
all interpolated spectral features at timestamp rl, B a matrix
of size D′×D with D′ ≤ D, the final latent interpolated pixel
z(rl) can be written as

z(rl) = Bx̂(rl) (7)

The overall spectro-temporal feature reduction can be written
as:

Z = BX∗Γ (8)

where Z = [z(r1), . . . , z(rR)] ∈ RD′×R, X∗ =
[x∗(t1), . . . ,x∗(tT )] ∈ RD×T and Γ = [γr1 , . . . ,γrR ] ∈
RT×R.

As defined in (8), the matrix Γ does not depend on the
spectral features and the matrix B does not depend on time.
Thus, as in Constantin et al. [16], the temporal reconstruction
does not depend on the spectral features and the spectral fea-
ture reduction does not depend on the time. This constrained
spectro-temporal structure reduces the complexity (number of
parameters) of the model.

Yet, the spatial information is not taken into account. In
the following section, we discuss how the spatial coordinates
are integrated in the processing by means of spatial positional
encoding.

2) Spatial positional encoding: We propose to add the
spatial information in the estimation of Z by using a spa-
tial positional encoding. As in [29], the spatial coordinates
(ψ1, ψ2) are mapped onto a higher dimensional space of
dimension F using ϕ:

ϕ : R2 →RF

(ψ1, ψ2) 7→ϕ(ψ1, ψ2)

=
[

sin(ψ1ν1), cos(ψ1ν1), . . . , cos(ψ2νF/4)
]>

with νq = 10000−(2l)/F and q ∈ {1, . . . , F/4}. ϕ(ψ1, ψ2)
is then given to a two-layer perceptron with ReLu activation
functions to obtain a vector of size D which is finally dupli-
cated for each timestamp to get a spatial positional encoding
matrix P of the same shape as X∗ (i.e. D × T ). This matrix
is added to the raw input data X∗ before the spectro-temporal
interpolation:

X̃∗ = X∗ + P. (9)

The parameters of the perceptron are jointly optimized with
the time and space informed kernel interpolator and the SVGP
during the learning step.

The SVGP classifier fθ2
uses a kernel function over the

latent spectro-temporal representations of two pixels respec-
tively noted Zi and Zi′ defined as:

k(Zi,Zi′) = exp

(
−‖Z

i − Zi′‖2F
2`2

)
,

with ‖ · ‖F and 〈·, ·〉F the Frobenius norm and inner product
over matrices and ` the lengthscale parameter of the kernel.
The square Frobenius norm can be written as

‖Zi − Zi′‖2F = ‖BXi∗Γi −BXi′∗Γi′‖2F︸ ︷︷ ︸
A

+ ‖BPiΓi −BPi′Γi′‖2F︸ ︷︷ ︸
B

+ 2 〈B(Xi∗Γi −Xi′∗Γi′),B(PiΓi −Pi′Γi′)〉F︸ ︷︷ ︸
C

.

Terms A and B correspond to the distance between two pixels
for spectro-temporal latent variables and for spatial latent
variables, respectively. Term C corresponds to an interaction
term between spectro-temporal and spatial latent variables.
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TABLE I: Description of the time and space informed kernel
interpolator parameters θ1 and their corresponding sizes. The
Multi-layer Perceptron (MLP) corresponds to the parameters
of a two-layer perceptron used to obtain the spatial positional
encoding matrix P described in the previous section.

Parameters Size

{ωp, αp}Ep=1 2(HE)

Wq ,Wk 2(HE2)
B D′D
βH H
MLP L2(L1 +D)

By comparison to our previous works [14], the covariance
function k(Zi,Zi′) is composed of an additional element:
the interaction term C, and in addition, the spatial distance
is learned. With formulation (9), we have a supplementary
source of information that links spectro-temporal and spatial
terms. In the following section, the complexity of the model
is discussed.

3) Model complexity: The parameters θ1 of the time and
space informed kernel interpolator hθ1 and their corresponding
sizes are summarized in Table I and the total number of
learnable parameters is given by:

2HE(1 + E) +DD′ +H + L1(L2 +D).

As a reminder, the parameters θ2 of the SVGP classifier fθ2

were highly dependent on the number of spectro-temporal
features T × D. By using an end-to-end training with the
time and space informed kernel interpolator, this number is
significantly reduced to R × D′ with R < T and D′ < D
and therefore the total number of parameters θ2 is reduced as
well. Numbers of parameters for our data set are given in the
experimental section IV-B.

