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Abstract—In this article, we propose a method exploiting
irregular and unaligned Sentinel-2 satellite image time series
(SITS) for large-scale land cover pixel-based classification. We
perform end-to-end learning by combining an attention-based
interpolator: the Multi-Time Attention Networks (mTAN), with
a Sparse Variational Gaussian Processes (SVGP) classifier. The
mTAN projects irregular and unaligned SITS onto a fixed
and reduced temporal grid latent representation. The resulting
structured feature representation takes into account the spectro-
temporal correlation of the SITS. Moreover, the spatial informa-
tion is added to the interpolator by using a spatial positional
encoding. The obtained latent representation is given to the
SVGP classifier and all the parameters are jointly optimized w.r.t.
the classification task. We run experiments with irregular and
unaligned Sentinel-2 SITS of the full year 2018 over an area of
200 000 km2 (about two billion pixels) in the south of France. In
terms of overall accuracy, with the learned latent representation
instead of linearly interpolated SITS, the results of the SVGP
classifier are improved by about 10 points. Moreover, with the
learned latent representation, the SVGP classifier outperforms
deep learning classifiers (respectively seven and four points for
the Multi-layer Perceptron and the Lightweight Temporal Self-
Attention classifiers).

Index Terms—Satellite Image Time-Series (SITS), Sentinel-2,
Land Cover Map, Pixel-Based, Classification, Large Scale, Sparse
Variational Gaussian Processes, Earth Observation (EO), Remote
Sensing, Representation Learning.

I. INTRODUCTION

IN March 2023, the final synthesis report of the Sixth
Assessment Report (AR6) was released by the Intergovern-

mental Panel on Climate Change (IPCC). Its main conclusions
are that climate impacts on ecosystems are more intense and
widespread than expected [1]. Among other recommendations,
they proposed to expand the use of digital technology for
land use monitoring and sustainable land management which
can help to reduce emissions from deforestation and land-use
changes.

Earth observation (EO) satellites provide a huge amount of
raw data of different types (e.g. optical or radar). Extracting
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meaningful information from these raw EO data enables the
monitoring of the Earth’s surface changes and therefore can
help to solve the challenges of climate change [2], [3]. For
instance, the Sentinel-2 twin satellites provide free and open-
access data with relevant features: short revisit time (five days)
and high spectral and spatial resolutions (four spectral bands
at 10m, six at 20m and three at 60m per pixel) [4].

These satellite image time-series (SITS), covering large
continental surfaces with a short revisit cycle, bring the
opportunity of large scale mapping. For example, land use
or land cover (LULC) maps provide information about the
physical and functional characteristics of the Earth’s surface
for a particular period of time. More precisely, land cover
usually refers to the physical land type (i.e. corn field or
grassland) whereas land use map indicates how people are
using the land (i.e. agriculture). To produce these LULC maps
from massive SITS, automatic methods are mandatory. In the
last years, Machine Learning (ML) and then Deep Learning
(DL) methods have shown outstanding results in terms of
performance accuracy [5]–[7].

A widely used ML algorithm for pixel-wise classification,
with very good performances even in large scale, is the
Random Forest (RF) [8]–[10]. However, this classifier is not
able to take into account the spectro-temporal structure of the
SITS. In recent years, DL methods have been developed and
have shown very accurate results. Indeed, they are able to
extract features (i.e spatial, spectral or/and temporal) of the
SITS. For example, a combination of Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) has
shown good performances by including the spatial informa-
tion [11]. Temporal CNN, by combining temporal and spatial
features, have also shown satisfactory results [12]. Recently,
methods based on attention mechanisms were proposed in
order to take into account the spectro-temporal structure of
the data [13]. However, DL methods have a huge number
of parameters which are sometimes difficult to interpret and
to optimize. Recently, in a previous work [14], we proposed
a method based on Sparse Variational Gaussian Processes
(SVGP). This method takes into account the spatio-spectro-
temporal structure of the data through a covariance function
and its parameters are interpretable. It provides similar clas-
sification performance to the state-of-the-art methods such as
conventional ML or DL methods. Yet this method, like most



2

of the methods in literature, requires data with a fixed-size i.e.
the number of features per pixel is the same for each pixel of
the data to be processed.

Unfortunately, Sentinel-2 pixel time series are irregularly
sampled in the temporal domain: observations are not equally
spaced in time due to the presence of clouds or shadows. These
time series are also unaligned: observations from two different
satellite swaths have different temporal sampling grids.

Preprocessing techniques can be used to transform these
irregular and unaligned time series into regular time series
that can be used by the classifier. In this context, Inglada et
al. [9] proposed to linearly resample the observations onto a
common set of latent dates. The obtained resampled observa-
tions from a full year were successfully used to produce land
cover classification maps at country scale using SVGP [14].
However, relevant information for the classification task can
be lost when producing these resampled observations. Indeed,
Li et al. [15] showed that an independent interpolation method
directly followed by a classification method performed worse
than methods trained end-to-end.

In this sense, Constantin et al. [16] proposed to jointly
classify and reconstruct irregular pixel time series. Despite
the quality of the reconstruction, the model did not compete
with state of the art classifiers such as Random Forest (RF)
or Support Vector Machine (SVM) because of too strong
statistical assumption. Besides, Petitjean et al. [17] proposed
to use Dynamic Time Warping (DTW). DTW allows to find
the best alignment between two time series, however it does
not include information on inter and intra-annual phenological
cycles. [18]. Thus, the Time-Weighted Dynamic Time Warping
(TWDTW) was proposed by introducing time weight factor,
as an extension of the DTW [19]. Later, the Spatial Parallel
TWDTW allowed to parallelize the TWDTW algorithm and
to take into account the spatial dimension [20]. Even if it
achieved almost linear speed up, it was not able to deal with
very large data-sets.