III. DATA SET AND EXPERIMENTAL SET-UP

The study area covers approximately 200 000 km2 in the
south of metropolitan France. It is composed of 27 Sentinel-2
tiles, as displayed in Fig. 3.

A. Irregular and unaligned Sentinel-2 time series

All available acquisitions of level 2A between January
and December 2018 for the 27 Sentinel-2 tiles were used,
as described in [14]. Surface reflectance time-series and
cloud/shadow masks have been produced using the MAJA
preprocessing chain [30] and were downloaded from the Theia
Data Center2. All the bands at 20m/pixel were spatially up-
sampled to 10m/pixel using bicubic interpolation [31]. A total
of 10 spectral bands with three spectral indices (normalized
difference vegetation index (NDVI), normalized difference
water index (NDWI) and Brightness) were used. Compared
to [14], no temporal sampling preprocessing has been used
(i.e. no linear interpolation as in [9] or other types of temporal
synthesis). As described in Section I, the resulting data is
irregular and unaligned. Following the notations defined in
Section II-A3, the union of the acquisition dates of the 27

2https://www.theia-land.fr/en/products/

Fig. 3: Location of the 27 studied tiles where a blue square
corresponds to one tile as provided by the Theia Data Center2.
Each tile is displayed with its name in the MGRS nomen-
clature used for Sentinel-2 products (background map ©
OpenStreetMap contributors).

TABLE II: Number of pixels for each data set.

Training Validation Test
92 000 23 000 230 000

tiles results in T = 303 dates. Besides, the spectral dimension
is equal to D = 13.

The reference data used in this work is composed of C = 23
land cover classes ranging from artificial areas to vegetation
and water bodies constructed with different data sources as
described in [14]. The nomenclature of the 23 land cover
classes can be found in Table III.

Pixels were randomly sampled from polygons over the full
study area (i.e. 27 tiles) to create three spatially disjoint data
subsets: training, validation and test. The polygons are disjoint
between the three data sets. The three data sets are class-
balanced: 4 000 pixels per class in the training data set, 1 000
pixels per class in the validation data set and 10 000 pixels per
class in the test data set. The total number of pixels for each
data set is provided in Table II. Classification metrics such
as overall accuracy (OA) or F-score were computed for each
model using the test data set with nine runs with different
random pixel samplings. Standardization was performed for
the valid acquisitions dates. Mean and standard deviation were
estimated for each spectral band and for each spectral index
on the training data set and then used to standardize the other
data sets (validation, test) [32].

B. Competitive methods

Linearly interpolated data was feed into a simple SVGP
classifier called Gapfilled-SVGP model and is used as base-
line to compare with the extended mTAN combined with
the SVGP, called mTANe-SVGP model. Two other classifiers
are also compared in terms of classification accuracy and
processing time:

https://www.theia-land.fr/en/products/
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TABLE III: Land cover classes used for the experiments with
their corresponding color code.

Color Code Name
CUF Continuous urban fabric
DUF Discontinuous urban fabric
ICU Industrial and commercial units
RSF Road surfaces
RAP Rapeseed
STC Straw cereals
PRO Protein crops
SOY Soy
SUN Sunflower
COR Corn
RIC Rice
TUB Tubers / roots
GRA Grasslands
ORC Orchards and fruit growing
VIN Vineyards
BLF Broad-leaved forest
COF Coniferous forest
NGL Natural grasslands
WOM Woody moorlands
NMS Natural mineral surfaces
BDS Beaches, dunes and sand plains
GPS Glaciers and perpetual snows
WAT Water bodies

• Multi-layer Perceptron (MLP) with the same setup as
in [14],

• Lightweight Temporal Self-Attention (LTAE) described
in [13].

The end-to-end trained models are called mTANe-SVGP,
mTANe-MLP and mTANe-LTAE, respectively.

Unlike SVGP or MLP classifiers, the LTAE classifier uses
attention mechanisms. It may be redundant to use attention
mechanisms both in the time and space informed kernel
interpolator and in the LTAE. Therefore, the LTAE classifier
was also studied without the extended mTAN (mTANe) and
this method is called raw-LTAE. However, the LTAE classifier
was not defined to deal with the irregular and unaligned time
series pixels. Thus, the mask m was used as an additional
feature. Besides, the spatial positional encoding matrix P was
also used in this classifier, as defined in (9).