Few DL methods can directly deal with these irregular
and unaligned time series. For example, Long Short-Term
Memory (LTSM) [21] can take into account irregular time
series, however, they do not support unaligned time series
and are slow to train because of the lack of parallelization
abilities. Transformer architectures [22], via the self-attention
mechanism, are able to process sequences in parallel, and
dealing with irregular and unaligned time series is done via
temporal positional encoding and padding. Rußwurm and
Körner [23] pioneered the use of self-attention for land cover
mapping using Sentinel-2 SITS. Garnot et al. [13] improved
the approach by reducing the computational complexity with
the Lightweight Temporal Self-Attention (LTAE). The method
outperforms most of state-of-the-art time series classification
algorithms. However, these DL methods still require a huge
number of parameters which are often not interpretable.

In order to profit from the advantages of the above-
mentioned SVGP approach [14], in this work, we propose to
learn a fixed-size latent representation as a pre-processing step
to the classifier. Shukla et al. [24] designed a kernel smoother
to build representations for irregular time series. Recently, the
authors of [25] proposed a method called Multi-Time Attention

Networks (mTAN) which enables working with irregular and
unaligned time series. mTAN produces a fixed representation
by using multiple continuous time embeddings coupled with
attention mechanisms. By using end-to-end training (mTAN
coupled with a classifier), the performance results were similar
to or better than the state-of-the-art classifiers [25]. In this
article, the mTAN is adapted to project the irregular and
unaligned time series onto a latent space of fixed and reduced
size. The obtained representation is then given to the SVGP
classifier and all the parameters are jointly optimized using
the loss function associated to SVGP.

In large scale classification, due to different climatic and
topographic conditions, there is a variation of the spectro-
temporal signature over the spatial domain (i.e. non stationar-
ity). By using spatial coordinates, with spatial stratification [9]
or by learning a spatial-informed classifier [14], this non-
stationarity can be taken into account and performances are
improved. In this work, we propose to add the spatial infor-
mation before the classification, in the latent representation
obtained by the mTAN. The method used is based on the
spatial positional encoding as defined in [26].

In a previous work [14], we found that the SVGP performs
well but its complexity is related to the number of spectro-
temporal variables and their inter-correlation. Therefore, we
propose to learn the representation with a reduced temporal
grid and with a low number of spectral features in order to
reduce the complexity of the SVGP and simplify its optimiza-
tion. Besides, the number of inducing points (i.e. parameters of
the SVGP classifier) has a strong influence on the quality of the
approximation and therefore on the classification performance.
Thus, we propose to study the influence of the number of
inducing points. w.r.t. the latent space size.

The remainder of this paper is organized as follows. Sec-
tion II describes how the mTAN is used to process irregular
and unaligned pixel time series. Section II-B defines how
the mTAN is extended in order to fit to the classification
task in particular by using spectro-temporal reduction and
spatial positional encoding. The experimental setup is de-
tailed in Section III. The results obtained with the end-to-
end trained model (mTAN coupled with SVGP) are provided
in Section IV. Different competitive methods are studied and
their associated results are presented in Section V. Finally,
Section VI concludes this paper and opens discussions on
future works.

II. METHODS

A. Attention-based temporal interpolator

This section describes how irregular and unaligned pixel
time series are projected onto a fixed temporal grid in order to
be used by the classifier. First, some notations and definitions
which are used throughout this paper are introduced. Then,
the latent interpolator at the core of the proposed method is
presented and its modification is described in the last part.

1) Notations and definitions: In this paper, the ith pixel
time series xi(tk) at time tk is defined by its spectral measure-
ments {xi1(tk), . . . , xij(tk), . . . , xiD(tk)} with i ∈ {1, . . . , N},
N the number of pixels and D the number of spectral features.
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Fig. 1: xi
j and xi′

j are two irregular and unaligned time series
for pixels i and i′ respectively, for the spectral feature j.

Additionally, two spatial coordinates ψi
1 and ψi

2 are associated
to the pixel xi. Moreover, yi ∈ {1, . . . , C} is the target value
(i.e. the class label) associated to the pixel xi, with C the
number of classes.

For a pixel i, a spectral feature j is observed at T i
j

timestamps: Ti
j = {tij1, . . . , tijk, . . . , tijT i

j
}, where T i

j is the
number of valid observations (e.g., no clouds or shadows). As
discussed in Section I, because of satellite swaths and weather
we usually have unaligned time series, i.e., Ti

j 6= Ti′

j . In this
work, we assume that all spectral features are available for
each timestamp, i.e., Ti

j = Ti
j′ = Ti. This is commonly the

case when working with only one sensor, but the proposed
method can be extended to multi-source data straightforwardly.
As an illustration, Fig. 1 represents two real irregular and
unaligned pixel time series acquired by Sentinel-2.
We define the set of all timestamps T such as:

T =

N⋃
i=1

Ti

= {t1, . . . , tk, . . . , tT }

with T the total number of observations. For each pixel, we
define a mask time series mi ∈ {0, 1}T such as

mi(tk) =

{
1 if tk ∈ Ti

0 otherwise ∀tk ∈ T, (1)

which indicates whether the feature j of pixel i at time tk is
observed or not. We further define an augmented pixel time
series xi∗

j as the pixel

xi∗j (tk) =

{
xij(tk) if mi(tk) = 1
0 otherwise ∀tk ∈ T, (2)

Using (1) and (2) will simplify the presentation of the inter-
polator in the following section.

2) Projection onto a regular-temporal grid: As previously
described, most of the classifiers are not able to deal with
irregular and unaligned time series. Thus, the core idea is
to learn a mapping of these irregular and unaligned time
series onto a regular temporal grid of R latent dates: R =
{r1, . . . , rl, . . . , rR}. In this work, we focus on the well-
established Nadaraya-Watson kernel smoother [27, Chapter 6],
because it leads to an efficient interpolation as discussed in the
next section.