The optimizer parameters (i.e. number of epochs, learning
rate and batch size) for each model were found by trial and
error and are described in Table VIII in Appendix A. To train
all models, one NVIDIA Tesla V100 GPU was used.

IV. MODEL EVALUATION

This section presents the different results obtained by the
mTANe-SVGP model. Firstly, a comparison with linear inter-
polation is provided. Then, the influence on the classification
accuracy and processing time of latent representation sizes as
well as the use of the spatial positional encoding matrix are
investigated. Finally, the influence of the number of inducing
points is studied.

A. Comparison with linear interpolation
Firstly, the mTANe-SVGP was implemented with a vector of

latent dates R defined with a regular sampling of τ = 10 days
and a total number of R = 37 dates3. The number of latent

3Experiments were also made with random irregular sampling and with
selected dates from histogram of available dates. As modifying the positions
of the latent dates do not have any influence on the performances, the simplest
method was selected: regular sampling.

TABLE IV: Averaged overall accuracies (OA) for the mTANe-
SVGP and Gapfilled-SVGP models (mean % ± standard
deviation computed with nine runs).

mTANe-SVGP Gapfilled-SVGP
OA 77.44± 0.15 67.25± 0.37

spectral features was equal to the number of spectral features
such as D′ = D = 13. The latent representation Z obtained
using the extended mTAN is described by R × D′ = 481
spectro-temporal features. The Gapfilled-SVGP model was im-
plemented with the same number of spectro-temporal features.
A detailed evaluation of the Gapfilled-SVGP model was done
in [14].

The comparison in terms of overall accuracy between
the Gapfilled-SVGP and mTANe-SVGP models is given in
Table IV. The F-score, recall and precision per class for
both models are represented in Appendix C. As shown in
Table IV, the mTANe-SVGP model is 10 points above the
Gapfilled-SVGP model in terms of classification accuracy.
The learned latent representation Z obtained by the time and
space informed kernel interpolator contains more meaningful
information for the classification task for the SVGP classifier
compared to the linearly interpolated data.

B. Spectral and temporal feature reduction

Fig. 4 and Fig. 5 represent respectively the averaged
overall accuracies (OA) and the averaged training times
computed with different number of latent dates R =
{5, 7, 13, 15, 19, 25, 37} and different number of latent spectral
features D′ = {4, 6, 9, 10, 11, 12, 13}. It can be seen that it is
possible to reduce the number of parameters θ2 by a factor
four (i.e. from 584 200 to 165 600 parameters) and the training
times by a factor two, while reaching the same OA. Indeed,
as shown in Fig. 4, reducing R from 37 to 13 and D′ from
13 to 9 has a negligible effect on the OA (i.e. from 77.44 to
77.23).

In addition, the number of heads H has a little impact
on the classification performances as shown in Fig. 14 in
Appendix B. Besides, from H = 1 to H = 3, the training
time can be increased by a factor of two as shown in Fig. 15
in Appendix B.

C. Spatial positional encoding

The spatial information used to compute the positional
encoded matrix P is composed of the spatial coordinates
(northing ψ1 and easting ψ2) in meters in the Lambert 93
projection. The number of neurons in the first and second
layers are respectively L1 and L2 and were found by trial
and error: L1 = 16 and L2 = 14.

As shown in Table V, the use of the spatial positional
encoding in the extended mTAN for the mTANe-SVGP model
increased by nearly 1.5 points the overall accuracy. Besides,
by using the spatial information through a spatial covariance
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Fig. 4: Averaged overall accuracies (OA) for H = 1 (mean in
% computed over nine different runs) with R the number of
latent dates and D′ the number of latent spectral features.
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Fig. 5: Averaged training times in seconds for H = 1 (mean
computed over nine different runs) with R the number of latent
dates and D′ the number of latent spectral features.

function in [14], the OA was increased by nearly two points
which is comparable to the results we obtained with the spatial
positional encoding. The metrics per class for both models
(without and with spatial positional encoding) are represented
in Appendix C.

Fig. 6 represents the value of P for the features number
4 and number 12. This value was computed using different
spatial coordinates on a regularly spaced grid over the 27
tiles. Fig. 6a and Fig. 6b exhibit smooth spatial transitions
and anisotropric spatial similarity (see (9)).

D. Influence of the number of inducing points

Fig. 7 represents the number of learnable parameters θ2

based on the number of latent spectro-temporal features R×D′
and the number of inducing points M . The reduction of the
number of latent spectro-temporal from 481 (R = 37, D′ =

TABLE V: Averaged overall accuracies (OA) with and without
the spatial positional encoded matrix P in our attention-based
interpolator for the model mTANe-SVGP (mean % ± standard
deviation computed with nine runs).

Without P With P

OA 77.23± 0.17 78.63± 0.16

TABLE VI: Averaged overall accuracies (OA) (mean %±
standard deviation) and averaged training times (in sec) for the
mTANe-SVGP with R = 13 latent dates, D′ = 9 latent spectral
features, H = 1 head and the spatial positional encoded matrix
P for different number of inducing points M (computed over
nine runs).

Number of inducing points M
50 100 150 200

Averaged OA 78.63± 0.16 79.20± 0.21 79.43± 0.29 79.48± 0.17
Training time 834 910 921 967

13) to 117 (R = 13, D′ = 9) results in a significant reduction
of the number of learnable parameters θ2 as shown in Fig. 7,
with no loss in terms of classification accuracy (see previous
discussion in Section IV-B). Furthermore, it is possible to
double the number of inducing points from 50 to 100, while
keeping the number of parameters θ2 with R = 13, D′ = 9
lower than with 50 inducing points and R = 37, D′ = 13.

It is known that the learning capacity of SVGP is strongly
influenced by the number of inducing points, and a trade-off
should be found between the computational complexity and
the learning capacity [33]. By benefiting of a reduced compu-
tational load thanks to the dimension reduction, we perform
several experiments with increasing number of inducing points
M = {100, 150, 200}. Table VI represents averaged overall
accuracies and training times computed with different number
of inducing points. With M = 200, the overall accuracy
is increased by almost one point compared to M = 50.
Training time is only slightly affected by this increase in the
number of inducing points, i.e. 834s to 967s. Hence, spectro-
temporal reduction made possible to use higher number of
inducing points and thus to increase the performances, while
maintaining a reduced computational load.

V. COMPARISON WITH COMPETITIVE METHODS

This section presents a comparison of the mTANe-SVGP
model with different models: mTANe-MLP, mTANe-LTAE and
raw-LTAE. Firstly, the performance results are studied quan-
titatively and qualitatively.

In the following, from the results obtained in the previously
in Section IV, the interpolator is set-up with R = 13 latent
dates, D′ = 9 latent spectral features, H = 1 head, spatial
positional encoding matrix P and M = 200 inducing points.
As the raw-LTAE model is the only one not using the inter-
polator, no spectral or temporal reduction was implemented in
this model.

A. Quantitative results

Classification accuracies are given in Fig. 8. From the
results, the SVGP model took greater advantage of the inter-
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(a) feature 4 (b) feature 12

Fig. 6: Spatial positional encoding P computed over a regular grid of spatial coordinates (background map © OpenStreetMap
contributors) (EPSG:2154).
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Fig. 7: Number of learnable parameters θ2 based on the
number of inducing points M and the number of spectro-
temporal features R×D′.

polator than the MLP or the LTAE models. Indeed, the overall
accuracy of the mTANe-SVGP model is seven points above the
mTANe-MLP model and around four points above the mTANe-
LTAE model. On the other hand, the mTANe-SVGP model is
in average two points below the raw-LTAE model. The F-
score, recall and precision per class for the mTANe-SVGP,
mTANe-MLP, mTANe-LTAE and raw-LTAE are represented in
Appendix C.

The number of trainable parameters and the training times
for each method are summarized in Table VII. The mTANe-
SVGP model has more trainable parameters that the raw-
LTAE model. However, the training time of the mTANe-SVGP
model is about 1.3 times shorter than the raw-LTAE as shown
in Table VII. By using a spectro-temporal reduction with
our interpolator, the number of trainable parameters for the
mTANe-SVGP is just over 2.5 times lower than the simple
SVGP (i.e. 1 005 675 versus 2 680 075), as described in Fig. 7.
The number of parameters of the raw-LTAE is also very large
because it is not able to deal with unaligned time series
and therefore has to combine all the dates. By using our
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Fig. 8: Boxplots of the overall accuracy for each model
(mTANe-SVGP, mTANe-MLP, mTANe-LTAE and raw-LTAE)
computed over nine runs.