For a given pixel time series x∗j , the interpolated x̂j at latent
timestamp rl using a kernel smoother is given by1:

x̂j(rl) =

∑tT
tk=t1

K(rl, tk)m(tk)x∗j (tk)∑tT
t′k=t1

K(rl, t′k)m(t′k)
(3)

with K some similarity kernel [27, Chapter 6]. Usually,
the RBF kernel is used K(rl, tk) = exp (d(rl, tk)) with
d(rl, tk) = −σ−2(rl−tk)2. From (3), x̂j(rl) is a convex com-
bination of original pixel values, whose weights are computed
using the kernel applied on the temporal domain. With a RBF
kernel, the similarity is a decreasing function of the distance
between two timestamps, whatever their location in the year.
The parameter σ, learned from the training data, weights the
temporal distance.

The performances of such method are strongly limited by
the hand-crafted similarity kernel. A powerful extension is
obtained using attention and embedding mechanisms, which
are able to build more complex (anisotropic) kernels [28,
Chapter 11]. In the following, the Multi Time Attention
Networks (mTAN) [25] is discussed as an extension of the
kernel smoother to build the interpolator for the classification
model in our end-to-end training.

3) Multi Time Attention Networks (mTAN): To build the
interpolator, Shukla et al. [25] proposed using attention mech-
anisms and more precisely the scaled-dot product attention
defined in [22].

Firstly, a learnable time embedding function (named tempo-
ral positional encoding) φ is defined. It maps a given t onto
a higher dimensional space of size E such as:

φ : R→RE

t 7→φ(t) =


ω1t+ α1

sin(ω2t+ α2)
...

sin(ωEt+ αE)

 (4)

with ωp and αp, p ∈ {1, . . . , E}, the learnable parameters.
Then, this embedding φ is used to construct the similarity

kernel K used in (3) such as:

d(rl, tk) =
φ(rl)

>W>
q Wkφ(tk)
√
E

with Wq and Wk two learnable matrices of size E ×E, the
indices q and k refer to query and key terms in the attention
mechanism framework [22].

Finally, (3) can be re-written using a masked softmax
operator [28, Chapter 11.3.2] such as:

x̂j(rl) = softmax

{(
Φ(T)>W>

k Wqφ(rl)
)
�m

√
E

}>
x∗j

= γ>rlx
∗
j .

(5)

with Φ(T) =
[
φ(t1), . . . , φ(tT )

]
, the matrix of embeddings

of T and � being the Hadamard product. x∗j refers to value
term attention mechanism framework [22].

1For clarity, we consider only one pixel and we drop the index i in the
remaining of the paper.
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Fig. 2: End-to-end learning for the classification of one ir-
regular and unaligned pixel time series X? and its associated
representation Z.

The authors of [25] further propose to use multi-head
attention, i.e., H matrices of embeddings with ΦH(T) =
{Φh(T)}Hh=1, and also H time embedding functions with
φH(rl) = [φ1(rl), . . . , φH(rl)]. A learnable linear layer βH

of size H is used to produce the interpolated value

x̂j(rl) = β>HΓH>

rl
x∗j . (6)

with ΓH
rl

= [γ1
rl
, . . . ,γH

rl
]. This equation can be computed for

every spectral feature j and every latent date rl.
The mTAN, as defined in (6), has extended interpolation

flexibility w.r.t. the conventional kernel smoother. Also, it
is worth noting that (6) benefits from the computational
efficiency of attention mechanism (parallel computation) and
all parameters are learnable during the training step.

B. Adaptation of the mTAN for the classification task

Fig. 2 represents the workflow for the classification of
one irregular and unaligned pixel time series X? and its
associated representation Z. In this paper, we propose to use
end-to-end learning by combining the mTAN hθ1 described
in the previous section with the Sparse Variational Gaussian
Processes (SVGP) classifier fθ2

defined in [14]. The SVGP
classifier uses kernel functions, i.e. RBF covariance functions,
and no changes were made from [14] (i.e. same loss). Indeed,
the loss L is used to optimize θ1 and θ2 (i.e. the parameters
of the mTAN and the SVGP, respectively) and to minimize
the error between the predicted class ŷ and the true class y.
This section presents how the mTAN is extended in order to
improve the representation Z obtained for the classification
task.

1) Spectro-temporal feature reduction: The mTAN inter-
polation allows to perform feature reduction, in the temporal
domain, in the spectral domain or in both of them. Indeed,
the interpolated feature j is of size R and by taking R < T
we can perform a temporal feature reduction. Furthermore, by
adding a linear layer after the interpolation, spectral feature
reduction can be performed. Noting x̂(rl) ∈ RD the vector of
all interpolated spectral features at timestamp rl, B a matrix
of size D′×D with D′ ≤ D, the final latent interpolated pixel
z(rl) can be written as

z(rl) = Bx̂(rl) (7)

The overall spectro-temporal feature reduction can be written
as:

Z = BX∗Γ (8)

where Z = [z(r1), . . . , z(rR)] ∈ RD′×R, X∗ =
[x∗(t1), . . . ,x∗(tT )] ∈ RD×T and Γ = [γr1 , . . . ,γrR ] ∈
RT×R.

As defined in (8), the matrix Γ does not depend on the
spectral features and the matrix B does not depend on time.
Thus, as Constantin et al. [16], the temporal reconstruction
does not depend on the spectral features and the spectral fea-
ture reduction does not depend on the time. This constrained
spectro-temporal structure reduces the complexity (number of
parameters) of the model.

Yet, the spatial information is not taken into account. In
the following section, we discuss how the spatial coordinates
are integrated in the processing by means of spatial positional
encoding.