TABLE VII: Averaged training times (in sec) computed over
nine runs and number of trainable parameters for each model
(mTANe-SVGP, mTANe-MLP, mTANe-LTAE and raw-LTAE).

mTANe-SVGP mTANe-MLP mTANe-LTAE raw-LTAE
Training time 967 1207 840 1279
# parameters 1 005 675 33 113 184 376 761 380

interpolator, for the LTAE, the number of trainable parameters
is reduced by four. However, as shown in Fig. 8, the overall
accuracy of the mTANe-LTAE model is seven points below the
raw-LTAE model.

B. Qualitative results

Land cover maps have been produced for each model
(mTANe-SVGP, mTANe-MLP, mTANe-LTAE, raw-LTAE) us-
ing the iota2 processing chain [34] on two different tiles:
31TCJ and 31TDJ. Inference was performed using the model
trained on the 27 tiles with the best overall accuracy over the
nine runs. The results obtained by respectively the mTANe-
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SVGP and raw-LTAE are shown in Fig. 9. The results obtained
on this agricultural area on the 31TCJ tile showed that the
main structures of the map are clearly represented (i.e. crop
field border). Indeed, the classification map does not exhibit
rounded borders as it is often the case with Convolutional
Neural Network (CNN) model [35]. The mTANe-SVGP takes
into account spatial information without spatial oversmooth-
ing. Fig. 10 also represents land cover maps obtained with
the mTANe-SVGP and raw-LTAE but in a mountainous area
(”Montagne noire”). These maps clearly show some errors
in predictions. Indeed, WAT class was predicted instead of
GRA class for raw-LTAE. Moreover, STC and COR were
predicted instead of WOM, for mTANe-SVGP and raw-LTAE,
respectively. There are several reasons for these errors. Firstly,
there are no pixels from the training or test data set in this
area. Moreover, this area has a fairly high relief, at an altitude
of 850 meters. All the generated land cover maps are available
for download. 4

VI. DISCUSSION

In this section, the latent representation and the similarity
kernel learned by the interpolator are discussed. Moreover,
an additional comparative study is made between the mTANe-
SVGP and the raw-LTAE to evaluate the temporal sampling
robustness.

A. Latent representation

It is possible to visualize the learned latent representation
x̂j . Fig. 11 represents the comparison of three NDVI time
series profiles from one pixel labeled as ”CORN”: the raw
data, the gapfilled data (i.e. linearly interpolated) and the
learned latent representation obtained by our time and space
informed kernel interpolator.

The latent representation obtained in Fig. 11 clearly does not
minimize the reconstruction error of the original time series.
For instance, the second minimum of the NDVI observed
around the day of the year 280 is not reconstructed. Yet,
this is the representation that minimizes the classification loss
function of the SVGP.

B. Versatility of the similarity kernel

As defined in Section II-A3, by using attention and
embedding mechanisms, the similarity kernel is able to
adapt to the pixel temporal sampling. The versatility of the
similarity kernel can be shown by computing the attention
value γrl

defined in (5) for different latent dates rl and for
different sets of observed dates T. In Fig. 12, two different
latent dates are studied rl = 181 and rl = 3615. For each
latent date rl, two different sets of observed dates T are
considered. Firstly, the attention value was computed with
a regular set of observed dates: T = {1, . . . , 365} with an
interval of τ = 1 day (in red in Fig. 12). Then, the attention
value was computed with a random set of observed dates

4DOI: https://doi.org/10.5281/zenodo.8033902
5The attention value plotted was normalized (cf Fig. 12) in order to have

the same vertical scale.

(a)

(b)

(c)
CUF DUF ICU RSF RAP STC PRO
SOY SUN COR RIC TUB GRA ORC
VIN BLF COF NGL WOM NMS
BDS GPS WAT

(d)

Fig. 9: Land covers maps in an agricultural area. (a) Sentinel-2
true color composition, (b) Classification map obtained with
mTANe-SVGP, (c) Classification map obtained with raw-LTAE
and (d) the class color map (see Table III for correspondence).

https://doi.org/10.5281/zenodo.8033902
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(a)

(b)

(c)

Fig. 10: Land covers maps in an agricultural area. (a) Sentinel-
2 true color composition with referenced polygons, (b) Clas-
sification map obtained with mTANe-SVGP and (c) Classifi-
cation map obtained with raw-LTAE. The class color map is
represented in Fig. 9 (see Table III for correspondence).

from a pixel i with T = Ti (in blue in Fig. 12).

From Fig. 12, we can see that contrary to conventional RBF
kernel, the learned kernel is not centered on the latent date.
It thus adapts itself according to the latent date rl and the
available observations. Moreover, for the set of observed dates
T = {1, . . . , 365} (i.e. continuous red line), the bandwidth
is larger for the latent date rl = 361 than for the latent date
rl = 181. Such property is referred to as a variable-bandwidth
kernel in the statistical literature [36]. While it has shown to
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Fig. 11: NDVI time series profiles for a pixel labeled ”CORN”.
Blue points • correspond to the raw data, the outlier values
have been removed in order to have a comprehensive plot.
Red points • correspond to the value obtained with a linear
interpolation with an interval of 10 days for a total of 37 dates.
Green points • correspond to the latent representation x̂j with
j = NDVI obtained from the mTANe-SVGP model, before the
spectral reduction (D′ = 9).
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=
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) computed

on two different latent dates rl = 181 and rl = 361. −
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computed with T = {1, . . . , 365} with

a regular interval of τ = 1 day. Blue points • correspond to
γn
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computed with T = Ti for a random pixel i.

perform well on several cases, such kernel was difficult to
optimize with standard statistical models. Using the proposed
framework, the optimization is efficient, scales well and can
handle any timestamp.

C. Robustness to the temporal sampling

In Section V-A, the raw-LTAE showed better classification
performances. However, to compute the inference on a specific
area (e.g. on a specific Sentinel-2 tile), the raw-LTAE required
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Fig. 13: Boxplots of the overall accuracy for the mTANe-SVGP
and raw-LTAE models computed with the test data set only
on the 31TCJ tile over nine runs. The models were trained
and validated on the all 27 tiles. The acquisition dates T for
the test data set were artificially shifted with different values:
δ = {0, 1, 2, 3, 5} days.

having seen the whole set of observed dates during the training
step. Thus, each possible temporal feature should have been
encoded by the raw-LTAE during the training step in order
to be able to classify a given area at inference time. This is
not the case for our proposed model which is able to process
pixels with any set of observed dates.

This can make the time encoding of raw-LTAE not robust
to variations of the temporal sampling between the train
and test sets, with a possible overfit on the training dates.
To investigate this possible issue, dates not seen during the
training step and used only for the inference were artificially
created. They correspond to the original acquisition dates T
from the training data set that have been slightly shifted for
the test data set. Different values for the shift were studied:
δ = {0, 1, 2, 3, 5} days. Five days correspond to the maximum
number of days between acquisition dates for pixels on two
adjacent orbits. The overall accuracy was computed only on
test samples from 31TCJ tile for two models mTANe-SVGP
and raw-LTAE both trained on the 27 tiles.

From Fig. 13, we can say that the OA of the mTANe-SVGP
model is not affected by this temporal shift δ. However, the
OA of the raw-LTAE model is drastically impacted by the
temporal shift δ. For a shit of one day, the OA is reduced by
almost 3 points and it is almost divided by 1.5 with δ = 5
days. The use of a time and space informed kernel interpolator
makes the mTANe-SVGP model more robust to this shift than
the raw-LTAE model which uses spectro-temporal attention
mechanisms but no interpolation. We conclude that the raw-
LTAE is more sensitive to dates seen during the training step
and may therefore be likely to over-fit.

VII. CONCLUSIONS AND PERSPECTIVES

This work introduces an approach to classify massive ir-
regular and unaligned Sentinel-2 SITS. To deal with irregular

and unaligned pixel time series, an end-to-end interpolation
and learning strategy is proposed. A first module, a time and
space informed kernel interpolator, enables to map irregular
and unaligned SITS onto a fixed and reduced size latent
space. Temporal reconstruction and spectral reduction were
performed jointly but independently. This constrained spectro-
temporal structure enables to reduce the complexity of the
classifier. Indeed, the representation obtained is given to a
SVGP classifier and all the parameters are jointly optimized
during the optimization of the classifier. The spatial informa-
tion is taken into account in the learned representation through
a spatial positional encoding. Experiments were conducted on
27 Sentinel-2 tiles of the full year 2018 in the south of France.