2) Spatial positional encoding: We propose to add the
spatial information in the estimation of Z by using a spa-
tial positional encoding. As in [26], the spatial coordinates
(ψ1, ψ2) are mapped onto a higher dimensional space of
dimension F using ϕ:

ϕ : R2 →RF

(ψ1, ψ2) 7→ϕ(ψ1, ψ2)

=
[

sin(ψ1ν1), cos(ψ1ν1), . . . , cos(ψ2νF/4)
]>

with νq = 10000−(2l)/F and q ∈ {1, . . . , F/4}. ϕ(ψ1, ψ2)
is then given to a two-layer perceptron with ReLu activation
functions to obtain a vector of size D which is finally dupli-
cated for each timestamp to get a spatial positional encoding
matrix P of the same shape as X∗ (i.e. D × T ). This matrix
is added to the raw input data X∗ before the spectro-temporal
interpolation:

X̃∗ = X∗ + P. (9)

The parameters of the perceptron are jointly optimized with
the mTAN and the SVGP during the learning step.

The SVGP classifier fθ2
uses a kernel function over the

latent spectro-temporal representations of two pixels respec-
tively noted Zi and Zi′ defined as:

k(Zi,Zi′) = exp

(
−‖Z

i − Zi′‖2F
2`2

)
,

with ‖ · ‖F and 〈·, ·〉F the Frobenius norm and inner product
over matrices and ` the lengthscale parameter of the kernel.
The square Frobenius norm can be written as

‖Zi − Zi′‖2F = ‖BXi∗Γi −BXi′∗Γi′‖2F︸ ︷︷ ︸
A

+ ‖BPiΓi −BPi′Γi′‖2F︸ ︷︷ ︸
B

+ 2 〈B(Xi∗Γi −Xi′∗Γi′),B(PiΓi −Pi′Γi′)〉F︸ ︷︷ ︸
C

.

Terms A and B correspond to the distance between two pixels
for spectro-temporal latent variables and for spatial latent
variables, respectively. Term C corresponds to an interaction
term between spectro-temporal and spatial latent variables.
By comparison to our previous works [14], the covariance
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TABLE I: Description of the mTAN parameters θ1 and their
corresponding sizes. The MLP corresponds to the parameters
of a two-layer perceptron used to obtain the spatial positional
encoding matrix P described in the previous section.

Parameters Size

{ωp, αp}Ep=1 2(HE)

Wq ,Wk 2(HE2)
B D′D
βH H
MLP L2(L1 +D)

Fig. 3: Location of the 27 studied tiles where a blue square
corresponds to one tile as provided by the Theia Data Center2.
Each tile is displayed with its name in the Sentinel-2 nomen-
clature (background map © OpenStreetMap contributors).

function k(Zi,Zi′) is composed of an additional element:
the interaction term C, and in addition, the spatial distance
is learned. With formulation (9) we have a supplementary
source of information that links spectro-temporal and spatial
terms. In the following section, the complexity of the model
is discussed.

3) Description of the parameters: The parameters θ1 of
the mTAN hθ1

and their corresponding sizes are summarized
in Table I. The total number of learnable parameters θ1 is
described by the following equation:

2HE(1 + E) +DD′ +H + L1(L2 +D)

As a reminder, the parameters θ2 of the SVGP classifier fθ2

were highly dependent on the number of spectro-temporal
features T × D. By using an end-to-end training with the
mTAN, this number is significantly reduced to R × D′ with
R < T and D′ < D and therefore the total number of
parameters θ2 is reduced as well. Numbers of parameters for
our data set are given in the experimental section IV-A2.

III. DATA SET AND EXPERIMENTAL SET-UP

The study area covers approximately 200 000 km2 in the
south of metropolitan France. It is composed of 27 Sentinel-2
tiles, as displayed in Fig. 3.

TABLE II: Number of pixels for each data set

Training Validation Test
92 000 23 000 230 000

A. Irregular and unaligned Sentinel-2 time series

All available acquisitions of level 2A between January
and December 2018 for the 27 Sentinel-2 tiles were used,
as described in [14]. Surface reflectance time-series and
cloud/shadow masks have been produced using the MAJA
preprocessing chain [29] and were downloaded from the Theia
Data Center2. All the bands at 20m/pixel were spatially up-
sampled to 10m/pixel using bicubic interpolation [30]. A total
of 10 spectral bands with three spectral indices (NDVI, NDWI,
Brightness) were used. Compared to [14], no temporal sam-
pling preprocessing has been used (i.e. no linear interpolation
as in [9] or other types of temporal synthesis). As described
in Section I, the resulting data is irregular and unaligned.
Following the notations defined in Section II-A3, the union
of the acquisition dates of the 27 tiles results in T = 303
dates. Besides, the spectral dimension is equal to D = 13.

The reference data used in this work is composed of C = 23
land cover classes ranging from artificial areas to vegetation
and water bodies constructed with different data sources as
described in [14]. The nomenclature of the 23 land cover
classes can be found in Table III.

Pixels were randomly sampled from polygons over the full
study area (i.e. 27 tiles) to create three spatially disjoint data
subsets: training, validation and test. The polygons are disjoint
between the three data sets. The three data sets are class-
balanced: 4 000 pixels per class in the training data set, 1 000
pixels per class in the validation data set and 10 000 pixels
per class in the test data set. The total number of pixels for
each data set is provided in Table II. Classification metrics
such as overall accuracy (OA) or F-score were computed for
each model using the test data set with 9 runs with different
random pixel samplings. Standardization was performed for
the valid acquisitions dates. Mean and standard deviation were
estimated for each spectral band and for each spectral index
on the training data set and then used to standardize the other
data sets (validation, test) [31].