In terms of accuracy, the end-to-end learning mTANe-SVGP
model outperformed the simple SVGP classifier with linearly
interpolated data (Gapfilled-SVGP). The significant reduction
for the spectro-temporal features has allowed to use more
inducing points while keeping the same complexity, resulting
in improved classification performance. Moreover, the mTANe-
SVGP model is above the mTANe-MLP and mTANe-LTAE
models in terms of accuracy. While the proposed mTANe-
SVGP does not outperform the raw-LTAE model, our model
does not require for the inference the common temporal grid
used during the training step. Besides, our result showed
that the raw-LTAE model is sensitive to the set of available
dates during inference, contrary to the proposed mTANe-SVGP
which showed stable performances. The mTANe-SVGP is
therefore more likely to generalize well to large scale scenario
where irregular and variable sampling dates are prominent.

In this paper, the potential of the multi-head attention has
not been fully taken into account. Indeed, only one head was
used H = 1 and the performances with an increasing number
of heads were not satisfying. A perspective of this work could
be to inform the different heads with the spatial information:
the linear layer βH in (6) could be replaced by the output
of a perceptron using the spatial positional encoding. This
could help the heads to specialize spatially and differentiate
themselves.

Another perspective of this work is to combine multi-modal
time series. Adding a radar sensor (i.e. Sentinel-1) or other
type of optical sensors (i.e. Landsat 8 with its thermal bands)
could improve the representation for the classification task.
The ability of the interpolator to process unaligned time series
would make the fusion of multi-sensor data straightforward.
Moreover, in addition to spatial data (i.e. longitude and lat-
itude), topographic data can be used to construct the spatial
positional encoding in order to take better account of climatic,
geographical and other differences.

In the interest of reproducible research, the implementa-
tion of all the models (mTANe-GP, mTANe-MLP, mTANe-
LTAE and raw-LTAE) is made available in the follow-
ing repository: https://gitlab.com/Valentine-Bellet/land cover
southfrance mtan gp irregular sits.
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APPENDIX A
SOLVER PARAMETERS FOR EACH MODEL

TABLE VIII: Parameter values for the Adam optimizer for the models: Gapfilled-SVGP, mTANe-SVGP, mTANe-MLP, mTANe-
LTAE and raw-LTAE.

Gapfilled-SVGP mTANe-SVGP mTANe-MLP mTANe-LTAE raw-LTAE
Number of epochs 100 100 300 100 100
Batch size 1024 1024 1000 1000 1000
Learning rate 1× 10−3 1× 10−3 1× 10−4 5× 10−5 1× 10−4

APPENDIX B
INFLUENCE OF THE SPECTRAL AND TEMPORAL REDUCTION FOR DIFFERENT H HEADS
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Fig. 14: Averaged overall accuracies (OA) (mean in % computed over nine different runs) with R the number of latent dates,
D′ the number of latent spectral features and H the number of heads.
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Fig. 15: Averaged training times in seconds (mean computed over nine different runs) with R the number of latent dates, D′

the number of latent spectral features and H the number of heads.
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APPENDIX C
METRICS PER CLASS
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Fig. 16: Averaged F-score per class. mTANe-SVGP1: H = 1, D′ = 13, R = 37,M = 50 ; mTANe-SVGP2: H = 1, D′ =
9, R = 13,M = 50 ; mTANe-SVGP3: with P and H = 1, D′ = 9, R = 13,M = 50; mTANe-SVGP4: with P and
H = 1, D′ = 9, R = 13,M = 200.
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Fig. 17: Averaged recall per class. mTANe-SVGP1: H = 1, D′ = 13, R = 37,M = 50 ; mTANe-SVGP2: H = 1, D′ =
9, R = 13,M = 50 ; mTANe-SVGP3: with P and H = 1, D′ = 9, R = 13,M = 50; mTANe-SVGP4: with P and
H = 1, D′ = 9, R = 13,M = 200.
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Fig. 18: Averaged precision per class. mTANe-SVGP1: H = 1, D′ = 13, R = 37,M = 50 ; mTANe-SVGP2: H = 1, D′ =
9, R = 13,M = 50 ; mTANe-SVGP3: with P and H = 1, D′ = 9, R = 13,M = 50; mTANe-SVGP4: with P and
H = 1, D′ = 9, R = 13,M = 200.
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