B. Competitive methods

Linearly interpolated data was feed into a simple SVGP
classifier called Gapfilled-SVGP model and is used as baseline
to compare with the mTAN-SVGP model. Two other classifiers
fθ2

are also compared in terms of classification accuracy and
processing time:
• Multi-layer Perceptron (MLP) with the same setup as

in [14],
• Lightweight Temporal Self-Attention (LTAE) described

in [13].
The end-to-end trained models are called mTAN-SVGP, mTAN-
MLP and mTAN-LTAE, respectively.

2https://www.theia-land.fr/en/products/

https://www.theia-land.fr/en/products/
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TABLE III: Land cover classes used for the experiments with
their corresponding color code.

Color Code Name
CUF Continuous urban fabric
DUF Discontinuous urban fabric
ICU Industrial and commercial units
RSF Road surfaces
RAP Rapeseed
STC Straw cereals
PRO Protein crops
SOY Soy
SUN Sunflower
COR Corn
RIC Rice
TUB Tubers / roots
GRA Grasslands
ORC Orchards and fruit growing
VIN Vineyards
BLF Broad-leaved forest
COF Coniferous forest
NGL Natural grasslands
WOM Woody moorlands
NMS Natural mineral surfaces
BDS Beaches, dunes and sand plains
GPS Glaciers and perpetual snows
WAT Water bodies

Unlike SVGP or MLP classifiers, the LTAE classifier uses
attention mechanisms. It may be redundant to use attention
mechanisms both in the mTAN and in the LTAE. Therefore,
the LTAE classifier was also studied without the mTAN and
this method is called raw-LTAE. However, the LTAE classifier
was not defined to deal with the irregular and unaligned time
series pixels. Thus, the mask m was used as an additional
feature. Besides, the spatial positional encoding matrix P was
also used in this classifier, as defined in (9).

The optimizer parameters (i.e. number of epochs, learning
rate and batch size) for each model were found by trial and
error and are described in Table VIII in Appendix A. To train
all models, one NVIDIA Tesla V100 GPU was used.

IV. MODEL EVALUATION

This section presents the different results obtained by the
mTAN-SVGP model. Firstly, the influence on the classification
accuracy and processing time of latent representation sizes as
well as the use of the spatial positional encoding matrix are
investigated. Then, the latent representation and the similarity
kernel learned by the interpolator are discussed.

A. Performance results

1) Comparison with linear interpolation: Firstly, the
mTAN-SVGP was implemented with a vector of latent dates
R defined with a regular sampling of τ = 10 days and a
total number of R = 37 dates3. Moreover, the number of
latent spectral features was equal to the number of spectral
features such as D′ = D = 13. Even if there is no reduction,
linear mixing is used for the latent spectral features. The latent
representation Z obtained using the mTAN is described by
R×D′ = 481 spectro-temporal features. The Gapfilled-SVGP

3Experiments were also made with random irregular sampling and with
selected dates from histogram of available dates. As modifying the positions
of the latent dates do not have any influence on the performances, the simplest
method was selected: regular sampling.

TABLE IV: Averaged overall accuracies (OA) for the mTAN-
SVGP and Gapfilled-SVGP models (mean % ± standard
deviation computed with nine runs)

mTAN-SVGP Gapfilled-SVGP
77.44± 0.15 67.25± 0.37

4 6 9 10 11 12 13
D'

37

25

19

15

13

7

5

R

75.59 76.88 77.51 77.28 77.54 77.42 77.44

75.49 76.76 77.42 77.25 77.52 77.38 77.31

75.40 76.65 77.31 77.16 77.35 77.22 77.19

75.26 76.57 77.30 77.06 77.32 77.19 77.15

75.08 76.47 77.23 77.03 77.33 77.08 77.10

74.31 75.82 76.63 76.51 76.74 76.59 76.59

73.45 75.06 76.17 76.00 76.15 76.08 76.05

75.0

75.5

76.0

76.5

77.0

77.5

78.0

Fig. 4: Averaged overall accuracies (OA) for H = 1 (mean
in % computed over 9 different runs) with R the number of
latent dates and D′ the number of latent spectral features.

model was implemented with the same number of spectro-
temporal features. A detailed evaluation of the Gapfilled-SVGP
model was done in [14].

The comparison in overall accuracy between the Gapfilled-
SVGP and mTAN-SVGP models is given in Table IV. The f-
score, recall and precision per class for both models are repre-
sented in Appendix C. As shown in Table IV, the mTAN-SVGP
model is 10 points above the Gapfilled-SVGP model in terms
of classification accuracy. The learned latent representation Z
obtained by the mTAN extracts more meaningful information
for the classification task for the SVGP classifier compared to
the linearly interpolated data.

2) Spectral and temporal feature reduction: Fig. 4 and
Fig. 5 represent respectively the averaged overall accuracies
(OA) and the averaged training times computed with dif-
ferent number of latent dates R = {5, 7, 13, 15, 19, 25, 37}
and different number of latent spectral features D′ =
{4, 6, 9, 10, 11, 12, 13}. As shown in Fig. 4, reducing R from
37 to 13 and D′ from 13 to 9 has a negligible effect on the OA
(i.e. from 77.44 to 77.23). Moreover, the standard deviation
of the OA is small, around 0.15. The number of parameters
θ2 is almost reduced by a factor four (i.e. from 584 200 to
165 600 parameters) and the training times are divided by two,
as described in Fig. 5.

In addition, the number of heads H has a little impact
on the classification performances as shown in Fig. 13 in
Appendix B. Besides, from H = 1 to H = 3, the training
time can be increased by a factor of two as shown in Fig. 14
in Appendix B.
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4 6 9 10 11 12 13
D'

37
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R

1225 1248 1255 1283 1295 1278 1317

1069 1096 1116 1104 1130 1105 1106

995 989 1006 989 989 1007 1018

923 916 935 927 926 928 925

886 844 871 848 901 870 916

788 773 790 790 787 769 793

735 783 736 742 746 755 763
800

900

1000

1100

1200

1300

Fig. 5: Averaged training times in seconds for H = 1 (mean
computed over 9 different runs) with R the number of latent
dates and D′ the number of latent spectral features.

TABLE V: Averaged overall accuracies (OA) with and without
the spatial positional encoded matrix P in the mTAN for the
model mTAN-SVGP (mean % ± standard deviation computed
with nine runs)

Without P With P

77.23± 0.17 78.63± 0.16

3) Spatial positional encoding: The spatial information
used to compute the positional encoded matrix P is composed
of the spatial coordinates (northing ψ1 and easting ψ2) in
meters in the Lambert 93 projection. The number of neurons
in the first and second layers are respectively L1 and L2 and
were found by trial and error: L1 = 16 and L2 = 14.

As shown in Table V, the use of the spatial positional
encoding in the mTAN for the mTAN-SVGP model increased
by nearly 1.5 points the overall accuracy. Besides, by using
the spatial information through a spatial covariance function
in [14], the OA was increased by nearly two points which
is comparable to the results we obtained with the spatial
positional encoding. The metrics per class for both models
(without and with spatial positional encoding) are represented
in Appendix C.

Fig. 6 represents the value of P for the features number
4 and number 12. This value was computed using different
spatial coordinates on a regularly spaced grid over the 27 tiles.
As shown in both Fig. 6a and 6b, the spatial transitions are
quite smooth. Each feature takes into account differently the
spatial information. Moreover, the learned spatial similarity is
anisotropic (see Eq. 9).

4) Influence on the number of inducing points: Fig. 7
represents the number of learnable parameters θ2 based on
the number of spectro-temporal features R × D′ and the
number of inducing points M . By using spectro-temporal re-
duction as described in Section IV-A2, the number of spectro-
temporal features has been considerably reduced from 481

TABLE VI: Averaged overall accuracies (OA) (mean %±
standard deviation) and averaged training times (in sec) for the
mTAN-SVGP with R = 13 latent dates, D′ = 9 latent spectral
features, H = 1 head and the spatial positional encoded matrix
P for different number of inducing points M (computed over
nine runs).

Number of inducing points M
50 100 150 200

Averaged OA 78.63± 0.16 79.20± 0.21 79.43± 0.29 79.48± 0.17
Training time 834 910 921 967

(R = 37, D′ = 13) to 117 (R = 13, D′ = 9). It results in
a significant reduction of the number of learnable parameters
θ2 as shown in Fig. 7. Moreover, by doubling the number of
inducing points from 50 to 100, the number of parameters θ2

with R = 13, D′ = 9 is still lower than with 50 inducing
points and R = 37, D′ = 13.

Experiments were done by increasing the number of induc-
ing points M = {100, 150, 200}. Table VI represents averaged
overall accuracies and training times computed with different
number of inducing points. With M = 200, the overall accu-
racy is almost increased by one point compared to M = 50.
Training time is only slightly affected by this increase in the
number of inducing points, i.e. 834s to 967s. Hence, spectro-
temporal reduction made possible to use higher number of
inducing points and thus to increase the performances, while
maintaining a reduced computational load.

B. Latent representation

It is possible to visualize the latent representation x̂j . Fig. 8
represents the comparison of three NDVI time series profiles
from one pixel labeled as ”CORN”: the raw data, the gapfilled
data (i.e. linearly interpolated) and the latent representation
obtained by the mTAN.

The latent mTAN representation obtained in Fig. 8 clearly
does not minimize the reconstruction error of the original
time series. For instance, the second minimum of the NDVI
observed around the day of the year 280 is not reconstructed.
Yet, this is the representation that minimizes the classification
loss function of the SVGP.

C. Versatility of the similarity kernel

As defined in Section II-A3, by using attention and
embedding mechanisms, the similarity kernel is able to
adapt to the pixel temporal sampling. The versatility of the
similarity kernel can be shown by computing the attention
value γrl

defined in (5) for different latent dates rl and for
different sets of observed dates T. In Fig. 9, two different
latent dates are studied rl = 181 and rl = 3614. For each
latent date rl, two different sets of observed dates T are
considered. Firstly, the attention value was computed with
a regular set of observed dates: T = {1, . . . , 365} with an
interval of τ = 1 day (in red in Fig. 9). Then, the attention
value was computed with a random set of observed dates

4The attention value plotted was normalized (cf Fig. 9) in order to have
everything on the same vertical scale.
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(a) feature 4 (b) feature 12

Fig. 6: Spatial positional encoding P computed over a regular grid of spatial coordinates (background map © OpenStreetMap
contributors).
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Fig. 7: Number of learnable parameters θ2 based on the
number of inducing points M and the number of spectro-
temporal features R×D′.

from a pixel i with T = Ti (in blue in Fig. 9).

As shown in Fig. 9, the kernel is not centered on the latent
date rl. It adapts itself according to the latent date rl and
the available observations. Moreover, as shown in Fig. 9, for
the set of observed dates T = {1, . . . , 365} (i.e. in red), the
bandwidth is larger for the latent date rl = 361 than for the
latent date rl = 181. Such kernel is referred to as a variable-
bandwidth kernel in the statistical literature [32]. It has shown
to perform well but, with standard statistical tool, was difficult
to optimize. Using the proposed framework, the optimization
is efficient.

V. COMPARISON WITH COMPETITIVE METHODS

This section presents a comparison of the mTAN-SVGP
model with different models: mTAN-MLP, mTAN-LTAE and
raw-LTAE. Firstly, the performance results are studied quan-
titatively and qualitatively. Then, an additional comparative
study is made between the mTAN-SVGP and the raw-LTAE to
evaluate the temporal sampling robustness.

50 100 150 200 250 300 350
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0.4

0.6

0.8

day of year (2018)

N
D

V
I

gapfilled
raw

50 100 150 200 250 300 350
0
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0.4
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0.8

1

latent dates

la
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nt
fe

at
ur

e

mTAN

Fig. 8: NDVI time series profiles for a pixel labeled ”CORN”.
Blue points • correspond to the raw data, the outlier values
have been removed in order to have a comprehensive plot.
Red points • correspond to the value obtained with a linear
interpolation with an interval of 10 days for a total of 37 dates.
Green points • correspond to the mTAN representation x̂j with
j = NDVI obtained from the mTAN-SVGP model, before the
spectral reduction (D′ = 9).

In the following, from the results obtained in the previously
in Section IV, the mTAN is set-up with R = 13 latent dates,
D′ = 9 latent spectral features, H = 1 head, the use of the
spatial positional encoding matrix P and M = 200 inducing
points. As the raw-LTAE model is the only one not using
mTAN, no spectral or temporal reduction was implemented in
this model.
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computed with T = {1, . . . , 365} with

a regular interval of τ = 1 day. Blue points • correspond to
γn
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computed with T = Ti for a random pixel i.

TABLE VII: Averaged training times (in sec) computed over
nine runs and number of trainable parameters for each model
(mTAN-SVGP, mTAN-MLP, mTAN-LTAE and raw-LTAE).

mTAN-SVGP mTAN-MLP mTAN-LTAE raw-LTAE
Training time 967 1207 840 1279
# parameters 1 005 675 33 113 184 376 761 380

A. Performance results

1) Quantitative results: Classification accuracies are given
in Fig. 10. From the results, the SVGP model took greater
advantage of the mTAN than the MLP or the LTAE models.
Indeed, the overall accuracy of the mTAN-SVGP model is
seven points above the mTAN-MLP model and around four
points above the mTAN-LTAE model. On the other hand, the
mTAN-SVGP model is in average two points below the raw-
LTAE model. The f-score, recall and precision per class for
the mTAN-SVGP, mTAN-MLP, mTAN-LTAE and raw-LTAE are
represented in Appendix C.

The number of trainable parameters and the training times
for each method are summarized in Table VII. The mTAN-
SVGP model has more trainable parameters that the raw-LTAE
model. However, the training time of the mTAN-SVGP model
is about 1.3 times shorter than the raw-LTAE as shown in
Table VII. By using a spectro-temporal reduction with the
mTAN, the number of trainable parameters for the mTAN-
SVGP is just over 2.5 times lower than the simple SVGP
(i.e. 1 005 675 versus 2 680 075), as described in Fig. 7. The
number of parameters of the raw-LTAE is also very large
because it is not able to deal with unaligned time series and
therefore has to combine all the dates. By using the mTAN,
for the LTAE, the number of trainable parameters is reduced
by four. However, as shown in Fig. 10, the overall accuracy of
the mTAN-LTAE model is seven points below the raw-LTAE
model.

2) Qualitative results: Land cover maps have been pro-
duced for each model (mTAN-SVGP, mTAN-MLP, mTAN-
LTAE, raw-LTAE) using the iota2 processing chain [33]
on two different tiles: 31TCJ and 31TDJ. Inference was
performed using the model trained on the 27 tiles with the

mTA
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Fig. 10: Boxplots of the overall accuracy for each model
(mTAN-SVGP, mTAN-MLP, mTAN-LTAE and raw-LTAE)
computed over nine runs.

best overall accuracy over the nine runs. The results obtained
by respectively the mTAN-SVGP and raw-LTAE are shown in
Fig. 11. The results obtained on this agricultural area on the
31TCJ tile showed that the main structures of the map are
clearly represented (i.e. crop field border). Indeed, the classi-
fication map does not exhibit rounded borders as it is often
the case with CNN model [34]. The mTAN-SVGP takes into
account spatial information without spatial oversmoothing.

All the generated land cover maps are available for down-
load. 5

B. Robustness to the temporal sampling

The raw-LTAE showed better classification performances.
However, to compute the inference on a specific area (e.g. on
a specific Sentinel-2 tile), the raw-LTAE required the common
temporal grid used during the training step (i.e. the whole set
of observed dates T = {t1, . . . , tT }). It is not the case for
classifiers using the mTAN. Thus, once trained, they are able
to classify any irregular and unaligned pixel time series.

To study the robustness to the temporal sampling, dates not
seen during the training step were artificially created. They
correspond to the acquisition dates T for the test data set
that have been slightly shifted. Different values for the shift
were studied: δ = {0, 1, 2, 3, 5} days. Five days correspond
to the maximum number of days between acquisition dates
for pixels on two adjacent orbits. The overall accuracy was
computed only on 31TCJ tile for two models mTAN-SVGP
and raw-LTAE both trained on the 27 tiles. As shown in
Fig. 12, the overall accuracy of the mTAN-SVGP model is
not affected by this temporal shift δ. However, the OA of
the raw-LTAE model is greatly impacted by the temporal
shift δ and the OA is almost divided by 1.5 with δ = 5
days. By using a linear smoother with temporal attention
mechanisms, the mTAN-SVGP model is more robust to this
shift than the raw-LTAE model which use spectro-temporal
attention mechanisms. Thus, the raw-LTAE is more sensitive

5DOI: https://doi.org/10.5281/zenodo.8033902

https://doi.org/10.5281/zenodo.8033902
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Fig. 11: Land covers maps. (a) Sentinel-2 true color compo-
sition, (b) Classification map obtained with mTAN-SVGP, (c)
Classification map obtained with raw-LTAE and (d) the class
color map (see Table III for correspondence).
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Fig. 12: Boxplots of the overall accuracy for the mTAN-SVGP
and raw-LTAE models computed with the test data set only
on the 31TCJ tile over nine runs. The models were trained
and validated on the all 27 tiles. The acquisition dates T for
the test data set were artificially shifted with different values:
δ = {0, 1, 2, 3, 5} days.

to the presence of dates during the training step and may
therefore be likely to over-fit.

VI. CONCLUSIONS AND PERSPECTIVES

This work introduces an approach to classify massive ir-
regular and unaligned Sentinel-2 SITS. To deal with irregular
and unaligned pixel time series, an end-to-end interpolate and
learn strategy is proposed. A first module, the Multi-Attention
Time Networks (mTAN), enables to project the irregular and
unaligned SITS onto a fixed and reduced size representation.
This representation is then given to the SVGP classifier and all
the parameters are jointly optimized during the optimization
of the classifier. The spatial information is taken into account
in the representation through the spatial positional encoding.
Experiments were conducted on Sentinel-2 SITS of the full
year 2018 in the south of France.

In terms of accuracy, the end-to-end learning mTAN-SVGP
model outperformed the simple SVGP classifier with linearly
interpolated data (Gapfilled-SVGP). The significant reduction
for the spectro-temporal features has allowed to use more
inducing points while keeping the same complexity, resulting
in improved classification performance. Moreover, the mTAN-
SVGP model is above the mTAN-MLP and mTAN-LTAE mod-
els in terms of accuracy. While the proposed mTAN-SVGP
does not outperform the raw-LTAE model, our model does
not require for the inference the common temporal grid used
during the training step. Besides, our result showed that the
raw-LTAE model is very sensitive to variations in the set
of available dates during inference, contrary to the proposed
mTAN-SVGP which showed stable performances. The mTAN-
SVGP is therefore more likely to generalize well to large
scale scenario where irregular and variable sampling dates are
prominent.
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In this paper, the potential of the multi-head attention has
not been fully taken into account. Indeed, only one head was
used H = 1 and the performances with an increasing number
of heads were not satisfying. A perspective of this work could
be to inform the different heads with the spatial information:
the linear layer βH in Eq. (6) could be replaced by the output
of a perceptron using the spatial positional encoding. This
could help the heads to specialize spatially and differentiate
themselves.

Another perspective of this work is to combine multi-
modal time series. Adding a radar sensor (i.e. Sentinel-1) or
other type of optical sensors (i.e. Landsat 8 with its thermal
bands) could improve the representation for the classification
task. The ability of mTAN to process unaligned time series
would make the fusion of multi-sensor data straightforward.
Moreover, in addition to spatial data (i.e. longitude and lat-
itude), topographic data can be used to construct the spatial
positional encoding in order to take better account of climatic,
geographical and other differences.

In the interest of reproducible research, the implemen-
tation of all the models (mTAN-GP, mTAN-MLP, mTAN-
LTAE and raw-LTAE) is made available in the follow-
ing repository:https://gitlab.cesbio.omp.eu/belletv/land cover
southfrance mtan gp irregular sits.
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la Biosphère (CESBIO) Laboratory, Université de
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Spain, and the École Nationale Supérieure des
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BIO), Université de Toulouse, Toulouse. His main research topic focuses
on the fusion of heterogeneous Satellite Image Time Series (SITS) so as
to enhance their spatial and temporal resolutions. His wider research interests
include image processing and machine learning for remote sensing data.

https://zenodo.org/record/3715021
https://zenodo.org/record/3715021
https://doi.org/10.5281/zenodo.58150


13

APPENDIX A
SOLVER PARAMETERS FOR EACH MODEL

TABLE VIII: Parameter values for the Adam optimizer for the models: Gapfilled-SVGP, mTAN-SVGP, mTAN-MLP, mTAN-
LTAE and raw-LTAE.

Gapfilled-SVGP mTAN-SVGP mTAN-MLP mTAN-LTAE raw-LTAE
Number of epochs 100 100 300 100 100
Batch size 1024 1024 1000 1000 1000
Learning rate 1× 10−3 1× 10−3 1× 10−4 5× 10−5 1× 10−4

APPENDIX B
INFLUENCE OF THE SPECTRAL AND TEMPORAL REDUCTION FOR DIFFERENT H HEADS
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Fig. 13: Averaged overall accuracies (OA) (mean in % computed over 9 different runs) with R the number of latent dates, D′

the number of latent spectral features and H the number of heads.
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Fig. 14: Averaged training times in seconds (mean computed over 9 different runs) with R the number of latent dates, D′ the
number of latent spectral features and H the number of heads.
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APPENDIX C
METRICS PER CLASS
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Fig. 15: Averaged f-score per class. mTAN-SVGP1: H = 1, D′ = 13, R = 37,M = 50 ; mTAN-SVGP2: H = 1, D′ = 9, R =
13,M = 50 ; mTAN-SVGP3: with P and H = 1, D′ = 9, R = 13,M = 50; mTAN-SVGP4: with P and H = 1, D′ = 9, R =
13,M = 200.
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Fig. 16: Averaged recall per class. mTAN-SVGP1: H = 1, D′ = 13, R = 37,M = 50 ; mTAN-SVGP2: H = 1, D′ = 9, R =
13,M = 50 ; mTAN-SVGP3: with P and H = 1, D′ = 9, R = 13,M = 50; mTAN-SVGP4: with P and H = 1, D′ = 9, R =
13,M = 200.
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Fig. 17: Averaged precision per class. mTAN-SVGP1: H = 1, D′ = 13, R = 37,M = 50 ; mTAN-SVGP2: H = 1, D′ =
9, R = 13,M = 50 ; mTAN-SVGP3: with P and H = 1, D′ = 9, R = 13,M = 50; mTAN-SVGP4: with P and H = 1, D′ =
9, R = 13,M = 200.
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